Problem statement The function $\frac{\sin x}{x}$ can be extended to have value 0 when $x = 0$ (for example, using l'Hôpital's Rule). This function occurs in many applications, such as signal processing. A graph is shown to the right. The "bumps" when $x > 0$ touch the displayed curves $y = \pm \frac{1}{x}$ $\frac{1}{x}$. When x gets large, the area under the bumps, positive and negative, almost cancels. The quantity $\int_{-\infty}^{\infty}$ $\sin x$ $\frac{d}{dx} dx$ is finite. Here is one way to find the $\overline{0}$ exact value of this integral. -0.5

a) Suppose $f(t) = \int_{0}^{\infty}$ $\overline{0}$ $\sin x$ \boldsymbol{x} $\int e^{-tx} dx$. Compute $f'(t)$, the derivative of f with respect to t. The resulting integral can be evaluated using integration by parts, and you should conclude that $f'(t) = -\frac{1}{1+t}$ $\frac{1}{1+t^2}$.

b) Solve the differential equation $f'(t) = -\frac{1}{1+t}$ $\frac{1}{1+t^2}$. If $t \to +\infty$, the value of the integral defining $f(t)$ approaches 0. Then the general solution of the differential equation which involves an arbitrary additive constant can be used to get an exact formula for (t).

c) So
$$
f(0)
$$
 is $\int_0^\infty \left(\frac{\sin x}{x}\right) e^{-0x} dx = \int_0^\infty \frac{\sin x}{x} dx$ which can be evaluated using b).