Math 503 **Problem Set 0** 9/4/2007

Solutions are due at the beginning of class on Friday, September 7, 2007.

1. In this problem, A is a non-empty subset of \mathbb{R} . A real-valued function g defined on A is bounded if $||g||_{\infty} = \sup$ x∈A $|g(x)| < \infty$. Also in this problem, $\{f_n\}_{n\geq 1}$ is a sequence of bounded real-valued functions defined on A with $b_n = ||f_n||_{\infty}$.

a) Suppose that $\{f_n\}$ converges uniformly on A to a function, f. Prove that f is bounded, and, if $b = ||f||_{\infty}$, $b = \lim_{n \to \infty} b_n$.

b) Suppose that $\{f_n\}$ converges pointwise on A to a function, f. Must f be bounded? Either prove that f is bounded, or give a counterexample.

c) Suppose that ${f_n}$ converges pointwise on A to a bounded function, f, and that $b = ||f||_{\infty}$. Must $b = \lim_{n \to \infty} b_n$? Either prove that this equality is correct, or give a counterexample.

2. Part of an open cone with vertex the origin and aperture or opening θ is shown in the diagram to the right. Give a precise definition (in either \mathbb{R}^2 or \mathbb{C}) of such an object (it is open, so only the inside of the cone should be included!). Fix θ in $(0, \pi)$, and suppose W is an open cone with aperture θ . Prove the following *reverse triangle inequality* (using algebraic manipulation in either \mathbb{R}^2 or \mathbb{C}):

There is $C_{\theta} > 0$ depending on θ (and not on W) so that if z_1 and z_2 are in W, then $C_\theta(|z_1| + |z_2|) \leq |z_1 + z_2|$.

3. Suppose $\{t_n\}_{n\geq 1}$ is a sequence of positive real numbers. Prove that there is a power series $\sum_{n=1}^{\infty}$ $\sum_{n=0}$ $a_n x^n = S(x)$ which converges for all $x \in \mathbb{R}$ so that $S(n) \ge t_n$ for all $n \in \mathbb{N}$.

Hint Choose $\alpha_n > 0$ and $p_n \in \mathbb{N}$ so that the monomial $\alpha_n \left(\frac{x}{n} \right)$ $\left(\frac{x}{n}\right)^{p_n}$ is greater than t_n when $x = n$ and is less than $\frac{1}{2^n}$ when $x = n - 1$. Then prove that the series converges for all x and satisfies the required inequalities. Either insure that the monomials are distinct or handle what could happen if they are not.