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§1. Global and Local Equivalence Problems

There is a classical theorem in complex analysis, called the Riemann mapping theorem,
which states that any simply connected domain in C is either holomorphically equivalent to C
or to the unit disk. For more general domains in C, He-Schramm showed [HS] that if 9D has
countably many connected components, then D is holomorphically equivalent to a circle domain
whose boundaries are either points or circles. These results give a nice picture on the holomorphic
structures for domains in C. When one goes to higher dimensions, a natural question is then to
investigate the complex structure for domains in C” for n > 2. More precisely, given two domains
in C", one would like to know if there is a biholomorphic map between them. This the so-called
global equivalence problem in several complex variables. Along these lines of investigations,
substantial progress has been made in the past 30 years ([Fe], [CM], [BSW], etc.). However,
we are still a certain big distance away from getting a relatively complete picture as in the one
complex variable.

An approach to the study of the equivalence problem is to attach holomorphic invariants to
each given domain. Since domains in C™ are open complex manifolds, many (interior) invariants
which are crucial for the study of compact complex manifolds are difficult even to define. As
already observed by Poincaré about 100 years ago, the interior complex structure of a domain
D in C” for n > 1 is closely related to the partial complex structure in its boundary, which is
the so-called CR structure. Hence, the classification of the complex structures for domains in C™
may be reduced to the equivalence problem for the boundary CR structures. Indeed, this idea
has been proved to be fundamental through the work of Cartan, Tanaka, Chern-Moser, etc.. And

it indeed led to the solutions to many questions.
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To illustrate what we said above, we give the following classical example of Poincaré:

Proposition 1.1: Let B" = {z € C" : |z] < 1} and A" = A x ... X A = {(z1, -, 2n) :
|zj| < 1}. B™ and A™ are diffeomorphic to each other. But B™ is not biholomorphic to A™.

Proof of Proposition 1.1: Suppose that there is a biholomorphic map f from A™ to B™. Let
p = (p1,.-.,Pn) € A" be such that f(p) = 0. Let 0; € Aut(A) be such that 0;(0) = p,;. Write
(21, .0y 2n) = (01(#1),...,0(2n)) and F' = foo. Then F is also a biholomorphic map from A™ to
B" with F(0) = 0.

Write F(2) = 2zA + Y an,z*. Write 79 for the map sending z to ez, and define Fy =
79_1 oFoty: A" — B"™. Then Fy has the following Taylor expansion at 0: Az+ eillal=10g 2o
Since B™ is convex, the map - f027r Fyp(z)dd = Az still maps A™ to B™. Applying the same
argument to F~!, we similarly conclude that the A~'z maps B” to A”. Hence, B" and A" are
holomorphically equivalent through the linear map Az. This yields a contradiction; for B™ has a

smooth boundary, while the boundary of A is only Lipschitz continuous. R

The key step in the proof of the above proposition is to find a better behaved map so that it
induces a nice boundary map. Hence the existence of the holomorphic equivalence map imposes
the ‘match-up’ of certain boundary geometry. In the case considered above, the group structure of
the domains allows us to get a very rigid map, which can be actually made to be linear. In general,
since most domains have trivial automorphism groups (see [GK], for instance), it is unrealistic to
conjecture that the holomorphic equivalence of two domains must induce the linear equivalence
of their boundary. A fundamental result by the work of C. Fefferman [Fe] and Bochner (see,
e.g. [Ho| or [Kr]) asserts that for two bounded smooth strongly pseudoconvex domains, they are
holomorphic equivalent if and only if their boundaries are CR equivalent. To state precisely the
result of Bochner and Fefferman, we recall the following definition [Kr].

Let D CC U be a bounded domain in C" with defining function r € C*(U), where a > 2.
Namely, we assume that 7 < 0in D, r > 0 in U \ D and dr|sp # 0. (We call D a domain with
C%-smooth boundary.) Define the Levi form of r by

2
£p(68) = 3 5rgmlbife
We call D is pseudoconvex (or strongly pseudoconvex) at p € dD if L,.,(£,€) > 0 (or, £,.,(&,€) >
Cl¢|* with C' > 0, respectively) for any & = (&1,--+,&,) with 337 &7, (p) = 0. D is called a
pseudoconvex domain (or, a strongly pseudoconvex domain) if D is pseudoconvex (or, strongly

pseudoconvex, respectively ) at any boundary point p.
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More generally, for a real submanifold M C C™ of real codimension k. We define C'T;, M
to be the collection of vectors: £ = 3 (a;j3% + bjz2)|p, such that £(g) = 0 for any function g,
which is smooth in a neighborhood of M a,nZi is consjtant along M. CT,M is called the complex
tangent vector space of M at p. We define the holomorphic and conjugate holomorphic tangent

vector space of M at p to be
ngl’o)M = CTPMOTZSI’O)C”, TISO’UM =CT,M ﬂTZSO’l)C”, respectively.

Write CR,(M) = dimc ngl’o)]\/[. CR,(M) is called the CR dimension of M at p. It is easy to
see that C'R,(M) is an upper semi-continuous function in p, which is the simplest holomorphic
invariant that one can attach to the germ of a real submanifold in C". When CR,(M) is
identically 0, we call M a totally real submanifold. When C'R,(M) is a positive constant, we call
M a CR submanifold of C™. Notice that in case M is a real hypersurface, CR,(M) =n—1 and
thus M must be a CR submanifold for n > 2.

Let M and M’ be two CR submanifolds of C"™ for n > 2. We call M and M’ to be CR
equivalent if there is a smooth diffeomorphism F' from M into M’ such that F*(Tél’o) M) =
TIE}(% M’ for any Z € M. Such a map F is called a smooth CR diffeomorphism from M to M’.
We call two germs of real submanifolds (M;,p;) with p; € M; to be CR equivalent if there is a
CR diffeomorphism from a small neighborhood of p; in M; to a small neighborhood of ps in Mo,
which maps p; to pa. The following theorem, called the Bochner-Fefferman theorem, is crucial
to reduce the equivalence problem for domains to the study of the boundary CR equivalence

problem:

Theorem 1.2 (Bochner-Fefferman [Fe| [Ho]): Let D; and Dy be bounded strongly pseudo-
convex domains in C™ with C'"*° boundaries. Then D; and D5 are biholomorphically equivalent

if and only if there is a smooth CR equivalence map from 0D; to dDs.

For any real submanifolds M and M’ in C", we call M and M’ to be holomorphically
equivalent if there is a biholomorphic map ® from a neighborhood of M to a neighborhood of M’
in C™ such that ®(M) = M’. Apparently, when M and M’ are holomorphically equivalent, then
they are automatically CR equivalent. By the work of many people (see [CM], [Le|, [Pi], [BJT],
etc.), it is now clear that when M and M’ are real analytic CR submanifolds with some extra
geometric restrictions, the CR equivalence of M with M’ implies their holomorphic equivalence.
For instance, the following is a special case of the Baouendi-Jacobowitz- Treves theorem: (For
more references on this matter, we refer the reader to the book of Baouendi-Ebenfelt-Rothschild
[BER1] or the survey paper [Hul]):



Theorem 1.3 (Baouendi-Jacobowitz-Treves [BJT]): Let M; and Ms be two real analytic
hypersurfaces in C". Suppose that M; and Ms do not contain any non-trivial holomorphic curves.

Then any smooth CR equivalence map from M; to M, is actually a holomorphic equivalence map
from M7 to Ms.

We notice that by a result of Diederich-Fornaess [DF]|, any compact real-analytic submanifold
in C™ does not contain any non-trivial germs of complex analytic curves. We also mention that
Theorem 1.3 follows from the more general theory of Chern-Moser, when both M, are Levi non-
degenerate. (See the next section for more notation on this matter.)

Different from the situation in one complex variable, in the 70’s, Pinchuk and Vitushkin
first showed that germs of local holomorphic equivalences between strongly pseudoconvex hyper-
surfaces can be extended to the global holomorphic equivalence maps under certain geometric
assumptions for the hypersurfaces. (See [Vit] for references). This gives the evidence that for
many important classes of domains, the local CR structures of their boundaries essentially deter-
mine their interior global complex structures. There have been many developments along these
lines of research. Here, we only state the following theorem recently obtained in [HJ1] and refer

the reader to [HJ1] for more references on this matter:

Thereon 1.4 (Huang-Ji [HJ1]): Let D be a bounded strongly pseudoconvex domain in C™
defined by a real polynomial. If there is a point p € 9D such that a small piece of 0D near p
is CR equivalent to a small piece of the unit sphere 0B", then D must be biholomorphic to the
unit ball B™.

With the above discussions, it is also natural to study the local holomorphic equivalence
problem for real submanifolds in complex spaces. Namely, one can consider the following two

problems:

Question 1.5: Let (M;,p;) be real submanifolds in C”. When is there a biholomorphic
map F' from a neighborhood U; of p; € M; in C” into a neighborhood of py € Ms in C™ such
that f(Ml N Ul) C M2 ?

Question 1.6: Let (M;,p;) be CR submanifolds in C" and C¥, respectively, with N >
n. Classify all CR embeddings from (Mj,p1) to (Ma,p2) up to the CR automorphism groups:
Aut(M;y) and Aut(My).



Question 1.6 is more along the lines of CR rigidity problems, which, unfortunately, we can
only briefly touch in §2 of this lecture notes, due to the time limit. In the following sections, we

will mainly address some of the recent work on Question 1.5.
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§ 2. Formal Theory for Levi Non-degenerate Real Hypersurfaces

Let (M, p) be the germ of a real hypersurface in C™ (n > 1) near p. We will construct the
holomorphic invariants of M at p such that we can distinguish the hypersurfaces by reading off
their invariants. In this section, we will use the formal power series method. There is a more
geometric approach based on the ideas of E. Cartan, that we will address in §5. In the power
series method, we will try to find good representation for the hypersurfaces, called their normal
form. The invariants are then embedded in the coefficients of their normal form. This section is
based on the papers [CM] [EHZ1].

2.1: General theory for formal hypersurfaces: We let (M, p) be a germ of real (formal)
hypersurface in the complex n-space with n > 2. First, after a local change of coordinates, we
assume that p = 0, TM = {v = 0}, T"O M = {w = 0}, where we use (z,w) € C"~! x C for the
coordinates of C” and write w = u + iv. Then M near 0 is defined by an equation of the form:
v = p with p(0) = dp(0) = 0. Notice that p is real-valued. Write

p= Z a,726%0 + Z briziz + Zb_klzkzl + Z CLZRl + Z exzpu + du® + O(|(z, w)|?).
Then we have on M:

Re{—iw — 2 Z briziz — 2 Z Crzput = Z a 5267 + du® + O(|(z,w)?).
kl k

Define
{ w’ =w— 2 Zkl bkleZl — 21 Zk CrRrWw — din,
I
z =Z.



