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§1. Global and Local Equivalence Problems

There is a classical theorem in complex analysis, called the Riemann mapping theorem,
which states that any simply connected domain in C is either holomorphically equivalent to C

or to the unit disk. For more general domains in C, He-Schramm showed [HS] that if ∂D has
countably many connected components, then D is holomorphically equivalent to a circle domain
whose boundaries are either points or circles. These results give a nice picture on the holomorphic
structures for domains in C. When one goes to higher dimensions, a natural question is then to
investigate the complex structure for domains in Cn for n ≥ 2. More precisely, given two domains
in Cn, one would like to know if there is a biholomorphic map between them. This the so-called
global equivalence problem in several complex variables. Along these lines of investigations,
substantial progress has been made in the past 30 years ([Fe], [CM], [BSW], etc.). However,
we are still a certain big distance away from getting a relatively complete picture as in the one
complex variable.

An approach to the study of the equivalence problem is to attach holomorphic invariants to
each given domain. Since domains in Cn are open complex manifolds, many (interior) invariants
which are crucial for the study of compact complex manifolds are difficult even to define. As
already observed by Poincaré about 100 years ago, the interior complex structure of a domain
D in Cn for n > 1 is closely related to the partial complex structure in its boundary, which is
the so-called CR structure. Hence, the classification of the complex structures for domains in Cn

may be reduced to the equivalence problem for the boundary CR structures. Indeed, this idea
has been proved to be fundamental through the work of Cartan, Tanaka, Chern-Moser, etc.. And
it indeed led to the solutions to many questions.

* Supported in part by NSF-0200689 and a grant from the Rutgers University Research Council
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To illustrate what we said above, we give the following classical example of Poincaré:

Proposition 1.1: Let Bn = {z ∈ Cn : |z| < 1} and ∆n = ∆ × ... × ∆ := {(z1, · · · , zn) :
|zj | < 1}. Bn and ∆n are diffeomorphic to each other. But Bn is not biholomorphic to ∆n.

Proof of Proposition 1.1: Suppose that there is a biholomorphic map f from ∆n to Bn. Let
p = (p1, ..., pn) ∈ ∆n be such that f(p) = 0. Let σj ∈ Aut(∆) be such that σj(0) = pj . Write
σ(z1, ..., zn) = (σ1(z1), ..., σ(zn)) and F = f ◦σ. Then F is also a biholomorphic map from ∆n to
Bn with F (0) = 0.

Write F (z) = zA +
∑
aαz

α. Write τθ for the map sending z to eiθz, and define Fθ =
τ−1
θ ◦F ◦ τθ : ∆n → Bn. Then Fθ has the following Taylor expansion at 0: Az+

∑
ei(|α|−1)θaαz

α.
Since Bn is convex, the map 1

2π

∫ 2π

0
Fθ(z)dθ = Az still maps ∆n to Bn. Applying the same

argument to F−1, we similarly conclude that the A−1z maps Bn to ∆n. Hence, Bn and ∆n are
holomorphically equivalent through the linear map Az. This yields a contradiction; for Bn has a
smooth boundary, while the boundary of ∆ is only Lipschitz continuous.

The key step in the proof of the above proposition is to find a better behaved map so that it
induces a nice boundary map. Hence the existence of the holomorphic equivalence map imposes
the ‘match-up’ of certain boundary geometry. In the case considered above, the group structure of
the domains allows us to get a very rigid map, which can be actually made to be linear. In general,
since most domains have trivial automorphism groups (see [GK], for instance), it is unrealistic to
conjecture that the holomorphic equivalence of two domains must induce the linear equivalence
of their boundary. A fundamental result by the work of C. Fefferman [Fe] and Bochner (see,
e.g. [Ho] or [Kr]) asserts that for two bounded smooth strongly pseudoconvex domains, they are
holomorphic equivalent if and only if their boundaries are CR equivalent. To state precisely the
result of Bochner and Fefferman, we recall the following definition [Kr].

Let D ⊂⊂ U be a bounded domain in Cn with defining function r ∈ Cα(U), where α ≥ 2.
Namely, we assume that r < 0 in D, r > 0 in U \ D̄ and dr|∂D 6= 0. (We call D a domain with
Cα-smooth boundary.) Define the Levi form of r by

Lr,p(ξ, ξ) =
∑ ∂2r

∂zj∂zk
|pξjξk.

We call D is pseudoconvex (or strongly pseudoconvex) at p ∈ ∂D if Lr,p(ξ, ξ) ≥ 0 (or, Lr,p(ξ, ξ) ≥
C|ξ|2 with C > 0, respectively) for any ξ = (ξ1, · · · , ξn) with

∑n
j=1 ξjrzj (p) = 0. D is called a

pseudoconvex domain (or, a strongly pseudoconvex domain) if D is pseudoconvex (or, strongly
pseudoconvex, respectively ) at any boundary point p.
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More generally, for a real submanifold M ⊂ Cn of real codimension k. We define CTpM

to be the collection of vectors: L =
∑

(aj
∂

∂zj
+ bj

∂
∂zj

)|p, such that L(g) = 0 for any function g,
which is smooth in a neighborhood of M and is constant along M . CTpM is called the complex
tangent vector space of M at p. We define the holomorphic and conjugate holomorphic tangent
vector space of M at p to be

T (1,0)
p M = CTpM ∩ T (1,0)

p Cn, T (0,1)
p M = CTpM ∩ T (0,1)

p Cn, respectively.

Write CRp(M) = dimC T
(1,0)
p M . CRp(M) is called the CR dimension of M at p. It is easy to

see that CRp(M) is an upper semi-continuous function in p, which is the simplest holomorphic
invariant that one can attach to the germ of a real submanifold in Cn. When CRp(M) is
identically 0, we call M a totally real submanifold. When CRp(M) is a positive constant, we call
M a CR submanifold of Cn. Notice that in case M is a real hypersurface, CRp(M) ≡ n− 1 and
thus M must be a CR submanifold for n ≥ 2.

Let M and M ′ be two CR submanifolds of Cn for n ≥ 2. We call M and M ′ to be CR
equivalent if there is a smooth diffeomorphism F from M into M ′ such that F∗(T

(1,0)
Z M) =

T
(1,0)
F (Z)M

′ for any Z ∈ M . Such a map F is called a smooth CR diffeomorphism from M to M ′.
We call two germs of real submanifolds (Mj , pj) with pj ∈ Mj to be CR equivalent if there is a
CR diffeomorphism from a small neighborhood of p1 in M1 to a small neighborhood of p2 in M2,
which maps p1 to p2. The following theorem, called the Bochner-Fefferman theorem, is crucial
to reduce the equivalence problem for domains to the study of the boundary CR equivalence
problem:

Theorem 1.2 (Bochner-Fefferman [Fe] [Ho]): Let D1 and D2 be bounded strongly pseudo-
convex domains in Cn with C∞ boundaries. Then D1 and D2 are biholomorphically equivalent
if and only if there is a smooth CR equivalence map from ∂D1 to ∂D2.

For any real submanifolds M and M ′ in Cn, we call M and M ′ to be holomorphically
equivalent if there is a biholomorphic map Φ from a neighborhood of M to a neighborhood of M ′

in Cn such that Φ(M) = M ′. Apparently, when M and M ′ are holomorphically equivalent, then
they are automatically CR equivalent. By the work of many people (see [CM], [Le], [Pi], [BJT],
etc.), it is now clear that when M and M ′ are real analytic CR submanifolds with some extra
geometric restrictions, the CR equivalence of M with M ′ implies their holomorphic equivalence.
For instance, the following is a special case of the Baouendi-Jacobowitz- Treves theorem: (For
more references on this matter, we refer the reader to the book of Baouendi-Ebenfelt-Rothschild
[BER1] or the survey paper [Hu1]):
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Theorem 1.3 (Baouendi-Jacobowitz-Treves [BJT]): Let M1 and M2 be two real analytic
hypersurfaces in Cn. Suppose that M1 and M2 do not contain any non-trivial holomorphic curves.
Then any smooth CR equivalence map from M1 to M2 is actually a holomorphic equivalence map
from M1 to M2.

We notice that by a result of Diederich-Fornaess [DF], any compact real-analytic submanifold
in Cn does not contain any non-trivial germs of complex analytic curves. We also mention that
Theorem 1.3 follows from the more general theory of Chern-Moser, when both Mj are Levi non-
degenerate. (See the next section for more notation on this matter.)

Different from the situation in one complex variable, in the 70′s, Pinchuk and Vitushkin
first showed that germs of local holomorphic equivalences between strongly pseudoconvex hyper-
surfaces can be extended to the global holomorphic equivalence maps under certain geometric
assumptions for the hypersurfaces. (See [Vit] for references). This gives the evidence that for
many important classes of domains, the local CR structures of their boundaries essentially deter-
mine their interior global complex structures. There have been many developments along these
lines of research. Here, we only state the following theorem recently obtained in [HJ1] and refer
the reader to [HJ1] for more references on this matter:

Thereon 1.4 (Huang-Ji [HJ1]): Let D be a bounded strongly pseudoconvex domain in Cn

defined by a real polynomial. If there is a point p ∈ ∂D such that a small piece of ∂D near p
is CR equivalent to a small piece of the unit sphere ∂Bn, then D must be biholomorphic to the
unit ball Bn.

With the above discussions, it is also natural to study the local holomorphic equivalence
problem for real submanifolds in complex spaces. Namely, one can consider the following two
problems:

Question 1.5: Let (Mj , pj) be real submanifolds in Cn. When is there a biholomorphic
map F from a neighborhood U1 of p1 ∈ M1 in Cn into a neighborhood of p2 ∈ M2 in Cn such
that f(M1 ∩ U1) ⊂M2 ?

Question 1.6: Let (Mj , pj) be CR submanifolds in Cn and CN , respectively, with N ≥
n. Classify all CR embeddings from (M1, p1) to (M2, p2) up to the CR automorphism groups:
Aut(M1) and Aut(M2).
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Question 1.6 is more along the lines of CR rigidity problems, which, unfortunately, we can
only briefly touch in §2 of this lecture notes, due to the time limit. In the following sections, we
will mainly address some of the recent work on Question 1.5.

Acknowledgment: The present notes grew out of the lectures I gave in the summer graduate
school held at Martina Franca, Italy, June-July, 2002. The materials discussed are from the
research work carried out in [CM] [Ch] [Mos] [MW] [HJ2] [EHZ1], etc.. Also, we mention to the
reader the books by Krantz [Kr], Baouendi-Ebenfelt-Rothschild [BER1] and R. Gardner [Ga],
where one can find most of the necessary prerequisites. We thank G. Zampieri and D. Zaitsev for
their invitation and hospitality during my pleasant stay in Italy in the summer of 2002. Thanks
are also due to S. Ji and D. Zaitsev for their generous help provided during the preparation of
the notes.

§ 2. Formal Theory for Levi Non-degenerate Real Hypersurfaces

Let (M,p) be the germ of a real hypersurface in Cn (n > 1) near p. We will construct the
holomorphic invariants of M at p such that we can distinguish the hypersurfaces by reading off
their invariants. In this section, we will use the formal power series method. There is a more
geometric approach based on the ideas of E. Cartan, that we will address in §5. In the power
series method, we will try to find good representation for the hypersurfaces, called their normal
form. The invariants are then embedded in the coefficients of their normal form. This section is
based on the papers [CM] [EHZ1].

2.1: General theory for formal hypersurfaces: We let (M,p) be a germ of real (formal)
hypersurface in the complex n-space with n ≥ 2. First, after a local change of coordinates, we
assume that p = 0, TM = {v = 0}, T (1,0)M = {w = 0}, where we use (z, w) ∈ Cn−1 ×C for the
coordinates of Cn and write w = u + iv. Then M near 0 is defined by an equation of the form:
v = ρ with ρ(0) = dρ(0) = 0. Notice that ρ is real-valued. Write

ρ =
∑

aklzkz` +
∑

bklzkzl +
∑

bklzkzl +
∑

ekzku+
∑

ekzku+ du2 +O(|(z, w)|3).

Then we have on M :

Re{−iw − 2
∑
kl

bklzkzl − 2
∑

k

ckzku} =
∑

aklzkzl + du2 +O(|(z, w)|3).

Define {
w′ = w − 2i

∑
kl bklzkzl − 2i

∑
k ckzkw − diw2,

z′ = z.
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In the (z′, w′) coordinates, M can be expressed as the graph of the following function:

v′ =
∑

aklz
′
kz
′
l +O(3) = z′Az′

t
+O(3)

where A = A
t

is a matrix. Write

A = Γ


λ1 0 ... 0
0 λ2 . . . ...
...

...
...

0 0 ... λn−1

 Γ
t
= ΓΛΓ

t
,

Then
v′ = z′ΓΛ(z′Γ)

t
+O(3).

Let z′′ = z′Γ, w′′ = w′. We have v′′ =
∑
λj |z′′j |2 + O(3). We say that p = 0 is a Levi non-

degenerate point of M if λj 6= 0 for each j.
Assume, for the rest of this section, that M is Levi non-degenerate at 0. Then without loss

of generality, we can assume that

v′′ =
∑

εj

∣∣∣∣√|λj |z′′j
∣∣∣∣2 +O(3),

where εj = −1 if j ≤ `; and εj = 1 if j > `. With z′′′j =
√
|λj |z

′′

j , w′′′ = w′′. Then in the (z′′′, w′′′)
coordinates, M is the graph of the following function:

v′′′ =
∑

εj |z′′′j |2 +O(3).

Still write z for z′′′ and w for w′′′. Then M is defined by:

(2.0) v = −
∑̀
j=1

|zj |2 +
n−1∑

j=`+1

|zj |2 +O(|(z, w)|3).

In the above expression and for the rest of this section, when ` = 0, we regard the first term after
the equality sign to be zero. Replacing (z, w) by (z`+1, · · · , zn−1, z1, · · · , z`,−w) if necessary, we
can assume that ` ≤ n−1

2 . The pair (`, n − 1 − `) is called the signature of M at 0. The model
of Levi non-degenerate hypersurfaces with signature (l, n− 1− l) is the hyperquadric defined as
follows:

(2.0)′ Hn
` = {v = −

∑̀
j=1

|zj |2 +
n−1∑

j=`+1

|zj |2}.
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Notice that the pair (`, n − 1 − `) is completely determined by `. Hence, in what follows, for
brevity, we call ` the signature of the above hypersurface M .

When ` = 0, we call M strongly pseudoconvex. Also, when ` = 0, Hn
0 = Hn reduces to the

classical Heisenberg hypersurface. Let

(2.0)′′ Sn
` := {v > −

∑̀
j=1

|zj |2 +
n−1∑

j=`+1

|zj |2},

which is called the Siegel upper half-space and has Hn
` as its real analytic boundary. Let

(2.0)′′′ Bn
` := {1 + |z1|2 + ...+ |z`|2 ≥ |z`+1|2 + ...+ |zn−1|2 + |w|2}.

Define Ψn =
(

2z
i+w ,

i−w
i+w

)
. Then

Φn = Ψ−1
n =

(
2z

1 + w
,
i− iw

1 + w

)
.

Both Ψn and Φn are called the Cayley transformations. It is easy to verify the following properties:

Lemma 2.1: Ψn is a bimeromorphic map from Sn
` to Bn

` ; and Ψn bimeromorphically maps
Hn

` = ∂Sn
` to ∂Bn

` . In particular, Ψn is a holomorphic equivalence map from (Hn
` , 0) to (∂Bn

` , 0).

For convenience of the discussion, we set up some notation to be used for the rest of this
section.

For two m-tuples x = (x1, · · · , xm), y = (y1, · · · , ym), we write < x, y >`=
∑m

j=1 δj,`xjyj , and
|x|2` =

∑n
j=1 δj,`|xj |2. Here δj,` is defined to be −1 for j ≤ ` and to be 1 otherwise. We define the

matrix E`,n−1 to be the diagonal matrix with its first ` diagonal elements −1 and the rest 1.
Parameterize Hn

` by (z, z, u) through the map (z, z, u) → (z, u + i|z|2`). In what follows,
we will assign the weight of z and u to be 1 and 2, respectively. For a nonnegative integer m,
a function h(z, z, u) defined over a small ball M of 0 in Hn

` is said to be of quantity owt(m),
if h(tz,tz,t2u)

|t|m → 0 uniformly for (z, u) on any compact subset of U as t(∈ R) → 0. (In this
case, we write h = owt(m)). By convention, we write h = owt(0) if h → 0 as (z, z, u) → 0).
For a smooth function h(z, z, u) defined over U , we use h(k)(z, z, u) for the sum of terms of
weighted degree k in the weighted expansion of h up to order k. If h is not specified, we use it to
denote a weighted homogeneous polynomial of weighted degree k. For a weighted homogeneous
holomorphic polynomial of degree k, we use the notation: (·)(k)(z, w), or (·)(k)(z) if it depends
only on z.
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Next returning to (2.0), we would like to simplify terms in O(|(z, w)|3) by further changes of
coordinates. These changes of coordinates should have the following properties:

(i). Preserves the origin and the real tangent space {v = 0} of the hypersurfaces at the origin.

(ii). Preserves the complex tangent space {w = 0} at the origin.

(iii). Preserve the hyperquadric Hn
` up to weighted order 3.

Let (z′, w′) = F = (f, g) be such a map. Then the general form that F can take, with the
properties in (i)-(iii), is as follows:

(2.1) f = zA+ ~aw +O(|(z, w)|2), g = λw +O(|(z, w)|2)

with λ ∈ R \ {0}.
Since F preserves v = |z|2` up to the third order, it follows that λ > 0 if ` < n−1

2 and
AE`,n−1A

t
= λE`,n−1 in general. The following proposition indicates that we can further limit

down our transformation group to make calculations more accessible:

Proposition 2.2: For any transformation F of the form in (2.1), there is a unique T ∈
Aut0(Hn

` ) such that F = T ◦ F0 with F0 = (f0, g0) having the following properties:

(2.2) f0 = z +O(|(z, w))|2), g0 = w +O(|(z, w))|2), Re

(
∂2g

∂w2
(0)

)
= 0.

