Problem statement a) Suppose that z = f(x, y), that x = g(t) and y = h(t), and that the functions f, g, and h are twice differentiable. Use the Chain Rule to find an expression for $\frac{d^2z}{dt^2}$.

b) An insect crawls on a metal plate in the plane. At time t = 1 its position vector is $\mathbf{i} + 2\mathbf{j}$, its velocity is $2\mathbf{i} - \mathbf{j}$, and its acceleration is $3\mathbf{i} + 4\mathbf{j}$. Suppose that the temperature of the plate at the point x, y is a certain function T(x, y) satisfying

$$T(1,2) = 2,$$
 $T_x(1,2) = -1,$ $T_y(1,2) = 3,$
 $T_{xx}(1,2) = 0,$ $T_{xy}(1,2) = 1,$ $T_{yy}(1,2) = -2.$

If T(t) is the temperature experienced by the insect at time t, find $\frac{dT}{dt}$ and $\frac{d^2T}{dt^2}$ at time t = 1.