In the (2, w’) coordinates, M can be expressed as the graph of the following function:
v = Zaklzkzl (3) = 2/ A7 + O(3)

where A = Zt is a matrix. Write

A0 L 0

0 )\2 ces —t —t
A=T| . . | T =rAT,

0 0 ... A

Then

v = 2ZTAGT) +0(3).
Let 2" = 2'T, w” = w'. We have v = Y7 \j|z/|> + O(3). We say that p = 0 is a Levi non-
degenerate point of M if A\; # 0 for each j.

Assume, for the rest of this section, that M is Levi non-degenerate at 0. Then without loss

of generality, we can assume that

2

+ 0(3),

"= |yl

where €5 = -1 lfj < /; and €5 = 1 lfj > (. With Z;H = ‘/|)‘j|z;‘/; w”" = w”. Then in the (z”/,w”/)

coordinates, M is the graph of the following function:

_Z€j|z///‘2+0 )

Still write z for 2" and w for w”’. Then M is defined by:

4 n—1
(2.0) v==> lz*+ > lz*+0(zw)).
j=1 j=t+1
In the above expression and for the rest of this section, when ¢ = 0, we regard the first term after
the equality sign to be zero. Replacing (z,w) by (z¢41, -+, 2n—1,21,"*,2¢, —w) if necessary, we
can assume that ¢ < 251, The pair (/,n — 1 — {) is called the signature of M at 0. The model

of Levi non-degenerate hypersurfaces with signature (I,n — 1 —[) is the hyperquadric defined as

follows:
V4 n—1
(2.0) Hy = {v=-> |5+ Y |z}
j=1 j=0+1



Notice that the pair (¢/,n — 1 — /) is completely determined by ¢. Hence, in what follows, for
brevity, we call ¢ the signature of the above hypersurface M.
When ¢ = 0, we call M strongly pseudoconvex. Also, when ¢ = 0, H} = H" reduces to the

classical Heisenberg hypersurface. Let

4 n—1
(2.0)" Sy i={v>=> 15+ > Iz’
j=1

j=b+1

which is called the Siegel upper half-space and has Hj as its real analytic boundary. Let
(2.0)"” B} = {1+ |z + ...+ |ze]* > Jzep1 P + oo+ |zn1 2 + |0}
Define ¥,, = (2—Z ﬂ) Then

i+w’ i+w
B, = UL = 2z 72'—@'w .
1+w 1+w

Both ¥,, and ®,, are called the Cayley transformations. It is easy to verify the following properties:

Lemma 2.1: ¥, is a bimeromorphic map from S} to B}; and ¥,, bimeromorphically maps

7 = 0S} to OB}. In particular, ¥,, is a holomorphic equivalence map from (H},0) to (0B}, 0).

For convenience of the discussion, we set up some notation to be used for the rest of this
section.

For two m~tuples x = (z1,- -+, Zm), ¥y = (Y1, , Ym), We write < z,y >,= Z;n:l d;.07;y;, and
2|7 = 2?21 8;¢|zj]?. Here §; 4 is defined to be —1 for j < £ and to be 1 otherwise. We define the
matrix Ey,_1 to be the diagonal matrix with its first £ diagonal elements —1 and the rest 1.

Parameterize H} by (z,%,u) through the map (z,%z,u) — (z,u + i|2|?). In what follows,
we will assign the weight of z and u to be 1 and 2, respectively. For a nonnegative integer m,

a function h(z,%z,u) defined over a small ball M of 0 in H} is said to be of quantity o,:(m),
— .2

if h(tz|f|i’1t )

case, we write h = 0,¢(m)). By convention, we write h = 0,:(0) if h — 0 as (z,Z,u) — 0).

— 0 uniformly for (z,u) on any compact subset of U as t(¢ R) — 0. (In this

For a smooth function h(z,%,u) defined over U, we use h(¥)(z,Z,u) for the sum of terms of
weighted degree k in the weighted expansion of A up to order k. If A is not specified, we use it to
denote a weighted homogeneous polynomial of weighted degree k. For a weighted homogeneous
holomorphic polynomial of degree k, we use the notation: (-)*)(z,w), or (-)*)(z) if it depends

only on z.



Next returning to (2.0), we would like to simplify terms in O(|(z,w)|?) by further changes of
coordinates. These changes of coordinates should have the following properties:
(). Preserves the origin and the real tangent space {v = 0} of the hypersurfaces at the origin.
(ii). Preserves the complex tangent space {w = 0} at the origin.
(iii). Preserve the hyperquadric H} up to weighted order 3.

Let (2/,w") = F = (f,g) be such a map. Then the general form that F' can take, with the

properties in (i)-(iii), is as follows:
(2.1) f=2A+aw+0(|(z,w)*), g=xw+O0(|(z,w)[")

with A € R\ {0}.
Since F preserves v = |z|7 up to the third order, it follows that A > 0 if £ < 27t

AEg7n_1Zt = AE; p—1 in general. The following proposition indicates that we can further limit

and

down our transformation group to make calculations more accessible:

Proposition 2.2: For any transformation F' of the form in (2.1), there is a unique T' €
Auto(H}) such that F' =T o Fyy with Fy = (fo, go) having the following properties:

(2.2) fo =2+ Oz w)P), g0 =w+O((zw)), Re(a g <0>) —0.

duw?

In fact, by a straightforward verification, we can set T = T} o T5. Here,
(a) If I = an and \ < 0, then Ty (z,w) = (241, ", Zn—1, 21, ---, 26, —w). Otherwise T» is always
set to be the identity.
(b)When A > 0, we have

= <(Z e @I;)A’ q(i,ww)

where q(z,w) = 1 — 2i(z,a@)¢ + (r — i|@|?)w. For A < 0, one can similarly define 7}.

We next normalize (M,0) by transformations satisfying (2.2). Of course, the invariants we
get in this way are still subject to the action of Auto(H} ), which is a finite dimensional Lie group.

By induction, suppose that we have found a coordinates system: (z,w), in which M has been
normalized up to the weighted order s. We then want to see how to choose the new coordinates
(z/,w") to get the invariant form at the level of weighted order (s + 1).

We first mention that for a formal power series N(z,z,w,w) = N(z,Z%,u,v), we have the
decomposition N = 372 N (2, %, u,v), where N (tz,tz, t?u, t?0) = t* N (2,Z,u,v) for t € R.
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Suppose that in (z,w)-coordinates, M is given implicitly by
(2.3) v =|z|? + N1(2,%,u,v)
and in (2/,w") = (f(z,w), g(z,w)) coordinates system , M is given by
v = |2 4+ No(2, 2,0/, ).

By what we mentioned above, we want to keep what we have already achieved. Namely, we
want to have N7 (z,%,u, |2|2) = N7 (2,7, u, |2|2) for 0 < s. Since we have assumed that (f,g)

satisfies the normalization in (2.2), we have
Write the weighted expansion of (f,g) as follows:

(2.5) f=24> [D%w), g=w+) ¢70w),

o>2 o>3

where £ (tz, t2w) = t7 f(9) (z,w); ¢ (tz,t?w) = t7¢g(?) (2, w). Then we have

Im | w+ Z g\ (z,w)

oc>3

(2.6) =l2Z+2Re > < fOV(zw) >p+ Y. < £ flo) > 4

0122 01,022

+ Ny | 24> 24> f@u+Re(d) | g"), Im(w+ > g7 (z,w)) |,

>3 c>3

where (z,w) satisfies (2.3). Suppose that f("= and ¢(™) have been determined for 7 < o < s+1,
we want to find (=1 and ¢(?) for any o < s+ 1. In particular, we would like to find f(*), g(s+1),

and NQ(SH). Substituting w = u + iv and v = |z|7 + Ni(2,Z,u,v) in (2.6), we have

Im(g'? (z,u+1i|2|?)) = 2Re < Z, () (2, u + i|z]?) >,

(2.7) (o) (o)
+N2 (Z,Z,U, |Z‘%) - Nl (Z,Z, u, |Z‘%) + G(U)(Z7Ea U),

where G(?) is completely determined by f("=1) and ¢(7) for 7 < ¢ — 1 and is zero if (f —

2) =1 (g —w)(™) =0 for 7 < o — 1. To proceed further, we make the following definition:
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Definition 2.3: Let f = (f1, -, fn_1) and g be (formal) holomorphic functions in a neigh-
borhood of 0 in C™. Suppose that

(2.8) (f:9) = O(|(z,w)[*) with Re(g,,,(0)) = 0.

Then the map Ly, which sends the above (f, g) to the real-valued (formal) analytic function over
H} defined below:

(2.8) Lo(f,g) = Im (g(z,w) = 2i < 2 F(z0) > humupifsz)
is called the Chern-Moser operator.
Returning to (2.7), we get for o > 3
(2.9) Lo(fO7.9) = N7 (e 7w |2ff) = N7 (.7 |f}) + G (2,7, ).

Since our / is always fixed, we will write £ instead of £, to simplify the notation. Later we
will see that £ has the following uniqueness property: If £(f(©=1, ¢(?)) = 0 with Re(agf:? Jo=0
and o > 3, then it follows that (f(°=1, ¢(@)) = 0.

Since we assumed that NQ(U) = Nl(a) for o < s, we conclude that (f(=1) ¢(®)) =0 for o < s

and thus GGt = 0. At the level of weighted degree s + 1, we have

(2.10) LFO), g6ty = N3t (2,2, u, |2[2) — NV (2,7, u, | 212).

Notice that N1(8+1)(z,2, u, |2|7) is known from the induction assumption. Our purpose is then to
choose
FO(zw), g% (z,0)

appropriately so that we can make NQ(SH) as simple as possible. (2.10) suggests us to pick
N2(S+1)(Z,§, u,v) so that NQ(SH)(zj,u, |2|2) is in the ‘complement’ of the range of the Chern-

Moser operator L.

