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A most familiar sequence

Leonardo Pisano (1170-1250) published a book in 1202 which contained the following
paragraph which is quoted here in translation:

A certain man put a pair of rabbits in a place surrounded on all sides by a wall.

How many pairs of rabbits can be produced from that pair in a year if it is supposed

that every month each pair begets a new pair which from the second month on

becomes productive?

One of Leonardo’s nicknames is Fibonacci. This paragraph is the first Western description
of the Fibonacci sequence*: 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, ....
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The biological validity of this model is questionable, but the sequence defined by this
description has amazingly many applications. Here’s a standard recursive description:
Fn+2 = Fn+1 + Fn with (F[), Fl) = (0, 1)

The sequence occurs in the analysis of algorithms, and, indeed, does occur in some
biological situations. There’s even a scholarly journal devoted to these numbers and their
generalizations. The Fibonacci numbers have many properties. For example, there is the
Cassini identity (1680):

Fn+1Fn_1 — (Fn)2 = (_1)n forn >0
The Cassini family included three generations of astronomers. The first of them discovered
four moons of Saturn and saw what’s now called the Cassini gap in Saturn’s rings.

The asymptotic size of the Fibonacci numbers turns out to be important in practice.
There is an explicit formula for F}, which easily gives useful information. Binet’s formula

states: n n
()" (%)
\/5

* The numbers occurred a thousand years earlier in Sanskrit literature, used in the
analysis of how long and short vowel sounds can be combined to form phrases!

F, =
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The formula is named after Binet (1786-1856) but was known to Euler (1707-1783). I
think the formula is really quite remarkable: the declaration that a sequence of integers is
equal to a simple combination of powers of irrational numbers! There are many ways of
verifying this formula (mathematical induction, generating functions, linear algebra ...)
Realize that 115 ~ 1.618 and 155 ~ —.618, so F,, ~ .447((1.618)" — (.618)") (because
% ~ .447). Now powers of numbers between —1 and 1 go rapidly to 0, so, in fact,
F,, ~ .447(1.618...)". In fact, F1p = 55 and .447(1.618)'° = 54.965 ... which shows that
the approximation is quite good even for small n.

Any linear recurrence can be analyzed in a way that’s similar to what’s done for the
Fibonacci numbers. The results give asymptotic information which can be quite valuable.

A slight change

Math courses are very careful about non-linearity: it’s too hard! Derivatives used to
tame “random” functions by locally pretending they are linear. Throw away caution and
consider: hy,io9 = hpy1 + (hn)2 with (hg, h1) = (0,1). This is sort of a quadratic analog
of the Fibonacci sequence: I'll call it the QF sequence here. Let’s look at a few terms:

n hn

0 0

1 1

2 1

3 2

4 3

5 7

6 16

7 65

8 321

9 4546

10 1 07587

11 207 73703

12 1 15957 36272

13 43155 83320 68481

14 1 34461 53124 81085 26465
15 18624 25941 12190 84752 01821 73826

Certainly this sequence is increasing fast: very fast, much faster than the Fibonacci se-
quence. Why is this? We could compare the QF sequence to a sequence defined by a
simpler recurrence such as kpi19 = (k‘n)z. The terms of the QF sequence are likely to
be bigger than this sequence. If kg and k; were some initial values, like FROG and
TOAD, then we would have determined the successive members of the sequence {k,}.
The sequence would begin like this:
FROG, TOAD, FROG2, TOAD?, FROG2, TOAD*, FROG®, TOADS, ...

There is no interaction between the odd and even terms. Let’s just look at the even terms.

Then kg, = FROG(Z") = rroc((VD™"). Of course something similar happens to the odd
terms, with a “base” of TOAD instead of FROG. This might suggest that we could expect
a square root of 2 power from the QF recurrence every time n steps up by 1. You can
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verify that roughly: the length of the integers in the table about doubles every two steps.
But, before analyzing this “abstract” sequence further, I can tell you it counts something*:
certain “trees” with very restricted branching rules.

