Problem statement a) Suppose $f_n(x) = x^n 2^{-x}$. Graph $f_n(x)$ for $0 \le x \le 10$ and n = 1, 2, 3. You may need to adjust the viewing window to see the graph. Describe how the graphs change as n increases. What features stay the same? Find the x coordinate x_{\max} of the highest point of the graph for n = 1, 2, 3. Plot x_{\max} as a function of n. Guess what the graph of $f_5(x)$ looks like, and what the x coordinate of the highest point is. Then test your guess by actually generating the graph.

b) Suppose $g_n(x) = x2^{-nx}$. Graph $g_n(x)$ for $0 \le x \le 10$ and n = 1, 2, 3. You may need to adjust the viewing window to see the graph. Describe how the graphs change as n increases. What features stay the same? Find the x coordinate x_{\max} of the highest point of the graph for n = 1, 2, 3. Plot x_{\max} as a function of n. Guess what the graph of $g_5(x)$ looks like, and what the x coordinate of the highest point is. Then test your guess by actually generating the graph.