Definition 2.4: Let A®) be a collection of real-valued polynomials of weighted degree s in
(z,w) for s > 4. Let A= @324.,4(5). Assume that 0 € A.
(a) We call A a uniqueness set for the Chern-Moser operator L if L(f,g) = Gly=uyif-)z With
G € A is only solvable when G = 0 and (f,g) = 0. (As in Definition 2.3, for (f, g) in the domain
of the Chern-Moser operator, we always assume that (f, g) = O(](z, w)|?) with Re(g,,,,(0)) = 0.)
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In (b) and (c), we assume further that H} is a uniqueness set for A in the sense that for any
G1,Go € A, G = Gy if and only if G1|w:u+i|z|§ = GQ’w:u_F“Z@.
(b) A is called an admissible space for L if for any G1,G2 € A, the equation L(f,g) = (G2 —
G1)|w=u+i|-z has solution (f,g) only when (f,g) =0 and Gy = Go.
(c). Ais called a normal space if A is admissible and for any real-valued polynomial B*)(z,Z,u) of
degree s > 4, there is a unique G*) € A(®) such that L(f*~1, ¢g(*)) = G |w=utilz)2 —BY)(2,Z,u)

is solvable.

We remark that it can be easily proved that any weighted homogeneous polynomial of
weighted degree 3, when restricted to H}, is in the range of the Chern-Moser operator. Hence,
in Definition 2.4, we take s > 4.

Summarizing the above, we have the following:

Theorem 2.5: (a) Suppose A is a normal space for the Chern-Moser operator. Then
any formal real hypersurface (M,0) can be transformed by a formal power series to a formal
hypersurface defined by v = |z]2 + N with N € A. (b) Suppose that A is an admissible space.
Let (M;,0) be formal hypersurfaces which are in the A-normal form, namely, M; are defined by
an equation of the form v = |2|? + N; with N; € A. Let F be a formal holomorphic map from
(M7,0) to (Ma,0) satisfying the normalization condition (2.2). Then F' = Id and N; = Ns.

2.2: 'Hj -space and hypersurfaces in the Hi-normal form: To be able to make good use
of Theorem 2.5, we need to construct the normal space for the Chern-Moser operator. Apparently,
the normal space associated to the Chern-Moser operator is not unique. And it is the case that
for different problems, one has to use different normal or admissible spaces. In the following, we
present two different admissible spaces for the Chern-Moser operator, following the work in [CM]
and [EHZ1]. Unfortunately, the one obtained in [EHZ1] is not a normal space and the normal
form obtained in terms of that is in the implicit form. However, it is invariant under the action
of the group Auty(H}). This makes it very convenient to use in working on certain problems.

We first discuss the space S? (The Sy defined in [EHZ1] is slightly more general than the

one defined below):

Definition 2.6: For s > 4, S,g(s) is the collection of all real-valued weighted homogeneous
polynomials of degree s in (z,Z,w,w) with the following property: For each A(z,Z,w,w) € S,S(S),

there is a set of weighted homogeneous holomorphic polynomials
E = {¢;j(z,w), ¥;(z,w)}j<p with k* < oo,
deg,;(¢5) = p;j < 5/2, degy; (V) = ¢; = s/2 and pj +¢; = s
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j < k*) such that

A): ¢;(z,w) and 1, (z, w) have no linear and constant terms in (z,w) for any j;
):
):

B): for each 7 < s/2, there are at most k ¢’s in F with deg,,,(¢;) =p; =7

(4
(
(
(

C): A(z,z,w,w) is real valued for any (z,w) € C", and has the following decomposition:
(2.11) A(z,Z,w,m) = Y ¢i(z,w)d(z,w) +2 Y Re(¢;(z,w)eh;(z,w)).
95 =Pj 45 >Pj

We define SY := 692‘;482(5)

What makes 8,8 convenient to use is the so-called Hj-class contained in 8,8, which is defined
to be the collection of all real-valued formal power series A(z,z,w,w) (for (z,w) € C*~1 x C)
such that
(2.11) Az

oi(z,w);(z,w)

HMw

where ¢;, 1, are formal holomorphic power series in (z,w) which do not contain any constant
and linear terms.
As we will see, the Hy-normal form is invariant under the action of Auto(Hj ). This makes it

very convenient to apply in applications. More precisely, let T' € Auto(H}'). Then we can write

Mz —aw)U  oXw
q9(z,w) " q(z,w)

(2.12) T(z,w) = ( ), with ¢(z,w) =14+2i < z,a>,+(r—i<a,a>pw

where ) is a non-zero real number, a € C"~! and U is a certain (n — 1) x (n — 1) matrix such
that

(2.13) UByn U =0Fpn_1, o=+l

Let M be a formal real hypersurface which is in the Hg-normal form. Namely, M is defined by

an equation of the form:
v=|z|7 + N(2,2z,w,w), with N € H.
The following lemma, which can be proved easily, makes the H-normal form convenient to apply:

Lemma 2.7: Under the above notation and assumption, 7'(M) is also in the Hjy-normal

form. In fact, T(M) is defined by an equation of the form:

)\2
? — N1 o T (z,w) € H.

(2.14) v =|z|7 + No(2,%,w, W), with No(z,%,w, W) = GoT-1F
qo

12



The following result from [EHZ1] is basic for the application of Lemma 2.7 and Theorem 2.5

to work on various local equivalence problems:

Theorem 2.8 (Ebenfelt-Huang-Zaitsev)([EHZ1]) (a): Sp is a uniqueness set for the Chern-
Moser operator for k < n — 2. (b). S8 is an admissible space for the Chern-Moser operator for
< n=2

=2

The S (or the Sy in [EHZ1]) is far from being a normal space. It is an open problem
how to complete Hj or 8,2 for k < ”7_2 into a normal space. This problem is closely related to
the study of the embeddability problem for real analytic Levi non-degenerate hypersurfaces into

hyperquadrics.

We refer the reader to the paper [EHZ1] for a proof of Theorem 2.8. Here, we give a proof
of the part that H} is a uniqueness set for S when k < 2-2. We notice that

Sy, + e2Sp, C Sp ik,
for any complex numbers ¢; and cs.
Proposition 2.8": Let A(z,z,w,w) € Sp with k <n — 2. Assume that
A%z, Zu) = Az, Z,u+1 < 2,2 >pu—i < 2,Z>0) =0

as a formal power series in (z,Z,u). Then A(z,Z,w,w) = 0 as a formal power series in (z,Z, w,W).

In particular, H} is a uniqueness set for SY with k < n=2

u)

We first observe that if A(z,Z,w,w) is weighted homogeneous of degree o, then A°(z, 2,
Z,w, W)

is weighted homogeneous of degree o. Hence, if we decompose a formal power series A(z,

into its weighted homogeneous components

Az, zZ,w,w) = ZA(")(Z,E,U),H))
then the decomposition of A°(z,z,u) is given by

A%z, 2, u) = Z(AO)(G)(Z, zZ,u),

(o

where, in the terminology introduced above,(A%)(?) = (A(©))%. Moreover, if A € Sp, then Al9) ¢
SP.

13



Proof of Proposition 2.8': Tt is enough to prove the lemma when A is a weighted homogeneous

polynomial of degree s > 4 and

*

A(Z,E, w7w) = Z ¢j(za w)% (Z7 w)7
j=1

where ¢;, 1; are weighted homogeneous holomorphic polynomials, without constant or linear
terms, of weighted degree p; and g; = s — p;, respectively, and where for each 7 there are at most

k terms with p; = 7. Let us expand ¢; and v; as follows:
vl Vi J J
¢ = Z ag- )(z)w w, 4 = Z by (z)wh.
vi42vd,=p; (1 +2p,=s—p,

Then, if we expand A(z, z, w,w) in powers of w, w, we can write
= — =\, ,m, -l
Az, zZ,w,w) = E Cm,i(z, Z)w™w,

m,l

where

le 2, Z Za(pJ*Q'm) (QJ*QZ) (Z)

and p; + ¢; = s. By isolating the terms in ¢, (2, 2) of bidegree («, ) in (z,Z) (denoted
Cm.l.a,8(2,%)), we conclude that A(z, 2z, w,w) = 0 if and only if, for every 4-tuple of nonnega-

tive integers (m, [, o, 3),

mias(,8) = > a7 () =0,

JGJ(m7l7a7/8)

where the index set J(m, [, «, 3) consists of those j € {1,...,k*} for which
p; =a+2m, qj=/0F+2l

Observe that, since A € 8,8, there are at most & < n — 2 indices in the set J(m,, «, 3) for each

(m,l, o, B3).
Now, we use the fact that A%(z,2z,u) = 0 is equivalent to A(z, z,w,w) vanishing on the

quadric Hj, and the usual complexification argument, to conclude that

A(z, & w,1) =0

14



whenever w = n + 2i < z,& >y; or, equivalently,

S cral2, )0+ 2 < 2,E > =0,

m,l

Assume, in order to reach a contradiction, that A(z,z,w,w) # 0. Then, there is a smallest
nonnegative integer ly such that ¢y, i, .5(2, €) # 0 for some m, o, 3. Hence, we can factor out 5%

(of course, if [y = 0, then we do not need to factor anything) from the identity above and get

Z Cm,z(Zf)(U +2i < 2,& >£)mﬁ‘—lo =0.
m,l>1lo

By setting n = 0, we conclude that

Zcm,lo (ng)(2l < Z?E >£)m = 0.

m

Isolating the terms of bidegree («a, 3) above, we deduce

Zcm,lo,a—m,,@—m(zgg)(zi < Z,éT >€)m = 0.

m

It now follows from [Lemma 3.2, Hu2|, [Lemma 3.2, EHZ1] that, for every m,~, u,

cm’l0777u(z7 g) = 07
which contradicts the choice of [y. This completes the proof of Lemma 3.3. R
Making use of Lemma 2.7 and Theorem 2.8, one has the following:

Corollary 2.9 ([EHZ1]): Let (M;,0) and (Ma,0) be two germs of formal real hypersurfaces
in the Hy, and Hy,-normal form defined, respectively, by

v = 2|7 + Nj.

Assume that k1 + ko < n—2. Then (M, 0) is equivalent to (M, 0) by a formal holomorphic map
if and only if there is an automorphism 7" € Auto(H}) such that

o2

2.15 No=———
( ) 2 ]qu—1|2

NioT ™t or Ny =o)X 2|q(z,w)|* Ny o T(z,w).
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Az— oA2w : . _ . _
(2(:5))(], qé’w)), with q(z,w) = 1+2i < z,a@" >, +(r—i < a,a >p)w,

UE;, Ut = 0F¢n_1, 0 ==£1, A>0,r € R, and with a a certain (n — 1)-tuple. In particular,

Here, we write T'(z,w) = (

when M; is equivalent to My, it must hold that Ny € Hy,. And the set of all equivalence maps
from (M;,0) to (Mz,0) is precisely the collection of the automorphisms 7' of Auto(H}) which
make (2.15) hold. (Hence, any formal equivalence map from (M7,0) to (Ma,0) is given by a

convergent power series.)