Weird trees

In theoretical computer science, a graph is a set of vertices together
with a set of edges where the edges connect pairs of distinct vertices. A
vertex connected by an edge is called incident with that edge. A tree here L L
will be a connected graph without closed paths of edges. The degree of the \ /
vertex is the number of edges it touches. A rooted tree has one distinguished
vertex with degree 1. The root vertex will be labeled R. Any other vertices
of degree 1 in a rooted tree are called leaves and will be labeled L. Trees \ /
will be drawn here with their roots at the bottom of their pictures. The Vv
level of a vertex is its distance to the root where the distance between two |
vertices is the number of edges required to travel from one to the other. A
tree with three leaves is displayed. One leaf has level 2 and the two others
have level 3. This tree also has two vertices designated V which are neither
leaves nor the root. They both have degree 3. One of these has level 1 and
the other has level 2.

H,, will be a set of all rooted trees of a certain type for each integer n > 1. Every
leaf of each tree in #,, will have level n. Any vertices of degree greater than 1 in trees
in H,, will be one of two types: the diamond (#) and the circle (®). The diamond will
always have degree 3 so the tree must “branch” at a diamond. The distance between two
diamonds must always be at least 2, and the level of a diamond must be at least 2. All
other vertices of degree greater than 1 will be circles and each circle will have degree 2.
There will be no branching at a circle — just a “trunk”. Here is a display of some small
forests of this species, a rather peculiar sort of binary tree.

L L

L VYA

[ J
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[ L] L 4
Hli Hg: Hgl ° ° H4:
R
R [ J [ J [ ]
R R
R R R

The trees in Hs can be grouped suggestively. The illustration following shows Hs divided
into two groups, As and Bs. As contains the trees in 5 whose level 2 vertex is a circle.

* Tt is frequently useful to find something that is counted by a sequence of integers!
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Bs, the trees in Hs whose level 2 vertex is a diamond. The trees are “oriented”: the left
and right branches are distinct. If you look carefully, the trees in As are the trees in H4
pushed one level “up”, while the trees in B5 have branching beginning at the second level,
and the left and right subtrees shown are independently chosen from Hs. Since the right
and left branches are each from Hg3, the number of choices is the square of the number
of trees in Hg. Therefore the number of trees in H5 are exactly equal to the number in
As (that’s hy) plus the number in Bs (and that’s (h3)?). So the number of trees in H,
satisfies the QF recurrence.
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Trees with restricted branching rules are useful tools in some aspects of physics and

chemistry and in many areas of computer science. Studying and counting trees can be
useful.

Asymptotics

As mentioned, we might expect “superexponential” behavior like (something)((ﬁ)n).
Let us try to find the value of the base of this superexponential growth. I should mention
that almost everything discussed here had its first appearance as a result of experimen-
tation, assisted by Maple. The numbers appearing are so large (and, as you will see, so
small!) that machine-based help is essential for exploration. What’s more, conventional
calculators and computer programs which have fixed sizes for numbers would rapidly be
insensitive and useless for much of this exploration.

The QF sequence increases, but some control is possible:

Lemma For n > 0, 0 < hy, < hyyp1 < 2(hy)2

Proof This is true for n = 1. Since the sequence is increasing, h,, < h,41 always, and
hn+2 = hn+1 + (hn)2 S (hn+1)2 + (hn+1)2 = 2(hn+1)2- n

Qn

by, o
Now define a,, by hyio = (hy)? (1 + 0 "')12) The lemma implies that 1 < a,, < 3.

