Problem statement Suppose *n* is a positive integer, and *f* is the function $f(x) = nx^{(n^2)}$. For example, if n = 5, $f(x) = 5x^{25}$.

a) What is the <u>largest value</u> of f on the unit interval, [0, 1]? Your answer will depend on n. What happens to this value as $n \to \infty$?

b) What is the <u>average value</u> of f on the unit interval, [0, 1]? Your answer will depend on n. What happens to this value as $n \to \infty$?

c) The asymptotic behavior of the answers to a) and b) are different as $n \to \infty$. Briefly explain why this is possible. You may refer to graphs of functions if that is helpful.