Let M be in the Hjp-normal form, namely, let M be defined by v =< 2,Z >, +N with
N = Z§:1 ¢jw_j € Hy, where ¢;, 1; have no constant and linear terms in (z,w). Let R(M,N)
be the minimum k to get such an expression for N. Then as an application of Corollary 2.9, we

have the following weak invariant property for R(M, N):

Corollary 2.10: (I). Let M; and M5 be in the Hi-normal form for a certain k. If
R(Mi, N1)+R(Ms, N2) < n—2and (M, 0) is equivalent to (Mo, 0), then R(My, N1) = R(Ma, Ns).
(IT). If in the expression N = Z?:l ¢;1; € Hy, both {¢;} and {1} are linearly independent
over C, then R(M,N) = k, where M = {v =< z,Z >y +N}. Moreover, if N = Z?Zl A;B;j

for A;, B; satisfying the same property as ¢;, v¢; do, then there is an invertible constant k x k

matrix C' such that (¢1,---,¢x) = (A1, -+, Ar)C, and (Y1, -, ¢r) = (B, -+, Bg)(Ct) L.

Proof of Corollary 2.10: The first part apparently follows from Theorem 2.9 and Equation
(2.15). Let {¢;,1,} be as in Part (II) of the corollary and assume that Zl;zl b = 25;1 A;Bj,
where A;, B; are holomorphic in their arguments Z = (z,w). Since {¢,} is a linearly independent
finite set, it is easy to see that the set {qﬁé}, where d)é» are the truncation of ¢; up to order I,
must be also independent for k sufficiently large. Hence, there exits {Z; }§:1 such that the matrix
D = (({¢5(Z)})' -+, ({#5(Zk)})") is invertible. Since Z§:1 by = Zflzl ALB;, it follows
clearly that {t1,---,1%} is a linear combination of {By,---,By'}. Hence, ¥’ > k. The last

statement can also be similarly seen. B

Remark 2.11: Corollary 2.10 can be further used to simplify the equation (2.14)_. To see
this, let My = {v =< 2,2 > +Z§1:1 ¢;1;} and My = {v =< 2,7 >, —}—Z?il ¢;0;} be in
the Hi-normal form (k = max{k, k2}) such that R(My, Ni) = ki and R(Mz, N2) = ko, where
Ny = Zflzl ¢j¢_j and Ny = Z;“:l %{b\; Assume that k1 + ko < n—2 and (M,0) is equivalent to
(Ms,0). Then, by Corollary 2.10, it holds that: (I) ky = ky = k; (II) There are a k x k constant

invertible matrix C, an automorphism 7" € Auto(H}) with its associated data ¢, o, X as given in
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Theorem 2.9 such that

0)\_2Q(Z,UJ) : (517“.7;;&)) ol = (¢1;"'7¢k0) : C?

(2.16) - - o
UA—QQ(Z7w) : (¢1a T 7"7Z}k0) ol = (1/)17 o '7¢ko) ’ (Ct)_l'

Immediately, we have from (2.16) the following conclusions:

(A). If all 5}, wNj, ®; 1; are polynomials, and at least one of them is not zero, then ¢ = 1 and
T = Mz — aw)U, o X\?w).

(B). If {g;,%/)\;} are rational functions, then so are {¢;,9;}.

(C). If at least one of {;b:,%} is a transcendental function, then at least one of ¢; and 1; is

transcendental, too.

Example 2.12: Let M; = H} and let My := {(z,w = u+iv) € C3: v = 2> +

Qzl(lfzg”) 2 4| 222212 Then R(M;) = 0, R(Msy) = 2. Also, M is equivalent to M,. Notice
(149w) (149w)

that R(M;) + R(M2) = 2 > n — 2 = 1. Hence, the assumption that R(M;) + R(M2) <n —21in

Corollary 2.10 can not be weakened.

2.3. Application to the rigidity and non-embeddability problems: we now first
present a discussion on how to apply the materials in §2.2 for the study of the rigidity problem

for mappings between the hyperquadrics.

Theorem 2.13 ([EHZ1]): Let F = (f1, -, fa—1,01," ", ®N—n,g) be a formal holomorphic
mapping sending Hy, into Hg with F(0) =0, g—i
and N >n > 2. Suppose that £o > ¢ and /1 + /5 < n— 1. Suppose that N < 2n — 2. Then there
is a linear fractional holomorphic embedding 7" from Hy, to HZ,@ ={(Z,W)e CVN : Im(W) =
- ngel |Zj|2+zél<j§n—1 |Zj|2_zn—1<j§n—1+£2—£1 |Zj|2+zn—1+£2—£1<j§N—1 |Zj’2} and T €
Auto(H}, ) such that To FoTy(z,w) = (z,¢*,w) with ¢* = O(|(z,w)|?). Moreover, when £, = {,
T is a self-map and ¢* = 0. (For {; = {5 = ¢, HZ,ZQ is understood as HY.) Also, when ¢; < ”T_l,

Ty can be taken to be the identity map.

lo # 0, where g is the normal component of F’

Proof of Theorem 2.13: Let F = (f,¢,9) = (f, g) be a formal holomorphic mapping from
(H7 ,0) into (H}/,0) with g—i’)|0 # 0. Then Im(g) =< f,f >, along HJ as a formal power
series. Collecting the coefficients of weighted degree 1 and 2, we see that g = oA\?w + 0,¢(2),
F =AU + oX2aw + O(|zw| + |23 + |w|?). Here 0 = £1, A > 0, a is a certain complex vector,
U= (B, - E._|)t with E; = %g—éfj(O), and < Ej, By >,= 05;“5]-. Since < Ej, E; >¢,# 0
for j < n —1, we can extend {Ej}?;l1 to an orthogonal basis {Ej}j-vz_ll (with respect to the
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Hermitian product < -, >,). Let U = (Ef,---, E%_,)t, then (’ng%N_lE = diag(< E1, By >y,

< Exn_1,En_1 >u,), where Ey, y—1 is defined, as before, by < X, X >4,= XE427N_1F.
In particular, we see that < Ej, Ej >, 7 0 for any j. Without loss of generality, we can assume
that < E]’,E_j >p,= ¢; = £1 for j > n, too. (Notice that ¢; = —o for j < ¢ and ¢; = o
for 44 < j < n —1.) After changing the position of E}s for j > n — 1, we can assume that
U Ey,, N_lﬁ = oB*, where 0 B* is determined by the following Hermitian product:

< 2,7 >0, 0p= ZZZ+ > zZ; > Z;Z; + > Z;7;,

l1<j<n—1 n—1<j<tlo—f14+n—1 N—-1>j>ls—014+n—1

Apparently, when /1 + {5 < ”T_l, o must be 1. Otherwise, {1 = ”T_l = /(. In this case, composing
F with To(z,w) = (2e41, 5 2n-1, %21, "+, 20, —w) € Autg(H}), if necessary, we can also make
oc=1.

In the following, we assume that o = 1. Letting

A HZ —aW)U™r A2W

(2.17) T(zw) = ( o(Z,W) "q(Z, W))’

where q(Z,W) = 14 2iZEy, y @' + (r —i < a,a@ >4,)W, with 7 = 1A"2Re(24|y). Write
F*=ToF = (f*¢"¢*). Then (f*,g") satisfies the normalization condition (2.2), and ¢* =
O(|(z,w)|?). Notice that T" biholomorphically maps Hj, to H%ZQ. Namely, Im(g*) = O'f*B*Ft
along Hj . Now, we can inductively apply Theorem 2.8 to prove that f* = z, ¢* = w. Indeed, we

first notice that by collecting terms of weighted degree < 4 in the equation Im(g*) = f*B* f*t, we
see by Theorem 2.8 and the normalization condition that f*0—1 =0, ¢*) =0, for 3 < j < 4.
Suppose that f*(T_l), g*(T) = 0 for 7 < K. Collecting terms of weighted degree Ky + 1,

k [Ko/2]
(2.17) E(f*(KO) *(K0+1) Z Z Re( *(J)¢*(Ko M,
=1 j=2

where €; is the (n — 14 j)-th element in the diagonal matrix o B*. Since k < n—2, the right hand
side of (2.17') is in 8?_,. Hence, it follows from Theorem 2.8, that f*(K0) = o, g*(Fo+l) — o By
induction, we see that f* =10, ¢g* =0.

Returning to ¢*, we get Z?:l €j|¢*;|> = 0. Assume that £, = /1. Since we assumed
that ¢; < (n —1)/2, all ¢; then must have fixed sign. Hence, ¢* = 0. as remarked above,
o must be 1 when ¢; = ¢5 < (n — 1)/2; and o can be made to be 1 by replacing F with

F(zoy1, -y 2n_1,21, ", 20, —w), if necessary, when ¢; = lo = (n — 1)/2.
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When /5 > ¢, write
(2.18). O = (g1, ¢p) with & = €5 — &y and @17 = (¢py 1, dN1)-
We also see || @[> = [|®;]|* over H} . B

We give some applications of Corollary 2.9 to the problem of embedding a non-degenerate
formal hypersurface M C C™ of signature ¢ into Hé\f with N < 2n—2 (% >0 >0, 0+0 <n-1).

Let M = {v =< 2,Z >y +N} be a formal non-degenerate hypersurface of signature ¢ with
N = 04t(3). Assume that F is a formal holomorphic embedding from (M,0) into (HJ,0). As
we see above, after replacing F' by F' o Tp, if necessary, and then composing it with a certain
holomorphic linear fractional map from (HJ,0) to (Hé\fz,,O) , we can write F' = (f, ®;, Py, 9),
where (f,g) satisfies the normalization condition (2.2) and ®;,®;; = O(|(z,w)|?) as defined
in (2.18). Applying the implicit function theorem, we conclude that M is equivalent through
Fy = (f,g) to the following hypersurface:

M={v=<z2> —||®;oFy 2+ ||®rs0 F; ' ||> =< z,2 > +Hy_n}.