I’'ll consider a specific example, say hg, of the QF sequence, and use the definition of the
a,’s repeatedly. I'll do some algebraic juggling in order to help you see a general pattern.
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hs = (he)” (1 + %) = ag(he)? = as <(h4)2 (1 + (Z3)2>)2 =

aa(a0) (10))” = as(oa)? ()" = aafan)® ((h)? (1+ %)) _

\/5 8
a6(as)?(a2)*(h2)® = ag(as)®(az)*(ao)® = ((ae)l/s(a4)1/4(a2)1/2(a0)1/1>( )

Here I made ag = 1 since hy = hg = 1. But what I am really trying to do is to somehow
guess a formula which imitates what we’ve seen for the much simpler {k,} sequence. For

example, I know the kg = FROG((‘/E)S). Since the QF sequence is more complicated, 1
don’t think we should expect something so explicit. The hg formula seems to suggest that
the ha,, might approximately be a (v/2)?" power of some “base” and that base would be
an infinite product of the as;’s to some powers.

This can be done in general, because we could write hyyo = (hpn_2)*(an_2)%a, =
(hn—4)¥(an—4)*(an_2)%a, = ... and so on down to 1, where “1” is either hy or hy. There
are powers of 2 in the exponent. I will rewrite things using logs, because then the products
become sums and infinite sums are likely to be more familiar than infinite products. There
are two cases depending on n’s parity (evenness or oddness).

Even QF terms

o0

n—1 (\/5)2n
1 s " 1
hon = (exp( E 21 log a2j>> which is &~ AV2™ if A = exp E 571 log as;

Odd QF terms

n 1 1
Here hgy, 41 is close to BW2)* g log B = \ﬁ Z 9j+1 log agjt1-
j=0

Why “should” these infinite series converge? The QF sequence increases very rapidly.
For example, the twentieth term has 370 decimal digits! The a,’s are quite close to 1
because (h}fn*)é ~ (hn)‘@_Q, which is certainly a negative exponent! Since log(l + z) ~ =
for small z, convergence of the series of logs follows. By being a bit careful of the error
(no more tools than basic calculus are needed) the following result can be verified:

Theorem lim fian =1 and lim fan 11

n—oo A(\/E)Q" n—o0o B(ﬂ)(2"+1) =L

We can compute A and B. The accuracy of the calculation needs attention since there are
both very large and very small numbers involved.

A~ 1.451095081160068 17464 ... and B ~ 1.43633 14578 35680 96627 . ..

So these growth constants are two numbers which govern the sequence. The odd elements
of the sequence and the even elements of the sequence seem to be asymptotically decoupled.
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But the bases of the superexponential growth actually must “pay attention” to each other
since together they describe a single strictly increasing sequence of integers. To me this is
a very strange situation.

Dependence on initial conditions

Students who study differential equations get used to thinking about the solution as a
result both of the differential equation and of the initial conditions. One of the standard
beginning examples is throwing a ball and getting the path as a function of time. The
differential equation describes how the position of the ball “evolves” through time, but
certainly the ball’s position at later time will also depend on its initial position and initial
velocity. Recurrences frequently have similar dependence.

The Binet formula for the Fibonacci numbers can be generalized to any sequence
satisfying the recurrence F,, o = F,, 11 + F,, with initial conditions Fy = p and F; = ¢, for
any real numbers p and ¢q. Then the sequence looks like

»,4,p+q,p+ 2q,2p+ 3q,3p + 9q, . ..

The linearity of the recurrence makes guessing a general formula this not too difficult.
If F,,(p,q) is the n*" term of the sequence with (p,q) initial conditions, then F,(p,q) =
(Frn—1)p+ (Fn) q. You can check this formula just by looking at the solutions with initial
conditions (0,1) and (1,0) because of linearity. Similar results are true for all linear
recurrences. But QF is not linear, and the resulting mixing seems quite complicated. Here
is one result:

Theorem If p and ¢ are any non-negative real numbers with p + ¢ > 0, and if h,(p, q)
is the n*" term of the sequence satisfying hpi2 = hni1 + (hyn)? with (ho, k1) = (p,q)

h
then there are positive numbers A(p,q) and B(p,q) so that lim 2n

n—co A(p, q)(ﬁ)an‘ =1 and

lim fan 41 =
n—>00 B(p’ q) (\/i)(2n+1)

The initial condition (0,0) isn’t covered by this result, but then the sequence produced is
all 0’s. The initial conditions, (p,q), here defined in the first quadrant of the plane, get
changed into a pair of superexponential growth constants, (A(p, q), B(p, q)), which describe
the sequence asymptotically.

