Second Monday Math 135 review problems for section F2

Substitution

1. $\int (3x-6)e^{3x^2-12x}dx$ 2. $\int_0^{\sqrt{\ln 7}} xe^{(x^2)}dx.$

Antiderivatives & initial value problems

1. Suppose $f''(x) = x + \frac{1}{x^2}$ and f(1) = 1 and f'(1) = -2. Find a formula for f(x). Computations with exp and log should be simplified as much as possible; approximations are not acceptable.

2. Suppose $f''(x) = \cos x + \sin(2x)$ and f(0) = 0 and $f'(\pi) = 0$. Find a formula for f(x). Computations with sine and cosine should be simplified as much as possible; approximations are not acceptable.

3. Suppose $f''(x) = e^x - 1$ and f(0) = 2 and f'(0) = -3. Find a formula for f(x). Computations with exp and log should be simplified as much as possible; approximations are not acceptable.

Definite integral

1. Suppose P and Q are constants, and $f(x) = P \sin(7x) + Qx \cos(7x)$. Find specific values of P and Q so that $f'(x) = x \sin(7x)$. Use your answer to evaluate $\int_0^{\pi/7} x \sin(7x) dx$.

2. Suppose $f(x) = xe^x - e^x$. Compute f'(x), and use your answer to evaluate $\int_0^1 xe^x dx$ exactly.

Second Monday Math 135 review problems for section F2

Substitution

1. $\int (3x-6)e^{3x^2-12x}dx$ 2. $\int_0^{\sqrt{\ln 7}} xe^{(x^2)}dx.$

Antiderivatives & initial value problems

1. Suppose $f''(x) = x + \frac{1}{x^2}$ and f(1) = 1 and f'(1) = -2. Find a formula for f(x). Computations with exp and log should be simplified as much as possible; approximations are not acceptable.

2. Suppose $f''(x) = \cos x + \sin(2x)$ and f(0) = 0 and $f'(\pi) = 0$. Find a formula for f(x). Computations with sine and cosine should be simplified as much as possible; approximations are not acceptable.

3. Suppose $f''(x) = e^x - 1$ and f(0) = 2 and f'(0) = -3. Find a formula for f(x). Computations with exp and log should be simplified as much as possible; approximations are not acceptable.

Definite integral

1. Suppose P and Q are constants, and $f(x) = P \sin(7x) + Qx \cos(7x)$. Find specific values of P and Q so that $f'(x) = x \sin(7x)$. Use your answer to evaluate $\int_0^{\pi/7} x \sin(7x) dx$.

2. Suppose $f(x) = xe^x - e^x$. Compute f'(x), and use your answer to evaluate $\int_0^1 xe^x dx$ exactly.