Problem statement One of the Bessel functions used to describe the vibration of a circular plate is defined by this infinite series: $J(x) = \sum_{n=0}^{\infty} \frac{(-1)^n x^{2n}}{2^{2n} (n!)^2}$.

a) Show that this series converges absolutely for all values of x.

- b) Explain briefly why the result of a) implies that the series converges for all x.
- c) Here are individual terms of the series for two values of x and for some values of n.

$\frac{(-1)^n x^{2n}}{2^{2n} (n!)^2}$	n = 0	n = 1	n = 2	n = 3	n = 4	n = 5
x = 1	1	$-\frac{1}{4}$	$\frac{1}{64}$	$-\frac{1}{2,304}$	$\frac{1}{147,456}$	$-rac{1}{14,745,600}$
x = 4	1	-4	4	$-\frac{16}{9}$	$\frac{4}{9}$	$-\frac{16}{225}$

Use entries of this table and facts about the series to explain why J(1) must be positive and J(4) must be negative.

Hint Select an N for each x and split the sum: $\sum_{n=0}^{\infty} = \sum_{n=0}^{N} + \sum_{n=N+1}^{\infty}$. Evaluate the finite sum explicitly and estimate the infinite tail $\sum_{n=N+1}^{\infty}$.