The intertwined nature of the two superexponential subsequences is quite strange.
We know, under the hypotheses of the previous theorem, that for n large enough, hs, <
hont+1 < hapyo. If we assume that the asymptotic approximations satisfy the same con-
ditions, then we know that A(p, q)(‘/i)% < B(p, q)(‘/i)@“l) < A(p, q)(‘/i)%u. We might
make a bit of sense out of superexponential growth if we take logs and then take logs again.
Consider A(p, q). The sequence is growing, so A(p, q) > 1. Therefore log(A(p,q)) > 0 and
then log(log(A(p, ¢)) has no restriction: it can be any real number. Define a(p,q) to be
log(log(A(p,q)) and B(p,q) to be log(log(B(p,q)). If we take logs twice in the preceding
inequality we get nlog2+a(p,q) < (n+ 3)log2+8(p,q) < (n+1)log2+a(p,q). Subtract
nlog2 from all terms.



Therefore the initial conditions (p, ¢) in the first
quadrant of the plane get changed to numbers whose
log(log) values («, 3) are in a diagonal strip of the 1
plane: a < %10g2 + 8 < log2+ a. %10g2 is about
.34657. This diagonal strip is shown to the right.

The growth constants whose values were previously /
stated result from the initial condition (p, ¢) = (0, 1). -1 / 1
The («, 8) point gotten from log(log)ing (?) of those

numbers is about (—1.01586, —.98801), and is shown

in the accompanying graph. This point is certainly ° -1
inside the strip. WE DON’T KNOW IF EVERY POINT

IN THE STRIP CORRESPONDS TO A PAIR OF GROWTH

CONSTANTS.

More properties are known about the functions A(p,q) and B(p,q), such as differ-
entiability and some knowledge of the values of their derivatives. We also know various
equations that A(p,q) and B(p,q) must satisfy. But they seem to be rather complicated
functions, fully reflecting the nonlinearity of the QF recurrence. Verification of the state-
ments needs some sophisticated techniques.

Going backwards

Some recurrences can be run backwards. Let’s run the Fibonacci recurrence Fj, o =
F, 1 + F, with (Fy, F1) = (0,1) backwards (reversing “time”): F,, = F, 49 — F4q. If
n = —]_, thenF_1 :Fl_FO =1-0=1. AndF_z :FO_F—l =0-1= —]_, and
F 3=F1—F_ 3=1-(-1) = 2. The backwards sequence looks like this: ..., 5 =
F_5, -3 = F_4, 2 = F_3, -1 = F_2, 1 = F—l; 0 = F(), 1 = Fl- PI’OViIlg that
F, = (—1)"*'F_,, when n is a negative integer is not difficult. Nothing much new happens
when a linear recurrence goes backwards. The explicit formulas are true for negative n’s.

Let’s look at QF with the initial conditions (hg,h;) = (1,w) when w is a positive
number and go backwards. We know hy,12 = hyy1 + (hy)? 50 (hy)? = hygo — hpyr. If
n = —1, then (h_1(w))? = hy(w) — ho(w). We need the w’s here because the backwards

elements of the recurrence are now functions of w. So we have (h_1(w))? = w — 1.
1.0—

2
©

Think a bit. We can solve the equation with a
square root, but which square root, and should we
restrict our consideration to real solutions only?
I’ll stay away from the complex numbers, although
I do love them. So we restrict to w > 1. We can
simplify by only looking at the positive solution of
the equation. To the right is a graph of h_; (w) =

Vw —1 for win [1,2].
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Suppose we go back one more step. We have
the equation (h_s(w))? + h_1(w) = 1. Square
root again with the positive choice. The result

is h_o =+/1— vVw —1. We need to consider

this functlon on its natural domain”, which is in-
side the domain of A_;. The domain is [1,2]. The
maximum value of h_s, at the left end point, is 1.

