Formula sheet for the second exam in Math 135:F2, summer 2006

Function	Derivative
k (const.)	0
x^n	nx^{n-1}
e^x	e^x
$\ln x$	1/x
a^x	$a^x \ln(a)$
$\sin x$	$\cos x$
$\cos x$	$-\sin x$
$\tan x$	$(\sec x)^2$

Function	Derivative
Cf(x)	Cf'(x) (C const.)
f(x) + g(x)	f'(x) + g'(x)
$f(x) \cdot g(x)$	$f'(x) \cdot g(x) + f(x) \cdot g'(x)$
f(x)	f'(x)g(x) - g'(x)f(x)
$\overline{g(x)}$	$g(x)^2$
f(g(x))	$f'(g(x)) \cdot g'(x)$

Exponential properties $a^{b+c} = a^b \cdot a^c$ $a^{-b} = 1/a^b$ $(a^b)^c = a^{bc}$ $e \approx 2.718$ $a^0 = 1$ $e^{\ln a} = a$ if a > 0

$$\begin{array}{c} \textbf{Logarithm properties} \\ \ln(a \cdot b) = \ln a + \ln b \quad \ln(a^b) = b \ln(a) \\ \ln(a/b) = \ln(a) - \ln(b) \quad \ln\left(\frac{1}{b}\right) = -\ln(b) \\ \ln(e^a) = a \quad \ln(1) = 0 \quad \ln(e) = 1 \end{array}$$

Miscellaneous formulas

If $a \neq 0$, the **roots** of $ax^2 + bx + c = 0$ are $x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$. Distance between (a, b) and (c, d): $\sqrt{(a-c)^2 + (b-d)^2}$.

Circle center (h, k) and radius r: $(x - h)^2 + (y - k)^2 = r^2$.

f is **continuous** at w if $\lim_{x \to w} f(x)$ exists and equals f(w).

Intermediate Value Theorem

If f(x) is continuous in $a \le x \le b$, then f(x)'s values include all numbers between f(a) and f(b).

f'(x), the **derivative of** f **at** x, is defined to be $\lim_{h\to 0} \frac{f(x+h)-f(x)}{h}$

Mean Value Theorem

If f(x) is differentiable in $a \le x \le b$, then there is at least one c between a and b so that $f'(c) = \frac{f(b) - f(a)}{b - a}$.

Area and Volume Formulas

Rectangle A = Length-widthCircle $A = \pi \text{ radius}^2$ Triangle $A = \frac{1}{2} \text{ base-height}$ Box V = Length-width-heightCylinder $V = \pi \text{ radius}^2 \cdot \text{height}$ Sphere $V = \frac{4}{3}\pi \text{ radius}^3$

##