Notice that Hy_, € Hny_, and Fj satisfies (2.2). Conversely, by Corollary 2.9, we have the

following

Proposition 2.14: Let M := {v =< 2,z >y + N} where N € Hj. Suppose that N <
2n — 2 — k. Then (M,0) can be formally embedded into Hy',, if and only if there are vector
valued holomorphic functions ®;(z,w), ®;7(z,w) = O(|(z,w)|?) with #/ — ¢ and N —n — ¢ + ¢

components, respectively, such that
(2.19) 0" N(z,%Z,w,@) = —[[®1(z,w)|* + |11 (2, w)||?,

where o* is either identically 1 or identically —1. In particular, when ¢ = ¢/, then M can be
embedded into HY with N < 2n — 2 — k if and only there are (N — n) formal holomorphic

functions {¢; ;V:_l” such that
N—n

(2.20) N(z,Z,w,m) = 0" Y [¢;(z,w)|*.
j=1

where o* must be 1 when ¢ < "’T_l
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More generally, assume that ¢/ = £ and let M be given by M := {v =< 2,7 >y +N®) +0,,(s)}
with N() (£ 0) € S,g(s). Let F = (f,¢,g) be a formal embedding of M into HY with (f,g)
satisfying (2.2) and ¢ = O(|(z,w)|?). When N < 2n — 2, an inductive use of Theorem 2.8 shows
that (f,g) = (24 fE™ +0ue(s),w+ g + 04 (s+1)) and ¢ = ( §"), cee 5\7)_n) =0 for 20 < s.
In particular, it follows from Theorem 2.8 that s = 2s’ must be even if N < 2n—2 and k < n —2.
Assume this. For terms of weighted degree s, we have L£(f¢=1 ¢()) = ||p()||2 — N, Since
16 (z,u+1i < 2,2 >¢,)||> € SY_,,, it follows that if &+ N —n < n — 2 then

(221) N(S)(z7§, u, v)|v=|z|% = ||¢(8/) (z,u +i<2z,2z >£)||2'
Therefore, we have

Corollary 2.15: Let M = {v =< 2,Z >; +N©) + 0,(s)} be a formal non-degenerate
hypersurface of signature ¢ with N(S)(gé 0) € Sg(s), kE<n-—2, s>4. Assume that £k < n — 2
and N <2n —2 — 45k with 6 = 0 for s odd and equal to 1 otherwise. Suppose that there is no
holomorphic solution ¢ to (2.21). Then (M,0) cannot be formally embedded into HY , when

l< ”T_l For ¢ = "T_l, if there is no solution to
N(S)(27E,u,’0)|v:‘2|% = i”d)(SI)(Z?u +1< 2,2 >K)H2‘

Then (M, 0) cannot be formally embedded into HY .

Example 2.16: Let M(C C") := {v = |2]?> + Re(w* 'h(2)) + 0u:(25)} be the germ of a for-
mal non-degenerate hypersurface of signature 0, where s > 2 and h(z) is a non-zero homogeneous
polynomial of degree 2. Then there is no vector valued weighted holomorphic polynomial ¢(*) of
weighted degree s such that Re((u+1i|2|?)5  h(z)) = |0tV (2, u+1i|2]?)||? > 0 over w = u+i|z|>.
Notice that £ = 2. Hence, when N < 2n—4, (M, 0) can never be formally holomorphically embed-

ded into HY. Also notice that My(C C") := {v = |2]?> + Re(w®*!h(2))} can be holomorphically
embedded into HY ™ through the map F = (1(w*~™! — h(z)), 2, 1 (w*™! + h(2)),w).

To conclude this subsection, we present one more application to the study of a rigidity
problem, which asks if two CR embeddings of a strongly pseudoconvex hypersurface M in C”
into the Heisenberg hypersurface HY are the rigid motion of each other. Namely, if F, ¥ are two
C'-smooth CR embeddings from M into HY, is there a T € Aut(H”) such that T o F = ¥?
Here [ is a certain positive number. This problem has been answered in the work of Webster

[We2] when N =n+1 > 4. The reader can find a geometric approach along the lines of Webster
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[We2] on this problem in [EHZ2] when N —n < 22, The arguments here are essentially those
in [EHZ1].

Let M = {v =< 2,Z >; +N} be a formal non-degenerate hypersurface of signature ¢ with
N = 0y¢(3). Assume that F, ¥ are formal holomorphic embeddings from (M, 0) into (HJ,0) and
(Hév,,/,()), respectively. (Assume that N’ > N. Also, for simplicity, assume that £4+¢" < n—1). Af-
ter composing F, W with certain holomorphic linear fractional maps from (Hj,0) to (Hy',,,0) and
from (Hé\,]/,()) to (H%,, 0), respectively, we can write F' = (f, @7, @y, g) and ¥ = (f*, 7, ®%,,9%)
where (f,g) (f*,g*) satisfy the normalization condition (2.2) and ®;, &7, D%, ®%; = O(|(z,w)|?)
as defined in (2.18). Therefore, M is equivalent through Fy = (f,g) or ¥y = (f*,¢*) to the
following hypersurfaces M , M*, defined, respectively by:

v=<z,2 > = @ro Fy P+ | ®rr o Fy P, v=<z,2 > —[|@] 0 U5t P + |7, 0 W%,

Notice that Fyo W5 ! is a normalized formal biholomorphic map from (M*,0) to (M, 0) satisfying
(2.2), and M, M* are in the Hy_,, Hn’'_n-normal form, respectively. By Theorem 2.8, we see
that when N + N’ < 4n — 2, Fy = ¥ and —||®;]|*> + ||®17]|> = —||®3]|* + ||93F;]|* along M as
formal power series. In particular, when ¢/ = ¢/ = ¢, there is a constant matrix U with U-U? = Id
such that ®5, = ®;7 - U by a result of D’Angelo [Da] and by noting that ®; = ®&; = 0. Hence,
after applying another T € Auto(HlN /) to U, we see that the new F and W satisfy the relation:
U = (F,0).

2.4. Chern-Moser normal Space N¢gp: The space Hj we presented in the above sub-
sections is indeed very convenient to apply due to its invariant property under the action of
Auto(H} ). However, it is not a normal space and thus can only be used to model a very limited
class of germs of real hypersurfaces. For the study of general Levi non-degenerate hypersurfaces,
we need to make use of the normal space N discovered by Chern-Moser in [CH]. The Chern-
Moser normal space is not invariant under the action of Auto(H}'). Thus a hypersurface which is
in the Ngg-normal form is still subject to the action of this group. However, it can be used to
model any germ of hypersurface.

Since the discussion on the Chern-Moser normal form is available in many nice expositions
([Vit], [BER2], etc.), we here just give a brief account on this theory. Define
—1

9? K 0”
Ag L= = — + —
= 02Z; it 02;0%
k,1>2 || =F,|B]=!

h=h, AFyz=NAjFyz =A}Fz=0}
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The following is a fundamental result of Chern-Moser in this subject:

Theorem 2.17(Chern-Moser [CM]): Assume the above definition and notation. Then (a).
Ne is a normal space. (b). Any germ of Levi non-degenerate real analytic hypersurface (M, 0)
with signature ¢ can be transformed by the germ of a biholomorphic map to a convergent Chern-
Moser normal form. (c). Let (M;,0) be germs of formal real hypersurfaces at 0 defined by
v = |z|? + N; with N; € Nop. Then (My,0) and (M, 0) are equivalent by a formal holomorphic
map F, satisfying the normalization (2.2), if and only if F' =1d and N; = Ns.

The proof of Theorem 2.17 can be found in [§3,4, CM], which we skip here. However, we
mention that one of the significant features in the above theorem is that a convergent germ of
hypersurface has a convergent Chern-Moser normal form.

In terms of the above theorem, the general procedure to see if two germs (M}, 0), which are
already in the Chern-Moser normal form, are equivalent to each other, is as follows: First apply
T € Auto(H}) to My to obtain T'(Ms). Then by solving infinitely many times the Chern-Moser
equation (2.10) to find a new normal form for T(Ms) : v = |z|7 + Ny . Finally, (M;,0) is
equivalent to (Ms,0) if and only if Ny = Ny for a certain 7. The major difficulty here is that
it is extremely difficult in general to find N r from the defining equation of T'(Ms). Indeed, it is
the purpose to get rid of this difficulty that motivated us to find an invariant normal form (with
respect to Autg(H})) in [EHZ1|. Unfortunately, the admissible space we obtained in [EHZ1] only
works for a very small class of real hypersurfaces, which are actually those which can be formally
embedded into the hyperquadrics with restricted codimension. The interested reader is referred
to the paper [EHZ1] for more on this matter.

We notice that Sy is not a subclass of the Chern-Moser normal space. For instance, for o > 1,
h = Re(22°w?) contains a term of the form u?22°. While h is in ‘Ha, it is not in the Chern-Moser

normal space.

§ 3. Bishop Surfaces with Vanishing Bishop Invariants

In this section, we study the holomorphic equivalence problem for submanifolds in C™ with
higher codimension. There have been many generalizations of the Chern-Moser theory to the
so-called generic strongly pseudoconvex CR submanifolds. (See the survey paper [BER2] for
some references in this regard and the recent paper [BRZ] for some other related studies). In
this notes, we would like to focus on the normal form problem for Bishop surfaces [Bis| in C2.
The study of Bishop surfaces has attracted considerable attention since the work of E. Bishop in
1965. (See [BG|, [KW], [Mos|, [MW] [HK]). These surfaces are interesting, due to the following
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reasons: First, from the point of view of complex analysis, they can be viewed as the simplest
higher codimensional analogy of strongly pseudoconvex hypersurfaces; secondly, they have a rich
complex structure at the complex tangent and have trivial complex structure elsewhere, namely
they can also be viewed as the simplest models where one sees the CR singularity; thirdly, from
the work of Moser-Webster [MW], which we will discuss in the next section, one sees a tremendous
interaction of complex analysis with the classical dynamics problems encountered in Mechanics
[SM]- An understanding of such a problem may provide useful information and motivation to

many converge problems in Mechanics. The basic references to this section include the papers

IMOS] [MW] and [HK].

To be more specific, we let M be a real surface in C2. Then for any p € M, CRys(p) can be
only 0,1. When CR)/(p) = 0, we say M is totally real at p. By the semi-continuity of the CR
dimension function, we conclude that M must be totally real in a neighborhood of p in M. When
M is further real analytic, then an easy application of the complexification shows that (M, p) is
holomorphically equivalent to (R?,0), where R? := {(z,y) € C?, x,y € R}. On the other hand,
if CRy(q) = 1 for g = p, then apparently (M,p) =~ (C x {0},0). Hence, from the equivalence
point of view, only points with CR dimension 1 but not constantly 1 nearby are interesting.
Among such points, only those which have CR dimension 1 but 0 nearby are stable under small

perturbation. Such points are called isolated CR singular points.