In fact, by a straightforward verification, we can set T = T1 ◦ T2. Here,

(a) If l = n−1
2 and λ < 0, then T2(z, w) = (z`+1, · · · , zn−1, z1, ..., z`,−w). Otherwise T2 is always

set to be the identity.

(b)When λ > 0, we have

T1 =
(

(z + ~a · w)A
q(z, w)

,
λw

q(z, w)

)
where q(z, w) = 1− 2i〈z,~a〉` + (r − i|~a|2`)w. For λ < 0, one can similarly define T1.

We next normalize (M, 0) by transformations satisfying (2.2). Of course, the invariants we
get in this way are still subject to the action of Aut0(Hn

` ), which is a finite dimensional Lie group.

By induction, suppose that we have found a coordinates system: (z, w), in which M has been
normalized up to the weighted order s. We then want to see how to choose the new coordinates
(z′, w′) to get the invariant form at the level of weighted order (s+ 1).

We first mention that for a formal power series N(z, z, w,w) = N(z, z, u, v), we have the
decomposition N =

∑∞
s=0N

(s)(z, z, u, v), where N (s)(tz, tz, t2u, t2v) = tsN (s)(z, z, u, v) for t ∈ R.
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Suppose that in (z, w)-coordinates, M is given implicitly by

(2.3) v = |z|2` +N1(z, z, u, v)

and in (z′, w′) = (f(z, w), g(z, w)) coordinates system , M is given by

v′ = |z′|2` +N2(z′, z′, u′, v′).

By what we mentioned above, we want to keep what we have already achieved. Namely, we
want to have N (σ)

2 (z, z, u, |z|2`) = N
(σ)
1 (z, z, u, |z|2`) for σ ≤ s. Since we have assumed that (f, g)

satisfies the normalization in (2.2), we have

(2.4) (f − z)(1) = 0, (g − w)(2) = 0.

Write the weighted expansion of (f, g) as follows:

(2.5) f = z +
∑
σ≥2

f (σ)(z, w), g = w +
∑
σ≥3

g(σ)(z, w),

where f (σ)(tz, t2w) = tσf (σ)(z, w); g(σ)(tz, t2w) = tσg(σ)(z, w). Then we have

(2.6)

Im

w +
∑
σ≥3

g(σ)(z, w)


=|z|2` + 2Re

∑
σ1≥2

< z, f (σ1)(z, w) >` +
∑

σ1,σ2≥2

< f (σ1), f (σ2) >` +

+N2

z +
∑

f (σ), z +
∑

f (σ), u+ Re(
∑
σ≥3

g(σ)), Im(w +
∑
σ≥3

g(σ)(z, w))

 ,

where (z, w) satisfies (2.3). Suppose that f (τ−1) and g(τ) have been determined for τ < σ ≤ s+1,
we want to find f (σ−1) and g(σ) for any σ ≤ s+1. In particular, we would like to find f (s), g(s+1),
and N (s+1)

2 . Substituting w = u+ iv and v = |z|2` +N1(z, z, u, v) in (2.6), we have

(2.7)
Im(g(σ)(z, u+ i|z|2`)) = 2Re < z, f (σ)(z, u+ i|z|2`) >`

+N (σ)
2 (z, z, u, |z|2`)−N

(σ)
1 (z, z, u, |z|2`) +G(σ)(z, z, u),

where G(σ) is completely determined by f (τ−1) and g(τ) for τ ≤ σ − 1 and is zero if (f −
z)(τ−1), (g − w)(τ) = 0 for τ ≤ σ − 1. To proceed further, we make the following definition:
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Definition 2.3: Let f = (f1, · · · , fn−1) and g be (formal) holomorphic functions in a neigh-
borhood of 0 in Cn. Suppose that

(2.8) (f, g) = O(|(z, w)|2) with Re(g
′′

ww(0)) = 0.

Then the map L`, which sends the above (f, g) to the real-valued (formal) analytic function over
Hn

` defined below:

(2.8)′ L`(f, g) := Im
(
g(z, w)− 2i < z, f(z, w) >` |w=u+i|z|2

`

)
is called the Chern-Moser operator.

Returning to (2.7), we get for σ ≥ 3

(2.9) L`(f (σ−1), g(σ)) = N
(σ)
2 (z, z, u, |z|2`)−N

(σ)
1 (z, z, u, |z|2`) +G(σ)(z, z, u).

Since our ` is always fixed, we will write L instead of L` to simplify the notation. Later we
will see that L has the following uniqueness property: If L(f (σ−1), g(σ)) = 0 with Re(∂2g(σ)

∂w2 )|0 = 0
and σ ≥ 3, then it follows that (f (σ−1), g(σ)) ≡ 0.

Since we assumed that N (σ)
2 = N

(σ)
1 for σ ≤ s, we conclude that (f (σ−1), g(σ)) ≡ 0 for σ ≤ s

and thus G(s+1) ≡ 0. At the level of weighted degree s+ 1, we have

(2.10) L(f (s), g(s+1)) = Ns+1
2 (z, z, u, |z|2`)−N

(s+1)
1 (z, z, u, |z|2`).

Notice that N (s+1)
1 (z, z, u, |z|2`) is known from the induction assumption. Our purpose is then to

choose

f (s)(z, w), g(s+1)(z, w)

appropriately so that we can make N
(s+1)
2 as simple as possible. (2.10) suggests us to pick

N
(s+1)
2 (z, z, u, v) so that N (s+1)

2 (z, z, u, |z|2`) is in the ‘complement’ of the range of the Chern-
Moser operator L.

Definition 2.4: Let A(s) be a collection of real-valued polynomials of weighted degree s in
(z, w) for s ≥ 4. Let A = ⊕s≥4A(s). Assume that 0 ∈ A.
(a) We call A a uniqueness set for the Chern-Moser operator L if L(f, g) = G|w=u+i|z|2

`
with

G ∈ A is only solvable when G = 0 and (f, g) = 0. (As in Definition 2.3, for (f, g) in the domain
of the Chern-Moser operator, we always assume that (f, g) = O(|(z, w)|2) with Re(g

′′

ww(0)) = 0.)

10



In (b) and (c), we assume further that Hn
` is a uniqueness set for A in the sense that for any

G1, G2 ∈ A, G1 ≡ G2 if and only if G1|w=u+i|z|2
`

= G2|w=u+i|z|2
`
.

(b) A is called an admissible space for L if for any G1, G2 ∈ A, the equation L(f, g) = (G2 −
G1)|w=u+i|z|2

`
has solution (f, g) only when (f, g) ≡ 0 and G1 ≡ G2.

(c). A is called a normal space if A is admissible and for any real-valued polynomial B(s)(z, z, u) of
degree s ≥ 4, there is a unique G(s) ∈ A(s) such that L(f (s−1), g(s)) = G(s)|w=u+i|z|2

`
−B(s)(z, z, u)

is solvable.

We remark that it can be easily proved that any weighted homogeneous polynomial of
weighted degree 3, when restricted to Hn

` , is in the range of the Chern-Moser operator. Hence,
in Definition 2.4, we take s ≥ 4.

Summarizing the above, we have the following:

Theorem 2.5: (a) Suppose A is a normal space for the Chern-Moser operator. Then
any formal real hypersurface (M, 0) can be transformed by a formal power series to a formal
hypersurface defined by v = |z|2` + N with N ∈ A. (b) Suppose that A is an admissible space.
Let (Mj , 0) be formal hypersurfaces which are in the A-normal form, namely, Mj are defined by
an equation of the form v = |z|2` + Nj with Nj ∈ A. Let F be a formal holomorphic map from
(M1, 0) to (M2, 0) satisfying the normalization condition (2.2). Then F ≡ Id and N1 ≡ N2.

2.2: Hk -space and hypersurfaces in the Hk-normal form: To be able to make good use
of Theorem 2.5, we need to construct the normal space for the Chern-Moser operator. Apparently,
the normal space associated to the Chern-Moser operator is not unique. And it is the case that
for different problems, one has to use different normal or admissible spaces. In the following, we
present two different admissible spaces for the Chern-Moser operator, following the work in [CM]
and [EHZ1]. Unfortunately, the one obtained in [EHZ1] is not a normal space and the normal
form obtained in terms of that is in the implicit form. However, it is invariant under the action
of the group Aut0(Hn

` ). This makes it very convenient to use in working on certain problems.
We first discuss the space S0

k (The Sk defined in [EHZ1] is slightly more general than the
one defined below):

Definition 2.6: For s ≥ 4, S0(s)
k is the collection of all real-valued weighted homogeneous

polynomials of degree s in (z, z, w,w) with the following property: For each A(z, z, w,w) ∈ S0(s)
k ,

there is a set of weighted homogeneous holomorphic polynomials

E = {φj(z, w), ψj(z, w)}j≤k∗ with k∗ <∞,

degwt(φj) = pj ≤ s/2, degwt(ψj) = qj ≥ s/2 and pj + qj = s
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(j ≤ k∗) such that
(A): φj(z, w) and ψj(z, w) have no linear and constant terms in (z, w) for any j;
(B): for each τ ≤ s/2, there are at most k φ′js in E with degwt(φj) = pj = τ

(C): A(z, z, w,w) is real valued for any (z, w) ∈ Cn, and has the following decomposition:

(2.11) A(z, z, w,w)) =
∑

qj=pj

φj(z, w)ψj(z, w) + 2
∑

qj>pj

Re(φj(z, w)ψj(z, w)).

We define S0
k := ⊕∞s=4S

0(s)
k

What makes S0
k convenient to use is the so-called Hk-class contained in S0

k , which is defined
to be the collection of all real-valued formal power series A(z, z, w,w) (for (z, w) ∈ Cn−1 × C)
such that

(2.11)′ A(z, z, w,w) =
k∑

j=1

φj(z, w)ψj(z, w)

where φj , ψj are formal holomorphic power series in (z, w) which do not contain any constant
and linear terms.

As we will see, the Hk-normal form is invariant under the action of Aut0(Hn
` ). This makes it

very convenient to apply in applications. More precisely, let T ∈ Aut0(Hn
` ). Then we can write

(2.12) T (z, w) = (
λ(z − aw)U
q(z, w)

,
σλ2w

q(z, w)
), with q(z, w) = 1 + 2i < z, a >` +(r − i < a, a >`)w,

where λ is a non-zero real number, a ∈ Cn−1 and U is a certain (n − 1) × (n − 1) matrix such
that

(2.13) UE`,n−1U
t
= σE`,n−1, σ = ±1.

Let M be a formal real hypersurface which is in the Hk-normal form. Namely, M is defined by
an equation of the form:

v = |z|2` +N(z, z, w,w), with N ∈ Hk.

The following lemma, which can be proved easily, makes the Hk-normal form convenient to apply:

Lemma 2.7: Under the above notation and assumption, T (M) is also in the Hk-normal
form. In fact, T (M) is defined by an equation of the form:

(2.14) v = |z|2` +N2(z, z, w,w), with N2(z, z, w,w) =
σλ2

|q ◦ T−1|2
N1 ◦ T−1(z, w) ∈ Hk.

12



The following result from [EHZ1] is basic for the application of Lemma 2.7 and Theorem 2.5
to work on various local equivalence problems:

Theorem 2.8 (Ebenfelt-Huang-Zaitsev)([EHZ1]) (a): S0
k is a uniqueness set for the Chern-

Moser operator for k ≤ n − 2. (b). S0
k is an admissible space for the Chern-Moser operator for

k ≤ n−2
2 .

The S0
k (or the Sk in [EHZ1]) is far from being a normal space. It is an open problem

how to complete Hk or S0
k for k ≤ n−2

2 into a normal space. This problem is closely related to
the study of the embeddability problem for real analytic Levi non-degenerate hypersurfaces into
hyperquadrics.

We refer the reader to the paper [EHZ1] for a proof of Theorem 2.8. Here, we give a proof
of the part that Hn

` is a uniqueness set for S0
k when k ≤ n−2

2 . We notice that

c1S0
k1

+ c2S0
k2
⊂ S0

k1+k2

for any complex numbers c1 and c2.

Proposition 2.8′: Let A(z, z, w,w) ∈ S0
k with k ≤ n− 2. Assume that

A0(z, z, u) := A(z, z, u+ i < z, z >`, u− i < z, z >`) ≡ 0

as a formal power series in (z, z, u). Then A(z, z, w,w) ≡ 0 as a formal power series in (z, z, w,w).
In particular, Hn

` is a uniqueness set for S0
k with k ≤ n−2

2 .

We first observe that if A(z, z̄, w, w̄) is weighted homogeneous of degree σ, then A0(z, z̄, u)
is weighted homogeneous of degree σ. Hence, if we decompose a formal power series A(z, z̄, w, w̄)
into its weighted homogeneous components

A(z, z̄, w, w̄) =
∑

σ

A(σ)(z, z̄, w, w̄)

then the decomposition of A0(z, z̄, u) is given by

A0(z, z̄, u) =
∑

σ

(A0)(σ)(z, z̄, u),

where, in the terminology introduced above,(A0)(σ) = (A(σ))0. Moreover, if A ∈ S0
k , then A(σ) ∈

S0
k .
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Proof of Proposition 2.8′: It is enough to prove the lemma when A is a weighted homogeneous
polynomial of degree s ≥ 4 and

A(z, z, w,w) =
k∗∑

j=1

φj(z, w)ψj(z, w),

where φj , ψj are weighted homogeneous holomorphic polynomials, without constant or linear
terms, of weighted degree pj and qj = s− pj , respectively, and where for each τ there are at most
k terms with pj = τ . Let us expand φj and ψj as follows:

φj =
∑

νj+2νj
w=pj

a
(νj)
j (z)wνj

w , ψj =
∑

µj+2µj
w=s−pj

bµ
j

j (z)wµj
w .

Then, if we expand A(z, z̄, w, w̄) in powers of w, w̄, we can write

A(z, z̄, w, w̄) =
∑
m,l

cm,l(z, z̄)wmw̄l,

where

cm,l(z, z̄) =
k∗∑

j=1

a
(pj−2m)
j (z)b(qj−2l)

j (z)

and pj + qj = s. By isolating the terms in cm,l(z, z̄) of bidegree (α, β) in (z, z̄) (denoted
cm,l,α,β(z, z̄)), we conclude that A(z, z̄, w, w̄) ≡ 0 if and only if, for every 4-tuple of nonnega-
tive integers (m, l, α, β),

cm,l,α,β(z, ξ̄) :=
∑

j∈J(m,l,α,β)

a
(α)
j (z)b(β)

j (z) ≡ 0,

where the index set J(m, l, α, β) consists of those j ∈ {1, . . . , k∗} for which

pj = α+ 2m, qj = β + 2l.

Observe that, since A ∈ S0
k , there are at most k ≤ n − 2 indices in the set J(m, l, α, β) for each

(m, l, α, β).
Now, we use the fact that A0(z, z̄, u) ≡ 0 is equivalent to A(z, z̄, w, w̄) vanishing on the

quadric Hn
` , and the usual complexification argument, to conclude that

A(z, ξ̄, w, η̄) = 0
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whenever w = η + 2i < z, ξ̄ >`; or, equivalently,∑
m,l

ck,l(z, ξ̄)(η + 2i < z, ξ̄ >`)mη̄l ≡ 0.

Assume, in order to reach a contradiction, that A(z, z̄, w, w̄) 6≡ 0. Then, there is a smallest
nonnegative integer l0 such that cm,l0,α,β(z, ξ̄) 6≡ 0 for some m,α, β. Hence, we can factor out ηl0

(of course, if l0 = 0, then we do not need to factor anything) from the identity above and get∑
m,l≥l0

cm,l(z, ξ̄)(η + 2i < z, ξ̄ >`)mη̄l−l0 ≡ 0.

By setting η = 0, we conclude that∑
m

cm,l0(z, ξ̄)(2i < z, ξ̄ >`)m ≡ 0.

Isolating the terms of bidegree (α, β) above, we deduce∑
m

cm,l0,α−m,β−m(z, ξ̄)(2i < z, ξ̄ >`)m ≡ 0.

It now follows from [Lemma 3.2, Hu2], [Lemma 3.2, EHZ1] that, for every m, γ, µ,

cm,l0,γ,µ(z, ξ̄) ≡ 0,

which contradicts the choice of l0. This completes the proof of Lemma 3.3.

Making use of Lemma 2.7 and Theorem 2.8, one has the following:

Corollary 2.9 ([EHZ1]): Let (M1, 0) and (M2, 0) be two germs of formal real hypersurfaces
in the Hk1 and Hk2-normal form defined, respectively, by

v = |z|2` +Nj .

Assume that k1 +k2 ≤ n−2. Then (M1, 0) is equivalent to (M2, 0) by a formal holomorphic map
if and only if there is an automorphism T ∈ Aut0(Hn

` ) such that

(2.15) N2 =
σλ2

|q ◦ T−1|2
N1 ◦ T−1, or N1 = σλ−2|q(z, w)|2N2 ◦ T (z, w).
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Here, we write T (z, w) = (λ(z−aw)U
q(z,w) , σλ2w

q(z,w) ), with q(z, w) = 1 + 2i < z, at >` +(r− i < a, a >`)w,
UE`,n−1U t = σE`,n−1, σ = ±1, λ > 0, r ∈ R, and with a a certain (n− 1)-tuple. In particular,
when M1 is equivalent to M2, it must hold that N1 ∈ Hk2 . And the set of all equivalence maps
from (M1, 0) to (M2, 0) is precisely the collection of the automorphisms T of Aut0(Hn

` ) which
make (2.15) hold. (Hence, any formal equivalence map from (M1, 0) to (M2, 0) is given by a
convergent power series.)

