Problem statement If a function f is continuous on the interval [a, b) and if $\lim_{x \to b^-} f(x) = +\infty$ or $-\infty$ then we say "f explodes at b."

a) Consider the following functions on an interval [0, b) with b > 0. For each function, find b so that the function explodes at b. Use your calculator to show graphically what occurs.

$$\frac{x^2+1}{x-1}$$
; $\frac{\cos x}{x-2}$; $\frac{x-2}{\cos x}$.

b) Write all solutions to the differential equation $y' = y^2$ subject to the initial condition $y(0) = y_0$. Can you find a solution that explodes at 10? And another one that explodes at 5? Can you find a solution that explodes at x_0 when $x_0 > 0$? How does the initial condition at x = 0 connect with a specified explosion at x_0 ? Graph one exploding solution.