Now, let p € M be a point with a non-trivial complex tangent. Namely, we assume that
CRy(p) = 1. After a holomorphic change of coordinates, we can assume that p = 0 and
T = OT,M = {w = 0}, where we use (z,w) for the coordinates of C2. Then M near 0 can be
defined by an equation of the form: w = h(z,%z)+o0(|z|?). Here h(z,z) = az?+bzz+cz%. Replacing
w by w — (a — ¢)22, if necessary, we can assume that a = c. Assume that b # 0. Replacing w
by w/b and replacing z by ze® for a suitable 6, we can assume that h = 2z + A(22 + 22) with
A > 0. By a straightforward verification, one can see that A is a biholomorphic invariant, called
the Bishop invariant.( See Lemma 3.2 below). When A < 1,

tangent of M. When A > %, we call p = 0 a hyperbolic complex tangent point of M. When

A =1/2 or when b = 0 but ¢ # 0, we say p = 0 is a parabolic complex tangent. An elliptic,

we call p = 0 an elliptic complex

parabolic or hyperbolic complex tangent point is called a non-degenerate complex tangent point.
In the other case, we say 0 is a degenerate complex tangent point. A real surface M is called
a Bishop surface if all of its complex tangents are non-degenerate. In this notes, we are mainly
concerned with the equivalence problem of M at an elliptic complex tangent point. Hence, we
have A € [0,1/2). In this section, we discuss the formal theory of Moser [Mos| when the surface

is formally equivalent to the model surface My := {w = |z|?}. In the next section, we discuss the
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Moser-Webster theory for Bishop surfaces with non-vanishing Bishop invariants.

The understanding to the general Bishop surfaces with vanishing Bishop invariant is still not
complete. It is an open question to get a complete set of invariants for analytic Bishop surfaces
with vanishing Bishop invariant.

We first state a general result along these lines proved in [HK]:

Theorem 3.1 (Huang-Krantz [HK]): Let M be a real analytic Bishop surface with vanishing
Bishop invariant at 0. Then (M,0) can be flattened in the sense that there is a biholomorphic
change of coordinates such that in the new coordinates, it holds that M C C x R. More precisely,

in the new coordinates, M near 0 can be defined by an equation of the form:

(3.1) w=|z> + E(2,%), E(2,2) = E(2,%).

We start with the following statement on invariance of the Bishop invariant.

Lemma 3.2: Suppose that M; for j = 1,2 are Bishop surfaces with only CR singular point
at p;, respectively. Then the Bishop invariant of M; at p; is the same as the Bishop invariant of

Ms at po, if M, is biholomorphically equivalent to M.

Proof of Lemma 3.2: Without loss of generality, we can assume that p; = 0. Let F' = (f, g)
be a biholomorphic map from M; to M,. Then F(0) = 0, for F' preserves the CR dimension.

After a change of coordinates, we can assume that
Mjw =22+ X (22 +2%) + O(|z%), 0<); < oo

When ); = oo, we regard M, as a surface defined by an equation of the form: w = 22 +2?+o(]2|?).
For simplicity of calculation, we assume, in the following, that A\; < oo.

Notice that F' must preserve the complex tangent space of M; at 0. We can write F' = (f, g)
with f = az + bw + O(|(z,w)]?) and g = cw + dP@ (2) + O(|w|? + |zw| + |2|?). Using the equation
of M, we get

c(2Z+ M (22 4+ 7%) +dP(2) = |az + bw|* + Aa2Re(az + bw)* + O(|2]*),
where (z,w) € M;. Collecting the coefficients of 2z, 22,72, we get

(3.2) c = |al?, d® = doz?, ehi +ds = Maa?, A = a2 )o.
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Hence it follows that
(3.3) ¢>0,A\ =X,aeR, d¥ =0
This completes the proof of Lemma 3.2. B

3.1. Formal theory for Bishop surfaces with vanishing Bishop invariant. We
now focus on the case A = 0 and present the formal theory of Moser [Mos]. Let M be a real
analytic Bishop surface with vanishing Bishop invariant at 0. By Theorem 3.1, after a change of

coordinates, we can assume that M is defined by an equation of the form:

w = |z|* + E(2,Z) with E(2,%Z) = E(Z, 2) = E(2,%).

We notice that M near 0 bounds a family of holomorphic disks defined by

{(z,w): v=0,u= r2 r? > ]z|2 + E(z,%2)}.

Namely, let o, be a Riemann mapping from the unit disk in C to the domain
(3.4) D, :={z€C:7r*>|z|*+ R(2,2)}.

Then the map ¢, from the unit disk A := {z € C : |z| < 1}, which sends z to (0,.(2),7?), is
holomorphic in A, real analytic up to the unit circle and maps the unit circle to M. Such a ¢, is
called a holomorphic disk attached to M.

Conversely, for any holomorphic map ¢ = (¢1, ¢2) from the unit disk to C2, which is contin-
uous up to A, if it is attached to M (namely, ¢(OA) C M) and if ||¢|| << 1, then ¢(A) = D,
for a certain r. This can be seen easily by noticing that for such a map, ¢, must be constant; for
its imaginary part has boundary value 0.

Next, let (M;,0) (j = 1,2) be two real analytic surfaces defined, respectively, by an equation

of the form:

w=|2|? + E;(2,2) with E;(2,2) = E;(z,2) = E;(2,%).

And let F' = (f,g) be a biholomorphic map from (M;,0) to (M2,0). Then F must send a
holomorphic disk attached to M; to a holomorphic disk attached to Ms>. From this, it follows
easily that g(z,w) = g(w) with g(r?) > 0 for 0 < r << 1. Also, f(z,7?) for each fixed r must be
a conformal map from the disk |z|? + E1(z,%) < r? to the disk |2|? + F2(z,2) < g(r?).
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In particular, when both M; = My = My = {w = |2]? + A(2%2 + %)} with A = 0, f(z,7?)
must be a conformal map from |z|? < r? to |z| < \/g(r2). Hence

Fler?) = Voo 22
r—a(r)z
for certain 0(r), a(r).
Since f is analytic in (z,w), we can conclude that f(0,u) = —/g(u)e??a(r) is real analytic
in u. Write g(w) = w(g*(w))? with g*(r?) > 0, g*(0) > 0. Then

£(0,u) = —ug* (w)e VW a (),

we see that \/ua(y/u)e?? V% is analytic.

In particular, we see that u|a(y/u)|* and thus |a(y/u)|? is analytic.

Next, %(O,U) = g"(u)e® VW (1 — |a(\/u)[?). We conclude that (V%) is also analytic, and
thus y/ua(y/u) is analytic too. In this manner, we can write

z —c(u)u

f(z,u) = 9*(U)A(U)W

where c(u) = a(—\/@ is analytic in u with |e(u)] < \/%j,or le(u)u| < /u; g*(u) and A(u) are analytic
in u with ¢*(0) > 0. Summarizing what we did and with a further straightforward verification,

we have

Proposition 3.3([MW] [Mos]): Auto(My) with A = 0 consists of the following transforma-

tions:
w' = wa(w)a(w),
(3.5) { 2 = a(w) z—wb(w)
1-b(w)z

with a(0) # 0, a(w), b(w) holomorphic functions in w.

Still let M be defined by w = |2|?> + E(2,%) with E(2,Z = E(z,z) = O(]z|?) real analytic in
z. We subject to M a transformation of the form: F = (f,g) where f = az + bw + O(|z, w|?),
g = g(w) with g(r?) > 0 for r > 0.

Lemma 3.4: There is a unique 7' € Auty(M)) such that ToF = (f, g) satisfies the following

normalization condition:

(3.6) f=Y 4 f(w) with fo =0, fi(u) >0 f1(0)=1.,§=mw.
j=0
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Proof of Lemma 3.4: First, we can easily make F' = (f,g) = (2 + O(w + |2|*), w + O(w?)).
Choose Ty € Autg(Mo): To(z,w) = (a(w)z, a®(w)w), with a(0) # 0, a(u) > 0 for u > 0. We
like to have To o F' = (-,w). For this, we need the function relation: a?(g(w))g(w) = w. Hence,
a(g(w)) = m, where, as before, g(w) = wg*(w) with ¢*(0) # 0. Apparently, such an a(w) can
be uniquely solved.

Still write F' for Tg o F'. Let

z — c(w)w

1~ 2(w)z ,w) € Auty(Mp).

ﬂ:(Mm

Write F' = (372 fj(w)2’,w) and letting c(w) = Jow) " Then

w .

SR N S
) ~ Qg hws )

Jj=1

ﬂoF:(Mm

Hhen Aw) i (w)
1) = T wywc(w))

Notice that f;(0) = 1. Also, we can apparently choose A such that fi(u) > 0 for v > 0. We
proved the existence of T' € Auty(My) such that the T o F' satisfies the normalization (3.6) in the
lemma.

We next prove the uniqueness of T'. Suppose that there are T} = (¢1,11) and T = (¢2, 19)
such that both T; o F' and T o F' satisfy the normalization condition in (3.6). Then one can see

easily that it must hold ¢; = 19 when restricted to My. We leave it to the reader to verify that
¢1 = ¢2 along M.

There is another normalization used in [Mos| for F:

Lemma 3.4/([Mos]): There is a unique T € Auto(M)) with A = 0 such that

oo

(3.7) ToF = (szfj(w),g(w)> with fo(w) =0, fi(w) =1, g(w) =w + o(Jw]|).

J=0

Proof of Lemma 3.4': We choose T} to be of the form (21_%((22))1: , w). Let c(w) = w Then

1o F = (£, ) g(w)).
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Next we take Tp = (g% (w)A(w)z, w(g*(w))?) with g*(u) > 0 if u > 0. Then, we can choose
A(w) with |[A(u)| =1 such that g*(u)A(u)f1(u) = 1. Then Ty 0T} o F has the normalization as in

Lemma 3.4’. The uniqueness part can also be done easily.

We now derive the Moser pseudo-formal norm for (M, 0), where M is defined as in (3.1). We
will subject to M the transformation of the following form:

(3.8) {Z'=F=z+f(z,w), w' = w with
| fzw) =302, flw)z!, fi(u) >0, f1(0) = 1.

Proposition 3.5: With the above notation, there is a unique formal holomorphic transfor-
mation (2/,w") = F(z,w) as in (3.8) such that in the (z’,w’) coordinates, F'(M) is given by the

following pseudo-normal form:
(3.9) w' =22+ ¢(2) + ¢(2)
where ¢(2') = 377 o3 a;(2').

In the above lemma, if all a; = 0, then M is formally equivalent to the model M. Otherwise,
we can assume that a, # 0. In fact, replacing (2, w’) by (kz, k?w) for a suitable x, we can further
make as = 1. It can be verified that s is then also a biholomorphic invariant of (M, 0), which we
call the s-invariant. When (M, 0) is formally equivalent to the model, we say the s-invariant of
(M, 0) is co.