Now let’s consider the third step back, so that
(h_3(w))? + h_s(w) = h_1(w). The formula for
h_3 is more elaborate.

= \/\/’w—l—\/l—\/w—l.
This function’s domain is more intricate, but it
must be inside [1, 2] since h_; and h_y must be de-
fined. The restriction is that w must be larger than
1.38197 (approximately!). The maximum value, at
the right end point, is 1.

The fourth backwards function, h
by the formula

VIV 1- ViV o1

The domain of this function is an interval whose
right end point is 1.56250. Since h_3 is evaluated
inside this formula, the formula only makes sense
for w > 1.38197, because otherwise h_gz(w) won’t
be defined. The maximum value, at the left end
point, is about .73.

_4(w), is given
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1.0— 1.0

0.9: Og:

08: o.s:

07: 0.7:

OB: 0_5:

05: 05:

04: 0.4:

03: 0.3:

02: 0.2:

0.1: 0.1:
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The graphs of h_s(w) and h_g(w) are above. The left graph is 0 at about 1.49139
and has a maximum value of about .67. The right graph is 0 at about 1.51282 and has a
maximum value of about .5. Let me summarize with the following:

h_1(w) >0 for 1 < w.

1
1 2
h_o(w)>0for 1 <w<2
1 1
1
h_3(w) > 0 for 1.38197 < w < 2.
I | ]
1 2
h_a(w) > 0 for 1.38197 < w < 1.56250.
1 l | I
1 2
h_5(w) > 0 for 1.49139 < w < 1.56250.

1 . I
1 2

h_g(w) > 0 for 1.49139 < w < 1.51282

I | 11 I

1 2

I hope that the pictures or the numbers or the diagrams suggest something. The
computations going backwards get increasingly delicate, because the complexity of the
nested square roots increases and the numbers involved get very close. The interval of
existence is getting narrower, and its width actually — 0. This assertion is not obvious!
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Theorem There is a unique number, L(1) ~ 1.50787 47553 92775 47766 . . ., so that the ini-
tial conditions (hg, h1) = (1, L(1)) give a doubly infinite sequence of positive real numbers
satisfying the QF recurrence.

In fact, as the notation L(1) might suggest, given any positive real number z, there’s a
unique positive real number L(z) so that (z, L(z)) is part of a doubly infinite QF sequence.
The function L(z) is differentiable and has interesting properties. Due to the nonlinearity
of the QF recurrence, verifying these statements is not straightforward.

Does computation always help?

Here is another anecdote about the tendency (desire?) of human beings to see patterns.
Since the initial conditions (1, 1.50787...) are special maybe we should compute the growth
constants of the resulting QF sequence. The growth constants are approximately

A(1,1.50787...) ~ 1.88695859 ... and B(1,1.50787...) ~ 1.88695854. ..

Much intricate floating point computation produces these numbers and everyone knows
that such arithmetic accumulates errors. Therefore a natural conjecture is certainly that
a doubly infinite QF sequence occurs exactly when the growth constants are equal. That
result would certainly be pretty, and would make all the numbers seem more interesting.

Motivated by these numbers, “ONE” can spend several weeks trying to prove this
result. Remember that the ecstasy of discovery is merely the overrated climax of the joy
of investigation.* T don’t agree with that entirely, especially when the ONE involved is ME
and the result wanted is FALSE. Very careful computation shows that the last digits (the
9 and the 4) of the numbers displayed above are correct, and the two growth constants
are not equal. Actually the growth constants for doubly infinite QF sequences are always
almost equal (the quotient of their logs always is 1 to about 6 decimal places!) but they
are rarely exactly equal to 1. WE DON’T KNOW A NICE CHARACTERIZATION OF DOUBLY
INFINITE QF SEQUENCES IN TERMS OF THEIR GROWTH CONSTANTS.