Let M be in the Hk-normal form, namely, let M be defined by v =< z, z >` +N with
N =

∑k
j=1 φjψj ∈ Hk, where φj , ψj have no constant and linear terms in (z, w). Let R(M,N)

be the minimum k to get such an expression for N . Then as an application of Corollary 2.9, we
have the following weak invariant property for R(M,N):

Corollary 2.10: (I). Let M1 and M2 be in the Hk-normal form for a certain k. If
R(M1, N1)+R(M2, N2) ≤ n−2 and (M1, 0) is equivalent to (M2, 0), thenR(M1, N1) = R(M2, N2).
(II). If in the expression N =

∑k
j=1 φjψj ∈ Hk, both {φj} and {ψj} are linearly independent

over C, then R(M,N) = k, where M := {v =< z, z >` +N}. Moreover, if N =
∑k

j=1AjBj

for Aj , Bj satisfying the same property as φj , ψj do, then there is an invertible constant k × k

matrix C such that (φ1, · · · , φk) = (A1, · · · , Ak)C, and (ψ1, · · · , ψk) = (B1, · · · , Bk)(Ct)−1.

Proof of Corollary 2.10: The first part apparently follows from Theorem 2.9 and Equation
(2.15). Let {φj , ψj} be as in Part (II) of the corollary and assume that

∑k
j=1 φjψj =

∑k′

j=1AjBj ,
where Aj , Bj are holomorphic in their arguments Z = (z, w). Since {φj} is a linearly independent
finite set, it is easy to see that the set {φl

j}, where φl
j are the truncation of φj up to order l,

must be also independent for k sufficiently large. Hence, there exits {Zj}k
j=1 such that the matrix

D :=
(
({φl

j(Z1)})t, · · · , ({φl
j(Zk)})t

)
is invertible. Since

∑k
j=1 φ

l
jψj =

∑k′

j=1A
l
jBj , it follows

clearly that {ψ1, · · · , ψk} is a linear combination of {B1, · · · , Bk′}. Hence, k′ ≥ k. The last
statement can also be similarly seen.

Remark 2.11: Corollary 2.10 can be further used to simplify the equation (2.14). To see
this, let M1 := {v =< z, z >` +

∑k1
j=1 φjψj} and M2 := {v =< z, z >` +

∑k2
j=1 φ̃jψ̃j} be in

the Hk-normal form (k = max{k1, k2}) such that R(M1, N1) = k1 and R(M2, N2) = k2, where
N1 =

∑k1
j=1 φjψj and N2 =

∑k1
j=1 φ̃jψ̃j . Assume that k1 +k2 ≤ n− 2 and (M1, 0) is equivalent to

(M2, 0). Then, by Corollary 2.10, it holds that: (I) k1 = k2 = k; (II) There are a k × k constant
invertible matrix C, an automorphism T ∈ Aut0(Hn

` ) with its associated data q, σ, λ as given in
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Theorem 2.9 such that

(2.16)
σλ−2q(z, w) · (φ̃1, · · · , φ̃k0) ◦ T = (φ1, · · · , φk0) · C,

σλ−2q(z, w) · (ψ̃1, · · · , ψ̃k0) ◦ T = (ψ1, · · · , ψk0) · (Ct)−1.

Immediately, we have from (2.16) the following conclusions:
(A). If all φ̃j , ψ̃j , φj ψj are polynomials, and at least one of them is not zero, then q ≡ 1 and
T = (λ(z − aw)U, σλ2w).
(B). If {φ̃j , ψ̃j} are rational functions, then so are {φj , ψj}.
(C). If at least one of {φ̃j , ψ̃j} is a transcendental function, then at least one of φj and ψj is
transcendental, too.

Example 2.12: Let M1 = H3
0 and let M2 := {(z, w = u + iv) ∈ C3 : v = |z|2 +

| 2z2
1(1−iw)

(1+iw)2 |2 + | 2z1z2
(1+iw) |

2}. Then R(M1) = 0, R(M2) = 2. Also, M1 is equivalent to M2. Notice
that R(M1) + R(M2) = 2 > n − 2 = 1. Hence, the assumption that R(M1) + R(M2) ≤ n − 2 in
Corollary 2.10 can not be weakened.

2.3. Application to the rigidity and non-embeddability problems: we now first
present a discussion on how to apply the materials in §2.2 for the study of the rigidity problem
for mappings between the hyperquadrics.

Theorem 2.13 ([EHZ1]): Let F = (f1, · · · , fn−1, φ1, · · · , φN−n, g) be a formal holomorphic
mapping sending Hn

`1
into HN

`2
with F (0) = 0, ∂g

∂w |0 6= 0, where g is the normal component of F
and N ≥ n > 2. Suppose that `2 ≥ `1 and `1 + `2 ≤ n− 1. Suppose that N ≤ 2n− 2. Then there
is a linear fractional holomorphic embedding T from Hn

`2
to HN

`1,`2
:= {(Z,W ) ∈ CN : Im(W ) =

−
∑

j≤`1
|Zj |2+

∑
`1<j≤n−1 |Zj |2−

∑
n−1<j≤n−1+`2−`1

|Zj |2+
∑

n−1+`2−`1<j≤N−1 |Zj |2} and T0 ∈
Aut0(Hn

`1
) such that T ◦F ◦T0(z, w) = (z, φ∗, w) with φ∗ = O(|(z, w)|2). Moreover, when `2 = `1,

T is a self-map and φ∗ = 0. (For `1 = `2 = `, HN
`1,`2

is understood as HN
` .) Also, when `1 < n−1

2 ,
T0 can be taken to be the identity map.

Proof of Theorem 2.13: Let F = (f, φ, g) = (f̃ , g) be a formal holomorphic mapping from
(Hn

`1
, 0) into (HN

`2
, 0) with ∂g

∂w |0 6= 0. Then Im(g) =< f̃, f̃ >`2 along Hn
`1

as a formal power
series. Collecting the coefficients of weighted degree 1 and 2, we see that g = σλ2w + owt(2),
f̃ = λzU + σλ2aw + O(|zw| + |z|3 + |w|2). Here σ = ±1, λ > 0, a is a certain complex vector,
U = (Et

1, · · · , Et
n−1)

t with Ej = 1
λ

∂f̃
∂zj

(0), and < Ej , Ek >`2= σδk
j δj . Since < Ej , Ej >`2 6= 0

for j ≤ n − 1, we can extend {Ej}n−1
j=1 to an orthogonal basis {Ej}N−1

j=1 (with respect to the
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Hermitian product < ·, · >`2). Let Ũ = (Et
1, · · · , Et

N−1)
t, then ŨE`2,N−1Ũ = diag(< E1, E1 >`2

, · · · , < EN−1, EN−1 >`2), where E`2,N−1 is defined, as before, by < X,X >`2= XE`2,N−1Xt.
In particular, we see that < Ej , Ẽj >`2 6= 0 for any j. Without loss of generality, we can assume
that < Ej , Ẽj >`2= cj = ±1 for j ≥ n, too. (Notice that cj = −σ for j ≤ `1 and cj = σ

for `1 < j ≤ n − 1.) After changing the position of E′js for j > n − 1, we can assume that

ŨE`2,N−1Ũ t = σB∗, where σB∗ is determined by the following Hermitian product:

< Z,Z >`1,`2 := −
`1∑

j=1

ZjZj +
∑

`1<j≤n−1

ZjZj −
∑

n−1<j≤`2−`1+n−1

ZjZj +
∑

N−1>j≥`2−`1+n−1

ZjZj ,

Apparently, when `1 + `2 <
n−1

2 , σ must be 1. Otherwise, `1 = n−1
2 = `. In this case, composing

F with T0(z, w) = (z`+1, · · · , zn−1, z1, · · · , z`,−w) ∈ Aut0(Hn
` ), if necessary, we can also make

σ = 1.
In the following, we assume that σ = 1. Letting

(2.17) T (z, w) = (
λ−1(Z − aW )Ũ−1

q(Z,W )
,
λ−2W

q(Z,W )
),

where q(Z,W ) = 1 + 2iZE`2,N−1a
t + (r − i < a, a >`2)W, with r = 1

2λ
−2Re( ∂2g

∂w2 |0). Write
F ∗ = T ◦ F := (f∗, φ∗, g∗). Then (f∗, g∗) satisfies the normalization condition (2.2), and φ∗ =
O(|(z, w)|2). Notice that T biholomorphically maps Hn

`2
to HN

`1,`2
. Namely, Im(g∗) = σf∗B∗f∗

t

along Hn
`1

. Now, we can inductively apply Theorem 2.8 to prove that f∗ = z, g∗ = w. Indeed, we
first notice that by collecting terms of weighted degree ≤ 4 in the equation Im(g∗) = f∗B∗f∗t, we
see by Theorem 2.8 and the normalization condition that f∗(j−1) = 0, g∗(j) = 0, for 3 ≤ j ≤ 4.
Suppose that f∗(τ−1), g∗(τ) = 0 for τ ≤ K0. Collecting terms of weighted degree K0 + 1,

(2.17)′ L(f∗(K0), g∗(K0+1)) = 2
k∑

κ=1

[K0/2]∑
j=2

εκRe(φ∗(j)κ φ∗(K0−j)
κ ),

where εj is the (n−1+ j)-th element in the diagonal matrix σB∗. Since k ≤ n−2, the right hand
side of (2.17′) is in S0

n−2. Hence, it follows from Theorem 2.8, that f∗(K0) = 0, g∗(K0+1) = 0. By
induction, we see that f∗ = 0, g∗ = 0.

Returning to φ∗, we get
∑k

j=1 εj |φ∗j |2 ≡ 0. Assume that `2 = `1. Since we assumed
that `1 ≤ (n − 1)/2, all εj then must have fixed sign. Hence, φ∗ ≡ 0. as remarked above,
σ must be 1 when `1 = `2 < (n − 1)/2; and σ can be made to be 1 by replacing F with
F (z`+1, · · · , zn−1, z1, · · · , z`,−w), if necessary, when `1 = `2 = (n− 1)/2.
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When `2 > `1, write

(2.18). ΦI = (φ∗1, · · · , φ∗κ) with κ = `2 − `1 and ΦII = (φ∗κ+1, · · · , φ∗N−1).

We also see ‖ΦI‖2 = ‖ΦII‖2 over Hn
`1

.

We give some applications of Corollary 2.9 to the problem of embedding a non-degenerate
formal hypersurfaceM ⊂ Cn of signature ` into HN

`′ withN ≤ 2n−2 (N−1
2 ≥ `′ ≥ `, `+`′ ≤ n−1).

Let M = {v =< z, z >` +N} be a formal non-degenerate hypersurface of signature ` with
N = owt(3). Assume that F is a formal holomorphic embedding from (M, 0) into (HN

`′ , 0). As
we see above, after replacing F by F ◦ T0, if necessary, and then composing it with a certain
holomorphic linear fractional map from (HN

`′ , 0) to (HN
`,`′ , 0) , we can write F = (f,ΦI ,ΦII , g),

where (f, g) satisfies the normalization condition (2.2) and ΦI ,ΦII = O(|(z, w)|2) as defined
in (2.18). Applying the implicit function theorem, we conclude that M is equivalent through
F0 = (f, g) to the following hypersurface:

M̃ = {v =< z, z >` −‖ΦI ◦ F−1
0 ‖2 + ‖ΦII ◦ F−1

0 ‖2 =< z, z >` +HN−n}.

Notice that HN−n ∈ HN−n and F0 satisfies (2.2). Conversely, by Corollary 2.9, we have the
following

Proposition 2.14: Let M := {v =< z, z >` +N} where N ∈ Hk. Suppose that N ≤
2n − 2 − k. Then (M, 0) can be formally embedded into HN

`,`′ if and only if there are vector
valued holomorphic functions ΦI(z, w), ΦII(z, w) = O(|(z, w)|2) with `′ − ` and N − n − `′ + `

components, respectively, such that

(2.19) σ∗N(z, z, w,w) = −‖ΦI(z, w)‖2 + ‖ΦII(z, w)‖2,

where σ∗ is either identically 1 or identically −1. In particular, when ` = `′, then M can be
embedded into HN

` with N ≤ 2n − 2 − k if and only there are (N − n) formal holomorphic
functions {φj}N−n

j=1 such that

(2.20) N(z, z, w,w) = σ∗
N−n∑
j=1

|φj(z, w)|2.

where σ∗ must be 1 when ` < n−1
2 .
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More generally, assume that `′ = ` and letM be given byM := {v =< z, z >` +N (s)+owt(s)}
with N (s)(6≡ 0) ∈ S0(s)

k . Let F = (f, φ, g) be a formal embedding of M into HN
` with (f, g)

satisfying (2.2) and φ = O(|(z, w)|2). When N ≤ 2n− 2, an inductive use of Theorem 2.8 shows
that (f, g) = (z+ f (s−1) + owt(s), w+ g(s) + owt(s+ 1)) and φ = (φ(σ)

1 , · · · , φ(σ)
N−n) = 0 for 2σ < s.

In particular, it follows from Theorem 2.8 that s = 2s′ must be even if N ≤ 2n−2 and k ≤ n−2.
Assume this. For terms of weighted degree s, we have L(f (s−1), g(s)) = ‖φ(s′)‖2 − N (s). Since
‖φ(s′)(z, u+ i < z, z >`1)‖2 ∈ S0

N−n, it follows that if k +N − n ≤ n− 2 then

(2.21) N (s)(z, z, u, v)|v=|z|2
`
≡ ‖φ(s′)(z, u+ i < z, z >`)‖2.

Therefore, we have

Corollary 2.15: Let M = {v =< z, z >` +N (s) + owt(s)} be a formal non-degenerate
hypersurface of signature ` with N (s)(6≡ 0) ∈ S0(s)

k , k ≤ n − 2, s ≥ 4. Assume that k ≤ n − 2
and N ≤ 2n− 2− δe

sk with δe
s = 0 for s odd and equal to 1 otherwise. Suppose that there is no

holomorphic solution φ(s′) to (2.21). Then (M, 0) cannot be formally embedded into HN
` , when

` < n−1
2 . For ` = n−1

2 , if there is no solution to

N (s)(z, z, u, v)|v=|z|2
`
≡ ±‖φ(s′)(z, u+ i < z, z >`)‖2.

Then (M, 0) cannot be formally embedded into HN
` .

Example 2.16: Let M(⊂ Cn) := {v = |z|2 +Re(ws−1h(z))+ owt(2s)} be the germ of a for-
mal non-degenerate hypersurface of signature 0, where s > 2 and h(z) is a non-zero homogeneous
polynomial of degree 2. Then there is no vector valued weighted holomorphic polynomial φ(s) of
weighted degree s such that Re((u+i|z|2)s−1h(z)) = ‖φ(s+1)(z, u+i|z|2)‖2 ≥ 0 over w = u+i|z|2.
Notice that k = 2. Hence, when N ≤ 2n−4, (M, 0) can never be formally holomorphically embed-
ded into HN . Also notice that M0(⊂ Cn) := {v = |z|2 + Re(ws−1h(z))} can be holomorphically
embedded into Hn+2

1 through the map F = (1
2 (ws−1 − h(z)), z, 1

2 (ws−1 + h(z)), w).

To conclude this subsection, we present one more application to the study of a rigidity
problem, which asks if two CR embeddings of a strongly pseudoconvex hypersurface M in Cn

into the Heisenberg hypersurface HN are the rigid motion of each other. Namely, if F,Ψ are two
Cl-smooth CR embeddings from M into HN , is there a T ∈ Aut(HN ) such that T ◦ F = Ψ?
Here l is a certain positive number. This problem has been answered in the work of Webster
[We2] when N = n+ 1 ≥ 4. The reader can find a geometric approach along the lines of Webster
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[We2] on this problem in [EHZ2] when N − n ≤ n−2
2 . The arguments here are essentially those

in [EHZ1].
Let M = {v =< z, z >` +N} be a formal non-degenerate hypersurface of signature ` with

N = owt(3). Assume that F,Ψ are formal holomorphic embeddings from (M, 0) into (HN
`′ , 0) and

(HN ′

`′′ , 0), respectively. (Assume that N ′ ≥ N . Also, for simplicity, assume that `+`′ < n−1). Af-
ter composing F, Ψ with certain holomorphic linear fractional maps from (HN

`′ , 0) to (HN
`,`′ , 0) and

from (HN ′

`′ , 0) to (HN ′

`,`′ , 0), respectively, we can write F = (f,ΦI ,ΦII , g) and Ψ = (f∗,Φ∗I ,Φ
∗
II , g

∗)
where (f, g) (f∗, g∗) satisfy the normalization condition (2.2) and ΦI ,ΦII ,Φ∗I ,Φ

∗
II = O(|(z, w)|2)

as defined in (2.18). Therefore, M is equivalent through F0 = (f, g) or Ψ0 = (f∗, g∗) to the
following hypersurfaces M̃ , M∗, defined, respectively by:

v =< z, z >` −‖ΦI ◦ F−1
0 ‖2 + ‖ΦII ◦ F−1

0 ‖2, v =< z, z >` −‖Φ∗I ◦Ψ−1
0 ‖2 + ‖Φ∗II ◦Ψ−1

0 ‖2.

Notice that F0 ◦Ψ−1
0 is a normalized formal biholomorphic map from (M∗, 0) to (M̃, 0) satisfying

(2.2), and M̃ , M∗ are in the HN−n, HN ′−n-normal form, respectively. By Theorem 2.8, we see
that when N + N ′ ≤ 4n − 2, F0 ≡ Ψ0 and −‖ΦI‖2 + ‖ΦII‖2 ≡ −‖Φ∗I‖2 + ‖Φ∗II‖2 along M as
formal power series. In particular, when `′ = `′′ = `, there is a constant matrix U with U ·U t = Id
such that Φ∗II = ΦII · U by a result of D’Angelo [Da] and by noting that Φ∗I = ΦI = 0. Hence,
after applying another T ∈ Aut0(HN ′

l ) to Ψ, we see that the new F and Ψ satisfy the relation:
Ψ = (F, 0).

