Problem statement a) Create a two-dimensional force field $\mathbf{F} = M\mathbf{i} + N\mathbf{j}$ defined on all of \mathbf{R}^2 except (0,0) with the following properties:

- i) **F** is always perpendicular to the level curves of the function $g(x, y) = x^2 + 4y^2$.
- ii) The magnitude of \mathbf{F} at (x, y) is inversely proportional to the distance of (x, y) to the origin.
- iii) \mathbf{F} at (1,0) is \mathbf{i} .

b) Compute $\int_C M dx + N dy$ where C is the curve given $\begin{cases} x = 2\cos(t^{78}) \\ y = \sin(t^{78}) \end{cases}$, $.34 \le t \le .56$. (Think physically!)