Problem statement A freely falling body starting from rest has velocity v = gt and displacement $s = \frac{1}{2}gt^2$ where t is the time elapsed since rest. Suppose the freely falling body starts at rest and falls 1,000 feet.

a) Calculate the time T (in seconds) this takes (here $g = 32 \text{ ft/s}^2$) and the *time average* of the velocity of the body: $v_{\text{time aver}} = \frac{1}{T} \int_0^T v(t) dt$. Draw a graph of the function v(t) for $0 \le t \le T$. Find the time t when $v(t) = v_{\text{time aver}}$ and give a graphical interpretation.

b) Find a formula for the velocity as a function f(s) of displacement s, and calculate the distance average of the velocity: $v_{\text{dist aver}} = \frac{1}{1000} \int_0^{1000} f(s) \, ds$. Draw a graph of the function v = f(s) for $0 \le s \le 1000$. Find the distance s that the body has fallen when $f(s) = v_{\text{dist aver}}$ and give a graphical interpretation.

Note $v_{\text{dist aver}} \neq v_{\text{time aver}}$! Every user of statistics (this means, essentially, every person in this course) should do this problem. Averages can be difficult to understand.