2.4. Chern-Moser normal Space NCH : The space Hk we presented in the above sub-
sections is indeed very convenient to apply due to its invariant property under the action of
Aut0(Hn

` ). However, it is not a normal space and thus can only be used to model a very limited
class of germs of real hypersurfaces. For the study of general Levi non-degenerate hypersurfaces,
we need to make use of the normal space NCM discovered by Chern-Moser in [CH]. The Chern-
Moser normal space is not invariant under the action of Aut0(Hn

` ). Thus a hypersurface which is
in the NCH -normal form is still subject to the action of this group. However, it can be used to
model any germ of hypersurface.

Since the discussion on the Chern-Moser normal form is available in many nice expositions
([Vit], [BER2], etc.), we here just give a brief account on this theory. Define

(2.23)

∆` : = −
∑
j≤`

∂2

∂zjzj
+

n−1∑
j≥`+1

∂2

∂zj∂zj
,

NCH : = {h =
∑

k,l≥2

Fkl(z, z, u), with Fkl =
∑

|α|=k,|β|=l

aαβ(u)zαzβ

h = h, ∆`F22 = ∆2
`F23 = ∆3

`F33 = 0}

.
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The following is a fundamental result of Chern-Moser in this subject:

Theorem 2.17(Chern-Moser [CM]): Assume the above definition and notation. Then (a).
NCM is a normal space. (b). Any germ of Levi non-degenerate real analytic hypersurface (M, 0)
with signature ` can be transformed by the germ of a biholomorphic map to a convergent Chern-
Moser normal form. (c). Let (Mj , 0) be germs of formal real hypersurfaces at 0 defined by
v = |z|2` +Nj with Nj ∈ NCM . Then (M1, 0) and (M2, 0) are equivalent by a formal holomorphic
map F , satisfying the normalization (2.2), if and only if F ≡ Id and N1 ≡ N2.

The proof of Theorem 2.17 can be found in [§3, 4, CM], which we skip here. However, we
mention that one of the significant features in the above theorem is that a convergent germ of
hypersurface has a convergent Chern-Moser normal form.

In terms of the above theorem, the general procedure to see if two germs (Mj , 0), which are
already in the Chern-Moser normal form, are equivalent to each other, is as follows: First apply
T ∈ Aut0(Hn

` ) to M2 to obtain T (M2). Then by solving infinitely many times the Chern-Moser
equation (2.10) to find a new normal form for T (M2) : v = |z|2` + N2,T . Finally, (M1, 0) is
equivalent to (M2, 0) if and only if N1 ≡ N2,T for a certain T . The major difficulty here is that
it is extremely difficult in general to find N2,T from the defining equation of T (M2). Indeed, it is
the purpose to get rid of this difficulty that motivated us to find an invariant normal form (with
respect to Aut0(Hn

` )) in [EHZ1]. Unfortunately, the admissible space we obtained in [EHZ1] only
works for a very small class of real hypersurfaces, which are actually those which can be formally
embedded into the hyperquadrics with restricted codimension. The interested reader is referred
to the paper [EHZ1] for more on this matter.

We notice that S0
k is not a subclass of the Chern-Moser normal space. For instance, for σ > 1,

h = Re(z2σ
1 wσ) contains a term of the form uσz2σ

1 . While h is in H2, it is not in the Chern-Moser
normal space.

§ 3. Bishop Surfaces with Vanishing Bishop Invariants

In this section, we study the holomorphic equivalence problem for submanifolds in Cn with
higher codimension. There have been many generalizations of the Chern-Moser theory to the
so-called generic strongly pseudoconvex CR submanifolds. (See the survey paper [BER2] for
some references in this regard and the recent paper [BRZ] for some other related studies). In
this notes, we would like to focus on the normal form problem for Bishop surfaces [Bis] in C2.
The study of Bishop surfaces has attracted considerable attention since the work of E. Bishop in
1965. (See [BG], [KW], [Mos], [MW] [HK]). These surfaces are interesting, due to the following
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reasons: First, from the point of view of complex analysis, they can be viewed as the simplest
higher codimensional analogy of strongly pseudoconvex hypersurfaces; secondly, they have a rich
complex structure at the complex tangent and have trivial complex structure elsewhere, namely
they can also be viewed as the simplest models where one sees the CR singularity; thirdly, from
the work of Moser-Webster [MW], which we will discuss in the next section, one sees a tremendous
interaction of complex analysis with the classical dynamics problems encountered in Mechanics
[SM]– An understanding of such a problem may provide useful information and motivation to
many converge problems in Mechanics. The basic references to this section include the papers
[MOS] [MW] and [HK].

To be more specific, we let M be a real surface in C2. Then for any p ∈M , CRM (p) can be
only 0, 1. When CRM (p) = 0, we say M is totally real at p. By the semi-continuity of the CR
dimension function, we conclude that M must be totally real in a neighborhood of p in M . When
M is further real analytic, then an easy application of the complexification shows that (M,p) is
holomorphically equivalent to (R2, 0), where R2 := {(x, y) ∈ C2, x, y ∈ R}. On the other hand,
if CRM (q) ≡ 1 for q ≈ p, then apparently (M,p) ≈ (C × {0}, 0). Hence, from the equivalence
point of view, only points with CR dimension 1 but not constantly 1 nearby are interesting.
Among such points, only those which have CR dimension 1 but 0 nearby are stable under small
perturbation. Such points are called isolated CR singular points.

Now, let p ∈ M be a point with a non-trivial complex tangent. Namely, we assume that
CRM (p) = 1. After a holomorphic change of coordinates, we can assume that p = 0 and
T (1,0) = CTpM = {w = 0}, where we use (z, w) for the coordinates of C2. Then M near 0 can be
defined by an equation of the form: w = h(z, z)+o(|z|2). Here h(z, z) = az2+bzz+cz2. Replacing
w by w − (a − c)z2, if necessary, we can assume that a = c. Assume that b 6= 0. Replacing w
by w/b and replacing z by zeiθ for a suitable θ, we can assume that h = zz + λ(z2 + z2) with
λ ≥ 0. By a straightforward verification, one can see that λ is a biholomorphic invariant, called
the Bishop invariant.( See Lemma 3.2 below). When λ < 1

2 , we call p = 0 an elliptic complex
tangent of M . When λ > 1

2 , we call p = 0 a hyperbolic complex tangent point of M . When
λ = 1/2 or when b = 0 but c 6= 0, we say p = 0 is a parabolic complex tangent. An elliptic,
parabolic or hyperbolic complex tangent point is called a non-degenerate complex tangent point.
In the other case, we say 0 is a degenerate complex tangent point. A real surface M is called
a Bishop surface if all of its complex tangents are non-degenerate. In this notes, we are mainly
concerned with the equivalence problem of M at an elliptic complex tangent point. Hence, we
have λ ∈ [0, 1/2). In this section, we discuss the formal theory of Moser [Mos] when the surface
is formally equivalent to the model surface M0 := {w = |z|2}. In the next section, we discuss the
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Moser-Webster theory for Bishop surfaces with non-vanishing Bishop invariants.
The understanding to the general Bishop surfaces with vanishing Bishop invariant is still not

complete. It is an open question to get a complete set of invariants for analytic Bishop surfaces
with vanishing Bishop invariant.

We first state a general result along these lines proved in [HK]:

Theorem 3.1 (Huang-Krantz [HK]): Let M be a real analytic Bishop surface with vanishing
Bishop invariant at 0. Then (M, 0) can be flattened in the sense that there is a biholomorphic
change of coordinates such that in the new coordinates, it holds that M ⊂ C×R. More precisely,
in the new coordinates, M near 0 can be defined by an equation of the form:

(3.1) w = |z|2 + E(z, z), E(z, z) = E(z, z).

We start with the following statement on invariance of the Bishop invariant.

Lemma 3.2: Suppose that Mj for j = 1, 2 are Bishop surfaces with only CR singular point
at pj , respectively. Then the Bishop invariant of M1 at p1 is the same as the Bishop invariant of
M2 at p2, if M1 is biholomorphically equivalent to M2.

Proof of Lemma 3.2: Without loss of generality, we can assume that pj = 0. Let F = (f, g)
be a biholomorphic map from M1 to M2. Then F (0) = 0, for F preserves the CR dimension.
After a change of coordinates, we can assume that

Mj : w = zz + λj(z2 + z2) +O(|z|3), 0 ≤ λj ≤ ∞.

When λj = ∞, we regard Mj as a surface defined by an equation of the form: w = z2+z2+o(|z|2).
For simplicity of calculation, we assume, in the following, that λj <∞.

Notice that F must preserve the complex tangent space of Mj at 0. We can write F = (f, g)
with f = az + bw+O(|(z, w)|2) and g = cw+ d(2)(z) +O(|w|2 + |zw|+ |z|3). Using the equation
of M2, we get

c(zz + λ1(z2 + z2)) + d(2)(z) = |az + bw|2 + λ22Re(az + bw)2 +O(|z|3),

where (z, w) ∈M1. Collecting the coefficients of zz, z2, z2, we get

(3.2) c = |a|2, d(2) = d2z
2, cλ1 + d2 = λ2a

2, cλ1 = a2λ2.
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Hence it follows that

(3.3) c > 0, λ1 = λ2, a ∈ R, d(2) = 0

This completes the proof of Lemma 3.2.

3.1. Formal theory for Bishop surfaces with vanishing Bishop invariant. We
now focus on the case λ = 0 and present the formal theory of Moser [Mos]. Let M be a real
analytic Bishop surface with vanishing Bishop invariant at 0. By Theorem 3.1, after a change of
coordinates, we can assume that M is defined by an equation of the form:

w = |z|2 + E(z, z) with E(z, z) = E(z, z) = E(z, z).

We notice that M near 0 bounds a family of holomorphic disks defined by

{(z, w) : v = 0, u = r2, r2 ≥ |z|2 + E(z, z)}.

Namely, let σr be a Riemann mapping from the unit disk in C to the domain

(3.4) Dr := {z ∈ C : r2 > |z|2 +R(z, z)}.

Then the map φr from the unit disk ∆ := {z ∈ C : |z| < 1}, which sends z to (σr(z), r2), is
holomorphic in ∆, real analytic up to the unit circle and maps the unit circle to M . Such a φr is
called a holomorphic disk attached to M .

Conversely, for any holomorphic map φ = (φ1, φ2) from the unit disk to C2, which is contin-
uous up to ∂∆, if it is attached to M (namely, φ(∂∆) ⊂ M) and if ‖φ‖ << 1, then φ(∆) = Dr

for a certain r. This can be seen easily by noticing that for such a map, φ2 must be constant; for
its imaginary part has boundary value 0.

Next, let (Mj , 0) (j = 1, 2) be two real analytic surfaces defined, respectively, by an equation
of the form:

w = |z|2 + Ej(z, z) with Ej(z, z) = Ej(z, z) = Ej(z, z).

And let F = (f, g) be a biholomorphic map from (M1, 0) to (M2, 0). Then F must send a
holomorphic disk attached to M1 to a holomorphic disk attached to M2. From this, it follows
easily that g(z, w) = g(w) with g(r2) > 0 for 0 < r << 1. Also, f(z, r2) for each fixed r must be
a conformal map from the disk |z|2 + E1(z, z) ≤ r2 to the disk |z|2 + E2(z, z) ≤ g(r2).
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In particular, when both M1 = M2 = Mλ = {w = |z|2 + λ(z2 + z2)} with λ = 0, f(z, r2)
must be a conformal map from |z|2 ≤ r2 to |z| ≤

√
g(r2). Hence

f(z, r2) =
√
g(r2)eiθ(r) z − ra(r)

r − a(r)z

for certain θ(r), a(r).
Since f is analytic in (z, w), we can conclude that f(0, u) = −

√
g(u)eiθ(r)a(r) is real analytic

in u. Write g(w) = w(g∗(w))2 with g∗(r2) > 0, g∗(0) > 0. Then

f(0, u) = −
√
ug∗(u)eiθ(

√
u)a(

√
u),

we see that
√
ua(

√
u)eiθ(

√
u) is analytic.

In particular, we see that u|a(
√
u)|2 and thus |a(

√
u)|2 is analytic.

Next, ∂f
∂z (0, u) = g∗(u)eiθ(

√
u)(1 − |a(

√
u)|2). We conclude that eiθ(

√
u) is also analytic, and

thus
√
ua(

√
u) is analytic too. In this manner, we can write

f(z, u) = g∗(u)Λ(u)
z − c(u)u
1− c(u)z

where c(u) = a(
√

u)√
u

is analytic in u with |c(u)| ≤ 1√
u
,or |c(u)u| <

√
u; g∗(u) and Λ(u) are analytic

in u with g∗(0) > 0. Summarizing what we did and with a further straightforward verification,
we have

Proposition 3.3([MW] [Mos]): Aut0(Mλ) with λ = 0 consists of the following transforma-
tions:

(3.5)

{
w′ = wa(w)a(w),
z′ = a(w) z−wb(w)

1−b(w)z

with a(0) 6= 0, a(w), b(w) holomorphic functions in w.

Still let M be defined by w = |z|2 + E(z, z) with E(z, z = E(z, z) = O(|z|3) real analytic in
z. We subject to M a transformation of the form: F = (f, g) where f = az + bw + O(|z, w|2),
g = g(w) with g(r2) > 0 for r > 0.

Lemma 3.4: There is a unique T ∈ Aut0(Mλ) such that T ◦F = (f̃ , g̃) satisfies the following
normalization condition:

(3.6) f̃ =
∞∑

j=0

zjfj(w) with f0 = 0, f1(u) > 0 f1(0) = 1 , g̃ = w.
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Proof of Lemma 3.4: First, we can easily make F = (f, g) = (z + O(w + |z|2), w + O(w2)).
Choose T0 ∈ Aut0(M0): T0(z, w) = (a(w)z, a2(w)w), with a(0) 6= 0, a(u) > 0 for u ≥ 0. We
like to have T0 ◦ F = (·, w). For this, we need the function relation: a2(g(w))g(w) = w. Hence,
a(g(w)) = 1

g∗(w) , where, as before, g(w) = wg∗(w) with g∗(0) 6= 0. Apparently, such an a(w) can
be uniquely solved.

Still write F for T0 ◦ F . Let

T1 =
(

Λ(w)
z − c(w)w
1− c(w)z

, w

)
∈ Aut0(M0).

Write F = (
∑∞

j=0 fj(w)zj , w) and letting c(w) = f0(w)
w . Then

T1 ◦ F =
(

Λ(w)

∑∞
j=1 fj(w)zj

1− c(w)f(z, w)
, w

)
= (

∞∑
j=1

f̃j(w)zj , w).

Then
f̃1(w) =

Λ(w)f1(w)
(1− c(w)wc(w))

.

Notice that f1(0) = 1. Also, we can apparently choose Λ such that f̃1(u) > 0 for u ≥ 0. We
proved the existence of T ∈ Aut0(Mλ) such that the T ◦F satisfies the normalization (3.6) in the
lemma.

We next prove the uniqueness of T . Suppose that there are T1 = (φ1, ψ1) and T2 = (φ2, ψ2)
such that both T1 ◦ F and T2 ◦ F satisfy the normalization condition in (3.6). Then one can see
easily that it must hold ψ1 = ψ2 when restricted to M0. We leave it to the reader to verify that
φ1 = φ2 along M0.

There is another normalization used in [Mos] for F :

Lemma 3.4′([Mos]): There is a unique T ∈ Aut0(Mλ) with λ = 0 such that

(3.7) T ◦ F =
( ∞∑

j=0

zjfj(w), g(w)
)

with f0(w) = 0, f1(w) ≡ 1, g(w) = w + o(|w|).

Proof of Lemma 3.4′: We choose T1 to be of the form
(

z−c(w)w
1−c(w)z , w

)
. Let c(w) = f0(w)

w . Then

T1 ◦ F =
( ∑∞

j=1 fj(w)zj , g(w)
)

.
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Next we take T2 = (g∗(w)Λ(w)z, w(g∗(w))2) with g∗(u) > 0 if u ≥ 0. Then, we can choose
Λ(u) with |Λ(u)| ≡ 1 such that g∗(u)Λ(u)f1(u) ≡ 1. Then T2 ◦T1 ◦F has the normalization as in
Lemma 3.4′. The uniqueness part can also be done easily.

We now derive the Moser pseudo-formal norm for (M, 0), where M is defined as in (3.1). We
will subject to M the transformation of the following form:

(3.8)
{
z′ = F = z + f(z, w), w′ = w with
f(z, w) =

∑∞
l=1 fl(w)zl, f1(u) > 0, f1(0) = 1.

Proposition 3.5: With the above notation, there is a unique formal holomorphic transfor-
mation (z′, w′) = F (z, w) as in (3.8) such that in the (z′, w′) coordinates, F (M) is given by the
following pseudo-normal form:

(3.9) w′ = z′z′ + φ(z′) + φ(z′)

where φ(z′) =
∑∞

j=s≥3 aj(z′).

In the above lemma, if all aj = 0, then M is formally equivalent to the model M0. Otherwise,
we can assume that as 6= 0. In fact, replacing (z′, w′) by (κz, κ2w) for a suitable κ, we can further
make as = 1. It can be verified that s is then also a biholomorphic invariant of (M, 0), which we
call the s-invariant. When (M, 0) is formally equivalent to the model, we say the s-invariant of
(M, 0) is ∞.