That’s the story (and, now, the closing credits!)

You've met three new numbers, 1.45109..., 1.43633..., and 1.50787.... I tried the
Inverse Symbolic Calculator web page, which reported no connections with known mathe-
matical constants. I don’t know much else about these numbers, but I guess that all three
of them are transcendental (they are not solutions of polynomial equations of any degree
with integer coefficients). For the first two numbers, a proof can probably be given using
a result due to Liouville (numbers that are very well approximated by rational numbers
are transcendental —see the next page, please). I DON'T KNOW FOR SURE, THOUGH.

The methods used to prove the statements in this talk vary from traditional techniques
such as continued fractions (several centuries old) to relatively new ideas which were created
in the last 10 years to study nonlinear differential equations.

These results were discovered by the author together with many people. The following
faculty members made major contributions: Bill Duke (now at UCLA), Roger Nussbaum,
Mike Saks, and Gene Speer. Tom Peters, a Rutgers undergraduate (now at Columbia as
a grad student), studied a cubic analog of QF sequences.

* Huh?
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Just a little about numbers ...

There are lots and lots of numbers. In fact, there are lots and lots of different kinds of
numbers: real, complex, quaternionic, numbers used in signal processing which are strings
of bits, and many others.

Here I'll only talk about real numbers.

We start with the integers. Actually, let’s start with the counting numbers: 1, 2, 3,
and so on. Already there are interesting questions. There are infinitely many positive
integers. It’s not totally obvious that there are infinitely many prime numbers although
convincing arguments (o0.k., PROOFS!) have been known for several thousand years. It is
not known if there are infinitely many fwin primes, prime numbers separated by 2. So 5
and 7 are twin primes. Our ignorance is embarrassing!

Then we build up: 0 and negative integers permit us to add and subtract freely. If we
want to allow division, we need to be careful about the rules (no matter how much you’d
like it, there is no multiplicative inverse for 0, not if you want other rules to still be true!).
We get the rational numbers. Here we run into new difficulties. One number can have
different names: % = % = ‘71—8 = :—;% This is quite weird.

The real numbers are all possible decimal expansions. You can choose a sign (4 or —),
a finite number of digits to the left of the decimal point, and then an infinite sequence of
digits to the right of the decimal point. More confusion can occur. A real number may have
more than one decimal “address”: 43.26999. .. is the same as 43.27000 . . . but this shouldn’t
be distressing, since rational numbers already have a similar address deficiency (an even
worse deficiency, because there are infinitely many different ways to write rationals). Real
number arithmetic is so hard that real computers can’t handle all real numbers!

Rational numbers always must have a repeating decimal representation. Other num-
bers are irrational, and can’t be written as quotients of integers. The square root of 2 is
such a number (again, this was known a long time ago). What is not obvious, and was
relatively recently observed, is that there are many more irrationals than rationals. Here
is one way of restating this assertion: if you throw all the real numbers in a bag and pull
one out “at random”, then the probability is 1 that the number will be irrational. This
isn’t obvious, and the idea of “probability” needs to be carefully investigated.

A number is algebraic if it is a root of a polynomial with integer coefficients. So v/2

is algebraic (z2 — 2) and so is %. I don’t know the polynomial for that number!

Some numbers are not algebraic (m and e are not algebraic). Numbers which are not
algebraic are called transcendental. Now an even more startling fact: take the bag of real
numbers again, and pick a number “at random”. As mentioned before, the number will
be irrational with probability 1. Moreover, the number picked will be transcendental with

probability 1. I don’t think human beings can understand random real numbers.

! {positive integers} C {integers} C {rational numbers} C {real numbers}

{real numb €I‘S} = {irrationals} U {negligible stuff} '
= {transcendentals} U {other negligible stuff} '

0 ~tl) O —utld
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