Proof of Proposition 3.5: Substituting (3.8) into (3.9), we have

w=(z+ f(z,w)(Z+ f(Z0)) + ¢z + f(z,w)) + ¢ + ¢(z, w)),

for w = |2|*> + E(z,%). Collecting terms of degree s in (z,%), we get
E®) = 2ft=1(2,22) + f07V(2,22)7 + ¢ (2) + 60 (2) + GV (2,2)

where G(®) is completely determined by £~V (z,2%),¢(?) (2, 2Z) and ¢(?) for ¢ < 5. Moreover,
G®) is 0 when £~V (z,22) = ¢(7)(2,22) = ¢{7)(2) = 0 for 0 < s. We will also assign the weight
of u to be 2.

We will inductively determine F and ¢. Suppose F(?) and ¢(?) have been solved for o < s.
Write T'(2,%Z) = E(®) — G(*). We then see that ¢(*) = I'(z,0). Write I'(z,%Z) — I'(2,0) — T'(0,2) =
To(22) + 322, (2T (2%) + 2ITy(2%)) with T; = Ty, Ty = Tp. Since fi(u) > 0, fo = 0, we obtain

(23,) B F((jzs’+2) (u)7F528/+2>(0)
(3.10) ) = 2 ’

' ! / (2s'4+2) (y_p(25'+2)
l(2s )(u)u :Pz(331+2)(“) or fl(zs)(u) _ Pt

u Y

[>1.
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Let £(*), ¢*) be the unique solutions given as above. Let F(®) = (2 +3" f(8) w). Then F satisfies
the normalization as in (3.6). Now, the composition of such a map formally transforms (M, 0)

into a special form as in (3.9).
Similarly, one also has the following:

Proposition 3.5 ([Mos]): Let (M,0) be given as in (3.1). Then there is a unique formal
holomorphic transformation (z’,w’) = F(z,w), that satisfies the normalization in (3.7), such that

in the (2/,w’) coordinates, F'(M) is given by a pseudo-normal as in (3.9).

A surface defined by an equation of the form in (3.9) is said to be presented in the Moser
pseudo-normal form. It should be mentioned that the coefficients embedded in the Moser pseudo-
normal form are far from being holomorphic invariants. Indeed, the Moser pseudo-normal form is
still subject to the action of a huge group: Auto(Mj), which, different from the real hypersurface
case, is of infinite dimension. It has been an open question how to simplify the Moser peudo-
normal form further to get a more invariant representation for Bishop surfaces with vanishing
Bishop invariant. It is also an open question if a real analytic (M,0) can be transformed into
a convergent Moser pseudo-normal form through a convergent power series. In the following
subsection, we will show that if M is formally equivalent to the model M, then it is biholomorphic

to Mp. We will follow essentially the argument in [Mos| for this purpose.

3.3. Bishop surfaces which are formally equivalent to (M,,0) with A = 0: In this

section, we give the proof of the following theorem of Moser:

Theorem 3.6( Moser)[Mos|: Suppose (M,0) is formally equivalent to (My,0) with A = 0.
Then (M, 0) is biholomorphic equivalent to (My,0).

Let M : w = 2Z+ F(z, %) with E = O(|z|?) real valued be formally equivalent to M, with A\ =
0. E(z,£) can be assumed to be holomorphic in the polydisc |z[, [£] < 1, sup,, ¢j<1 [E(2,Z)] < 0.
Replacing (z,w) by (€, e2w) for e << 1, we can always make ng sufficiently small.

We will seek the transformation of the form 2’ = z + f(z,w), w’ = w as in (3.6), such that

w=(z+ f(z,w))Z+ f(zw)), or
Zf(z,w) + 2f(Z,W) = E — |f(z,w)|?, w = 2Z + E(z,%).

Consider its lineariztion:
Zf(2,22) + 2f(2,22) = E
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which may not be solvable in general. However, as what we did above, we can solve the following
Zf(2,2%) + 2f(2,22) + ¢(2) + 6(2) = E(2,%)

where f(z,w) =372, fj(w)2? with fo =0, fi(u) >0 and f1(0) = 1. Still write

(3.11) E = Fy(2%) + 3 (Ey(22)2' 4+ E(22)7") + E(2,0) + E(0,%).
=1

Then as in (3.10), we have the following
¢(2) = E(2,0),
u) = Eo(u)—Eo(0)

fl( 2u
fé(u) = Elil(u)_Elil(O)? l= 2737 T

u

(3.12)

For the rest of this section, for 1/2 < r < 1, we write
(3.12) A ={(z,w): |z| <7 |w| <r?}, D,={(z,w): |z| <r, Jw <7}
We will also use c;, c;- to denote certain absolute constant.

Proposition 3.7: Suppose that E(z,¢) € Hol(D,). Let p € (1/2,r). Write

IElr = sup  [E(z,8], [flr= sup |f(zw)].

|z|<r, €l <r 2| <r,|w|<r?

Then f, ¢ are holomorphic over D, with following estimates:

flo <er(r =p) 7 I
(3.13) [felp + 1 fuwlp < eax(r —p) 2| Elr,
sup|, <, [#(2)| < || E]l:-

Proof:  Note that z‘Ey(2¢) = 2#7” 0% E(e*z,e7%¢)e™"dh. By the maximum principle,

sup |E(w)| < sup |Eo(w)| =r 7| El,, sup |fe(w)| <20~ 17| E],.
|w|<r2? |w|=r2 |w|<r?
Hence,
€o
r—=p

o <3000 sup [fuw)] < 3 o2 192 B, = —2 | ),
=1

/=1 lw|<p?
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Sup o) < B
z|I<r

This, in particular, shows that f is holomorphic in any D, for p < r. Thus we see f, ¢ € Hol(D,.).
To get the estimates for derivatives, we set 7 = %. By the Cauchy estimates, we obtain:
4 fle _ AlEl

E <
T Bl 1l < 2T < G

AallBl,
(r—pl

|flr < | fwlp <

This completes the proof of the proposition. B

The following is basic for applying the rapidly convergent power series method to prove
Theorem 3.6.

Lemma 3.8: Suppose that M : w = 2Z + E(z,z) with the s-invariant s = co. (Namely,
suppose that M is formally convergent to the model My). Assume that ord(E) > d. Then the
transformed surface F/(M): w' = zz' + E’ obtained above has ord(E") > 2d — 2.

Proof of Lemma 3.8: We have the equation:
(314) Ef(z,w) + Z7(27w) =FE - |f(Zaw)|2 - E/(Z + faz"f— f(z,w))

Apparently, when ord(E) = d, by (3.12), we have ord(f) = d—1 and thus ord(|f(z,w)|?) > 2d—2.
Notice that ord(f(z,w) — f(z,2%Z)) > 2d — 3. Since we assumed that s = oo, it must hold that
ord(¢(z)) > 2d — 2. (Otherwise, E'(2',2") = Re(bs,2"%°) + o(|2’*°|) with 2 < s9 < 2d — 2 and
bs, # 0.) Therefore it is easy to conclude that ord(E’) > 2d — 2 by the way f, ¢ were constructed.
(See (3.12)). N

Now let M’ = F(M) be as above defined by: w’ = |2/|> + E'(2',2’). We will estimate E’.

After complexification, namely, after replacing Z by a new variable £, we have

(3.15) E'(2,¢') = —&(f(z,w) = f(2,28)) = 2(f(&w) = [(§,28)) = f(z,w) [(&w) + &(2) + ¢(€)

where 2’ = Z+f(Z,’LU), 5/ :§+7(£,U)), w = Z€+E(z>€)
Let r’" and r be such that + <1’ <r < 1 and choose 7, p € (r',r) such that r —p=p— 0 =

o—1r'=z(r—1").

Lemma 3.9: Let M be as above with ord(E) > d. Then, there exists an absolute constant
1 > § > 0 such that if |E|,, < §(r — 7')?, the above defined mapping F : (z,w) — (2',w') =
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(z + f(z,w),w) takes every value in A, exactly once from A,, and takes M into M’ = F(M)
with E’(z,Z') holomorphic in 2/,¢ € D, and

d
| E]| 2
3.16 Bl < cof Bl :
( ) H H —CQH ” {(T’—T’)2 + r

Proof of Lemma 3.9: Write ¥(2/,w') = F71(2',w') = (¢(2,w’),w"). We need to show that
for each fixed w with |w| < 02 and 2’ with |2/| < &, we can solve uniquely the equation 2’ =
z+ f(z,w) with |z| < p. For this purpose, we let § be sufficiently small so that |f.|; + | fu|r < 35
and |f|, < 55(r —7') with 7 = %7"/ Let 2z = 2’ and 2,41 = 2’ — f(z;,w) for j = 2,---. By the
standard argument on the Picard iteration procedure, one can verify that |z;| < p and z; — 2
with |z| < p, too. Apparently, z is the solution that we want.

This proves that ¥ biholomorphically maps A, into its image contained in A,. Notice that
for (2,€) € Dy, |w(z,€)| = |26+ E(2,€)| < |o|* + || E||» < p? provided that ||E||, < p? — o2, which
holds automatically by the way we choose § above. Hence, we conclude that E’ is holomorphic

in D,. Moreover,
1E [l < 1Qlo,
where

(3.17) Q(z,8) = = &(f(zw) = f(z,26)) |
—2(f(&,w) — f(&,28)) — flz,w) f(&,w) + ¢(2) + ¢(€)

To estimate ||Q||», recall that for (z,€) € D,, |w| < o? + ||E||, < p*. Hence,

f(z,w) = f(2,28)| < Sup [full Bllo < er(r = p) 2B,

P

d
lp(2)| < ||E||» for |z| < r. Also, by the Schwarz Lemma, |[¢(2)]| < (%) |E||, for |z] < o. Notice
that
[f(z,w) (& w)| < ci(r = p) 2B

d
Hence, |Q|s < ch{(r — p) 72| E|? + (%) I|IE]|}. To complete the proof of the lemma, we just

need to notice that r — p = 7“—37“' and thus (2)? < O,

Proof of Theorem 3.6: We start with M : w = 2z + F(z,%) with ord(F) > 3 and assume that

the s-invariant of M is co. Choose {r,}52; with r, = (1 + %H),

1 2
Pv =Ty — g(rv - T’UJrl)u Oy =Ty — g(rv - Tv+1)~
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We mentioned that we can a priori make € := ||E||,, arbitrarily small. Our goal will be proving
that when € is chosen to be sufficiently small, then the F,(z,£) obtained successively will be
biholomorphic in D, and ||E,|,, — 0 as v — oco. Moreover, &, = ¥; o W3 0 --- ¥, converges
uniformly in A;/,. Hence, it follows that @ Y(M) = M, converges to w = zz. Namely, the
inverse of the limit of {®,} biholomorphically maps (M, 0) into (My,0). In details, we explain as
follows:

Note that ord(E,) > d, = 2¥ + 2 for v > 1. Set

€y = (Tv - Tv+1)_2HEvHTU-

Suppose €, is smaller than the § required in Lemma 3.9. Then by (3.16),

2
(3.18) i1 < (&) erey (Gv N (m+1)d7“)_

Tv+1 — Tv+2 Ty
Hence
(3.19) €vt1 < C364(€y + Ay).
Here

dy

Lemma 3.10: Suppose a positive sequence {¢,} with €; << 1 satisfies (3.19). Then when

Now, we have the following;:

€1 is sufficiently small, €, < 27Y. Moreover, for any ¢’ < 1, by making ¢; sufficiently small, one

also has €, < ¢

Proof of Lemma 3.10: Notice that A, < =22 < Le=v" We first choose N >> 1
and €; << 1 such that A\, < 27% for v > N, ey < 27 < (4¢)7!. Then ey < 27V~1 By an

induction, one sees that €, < 27Y for any v > N. The rest of the proof is apparent.