Proof of Proposition 3.5: Substituting (3.8) into (3.9), we have

w = (z + f(z, w))(z + f(z, w)) + φ(z + f(z, w)) + φ(z + φ(z, w)),

for w = |z|2 + E(z, z). Collecting terms of degree s in (z, z), we get

E(s) = zf (s−1)(z, zz) + f (s−1)(z, zz)z + φ(s)(z) + φ(s)(z) +G(s)(z, z)

where G(s) is completely determined by f (σ−1)(z, zz), g(σ)(z, zz) and φ(σ) for σ < s. Moreover,
G(s) is 0 when f (σ−1)(z, zz) = g(σ)(z, zz) = φ(σ)(z) = 0 for σ < s. We will also assign the weight
of u to be 2.

We will inductively determine F and φ. Suppose F (σ) and φ(σ) have been solved for σ < s.
Write Γ(z, z) = E(s) −G(s). We then see that φ(s) = Γ(z, 0). Write Γ(z, z)− Γ(z, 0)− Γ(0, z) =
Γ0(zz) +

∑∞
l=1(z

lΓl(zz) + zlΓl(zz)) with Γl = Γl, Γ0 = Γ0. Since f1(u) > 0, f0 = 0, we obtain

(3.10)

 f
(2s′)
1 (u) = Γ

(2s′+2)
0 (u)−Γ

(2s′+2)
0 (0)

2u ,

f
(2s′)
l (u)u = Γ(2s′+2)

l−1 (u) or f (2s′)
l (u) =

Γ
(2s′+2)
l−1 (u)−Γ

(2s′+2)
l−1 (0)

u , l > 1.
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Let f (s), g(s) be the unique solutions given as above. Let F (s) = (z+
∑
f (s), w). Then F satisfies

the normalization as in (3.6). Now, the composition of such a map formally transforms (M, 0)
into a special form as in (3.9).

Similarly, one also has the following:

Proposition 3.5′ ([Mos]): Let (M, 0) be given as in (3.1). Then there is a unique formal
holomorphic transformation (z′, w′) = F (z, w), that satisfies the normalization in (3.7), such that
in the (z′, w′) coordinates, F (M) is given by a pseudo-normal as in (3.9).

A surface defined by an equation of the form in (3.9) is said to be presented in the Moser
pseudo-normal form. It should be mentioned that the coefficients embedded in the Moser pseudo-
normal form are far from being holomorphic invariants. Indeed, the Moser pseudo-normal form is
still subject to the action of a huge group: Aut0(M0), which, different from the real hypersurface
case, is of infinite dimension. It has been an open question how to simplify the Moser peudo-
normal form further to get a more invariant representation for Bishop surfaces with vanishing
Bishop invariant. It is also an open question if a real analytic (M, 0) can be transformed into
a convergent Moser pseudo-normal form through a convergent power series. In the following
subsection, we will show that ifM is formally equivalent to the modelM0, then it is biholomorphic
to M0. We will follow essentially the argument in [Mos] for this purpose.

3.3. Bishop surfaces which are formally equivalent to (Mλ, 0) with λ = 0: In this
section, we give the proof of the following theorem of Moser:

Theorem 3.6( Moser)[Mos]: Suppose (M, 0) is formally equivalent to (Mλ, 0) with λ = 0.
Then (M, 0) is biholomorphic equivalent to (Mλ, 0).

Let M : w = zz+E(z, z) with E = O(|z|3) real valued be formally equivalent to Mλ with λ =
0. E(z, ξ) can be assumed to be holomorphic in the polydisc |z|, |ξ| ≤ 1, sup|z|,|ξ|<1 |E(z, z)| < η0.
Replacing (z, w) by (ε, ε2w) for ε << 1, we can always make η0 sufficiently small.

We will seek the transformation of the form z′ = z + f(z, w), w′ = w as in (3.6), such that

w = (z + f(z, w))(z + f(z, w)), or

zf(z, w) + zf(z, w) = E − |f(z, w)|2, w = zz + E(z, z).

Consider its lineariztion:
zf(z, zz) + zf(z, zz) = E
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which may not be solvable in general. However, as what we did above, we can solve the following

zf(z, zz) + zf(z, zz) + φ(z) + φ(z) = E(z, z)

where f(z, w) =
∑∞

j=1 fj(w)zj with f0 = 0, f1(u) > 0 and f1(0) = 1. Still write

(3.11) E = E0(zz) +
∞∑

l=1

(E`(zz)zl + El(zz)zl) + E(z, 0) + E(0, z).

Then as in (3.10), we have the following

(3.12)


φ(z) = E(z, 0),
f1(u) = E0(u)−E0(0)

2u

f`(u) = El−1(u)−El−1(0)
u , l = 2, 3, · · · .

For the rest of this section, for 1/2 < r < 1, we write

(3.12)′ ∆r = {(z, w) : |z| < r, |w| < r2}, Dr = {(z, w) : |z| < r, |w| < r}.

We will also use cj , c′j to denote certain absolute constant.

Proposition 3.7: Suppose that E(z, ξ) ∈ Hol(Dr). Let ρ ∈ (1/2, r). Write

‖E‖r = sup
|z|<r,|ξ|<r

|E(z, ξ)|, |f |r = sup
|z|<r,|w|<r2

|f(z, w)|.

Then f, φ are holomorphic over Dr with following estimates:

(3.13)


|f |ρ < c1(r − ρ)−1‖E‖r;
|fz|ρ + |fw|ρ ≤ c1(r − ρ)−2‖E‖r,
sup|z|<r |φ(z)| ≤ ‖E‖r.

Proof: Note that z`E`(zξ) = 1
2πi

∫ 2π

0
E(eiφz, e−iφξ)e−ilθdθ. By the maximum principle,

sup
|w|≤r2

|E`(w)| ≤ sup
|w|=r2

|E`(w)| = r−l‖E‖r, sup
|w|≤r2

|f`(w)| ≤ 2r−|`|−2‖E‖r.

Hence,

|f |ρ ≤
∞∑

`=1

ρ` sup
|w|≤ρ2

|f`(w)| ≤
∞∑

`=1

ρ`2r−|`|−2‖E‖r =
c0

r − ρ
‖E‖r,
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sup
|z|<r

|φ(z)| ≤ ‖E‖r.

This, in particular, shows that f is holomorphic in any Dρ for ρ < r. Thus we see f, φ ∈ Hol(Dr).
To get the estimates for derivatives, we set τ = r+ρ

2 . By the Cauchy estimates, we obtain:

|f |τ ≤
c′1

r − τ
‖E‖r, |fz|ρ ≤

|f |τ
τ − ρ

≤ c′1‖E‖r

(r − ρ)2
, |fw|ρ ≤

c′1‖E‖r

(r − ρ|2
.

This completes the proof of the proposition.

The following is basic for applying the rapidly convergent power series method to prove
Theorem 3.6.

Lemma 3.8: Suppose that M : w = zz + E(z, z) with the s-invariant s = ∞. (Namely,
suppose that M is formally convergent to the model M0). Assume that ord(E) ≥ d. Then the
transformed surface F (M) : w′ = zz′ + E′ obtained above has ord(E′) ≥ 2d− 2.

Proof of Lemma 3.8: We have the equation:

(3.14) zf(z, w) + zf(z, w) = E − |f(z, w)|2 − E′(z + f, z + f(z, w)).

Apparently, when ord(E) = d, by (3.12), we have ord(f) = d−1 and thus ord(|f(z, w)|2) ≥ 2d−2.
Notice that ord(f(z, w) − f(z, zz)) ≥ 2d − 3. Since we assumed that s = ∞, it must hold that
ord(φ(z)) ≥ 2d − 2. (Otherwise, E′(z′, z′) = Re(bs0z

′s0) + o(|z′s0 |) with 2 < s0 < 2d − 2 and
bs0 6= 0.) Therefore it is easy to conclude that ord(E′) ≥ 2d−2 by the way f, φ were constructed.
(See (3.12)).

Now let M ′ = F (M) be as above defined by: w′ = |z′|2 + E′(z′, z′). We will estimate E′.
After complexification, namely, after replacing z by a new variable ξ, we have

(3.15) E′(z′, ξ′) = −ξ(f(z, w)− f(z, zξ))− z(f(ξ, w)− f(ξ, zξ))− f(z, w)f(ξ, w) + φ(z) + φ(ξ)

where z′ = z + f(z, w), ξ′ = ξ + f(ξ, w), w = zξ + E(z, ξ).
Let r′ and r be such that 1

2 < r′ < r < 1 and choose σ, ρ ∈ (r′, r) such that r − ρ = ρ− σ =
σ − r′ = 1

3 (r − r′).

Lemma 3.9: Let M be as above with ord(E) ≥ d. Then, there exists an absolute constant
1 > δ > 0 such that if ‖E‖r < δ(r − r′)2, the above defined mapping F : (z, w) → (z′, w′) =
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(z + f(z, w), w) takes every value in ∆σ exactly once from ∆ρ, and takes M into M ′ = F (M)
with E′(z, z′) holomorphic in z′, ξ′ ∈ Dr′ and

(3.16) ‖E′‖r′ ≤ c2‖E‖r

{
‖E‖r

(r − r′)2
+

(
r′

r

) d
2
}
.

Proof of Lemma 3.9: Write Ψ(z′, w′) = F−1(z′, w′) = (ψ(z′, w′), w′). We need to show that
for each fixed w with |w| < σ2 and z′ with |z′| < σ, we can solve uniquely the equation z′ =
z+ f(z, w) with |z| < ρ. For this purpose, we let δ be sufficiently small so that |fz|τ + |fw|τ < 1

20

and |f |ρ ≤ 1
20 (r − r′) with τ = r+r′

2 . Let z1 = z′ and zj+1 = z′ − f(zj , w) for j = 2, · · ·. By the
standard argument on the Picard iteration procedure, one can verify that |zj | < ρ and zj → z

with |z| < ρ, too. Apparently, z is the solution that we want.
This proves that Ψ biholomorphically maps ∆σ into its image contained in ∆ρ. Notice that

for (z, ξ) ∈ Dσ, |w(z, ξ)| = |zξ+E(z, ξ)| ≤ |σ|2 +‖E‖r < ρ2 provided that ‖E‖r < ρ2−σ2, which
holds automatically by the way we choose δ above. Hence, we conclude that E′ is holomorphic
in Dσ. Moreover,

‖E′‖r′ ≤ ‖Q‖σ,

where

(3.17)
Q(z, ξ) =− ξ(f(z, w)− f(z, zξ))−

−z(f(ξ, w)− f(ξ, zξ))− f(z, w)f(ξ, w) + φ(z) + φ(ξ)
.

To estimate ‖Q‖σ, recall that for (z, ξ) ∈ Dσ, |w| ≤ σ2 + ‖E‖r < ρ2. Hence,

|f(z, w)− f(z, zξ)| ≤ sup
∆ρ

|fw|‖E‖σ ≤ c1(r − ρ)−2‖E‖2r,

|φ(z)| ≤ ‖E‖r for |z| < r. Also, by the Schwarz Lemma, |φ(z)| ≤
(

σ
r

)d

‖E‖r for |z| < σ. Notice

that
|f(z, w)f(ξ, w)| ≤ c21(r − ρ)−2‖E‖2r

Hence, ‖Q‖σ ≤ c′2{(r − ρ)−2‖E‖2r +
(

σ
r

)d

‖E‖r}. To complete the proof of the lemma, we just

need to notice that r − ρ = r−r′

3 and thus (σ
r )2 ≤ r′

r . .

Proof of Theorem 3.6: We start with M : w = zz+E(z, z) with ord(E) ≥ 3 and assume that
the s-invariant of M is ∞. Choose {rv}∞v=1 with rv = 1

2 (1 + 1
v+1 ),

ρv = rv −
1
3
(rv − rv+1), σv = rv −

2
3
(rv − rv+1).
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We mentioned that we can a priori make ε′ := ‖E‖r1 arbitrarily small. Our goal will be proving
that when ε′ is chosen to be sufficiently small, then the Ev(z, ξ) obtained successively will be
biholomorphic in Drv and ‖Ev‖rv → 0 as v → ∞. Moreover, Φv = Ψ1 ◦ Ψ2 ◦ · · ·Ψv converges
uniformly in ∆1/2. Hence, it follows that Φ−1

v (M) = Mv converges to w = zz. Namely, the
inverse of the limit of {Φv} biholomorphically maps (M, 0) into (M0, 0). In details, we explain as
follows:

Note that ord(Ev) ≥ dv = 2v + 2 for v ≥ 1. Set

εv = (rv − rv+1)−2‖Ev‖rv
.

Suppose εv is smaller than the δ required in Lemma 3.9. Then by (3.16),

(3.18) εv+1 ≤
(

rv − rv+1

rv+1 − rv+2

)2

c2εv

(
εv + (

rv+1

rv
)

dv
2

)
.

Hence

(3.19) εv+1 ≤ c3εv(εv + λv).

Here

λv =
(

1− 1
(v + 2)2

) dv
2

→ 0.

Now, we have the following:

Lemma 3.10: Suppose a positive sequence {εv} with ε1 << 1 satisfies (3.19). Then when
ε1 is sufficiently small, εv ≤ 2−v. Moreover, for any c′ < 1, by making ε1 sufficiently small, one
also has εv < c′

Proof of Lemma 3.10: Notice that λv < e−(v+2)22v−1
< c′5e

−v2
. We first choose N >> 1

and ε1 << 1 such that λv < 2−v for v ≥ N , εN < 2−N < (4c)−1. Then εN+1 ≤ 2−N−1. By an
induction, one sees that εv < 2−v for any v ≥ N . The rest of the proof is apparent.

Hence, once we start with ε′ << 1, then Lemma 3.10 says that Proposition 3.9 can always
be applied. We see that ‖Ev‖rv ≤ εv ≤ 2−v → 0. The reader can easily verify the uniform
convergence of {Φv} as v →∞ over ∆1/2.

Now the mapping Φ = lim Φv defines a biholomorphic mapping from (C2, 0) to C2, 0). Its
inverse maps M into the model w′ = |z′|2. By Lemma 3.4 or Lemma 3.4′, we can also make Φ−1

satisfy the normalization in (3.6) or (3.7), respectively.
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§ 4. Moser-Webster’s Theory on Bishop surfaces

with Non-Exceptional Bishop invariants

Now we turn to real analytic elliptic Bishop surfaces with non-vanishing Bishop invariant.
Let M be defined by

(4.1) w = qλ(z, z) + o(|z|2),

where qλ(z, z) = zz + λ(z2 + z2) with 0 < λ < 1
2 . Write Mλ = {w = qλ(z, z)}. Then Mλ is

still foliated near 0 by closed analytic curves which bound holomorphic curves. Hence, a similar
argument as in §3 can be used to show that Aut0(Mλ) consists of precisely the maps of the form:

(4.2) z′ = a(w)z, w′ = a2(w)w with a = a, a(0) 6= 0.

More generally, we call 0 ∈ M a non-exceptional complex tangent if 0 ∈ M is a non-degenerate
complex tangent with Bishop invariant λ 6= 0, 1

2 ,∞ and if the quadratic equation: λγ2−γ+λ = 0
has no roots of unity. It is shown in [MW] that for the general model Mλ with λ non-exceptional,
Aut0(Mλ) also consists precisely of the maps of the form in (4.2). (See [Corollary 3.5, MW]).

One might also want to use the methods in the previous sections to normalize Bishop surfaces
near general non-degenerate Bishop complex tangents. However, one would find out that even
the linear algebra involved for the linearized equation will immediately become a lot of more
complicated. Up to now, no one seems to have succeeded in obtaining a complete set of invariants
in this way. In the paper of Moser-Wester [MW], they reduced the normalization problem to the
normalization problem for a pair of involutions intertwined by a conjugate holomorphic involution.
This reduction enables them to completely settle the local equivalence problem for elliptic Bishop
surfaces with non-vanishing Bishop invariant. In the following, we present a quick discussion on
the theory of Moser-Webster. The reader is referred to their original paper [MW] for more details.

4.1 Complexification M of M and a pair of involutions associated with M: Assume
that M is defined by an equation of the form

w = zz + λ(z2 + z2) +H(z, z) with H(z, z) = o(|z|2).

Replacing z by ξ and w by η, we obtain a complex surface M in C4 near the origin defined by

(4.3) (w, η) = Ψ0(z, ξ) :=
{
w = zξ + λ(z2 + ξ2) +H(z, ξ),
η = zξ + λ(z2 + ξ2) +H(ξ, z)

.

Consider the projections π1 and π2 from M to the (z, w) and (ξ, η) spaces, respectively. Then πj

are two-to-one branched covering maps. Write τ̂j for the deck transformations of πj . Namely, for
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p, q ∈ M τ̂j(p) = q if and only if πj(p) = πj(q). One sees that τ̂j extend to biholomorphic self-
maps of (M, 0). Also, write ρ̂ for the conjugate holomorphic self-map of (M, 0): ρ̂(z, w, ξ, η) =
(ξ, η, z, w). Then, the following relations are fundamental:

(4.4) τ̂j
2 = τ̂j , ρ̂2 = ρ̂, τ̂2 = ρ̂ ◦ τ̂1 ◦ ρ̂,

In what follows, we call (τ̂j , ρ̂) the Moser-Webster triplet. Notice that M is parameterized
by (z, ξ) by (4.3). We can define the following self-maps of (C2, 0):
(i): τ1(z, ξ) := (z, ξ′) if and only if π1(z, w, ξ, η) = π1(z, w, ξ′, η′) for a certain (z, w, ξ′, η′) ∈M.
(ii): τ2(z, ξ) := (z′, ξ) if and only if π1(z, w, ξ, η) = π1(z′, w′, ξ, η) for a certain (z′, w′, ξ, η) ∈M.
(iii): ρ(z, ξ) := (ξ, z)

A direct computation shows that τ2 and τ1 are given, respectively, by:

(4.5)
{
z′ = −z − 1

λξ + h1(z, ξ),
ξ′ = ξ,

(4.6)
{
z′ = z,
ξ′ = − 1

λz − ξ + h2(z, ξ)

where hj(z, ξ) = o(|(z, ξ)|).
τj are naturally associated to τ̂j by (4.3):

(4.7) τj = Ψ−1
0 ◦ τ̂j ◦Ψ0, ρ = Ψ−1

0 ◦ ρ̂ ◦Ψ0.

