Problem statement In this problem, $f(x) = \frac{1}{1+x} - \cos x$.

- a) Graph f(x) in the window $0 \le x \le 6$ and $-1 \le y \le 1.5$.
- b) Write an equation showing how x_n , an approximation for a root of f(x) = 0, is changed to an improved approximation, x_{n+1} , using Newton's method. Your equation should use the specific function in this problem.
- c) Suppose $x_0 = 2$. Compute the next two approximations x_1 and x_2 . Explain what happens to the sequence of approximations $\{x_n\}$ as n gets large. You should use both numerical and graphical evidence to support your assertion.
- d) Suppose $x_0 = 4$. Compute the next two approximations x_1 and x_2 . Explain what happens to the sequence of approximations $\{x_n\}$ as n gets large. You should use both numerical and graphical evidence to support your assertion.