Formula sheet for the final exam in Math 135:F2, summer 2006

f is **continuous** at w if $\lim_{x\to w} f(x)$ exists and equals f(w).

Intermediate Value Theorem

If f(x) is continuous in $a \le x \le b$, then f(x)'s values include all numbers between f(a) and f(b).

f'(x), the **derivative of** f **at** x, is defined to be $\lim_{h\to 0} \frac{f(x+h)-f(x)}{h}$

Mean Value Theorem

If f(x) is differentiable in $a \le x \le b$, then there is at least one c between a and b so that $f'(c) = \frac{f(b) - f(a)}{b - a}$.

A Riemann sum for f(x) on [a,b] is $\sum_{i=1}^{n} f(x_i^*)(x_i - x_{i-1})$. As

the length of the subintervals $\to 0$, these sums $\to \int_a^b f(x) dx$, the **definite integral** of f(x) on the interval [a, b].

Fundamental Theorem of Calculus

- If f(x) is continuous, then $\frac{d}{dx} \int_a^x f(t) dt = f(x)$.
- $\int_a^b f(x) dx = F(b) F(a)$ if F'(x) = f(x).

Function	Antiderivative
0	C (a constant)
x^n	$\frac{1}{n+1}x^{n+1} + C$ if $n \neq -1$
$x^{-1} = \frac{1}{x}$	$\ln(x) + C$
$x^{-1} = \frac{1}{x}$ $kf(x) \text{ if } k$	kF(x) + C if $F(x)$ is an
is a constant	antiderivative of $f(x)$
f(x) + g(x)	F(x) + G(x) + C if $F(x)$, resp.
	G(x), is an antiderivative of $f(x)$,
	resp. $g(x)$.
e^x	$e^x + C$
a^x	$\frac{1}{\ln(a)}a^x + C$
$\sin x$	$-\cos x + C$
$\cos x$	$\sin x + C$
$\tan x$	$\ln(\sec x) + C$
Substitution If $u = u(x)$, then $\int f(u(x))u'(x) dx$	
$=\int f(u) du.$	

Function Derivative k (const.)0 x^n nx^{n-1} e^x e^x 1/x $\ln x$ $a^x \ln(a)$ a^x $\cos x$ $\sin x$ $-\sin x$ $\cos x$ $(\sec x)^2$ $\tan x$

Function Derivative
$$Cf(x) Cf'(x) (C const.)$$

$$f(x) + g(x) f'(x) + g'(x)$$

$$f(x) \cdot g(x) f'(x) \cdot g(x) + f(x) \cdot g'(x)$$

$$\frac{f(x)}{g(x)} \frac{f'(x)g(x) - g'(x)f(x)}{g(x)^2}$$

$$f(g(x)) f'(g(x)) \cdot g'(x)$$

Exponential properties $a^{b+c}=a^b\cdot a^c \quad a^{-b}=1/a^b \ \left(a^b\right)^c=a^{bc} \quad e\approx 2.718 \ a^0=1 \quad e^{\ln a}=a \text{ if } a>0$

Logarithm properties
$$\ln(a \cdot b) = \ln a + \ln b \quad \ln(a^b) = b \ln(a)$$
$$\ln(a/b) = \ln(a) - \ln(b) \quad \ln\left(\frac{1}{b}\right) = -\ln(b)$$
$$\ln(e^a) = a \quad \ln(1) = 0 \quad \ln(e) = 1$$

Area and Volume Formulas Rectangle A = LENGTH-WIDTH Circle $A = \pi$ Radius² Triangle $A = \frac{1}{2}$ Base-Height Box V = LENGTH-WIDTH-HEIGHT Cylinder $V = \pi$ Radius²-Height Sphere $V = \frac{4}{3}\pi$ Radius³

Miscellaneous formulas

If $a \neq 0$, the **roots** of $ax^2 + bx + c = 0$ are $x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$.

Distance between (a,b) and (c,d): $\sqrt{(a-c)^2+(b-d)^2}$.

Circle center (h, k) and radius r: $(x - h)^2 + (y - k)^2 = r^2$.

$\begin{array}{c|cccc} \textbf{Special values of} \\ \textbf{trig functions} \\ \theta & \sin \theta & \cos \theta & \tan \theta \\ 0 & 0 & 1 & 0 \\ \frac{\pi}{6} & \frac{1}{2} & \frac{\sqrt{3}}{2} & \frac{1}{\sqrt{3}} \\ \frac{\pi}{4} & \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} & 1 \\ \frac{\pi}{3} & \frac{\sqrt{3}}{2} & \frac{1}{2} & \sqrt{3} \\ \frac{\pi}{2} & 1 & 0 & \text{Undefined} \\ \end{array}$

Possibly useful numbers for this exam

$$2^2 = 4$$
; $2^3 = 8$; $2^4 = 4^2 = 16$; $2^5 = 32$; $2^6 = 4^3 = 64$; $2^7 = 128$; $2^8 = 4^4 = 256$; $2^9 = 512$; $2^{10} = 4^5 = 1024$. $3^2 = 9$; $3^3 = 27$; $3^4 = 81$; $3^5 = 243$.