The following lemma can be proved by a direct construction:

Lemma 4.1: Bishop surfaces (M, 0) and (M̃, 0) with Bishop invariant λ 6= 0, 1
2 ,∞ are

holomorphic equivalent if and only if there is a biholomorphic map Ψ from (M, 0) to (M̃, 0) such
that Ψ ◦ τ̂j = ˆ̃τj ◦Ψ and Ψ ◦ ρ̂ = ˆ̃ρ ◦Ψ.

Suppose that we have a general pair of holomorphic involutions τ1 and τ2, together with a
conjugate holomorphic involution from (C2, 0) to (C2, 0). Let M be the complexification of the
Bishop surface in (4.1). Suppose that there is a biholomorphic map Φ from (C2, 0) to (M, 0)
such that

Φ ◦ τj = τ̂j ◦ Φ, and Φ ◦ ρ = ρ̂ ◦ Φ.

Then we say {(M, 0), τ̂j , ρ̂} is parameterized by {(C2, 0), τj , ρ} through Φ. Notice that it then
always holds that τ2 = ρ ◦ τ1 ◦ ρ.
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The following is a fundamental fact in the theory of Moser-Webster, whose proof can be
reduced to the proof of Lemma 4.1

Proposition 4.2: Let (M, 0) and (M̃, 0) be two Bishop surfaces with Bishop invariant
λ 6= 0, 1

2 ,∞. Suppose that the Moser-Webster triplet of their complexifications are parameterized
by {τj , ρ} and {τ̃j , ρ̃}, respectively. Then (M, 0) is holomorphically equivalent to (M̃, 0) if and
only if there is a biholomorphic map ψ from (C2, 0) to (C2, 0) such that

τ̃j = ψτjψ
−1, ρ̃ = ψρψ−1.

4.2: Linear theory of a pair of involutions intertwined by a conjugate holomorphic

involution: Assume that we have two involutions τj : (C2, 0) to (C2, 0) and an anti-holomorphic
involution: ρ : (C2,0) → (C2,0) such that τ2 = ρτ1ρ. We always assume that the linear parts Tj

of τj satisfy the following properties:

(4.8)
{
T1, T2 have no common non-trivial eigenvectors;
det(Tj) + 1 = trTj = 0.

Notice that this is always the case for the holomorphic involutions obtained from Bishop surfaces
with Bishop invariant λ 6= 0, 1

2 ,∞. Indeed, for such involutions,

(4.9) T2 =
(
−1 − 1

λ
0 1

)
, T1 =

(
1 0
− 1

λ −1

)
.

We first present the linear theory for these involutions.
Assume τj , ρ are linear. Let φ = τ1 ◦ τ2. By studying the normalization of φ, one can find a

new coordinates system (see [Lemma 2.2, MW]) (x, y) in which

(4.10)
{
τ1(x, y) = (γy, γ−1x), τ2(x, y) = (γ−1y, γx),
φ(x, y) = (µx, µy−1) with µ = γ2, µ2 6= 1.

Also, it holds either

(4.11)
{
ρ(x, y) = (y, x) and γ = γ > 1, or
ρ(x, y) = (x, y) and |γ| = 1, 0 < arg(γ) < π

2 .

The coordinates system which put τj , ρ into the above normalization is unique up to the scaling
map, which maps (x, y) to (ax, ay) with a = a.

We now discuss how to construct a Bishop surface M such that (M, τ̂j , ρ̂) is parameterized
through a certain biholomorphic map Φ by the above mentioned set of involutions.
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First, we let ξ = b(γx+y), z = a(x+γy), a, b ∈ C. Then z is invariant under the action of τ1
and ξ is invariant under the action of τ2. We will also so construct w and η that they are invariant
under the action of both τ1 and τ2. We need to choose a, b such that ρ will be associated to the
mapping (z, w, ξ, η) → (ξ, η, z, w) in the complexification of the surface. Hence, when γ = γ > 1,
we need to choose a = b. When γγ = 1 with 0 < arg(γ) < π

2 , we chose aγ = b. Hence for ρ in
(4.11), we have, respectively, the following expressions:

(4.12)
{

(i) : ξ = b(γx+ y), z = b(x+ γy);
(ii) : ξ = b(γx+ y), z = bλ(x+ γy).

We only consider how to construct Bishop surfaces in Case (ii). The simplest quadratic polyno-
mials that are invariant under the action of both τj are cxy with c ∈ C1. We then want to choose
b so that qλ(x, y) is a multiple of xy. In fact,

w =qλ(z, ξ) = zξ + λ(z2 + ξ2)

= |b|2γ(γx2 + γ2xy + xy + γy2)

+λ
(
b2(γ2x2 + 2γxy + y2) + b2γ2(x2 + 2γxy + γy2)

)
Hence we obtain

(4.13)

{
|b|2 + λb2γ2 + b

2
γ2λ = 0

|b|2 + λb2 + b
2
λ = 0.

Therefore, we can choose b be such that |b| = 1 and b2 = −γ−1. For such a choice of b, we have
λ = (γ + γ−1)−1 > 0 and q = zξ + λ(z2 + ξ2) = λ−1(1− 4λ2)xy

Now, it is straightforward to verify that {τj , ρ} is a parameterization for the Moser-Webster
triplet on the complexification of w = qλ(z, z) through the map

(4.14) Φ(x, y) = (z(x, y), w(z, y) = λ−1(1− 4λ2)xy, ξ(x, y), η(x, y) = w(x, y) = w(x, y)),

where z(x, y) and ξ(x, y) are given by the second formula in (4.12).
Notice that λ = (γ+ γ−1)−1 or λγ2− γ+λ = 0. Hence when γγ = 1 with 0 < arg(γ) < π/2,

the Bishop invariant of the quadric λ > 1
2 . Namely, M has a hyperbolic complex tangent at 0.

The reader can verify that in the case of γ = γ, the involutions studied above parameterize the
Moser-Webster triplet for elliptic Bishop quadrics with λ 6= 0.

4.3. General theory on the involutions and the Moser-Webster normal form: We
now study the non-linear involutions τj and ρ with τ2 = ρ ◦ τ1 ◦ ρ, whose linear parts satisfy the
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property in (4.8). For the purpose of studying Bishop surfaces, one can assume that ρ is conjugate
linear. By §3, after a linear change of coordinates, we also assume that in (x, y)-coordinates,

(4.15) τj :=
{
x′ = γjy + pj(x, y)
y′ = γ−1

j x+ qj(x, y)

(4.15)′ ρ(x, y) = (y, x) and γ = γ > 1; or ρ(x, y) = (x, y) and |γ| = 1, arg(γ) ∈ (0, π/2).

(4.16) φ = τ2 ◦ τ1 :=
{
x′ = µx+ f(x, y)
y′ = µ−1y + g(x, y)

where γ1 = γ−1
2 = γ, µ = γ2, µ2 6= 1, pj , qj , f, g = o(|(x, y)|). We will subject to τj , φ a

transformation of the following form:

(4.17) ψ :=
{
x = t+ u(t, T )
y = T + v(t, T )

For any formal power series p(t, T ), we can write it as

p(t, T ) =
∞∑
−∞

ps(t, T ),

with ps(τt, τ−1T ) = τ sps(t, T ), for any τ ∈ R.We call ps is of type s. We impose the normalization
condition for the transformation in (4.17): u1 = v−1 = 0. A fact is that for any ψ as in (4.17),
there is a unique factorization: ψ = ψ0 ◦ δ where ψ0 is normalized and δ(t, T ) = (α(tT )t, β(tT )T )
for certain α, β with α(0) = β(0) = 1.

Theorem 4.3 (Moser-Webster [MW]): Let τj , ρ, φ be in (4.13)-(4.14) with µ = γ2 not a
root of unity. Then there is a unique normalized transformation ψ of the form (4.17) such that

ψ−1τ1ψ(t, T ) = (ΛT,Λ−1t), ψ−1τ2ψ(t, T ) = (Λ−1T,Λt),

ψ−1φψ(t, T ) = (Mt,MT ), ψ−1ρψ(t, T ) = ρ(t, T )

where Λ = γ +
∑∞

α=1 Λα(tT ) = γ + o(1),M = Λ2(tT ). The most general transformation that
makes τj into the above normal form is of the form: ψ ◦ σ with σ(t, T ) = (r(tT )t, r(tT )T ).
Here r(tT ) = r(tT ) and r(0) 6= 0. Also in these coordinates, Λ satisfies either the property
Λ(tT ) = Λ(tT ) or Λ(tT )Λ(tT ) = 1, according to the first form or the second form ρ takes in
(4.15)′, respectively.
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Idea of the Proof of Theorem 4.3: The proof is done by an induction argument. Here, we
only sketch the the proof how to construct the unique normalized map ψ which puts τj , φ into
their normal form. The reader can find the detailed proof for statements in the theorem, in the
original paper of Moser-Webster [§3, MW].

Assume that there is a ψ whose terms of order less than m can be chosen uniquely so that
ψ−1τjψ has the property in the theorem up to order m − 1. Thus we assume that τj take the
following form:

τj :
{
x′ = Λjy + pj + · · · ,
y′ = Λ−1

j x+ qj + · · ·

where Λj(xy) = Λj(xy) are polynomial of degree < m− 1, pj , qj are holomorphic polynomials of
degree m ≥ 2. The dots denote terms of order at least m + 1. Using τ2

j = Id and noting that
Λj(τj) = Λj +O(m), we get

(4.17)′ γjqj(x, y) + pj(γjx, γ
−1
j y) = 0.

It then follows that
φ :

{
x′ = Mx+ a+ ...,
y′ = M−1y + b+ ...,

where M = Λ1Λ−1
2 and a = γ1q2 + p1(γ2y, γ

−1
2 x), b(x, y) = γ−1

1 p2(x, y) + q1(γ2y, γ
−1
2 x).

We want to choose u, v so that φ̃ = ψ−1φψ has the form given in Theorem 4.3, modifying
terms of order at least (m+1). Then one can see that it forces ψ−1τjψ also to have the form as in
Theorem 4.3 modifying terms of order at least (m+1). Let φ̃ be in Theorem 4.3. Since ψφ̃ = φψ,
we have:

(4.18)
{
u(µt, µ−1T )− µu(t, T ) = (a− ã)(t, T )
v(µt, µ−1T )− µ−1v(t, T ) = (b− b̃)(t, T ).

We want to make ãs = 0 for s 6= 1 and b̃s = 0 for s 6= −1. This leads to the equation:

(4.19)
{

(µs − µ)us = as, s 6= 1
(µs − µ−1)vs = bs, s 6= −1,

which clearly can be solved by the assumption.
Then, ã1 = a1 = A(tT )t, b̃−1 = b−1 = B(tT )T , and ψ is uniquely determined up to order m.
We next show that pj(x, y) = Pj(xy)y, qj(x, y) = Qj(xy)x. By (4.17)′, we have

γq2 + p1τ2 = tA, γ−1p2 + q1τ2 = TB.

By (4.17), q1 = −γ−1p1τ1, q2 = −γp2τ2 up to order m. Therefore, p1−µp2 = γ−1yA, p2−p1φ =
γ1xB. This then leads to p1 − µp1φ = y(γ−1A+ µγB), p2 − µp2φ = y(γ−1µA+ γB). Since µ is
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not a root of unity, this implies that pj are of type s = −1. Similarly, we can get qj are of type
s = +1.

Returning to τj , φ, we may write

τj :
{
x′ = (Λj + Pj)y + ...
T ′ = (Λ−1

j +Qj)x+ ...

with Λ2 = Λ−1
1 . One can also verifies that (Λj + Pj)(Λ−1

j + Qj) = 1 + O(m). By induction, we
proved the existence of φ, which normalizes τj and φ.

The rest of the proof is similarly done, which we refer the reader to [§3, MW]) .

The following result of Moser-Webster provides a convergence result when γ does not have
norm 1. The proof is based on a majorant argument, motivated by the study of the normalization
problem for area preserving mappings in mechanics. (See [SM]). The proof can be found in [§4,
MW].

Theorem 4.4: Let {τj , ρ} be as in Theorem 4.3. Assume that |γ| 6= 1. Then the normal-
ization ψ in Theorem 4.3 and the normal forms for τj , φ are convergent near the origin.

Making using of Theorem 4.2, Theorem 4.3 and a similar way for constructing Bishop surfaces
from the involutions as discussed in §4.2, Moser-Webster obtained the following Theorem. (See
[§5, MW])

Theorem 4.5 (Moser-Webster): Let (M, 0) be a real analytic Bishop surface with Bishop
invariant λ ∈ (0, 1/2). Then there is a holomorphic change of coordinates, such that in the new
coordinates, M is represented by an equation of the form:

(4.20) w = zz + (λ+ εws)(z2 + z2), ε = 0,±1.

§5. Geometric Method to the Study of Local Equivalence Problems

The method we discussed in the previous sections is fundamentally based on the understand-
ing of the associated power series. Results obtained in such a manner are usually easy to apply;
and invariants obtained so are relatively easy to computer. However, it mainly applies to real
analytic submanifolds. The convergence issue may also be very difficult to handle in certain cases.
In this section, we introduce to the reader a geometric approach for the study of the equivalence
problem, initiated from the work of E. Cartan. This method applies to smooth CR generic sub-
manifolds. The invariants are the so-called curvature functions and their covariant derivatives.
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Notice that the invariants from the power series method are usually embedded into the coefficients
of the normal forms. There are many references related to the topics discussed here. We mention
[Ga] [CM] [Ch] [CJ] [Ja] [HJY] [HJ2], to name a few.

5.1 Cartan’s theory on the equivalent problem: Let V, Ṽ ⊂ Rn be open subsets with
p ∈ V and p̃ ∈ Ṽ . Let θV = (θ1V , ..., θ

n
V )t and θ̃

Ṽ
= (θ̃1

Ṽ
, ..., θ̃n

Ṽ
)t be co-frames on V and Ṽ ,

respectively. Let G ⊂ GL(n,R) be a connected linear subgroup. We would like to understand
the following question: When does there exist a diffeomorphism Φ from V to Ṽ with Φ(p) = q

such that Φ∗(θ̃
Ṽ

)(p) = γ
V Ṽ

(p)θV , where γ
V Ṽ

(p) ∈ G for each p?
To answer the question, we construct its G-co-frame bundle (Y, π, V ), where ∀p ∈ V ,

π−1(p) = {g · θV (p) : g ∈ G}. (Since we only consider the local problem, we can identify Y

as the product manifold V ×G.)
Notice that G acts smoothly from the left on Y , which is defined as follows: ∀C ∈ G, and

P = g · θV (p) ∈ π−1(p),

(C,P ) = (Cg) · θV (p) ∈ π−1(p).

This action makes Y into a so-called G-structure bundle over V
Now, θV can be lifted naturally to globally defined 1-forms ω = (ω1, · · · , ωn)t: ωl|gθV (p) =

gπ∗V (θl
V (p)).

Similarly, we can define a G-structure co-frame bundle (Ỹ , π̃, Ṽ )
In what follows, when there is no confusion, we identify the space Y with V ×G through a

manner, which should be obvious from the context. For instance, in the following lemma, Y is
identified with V ×G. through the map gθV (p) 7→ (p, g).

Lemma 5.1 is simple but important for Cartan’s theory.

Lemma 5.1: There exists a diffeomorphism Φ : V → Ṽ with Φ(p) = p̃ satisfying Φ∗(θ̃
Ṽ

) =
γ

V Ṽ
θV , where γ

V Ṽ
smoothly maps V into G, if and only if there exits a diffeomorphism Φ1 :

V ×G→ Ṽ ×G such that

Φ1∗ω̃ = ω, with Φ1(P ) = P̃ ,

where P ∈ π−1
V (p) and P̃ ∈ π−1

Ṽ
(p̃).

Proof of Lemma 5.1: We need only to show that the existence of Φ1 gives the required Φ.
(This is because if we know Φ, we can set Φ1(u, S) = (Φ(u), Sγ−1

V Ṽ
(u)).)

Assume that Φ1 : Y → Ỹ is a diffeomorphism such that Φ1∗(ω̃) = ω. Write Φ1(u, S) =
(Φ(u, S), T (u, S)) with u ∈ V , Φ(u, S) ∈ Ṽ and T (u, S) ∈ G.
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The assumption that Φ∗(ω̃) = ω gives that

Φ1∗(Tπ∗
Ṽ

(θ̃
Ṽ

)) = Sπ∗V (θV ), or

(π
Ṽ
◦ Φ1)∗(θ̃

Ṽ
) = (T (u, S))−1Sπ∗V (θV ), or

(Φ(u, S))∗(θ̃
Ṽ

) = (T (u, S))−1SθV .

Since {θ̃
Ṽ
} is a co-frame fro T ∗(Ṽ ) and {θV } is a co-frame for T ∗V , we conclude that the partial

derivatives of Φ(u, S) with respect to the group variables must be zero. Hence Φ(u, S) = Φ(u).
In particular, T (u, S)−1S = γ

V Ṽ
(u). The proves the existence of the required map from V to Ṽ .

Let dim G = r. Then dim(Y ) = n+r. With the forms ω1, ..., ωn, we would like to add r more
1-forms ωn+1, ..., ωn+r on V ×G to form a co-frame Ω over Y such that Φ1∗(ω̃) = ω if and only
if Φ1∗(Ω̃) = Ω. If this is the case, we call such an equivalence problem an e-equivalence problem.
Whether we can extend ω to Ω to reduce to an e-equivalence problem depends strongly on the
property of the group G. Fortunately, for the CR equivalence problem for Levi non-degenerate
hypersurfaces, we do have such a reduction which is the content of the Cartan-Chern-Moser theory
([CM]).

