Problem statement Suppose $f(x) = e^{x^2 + \sin x}$. Here are values of f and some of its derivatives at 0:

$$f(0) = 1; f'(0) = 1; f''(0) = 3; f^{(3)}(0) = 6; f^{(4)}(0) = 21; f^{(5)}(0) = 52.$$

Below are graphs of $f^{(3)}(x)$, $f^{(4)}(x)$, and $f^{(5)}(x)$ on the interval [-.5, .5].

Assume this information is correct. No additional computation of the values of f or any of its derivatives is needed for this problem.

a) What is the second degree Taylor polynomial centered at 0 of f? Do no unnecessary arithmetic!

b) Find a polynomial P(x) so that |P(x) - f(x)| < .01 for all x in the interval $\left[-\frac{1}{4}, \frac{1}{4}\right]$. You should write the polynomial and explain why the error is less than $.01 = \frac{1}{100}$.