Problem statement Suppose the line L_1 is $\begin{cases} x = 2t + 1 \\ y = -t - 1 \text{ and the line } L_2 \text{ is } \\ z = 3t \\ z = -4 \end{cases}$

Define the function f(s,t) to be the distance between the point on line L_1 with parameter value s and the point on the line L_2 with parameter value t.

a) Find and classify $(\max/\min/\text{saddle})$ all critical points of f(s, t). (There is exactly one!)

b) The line segment which has endpoints characterized by the values of s and t discovered in a) has an interesting geometric property related to L_1 and L_2 . What is this property? Use a drawing to help your explanation.