Suppose that ω has an extension to Ω such that there is a diffeomorphism Φ from Y to Ỹ
with Φ∗(ωj) = ωj (j ≤ n) if and only if Φ∗(Ω̃) = Ω, namely, Φ∗(ω̃j) = ωj for any j ∈ {1, ..., n+r}.
The forms {ωj} for j ≥ n+ 1 are called the connection forms.

Next we introduce Cartan’s method for the study of the e-equivalence problem, by introducing
a new type of invariant functions from what presented in the above sections.

Let Ω = {ωj} be a coframe over a domain V ⊂ Rn. For any differentiable function γ over
V , we define its covariant partial derivative:

(5.1) dγ =
∑

γ|iω
i.

Since {ωj} is a co-frame, we can uniquely write dωi =
∑
Ci

jkω
j ∧ ωk with Ci

jk = −Ci
kj . Let

Ω̃ = {ω̃j} be a co-frame over another domain Ṽ ⊂ Rn. Apparently, if there is a Φ with Φ∗(Ω̃) = Ω,
then it mus hold

C̃i
jk|l ◦ Φ = Φ∗(C̃i

jk|l) = Ci
jk|l.

Hence {Ci
jk|l} are the simplest invariant functions attached to the e-equivalence problem for the

co-frame Ω. Now, we can inductively take the covariant derivatives of the obtained invariants to
get new invariant functions. More precisely, for each integer s with s ≥ 1, we define

(5.2) Γs(Ω, V ) :=
{
Ci

jk, C
i
jk|l1 , · · · , C

i
jk|l1...ls

| 1 ≤ i, j, k, l1, ..., ls ≤ n+ r

}
,
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which is written as a lexicographically ordered set. We define

(5.3) ks(p) := rank{d Γs(Ω, V )}(p), p ∈ V,

to be the dimension of the span of the differentials which occur in the ordered set Γs(Ω, V ). The
order of the e-structure Ω at p ∈ V is the smallest j0 = j0(p) such that

kj0(p) = kj0+1(p).

In this case, the rank of the e-structure Ω at p is defined as

ρ0 = ρ0(p) := kj0(p).

We say that the e-structure Ω is regular of order j0 and of rank ρ0 at p ∈ V if there exists
a neighborhood Up of p in V such that the order j0(q) ≡ constant and rank ρ0(q) ≡ constant,
∀q ∈ Up. Then we can find ρ0- functions {g1, ..., gρ0} ⊂ Γj0(Ω, V ), and a certain neighborhood
Up of p in Y so that d g1 ∧ · · · ∧ d gρ0 6= 0,

(5.4) d g ∧ d g1 ∧ · · · ∧ dgρ0 ≡ 0 on Up, for any g ∈ Γj0+1(Ω, V ).

Notice 0 ≤ j0 ≤ n + r − 1. The case j0 = 0 occurs when the functions Ci
jk ≡ constant for

all i, j and k. And the case j0 = n+ r− 1 occurs if and only if one invariant function is added at
each jet level. Notice that 0 ≤ ρ0 ≤ n + r − 1. When ρ0 = n + r − 1, we say that Γ(Ω, V ) is of
the maximal rank.

Next, for each g ∈ Γj0+1(Ω, Y ), since dg ∧ dg1 ∧ ... ∧ dgρ0 ≡ 0, we conclude that there is a
unique function Ag such that

g = Ag(g1, ..., gρ0)

where Ag is defined near a neighborhood of (g1(p), ..., gp(p)) which is called the the relation
function of g with respect to {g1, ..., gρ0}.

The following fundamental theorem is due to Cartan.

Theorem 5.2 (E. Cartan [Ga]): Let Ω and Ω̃ be two smooth regular e-structures of order
j0 and rank ρ0. Let g1, ..., gρ0 be as in (5.14). Let g̃1, ..., g̃ρ0 be such that they have the identical
lexicographic indices as for g1, ..., gρ0 . Then the following statements are equivalent:
(i) There exists a C∞ diffeomorphism Φ : (V, p) → (Ṽ , p̃) with Φ∗Ω̃ = Ω.
(ii) g̃j(p̃) = gj(p) holds for 1 ≤ j ≤ ρ0, and for any function g ∈ Γj0+1(Ω, V ), and g̃ ∈ Γj0+1(Ω̃, Ṽ )
with the same lexicographic order, it holds that Ag = A

g̃
near (g1(p), ..., gp(0)).
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Suppose that Ω is a real analytic co-frame and V is connected. Then, there is a proper real
analytic subset E such that any point in V − E is a regular point. Also, from the uniqueness
property of real analytic functions, the order and the rank of Ω are all the same in V − E. We
define the order and the rank of Ω in V to be the order and the rank of Ω at any point in V −E.

We call Ω an algebraic co-frame if ωj =
∑
hj

l dx
l with hj

l Nash algebraic smooth functions.
We define the algebraic degree of ωj to be the maximum degree of the algebraic functions hj

l .
Here, we recall that for a Nash algebraic smooth function h 6≡ 0, there is an irreducible polynomial
P (x,X) in (x,X) such that P (x, h) ≡ 0. Then we define the degree of h to be the degree of the
polynomial P (x,X). It is apparent that when Ω is an algebraic co-frame, then any curvature
functions and relation functions are algebraic, too. Suppose that the order of Ω is j0. We set

(5.5) `(Ω) = maxg∈Γj0+1deg(g).

Then we have the following versions of the Cartan theorem in the analytic category and
algebraic category, which are a lot of more convenient to apply:

Theorem 5.3: Let Ω and Ω̃ be analytic e- structures at p and p̃, respectively, with p a
regular point of Ω. Then the following are equivalent:
(i). There exists a Cω diffeomorphism Φ : (V, p) → (Ṽ , p̃) such that

Φ∗Ω̃ = Ω.

(ii). Γk(Ω̃, V )(p̃) = Γk(Ω, V )(p) holds for all k.
(iii). Suppose that Ω and Ω̃ have order j0 and rank ρ0 at p and p̃, respectively. Also assume
that p̃ is a regular point for Ω̃. Let g1, ..., gρ0 be as above, and let g̃1, ..., g̃ρ0 be the corresponding
relation functions with the same lexicographic order as for g1, ..., gρ0 . Then g̃j(p̃) = gj(p) holds
for 1 ≤ j ≤ ρ0, and for any function g ∈ Γj0+1(Ω, V ), and g̃ ∈ Γj0+1(Ω̃, Ṽ ) with the same
lexicographic order, it holds that Ag = A

g̃
near (g1(p), ..., gp(0)).

Theorem 5.4([HJ2]): Suppose that Ω and Ω̃ are algebraic co-frames with

l0 = max{`(Ω), `(Ω̃)}.

Assume that p ∈ V is a regular point for Ω. (See (5.5) for the definition of `(Ω) and `(Ω̃)). Let
p̃ ∈ Ṽ . Then the following statements are equivalent:
(i) Γ2l30

(Ω, V )(p) = Γ2l30
(Ω̃, Ṽ )(p̃).
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(ii) There is a real analytic diffeomorphism Φ1 from a neighborhood of p ∈ V to a neighborhood
of p̃ inṼ such that Φ1∗(Ω̃) = Ω.

We mention that both Theorem 5.3 and Theorem 5.4 can be stated in the holomorphic
category when Ω, Ω̃ are holomorphic or holomorphically algebraic co-frames. For instance, we
have the following:

Theorem 5.3′: Let Ω and Ω̃ be holomorphic co-frames at p ∈ V and p̃ ∈ Ṽ , respectively.
Here V (or, Ṽ ) is a neighborhood of p (or, p̃, respectively) in Cn. Then the following are
equivalent:
(i). There exists a biholomorphic map Φ : (V, p) → (Ṽ , p̃) such that

Φ∗Ω̃ = Ω, Φ(p) = p̃.

(ii). Γk(Ω̃, V )(p̃) = Γk(Ω, V )(p) holds for all k.

The proof of these results are based on the Frobenius Theorem. We first prove Theorem 5.2.
Apparently, we need only to show that (ii) ⇒ (i). ((i) ⇒ (ii) can be seen by the basic fact that if
Φ is a C∞ diffeomorphism from (V, p) to (Ṽ , p̃) with Φ∗(Ω̃) = Ω, then Γj(Ω, V ) = Γj(Ω̃, Ṽ ) ◦Φ.)

Proof of Theorem 5.2: Consider the manifold M ⊂ V × Ṽ defined by gj(x) = g̃j(x̃) for
(x, x̃) ≈ (p, p̃). Here {gj}ρ0

j=1 and {g̃j} are as in the Theorem. M is apparently a smooth manifold
of codimension ρ near (p, p̃), for dg1 ∧ ... ∧ dgη0(p) 6= 0, dg̃1 ∧ .... ∧ dg̃ρ0(p̃) 6= 0.

Consider the differential ideals ∆: ∆ is generated by {π∗(Ω) − π̃∗(Ω̃)}, where π is the pro-
jection from V × Ṽ to V and π̃ is the projection from V × Ṽ to Ṽ . We first claim that ∆, when
restricted to M , is an integral differential system.

Indeed, on V × Ṽ ,

d(π∗ωa − π̃∗ω̃a) =
∑

(Ca
jk ◦ π)π∗(ωj) ∧ π∗(ωk)−

∑
(C̃a

jk ◦ π̃)π̃∗(ω̃j)× π̃∗(ω̃k).

Since Ca
jk = Aa

jk(g1, ..., gρ) and C̃a
jk = Aa

jk(g̃1, ..., g̃ρ), when restricted to M , we see that
Ca

jk ◦ π ≡ C̃a
jk ◦ π̃. Hence on M , we have

d(π∗ωa − π̃∗ω̃a) =
∑

Ca
jk ◦ π{π∗(ωj) ∧ π∗(ωk)− π̃∗(ω̃j) ∧ π∗(ω̃k)}

=
∑

Ca
jk ◦ π{π∗(ωj) ∧ (π∗ωk − π̃∗ω̃k)− π̃∗(ω̃k) ∧ (π∗(ωj)− π̃∗ω̃j)}.

Next, we claim that the rank of ∆|M is n− ρ0.
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Let us write yj = gj for j = 1, ..., ρ0 and extend (y1, ..., yρ0) to a coordinate system

(y1, ..., yρ0 , ..., yn)

near (gj(p0), 0, ..., 0). Then the regularity assumption at p gives that

dyj =
∑

yj
|l(y1, ..., yρ0)ω

l
V for j ≤ ρ0.

Also the matrix (ya
|j) must have rank ρ0 by the rank assumption of Ω.

By relabelling {ωj} if necessary, we can assume that det(yα
|β)1≤α,β≤ρ0 6= 0. Let (yα

|β)−1 = gαβ .
Then ∑

gαβdy
β = ωα +

∑
ba=ρ0+1,···,nω

a, or

ωα =
ρ0∑

β=1

gαβdy
β −

n∑
a=ρ0+1

bαaω
a.

Similarly, we have g̃αβ = (ỹα
|β)−1,

ω̃α =
ρ0∑

α,β=1

g̃αβdỹβ −
∑

a=ρ0+1,···,n
b̃αaw̃

a.

By the assumption in (ii), gαβ = g̃αβ , bαa = b̃αa for yj = ỹj (j ≤ ρ0). Hence, when restricted
to M ,

π∗(ωα) = π̃∗(ωα) modρ0+1≤a≤n{π∗(ωα)− π̃∗(ω̃a)}.

This proves that the rank of ∆, when restricted to M , is bounded by n− ρ0.
We next show that {π∗(ωa)−π̃∗(ω̃a)}ρ0+1≤a≤n, when restricted toM , is linearly independent.
Indeed, since dy1 ∧ ... ∧ dyρ0 ∧ dωρ0+1 ∧ ... ∧ dωn = det(yα

β )ω1 ∧ ... ∧ ωn 6= 0,

dỹ1 ∧ ... ∧ dỹρ0 ∧ dωρ0+1 ∧ ... ∧ ω̃n 6= 0.

We see that {dy1, ..., dyρ0 , dω
ρ0+1, ..., dωn} {dỹ1, ..., dỹρ0 , dω̃

ρ0+1, ..., dω̃n} are co-frames.
Now, in the (y, ỹ)-coordinates, M is defined by yj = ỹj for j ≤ ρ0. Hence, it is easy to

see that {π∗(ωa)}a≥ρ0+1 is of rank n − ρ0 when restricted to M near (p, p̃). Hence the rank of
π∗(ωa)− π̃∗(ωa) is of rank n− ρ0.

Now, ∆ induces a foliation in M with each leaf of real dimension 2n − ρ0 − (n − ρ0) = n.
Letting L be a leaf in M , that passes through (p, p̃). We claim that π∗ : T

(p,p̃)
L → TpV is an

isomorphism. For this, we need only to show that π∗ is injective.
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Suppose X ∈ T
(p,p̃)

L be such that π∗(X) = 0. Then

0 =< π∗(ωj)− π̃∗(ω̃j), X >= −(ω̃j , π̃∗(X))

for all j. Since {ω̃j} forms a co-frame in Ṽ , we get π̃∗(X) = 0. Thus X = 0.
Finally, let Φ be such that L = {(x,Φ(x)) : x ≈ p}. Then one sees that Φ is precisely the

map that we are looking for.

Next we give the proof of Theorem 5.3:
Proof of Theorem 5.3: Let (X1, ..., Xn) be the dual frame of (ω1, ..., ωn). Namely, 〈ωj , Xl〉 =

δl
j . Let ε0 be sufficient small such that for any constant vector (a1, ..., an) with

∑
j |aj |2 < ε20.

The integral curve γa(t) with γa(0) = p of
∑

j ajXj is defined for |t| < 2. Namely,

dγa(t)
dt

=
n∑

j=1

ajXj(γa(t)), γa(0) = p

has a unique solution for |t| < 2.
We can similarly define (X̃1, ..., X̃n) and γ̃a(t). We then claim that

Γj(Ω, V )(γa(t)) ≡ Γj(Ω̃, Ṽ )(γ̃a(t)) for |t| < 2.

To this aim, for gj ∈ Γ(Ω, V ) and g̃j ∈ Γj(Ω̃, Ṽ ) with the same lexicographic order, we first
notice that gj(γa(t)) − g̃j(γ̃a(t)) is real analytic for |t| < 2. To prove that gj(γa(t)) ≡ g̃j(γ̃a(t)),
we need only to verify that Gj(t) = gj(γa(t))− g̃j(γ̃a(t))) vanishes to infinite order at 0. In fact,

dGj(t))
dt

=
∑

l

gj|l(γa(t))〈ωl,
∑

k

akXk〉(γa(t))− g̃j|l(γ̃a(t))〈ω̃l,
∑

k

akX̃k〉

=
∑

l

{gj|l(γa(t))al − g̃j|l(γ̃a(t))al}

Hence, it follows that Gj(0) = G′j(0). By induction and the given hypothesis, we can conclude
that G(k)

j (t) ≡ 0 for all k.
Now, we can define M ⊂ V × V ′ := {(x, x̃) : Γ(Ω, V )(x) = Γ(Ω, Ṽ )(x̃)}. Define ∆ the same

way as in the proof of Theorem 5.2. Then we can similarly construct the required map Φ. (In
fact, one can choose Φ that sends γa(1) to γ̃a(1), when |a| < ε0 varies. )

For the proof of Theorem 5.4, we refer the reader to [HJ2].
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5.2. Segre family of real analytic hypersurfaces: We now explore how Cartan’s method
can be adapted to the study of the equivalence problem of real hypersurfaces in Cn. We mainly
focus on the real analytic category.

Let M be a real analytic hypersurface in D ⊂ Cn with real analytic defining function
r ∈ Cω(D). Apparently, for any other local defining function r∗ of M , r∗ = s∗r with s∗|M 6= 0.
Hence we can well define its complexification as the complex submanifold: M = {(z, ξ) ∈ D ×
Conj(D) : r(z, ξ) = 0}. M is a complex submanifold of complex codimension 1 in Cn×Cn near
M × conj(M). Here for a set E ⊂ Cn, Conj(E) := {z | z ∈ E}. For each ξ ∼ Conj(M)), we can
define a complex analytic variety Qξ := {z ∈ Cn : r(z, ξ) = 0}. We call Qξ the Segre variety of
M with respect to ξ. Notice that M is foliated by {Qξ} (In some references, say, in [We1] [Hu4],
one defines Qξ := {z ∈ D : r(z, ξ) = 0} for ξ ∈ D). A fundamental fact for Segre family is its
invariant property for holomorphic maps. More precisely, if f is a local holomorphic map from
(M,p) to (M̃, p̃), then f(Qξ) ⊂ Q̃f(ξ) for any ξ near p. Here Q̃f(ξ) is the Segre variety of M̃ with

respect to f(ξ). In particular, when f is a holomorphic map from (M,p) to (M̃, p̃), f induces a
holomorphic map (f(z), f(ξ)) from (M, (p, p)) to (M̃, (p̃, p̃)).

We mention that the above simple property for Segre family has been a basic tool to study
the analyticity problem for CR mappings between real analytic hypersurfaces, based on ideas
from the original paper of Webster. (See [Hu1] [Hu4] for historic discussions and many related
references.) Here, we will use it for a different purpose.

In what follows, we assume that 0 ∈ M and we use (z, ξ) for the coordinates of Cn × Cn.
Also, we can assume, without loss of generality, that M is defined by an equation of the form
r = 2Im(zn)+O(|z|+ |Re(zn)|). In what follows, the indices α, β will have range from 1 to n− 1.
Occasionally, we will write w, η for zn, ξn, respectively. We also use the summation convention:
repeated indices imply summation.

