Problem statement a) The improper integral converges: $\int_0^\infty x e^{-x^2} dx$. What is its value?

b) The value of $\int_0^\infty e^{-x^2} dx$, another convergent improper integral, is $\frac{\sqrt{\pi}}{2}$. This amazing fact is easiest to explain with some of the tools in third semester calculus. Improper integrals involving polynomials and e^{-x^2} often arise in statistics and therefore in analysis of experiments. Use integration by parts to get a formula relating $\int_0^\infty x^n e^{-x^2} dx$ and $\int_0^\infty x^{n-2} e^{-x^2} dx$, where *n* is a positive integer bigger than 2. (The parts to take are slightly tricky.)

c) Now find the values of

i)
$$\int_0^\infty x^2 e^{-x^2} dx$$
 ii) $\int_0^\infty x^3 e^{-x^2} dx$ iii) $\int_0^\infty x^4 e^{-x^2} dx$

You will need the reduction formula in b) and the two initial values found in a) and b).