On M, there are (n− 1) independent holomorphic one forms

(5.6) θα = dzα|M, θα = dξα|M, θ = idzr|M = irαdz
α|M + irndz

n|M.

{θ, θα, θα} is a co-frame for M, which depends on the choice of the defining functions.
Next, let (M̃, p̃) be another real analytic hypersurface near p̃ = 0 in Cn with a defining

function r̃ = 2Im(z̃n) +O(|z̃|). Define similarly the co-frame {θ̃, θ̃α, θ̃α} on M̃ near (p̃, p̃).
If there is a biholomorphic map f from (M, 0) to (M̃, 0), then we have a holomorphic map

(f(z), f(ξ)) from (M, 0) to (M̃, 0). We say that (M, 0) is Segre equivalent to (M̃, 0) if there is
a holomorphic map Φ = (Φ1(z),Φ2(ξ)) from (C2n, 0) to (C2n, 0) such that Φ sends each Segre
variety Qξ of M near 0 to the Segre variety QΦ2(ξ) of M̃. (Apparently, such a map sends
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(M, 0) to (M̃, 0)). In particular, we see that when (M, 0) is equivalent to (M̃, 0), then (M, 0)
is Segre equivalent to (M̃, 0). We mention that even if M, M̃ are strongly pseudoconvex, Faran
constructed in [Fa] examples showing that the converse of the above statement fails. However,
see Remark 5.7.

Lemma 5.5: (M, 0) is equivalent to (M̃, 0) if and only if there is a holomorphic map
Φ = (Φ1,Φ2) = (φj , ψk) from (M, 0) to (M̃, 0) such that

(5.7)


Φ∗(θ̃) = uθ,

Φ∗(θ̃α) = uαθ + uα
βθ

β ,

Φ∗(θ̃α) = uαθ + vαθβ .

where u, uα, uα
β , vβ are holomorphic near 0 and the holomorphic 1-forms are defined as in (5.6).

Proof of Lemma 5.5: Suppose the existence of the Segre isomorphism Φ = (Φ1(z),Φ2(ξ)).
Notice that r̃(Φ) is also a defining function for M near 0. Hence r̃(Φ) = r(z, ξ)S(z, ξ) near M
with S(z, ξ) 6= 0 near S.

Since θ̃ = i∂r̃ on M, we have

Φ∗(θ̃) = i∂r̃(Φ1(z),Φ2(ξ)) = iS(z, ξ)∂r(z, ξ) = iS(z, ξ)θ.

Φ∗(θ̃α) = Φ∗(dz̃α) = dφα(z) =
∂φα

∂zβ
dzβ +

∂φα

∂zn
dzn

=
∂φα

∂zβ
dzβ +

∂φα

∂zn

(
− i

θ

rn
− rβ

rn
dzβ

)
=

(
∂φα

∂zβ
− ∂φα

∂zn

rβ
rn

)
θβ − i

∂φα

∂zn

1
rn
θ.

Similarly, we can verify the last equality in (5.7). This proves the first part of the lemma.
Similarly, if Φ = (Φ1,Φ2) is a holomorphic map satisfying (5.7). Then ∂

∂ξα
Φ1 = 0 and ∂Φ2

∂zα
= 0.

Hence
Φ1 = Φ1(z1, ..., zn−1, zn, ξ

n) and Φ2 = Φ2(ξ1, ..., ξn−1, zn, ξ
n).

Since M can be parameterized either by (zα, ξ) or (z, ξα), Φ1 and Φ2 can be completely expressed
as holomorphic functions in z or ξ, respectively. Also, it is obvious that Φ preserves the Segre
varieties.

Now let (M, P ) be as before with holomorphic co-frame {θ, θα, θα}. Then we can form a
G-structure co-frame bundle Y over M, where G consists of invertible matrices of the form u 0 0

uα uβ
α 0

vα 0 vβ
α
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To solve the Segre equivalence problem by using Cartan’s method, the key step is to find the
co-frame on Y, through which the G-equivalence can be reduced to the {e}-equivalence problem.

Assume that M is strongly pseudoconvex at 0 and M is defined by

r = zn − ρ(zα, ξα, ξ
n) = zn − ξn + o(|zα|+ |ρα|).

It is easy to see that (ρβ
α)|0 is precisely the Levi-form of M at 0. Hence, det(ρβ

α) 6= 0 near 0.
Following Chern [Ch] and Chern-Ji [CJ], we choose a co-frame over M of the following form:

(5.8)


θ = i(dzn + rαdz

α)
θα = dzα,

θα = i
rn

α

rn θ −
(
rβ
α −

rn
αrβ

rn

)
dξβ ,

where and in what follows, we write rα = ∂r
∂zα

, rβ = ∂r
∂ξβ , r

β
α = ∂2r

∂zα∂ξβ
, etc..

For forms in (5.8), we have:

(5.9) dθ = iθα ∧ θα.

Indeed, notice that
drα = rαβdz

β + rn
αdξn + rβ

αdξ
β

= rαβdz
β +

rn
α

rn
(−iθ − rβdξβ) + rβ

αdξβ

= rαβdz
β − θα.

Hence θα = −drα + rαβdz
β and dθ = idrα ∧ dzα = iθα ∧ θα.

Now, by the Levi non-degeneracy of M at 0,{ zα = zα

zn = zn

ρα = ρα(zα, ξα, ξn)

can be used to uniquely solve for (zα, ξα, zn) by the data (zα, ρα, z
n). Hence, we can use

(zα, ρα, z
n) for the coordinates of M. In the (zα, zn, ρβ) coordinates, we have the following

formula:

(5.10)


θ = i(dzn − ραdz

α),
θα = dzα,
θα = dρα − ραβdz

β , dθ = iθα ∧ θα.

Here ραβ are holomorphic functions in (z, ρα).
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Next, let (M̃, 0) be the complexification of another real analytic hypersurface (M̃, 0). We
also choose the same type of the co-frame (θ̃, θ̃α, θ̃α) on (M̃, 0) as in (5.10). Now, suppose that
Φ is a Segre isomorphism from (M, 0) to (M̃, 0), then

Φ∗(θ̃) = uθ,

Φ∗(θ̃α) = uα
βθ

β + uαθ,

Φ∗(θ̃α) = vβ
αθβ + vαθ.

with dθ̃ = iθ̃α ∧ θ̃α and u, uα
β , v

α
β , u

α, vβ holomorphic near the origin.
Hence du ∧ θ + udθ = i(uα

βθ
β + uαθ) ∧ (vβ

αθβ + vαθ), from which we get the following{
δl
ku = uα

l v
k
α,

du = iuα
βvαθ

β − iuαvβ
αθβ + tθ.

Next, we consider the C∗ := C\{0} structure bundle E0 = M×C∗ on M, which can be identified
with the C∗-fiber bundle whose fiber π−1(P ) over P ∈ M is precisely {uθ} with u ∈ C∗. Then
ω = uθ is a tautological global holomorphic 1-form on E0. Notice that

dω = udθ + du ∧ θ = iuθα ∧ θα + ω ∧ (−du
u

).

Define co-frame {
ωα = uαθ + uα

βθ
β ,

ωα = vαθ + vβ
αθβ ,

where uγ
βv

β
κ = δγ

κu. Then

dω = iωα ∧ ωα + ω ∧
(
− du

u
− i

uα

u
vβ

αθβ + iuα
βvαθ

β

)
.

Let φ = −du
u − iuα

u v
β
αθβ + iuα

βvαθ
β + tω. Then, the above motivates us to consider co-frames of

the following form:

(5.11)


ω = udθ,
ωα = uαθ + uα

βθ
β ,

ωα = vαθ + vβ
αθβ ,

φ = −du
u − iuα

u v
β
αθβ + iuα

βvαθ
β + tθ

δl
ku = ul

αv
α
k .

A basic property for the above co-frames is the relation:

(5.12) dω = iωα ∧ ωα + ω ∧ φ.

51



Choose a special co-frame: 
ω0 = udθ,
ω0α = uθα,
ω0

α = θα,
φ0 = −du

u .

Then, we have 
ω = ω0,

ωα = uα

u ω
0 +

uα
β

u ω
0β

ωα = vα

u ω
0 + vβ

αω
0
α,

φ = φ0 − iuα

u v
β
αω

0
β + iuα

β
vα

u2 ω
0α + tω0.

Hence the space of the co-frames in (5.11) form a G1-structure bundle Y over M, where G1

consists of matrices of the following form:
1 0 0 0

uα

u

uα
β

u 0 0
vα

u 0 vβ
α 0

t ivα

u2 u
β
α −iuα

u v
α
β 1


with ul

αv
α
k = δl

ku. Or 
1 0 0 0
uα uα

β 0 0
vα 0 vβ

α 0
t ivαuβ

α −iuαv
α
β 1


with ul

αv
α
k = δl

k.
Now, the Segre family (M, 0) and (M̃, 0) are equivalent if and only if there is a holomorphic

map F from E0 to Ẽ0, sending a certain point in the fiber over 0 to a certain point in the fiber of
0, such that

F ∗


ω̃
ω̃α

ω̃α

φ̃

 = γF


ω
ωα

ωα

φ


with γF valued in G1. Indeed, this assertion follows directly from the holomorphic version of
Lemma 5.1.

Now, we consider the G1-structure bundle Y over E0 and lift the above co-frames to globally
defined forms over Y. To be able to use the Cartan theorem, one needs to further complete these
forms into a certain co-frame over Y so that the G1-equivalence problem is to be reduced to an
e-equivalence problem over Y. This completion is done in the paper of Chern-Moser and Chern,
which we state as follows:
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Theorem 5.6 (Chern [Ch], Chern-Moser [CH]): Let (M, 0) be a strongly pseudoconvex real
analytic hypersurface at 0 with (M, 0) its Segre family. From the holomorphic forms ω, ωα, ωα, φ

in (5.11)-(5,12), after lifting them up to Y (which we still denote by the same letters), one can
construct holomorphic 1-forms φα

β , φ
α, φβ , ψ on Y such that

Ω := {Ωj , 1 ≤ j ≤ (n+ 2)2 − 1} := {ω, ωα, ωβ , φ, φ
α
β , φ

α, φβ , ψ} forms an e-structure on Y

and these 1-forms are uniquely determined by the following structure equations
dω = iωα ∧ ωα + ω ∧ φ
dωα = ωβ ∧ φα

β + ω ∧ φα

dωα = φβ
α ∧ ωβ + ωα ∧ φ+ ω ∧ φα

dφ = iωα ∧ φα + iφα ∧ ωα + ω ∧ ψ
dφβ

α = φγ
α ∧ φβ

γ + iωα ∧ φβ − iφα ∧ ωβ − iδβ
α(φσ ∧ ωσ)− 1

2δ
β
αψ ∧ ω + Φβ

α

dφα = φ ∧ φα + φβ ∧ φα
β − 1

2ψ ∧ ω
α + Φα

dφα = φβ
α ∧ φβ − 1

2ψ ∧ ωα + Φα

dψ = φ ∧ ψ + 2iφα ∧ φα + Ψ
where Φβ

α = Sβσ
αρω

ρ ∧ ωσ +Rβ
αγω ∧ ωγ + T βγ

α ω ∧ ωγ

Φα = Tαγ
β ωβ ∧ ωγ − i

2Q
α
βω ∧ ωβ + Lαβω ∧ ωβ

Φα = Rβ
αγω

γ ∧ ωβ + Pαβω ∧ ωβ − i
2Q

β
αω ∧ ωβ

Ψ = Qβ
αω

α ∧ ωβ +Hαω ∧ ωα +Kαω ∧ ωα

and Sβσ
αρ = Sβσ

ρα = Sαβ
αρ , Rβ

αγ = Rβ
γα, Tαγ

β = T γα
β , Lαβ = Lβα, Pαβ = Pβα, Sβσ

ασ = Rα
αβ = Tαβ

α =
Qα

α = 0.

Remark 5.7 Since the Segre isomorphism does not induce the equivalence of the underlying
hypersurfaces as demonstrated by Faran in [Fa], the existence of the e-equivalence map Ψ from
(Y, 0) to (Ỹ, 0) does not induce automatically the biholomorphic equivalence of (M, 0) with (M̃, 0).
However,if an element P ∈ Y with a certain reality condition is mapped to P̃ with a certain reality
property, then we do have the holomorphic equivalence of (M, 0) with (M̃, 0). We will briefly
discuss this in the following subsection.

5.3: Cartan-Chern-Moser theory for germs of strongly pseudoconvex hypersur-

faces: The materials in §5.2 can be directly used to study the equivalence problem for strongly
pseudoconvex (or Levi non-degenerate) hypersurfaces. Here we give a quick account on this
matter. The reader is referred to [CM] for more details.

Let (M, 0) be the germ of a smooth strongly pseudoconvex hypersurface, defined by r = 0.
Here, we assume that ∂r

∂zn
(0) 6= 0. As before, let θ = i∂r and θα = dzα. We have a co-frame
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{θ, θα, θα} on M . Let

(5.13) G :=
{  u 0 0

uα uα
β 0

vα 0 uα
β

 ∣∣∣∣ u ∈ R, uα
β , u

α ∈ C, u > 0, det(uα
β) 6= 0,

}

be the connected linear subgroup of G(2n− 1,C). M ×G is a G-space. Similarly, let (M̃, 0) be
another strongly pseudoconvex real hypersurface with a similar co-frame {θ̃, θ̃α, θ̃α}.

It can be verified that there exists a smooth CR mapping Φ(z) such that Φ(M) ⊂ M̃ if and
only if there is a C∞ diffeomorphism Φ : M → M̃ satisfying

(5.14) Φ∗

 θ̃
θ̃α

θ̃α

 =

 u 0 0
uα uα

β 0
uα 0 uα

β

  θ
θα

θα

 = (γα
β )

 θ
θα

θα


where the (2n−1)×(2n−1) matrix (γα

β ) defines a smooth mapping fromM into G. By Lemma 5.1,
there exists a CR isomorphism Φ : M → M̃ if and only if there exists a smooth diffeomorphism
Φ1 : M ×G→ M̃ ×G such that

(5.15) Φ1∗ω̃ = ω, Φ1∗ω̃α = ωα, Φ1∗ω̃α = ωα,

where ω, ωα are similarly defined as in Lemma 5.1.
Define

E = M × {ω = uθ : ω = ω, u > 0}

Choose θα := uαθ+ uα
βdz

β for some smooth functions uα, uα
β so that dθ = iθα ∧ θα, mod(θ).

We obtain a co-frame (ω, θα, θα, φ0) on E, where dω = iuθα ∧ θα + ω ∧ φ0. Let G1 be as before.
Let Ẽ be the associated bundle over M̃ with the corresponding co-frame {ω̃, θ̃α, θ̃α, φ̃0}.

Let Φ : M → M̃ be a CR isomorphism. It is easy to verify that Φ induces a unique smooth
diffeomorphism, still denoted as Φ, from E to Ẽ satisfying

Φ∗


θ̃
θ̃α

θ̃α

φ̃

 =


1 0 0 0
uα uα

β 0 0
uα 0 uα

β 0
s iuαuα

β −iuαuα
β 1




θ
θα

θα

φ

 = (γα
β )


θ
θα

θα

φ


where the (2n+2)× (2n+2) matrix (γα

β ) defines a smooth mapping from E into Gr
1, θα = θα,etc.

(Gr
1 consists of the matrices of the above form). By Lemma 5.1, the existence of a CR isomorphism

Φ : M → M̃ is equivalent to the existence of a smooth diffeomorphism Φ1 : Y := E ×Gr
1 → Ỹ :=

Ẽ ×Gr
1 such that

Φ1∗ω̃ = ω, Φ1∗ω̃α = ωα, Φ1∗ω̃α = ωα,Φ1∗φ̃ = φ.
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(Y, π,E) is called the CR-structure bundle over M .
The fundamental theorem proved by Cartan-Chern-Moser [CM] asserts that from ω, ωα,

ωα, φ, one can construct 1-forms φα
β , φ

α, φα, ψ on Y , with ω = ω, φ = φ, ψ = ψ, such that

Ω := {Ωj , 1 ≤ j ≤ (n+ 2)2 − 1} := {ω, ωα, ωα, φ, φα
β , φ

α, φα, ψ}

forms an e-structure on Y , and they are uniquely determined by certain structure equations.
These structure equations are precisely the restriction of those in Theorem 5.6 from Y to Y ,
together with several other reality conditions (see [Theorem 5.5, pp 151, Fa] [BS]), if we assume
that M is real analytic.

We let θ, θα be again as defined in §5.2. Since we have the embedding M →M, by mapping
z → (z, z), we can regard the bundles E, Y as the subbundles of E ,Y, respectively, as follows
(cf.[Fa, (5.9)][BS]): Let

E∗ := {(z, z, uθ) | z ∈M, , uθ = uθ, (uθ)(T ) > 0} ⊂ E ,

over M . Here T is a certain real tangent vector field transversal to T(1,0)M + T(0,1)M . On
E∗, we see ω∗ = ω∗ := uθ. Let Y ∗ be the collection of the frames in Y restricted to E∗ such
that ω∗α = ω∗α, φ∗ = φ∗ over E∗. Since ω∗ = ω∗, ω∗α = ω∗α and φ∗ = φ∗ hold on Y ∗, one
can check that the structure equations defining Ω∗ over Y ∗ are the same ones defining Ω on Y .
Hence, Y and Y ∗ are Gr

1-isomorphic. Identify E and Y with E∗ and Y ∗, respectively. Then the
restriction of a function g ∈ Γ(Ω,Y) on Y equals to the lexicographically corresponding function
g|Y ∈ Γ(Ω|Y , Y ).

Finally, we mention that the reality condition mentioned in Remark 5.7 is precisely the
condition that P, P̃ are in Y ∗ or Ỹ ∗, respectively. This explains the statement in Remark 3.7
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