Hence, once we start with ¢ << 1, then Lemma 3.10 says that Proposition 3.9 can always
be applied. We see that ||E,||,, < € < 27 — 0. The reader can easily verify the uniform
convergence of {®,} as v — oo over Ay ,.

Now the mapping ® = lim ®, defines a biholomorphic mapping from (C?2,0) to C?,0). Its
/‘2

inverse maps M into the model w’ = |2’|?. By Lemma 3.4 or Lemma 3.4’, we can also make ®~!

satisfy the normalization in (3.6) or (3.7), respectively. B
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§ 4. Moser-Webster’s Theory on Bishop surfaces
with Non-Exceptional Bishop invariants
Now we turn to real analytic elliptic Bishop surfaces with non-vanishing Bishop invariant.
Let M be defined by

(4.1) w= (%) + o[z,

where ¢x(2,Z) = 22 4+ A(z? +2%) with 0 < A < 1. Write M\ = {w = ¢x(2,%2)}. Then M, is
still foliated near 0 by closed analytic curves which bound holomorphic curves. Hence, a similar

argument as in §3 can be used to show that Auty(M)) consists of precisely the maps of the form:
(4.2) 7 =a(w)z, w = a*(w)w with a=a, a(0)# 0.

More generally, we call 0 € M a non-exceptional complex tangent if 0 € M is a non-degenerate
1
) 9
has no roots of unity. It is shown in [MW] that for the general model M with A non-exceptional,
Auto(M)) also consists precisely of the maps of the form in (4.2). (See [Corollary 3.5, MW]).

One might also want to use the methods in the previous sections to normalize Bishop surfaces

complex tangent with Bishop invariant A # 0, 3, co and if the quadratic equation: A\y2 —vy+X =0

near general non-degenerate Bishop complex tangents. However, one would find out that even
the linear algebra involved for the linearized equation will immediately become a lot of more
complicated. Up to now, no one seems to have succeeded in obtaining a complete set of invariants
in this way. In the paper of Moser-Wester [MW], they reduced the normalization problem to the
normalization problem for a pair of involutions intertwined by a conjugate holomorphic involution.
This reduction enables them to completely settle the local equivalence problem for elliptic Bishop
surfaces with non-vanishing Bishop invariant. In the following, we present a quick discussion on

the theory of Moser-Webster. The reader is referred to their original paper [MW] for more details.

4.1 Complexification M of M and a pair of involutions associated with M: Assume

that M is defined by an equation of the form
w=2Z + \N2* +7%) + H(2,%Z) with H(z,%) = o(|z]?).

Replacing Z by ¢ and w by 7, we obtain a complex surface M in C* near the origin defined by

_ _ Ju=2+ M2+ ) + H(z2,9),

Consider the projections 71 and m from M to the (z,w) and (&, n) spaces, respectively. Then 7

are two-to-one branched covering maps. Write 7; for the deck transformations of 7;. Namely, for
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p,q € M 7;(p) = ¢ if and only if 7;(p) = 7;(g). One sees that 7; extend to biholomorphic self-
maps of (M,0). Also, write p for the conjugate holomorphic self-map of (M,0): p(z,w,§,n) =

(€,m,%,w). Then, the following relations are fundamental:
(4.4) =17, pP=p, Ta=poriop,

In what follows, we call (7}, p) the Moser-Webster triplet. Notice that M is parameterized
by (2,£) by (4.3). We can define the following self-maps of (C?,0):
(i): 71(2,€) := (2,¢&) if and only if 71 (z,w,&,n) = m (2, w, &, n’) for a certain (z,w, &', n’) € M.
(ii): 72(z,&) = (¢/,€) if and only if 71 (z,w, &, n) = w1 (2, w', &, n) for a certain (2, w’,&,n) € M.
(ii): p(z,€) = (,%)

A direct computation shows that 7o and 71 are given, respectively, by:

Z/ = —z - l£+ hl('z?f)a
(4.5) {é,:& ;
2=z,

where h;(z,£) = o(|(z, )I)-
7; are naturally associated to 7; by (4.3):

(4.7) 7=V o7 0Wy, p=T ' opo .
The following lemma can be proved by a direct construction:

Lemma 4.1: Bishop surfaces (M,0) and (]TI/ ,0) with Bishop invariant A\ # 0,%,00 are
holomorphic equivalent if and only if there is a biholomorphic map ¥ from (M, 0) to (//\2 ,0) such

that Wo7; = 7,00 and Wo p=po .

Suppose that we have a general pair of holomorphic involutions 7 and 75, together with a
conjugate holomorphic involution from (C2,0) to (C?,0). Let M be the complexification of the
Bishop surface in (4.1). Suppose that there is a biholomorphic map ® from (C?,0) to (M, 0)
such that

o7 =7;0®, and Pop=pod.

Then we say {(M,0),7;,p} is parameterized by {(C?,0),7;,p} through ®. Notice that it then
always holds that 7 = po 7 op.
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The following is a fundamental fact in the theory of Moser-Webster, whose proof can be

reduced to the proof of Lemma 4.1

Proposition 4.2: Let (M,0) and (M ,0) be two Bishop surfaces with Bishop invariant
A#£ 0, %, oo. Suppose that the Moser-Webster triplet of their complexifications are parameterized
by {7j,p} and {7}, p}, respectively. Then (M,0) is holomorphically equivalent to (M ,0) if and
only if there is a biholomorphic map v from (C?,0) to (C?,0) such that

7= p= v

4.2: Linear theory of a pair of involutions intertwined by a conjugate holomorphic
involution: Assume that we have two involutions 7; : (C?,0) to (C?,0) and an anti-holomorphic
involution: p: (C?,0) — (C2,0) such that 7 = p71p. We always assume that the linear parts T}

of 7; satisfy the following properties:

(4.8)

Ty, Ts have no common non-trivial eigenvectors;
det(Tj) + 1 = tTTj = O

Notice that this is always the case for the holomorphic involutions obtained from Bishop surfaces

with Bishop invariant A # 0, %, oo. Indeed, for such involutions,

(4.9) T2:<_01 _1%>,T1:<_1% _01).

We first present the linear theory for these involutions.
Assume 7;, p are linear. Let ¢ = 71 o 75. By studying the normalization of ¢, one can find a

new coordinates system (see [Lemma 2.2, MW]) (z,y) in which

Y, vT),
¢(x,y) = (pw, py~") with p =2, u* # 1.

Also, it holds either
p(z,y) = (¥,
(4.11) { (oq) = (v

The coordinates system which put 7, p into the above normalization is unique up to the scaling
map, which maps (x,y) to (az,ay) with a = a.
We now discuss how to construct a Bishop surface M such that (M, 7}, p) is parameterized

through a certain biholomorphic map ® by the above mentioned set of involutions.
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First, we let £ = b(yx+vy), 2 = a(zr+y), a,b € C. Then z is invariant under the action of 7
and ¢ is invariant under the action of 7. We will also so construct w and 7 that they are invariant
under the action of both 7 and 7. We need to choose a, b such that p will be associated to the
mapping (z,w,&,n) — (€,7,%,W) in the complexification of the surface. Hence, when v =7 > 1,
we need to choose a = b. When 7y = 1 with 0 < arg(y) < %, we chose ay = b. Hence for p in

(4.11), we have, respectively, the following expressions:

(i) : £ =b(yz +y), z=blz +Yy);
(4.12) {(ii): §=b(yr+y), z=bA(w +y).

We only consider how to construct Bishop surfaces in Case (ii). The simplest quadratic polyno-
mials that are invariant under the action of both 7; are cxy with ¢ € C'. We then want to choose

b so that ¢y (z,y) is a multiple of zy. In fact,

w =qx(z,§) = 26 + \(z* + &)
= [b]*F(v2* + ¥’zy + Yy + vy?)

+A (52 (v22® + 2yzy + y°) + 292 (2® + 2ywy + 7y2)>

Hence we obtain

2 2.2 | 3252y _
(4.13) 6] 4 Ab%y j—zb'y)\—o
]2 4+ Ab? +b"X = 0.
Therefore, we can choose b be such that |b| = 1 and b*> = —y~!. For such a choice of b, we have

A=(y+y D' >0and ¢ = 26 + A2+ €2) = A1 (1 — 4\2)ay
Now, it is straightforward to verify that {7;, p} is a parameterization for the Moser-Webster

triplet on the complexification of w = ¢x(z,z) through the map

(4.14) O(z,y) = (2(z,y), w(z,y) = A1 — 4Ny, &(z, y),n(z, y) = ©(z,y) = w(z,y)),

where z(z,y) and £(x,y) are given by the second formula in (4.12).

Notice that A = (y++v7 1)~ or Ay2 — 4+ X = 0. Hence when vy = 1 with 0 < arg(y) < 7/2,
the Bishop invariant of the quadric A > % Namely, M has a hyperbolic complex tangent at 0.
The reader can verify that in the case of v = 7, the involutions studied above parameterize the
Moser-Webster triplet for elliptic Bishop quadrics with \ # 0.

4.3. General theory on the involutions and the Moser-Webster normal form: We

now study the non-linear involutions 7; and p with 7 = p o 7 o p, whose linear parts satisfy the
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property in (4.8). For the purpose of studying Bishop surfaces, one can assume that p is conjugate

linear. By §3, after a linear change of coordinates, we also assume that in (z,y)-coordinates,

x' =7y +pj(z,y)
4.15 = s
(4.15) g {y’ = '+ q;(2,y)

(4.15)"  p(z,y) = (¥,7) and y =7 > 1; or p(z,y) = (T,y) and |y| =1, arg(y) € (0,7/2).

_ _ @ =pa ot f2y)
(4.16) Pmemis {y’ =ty +g(z,y)

where v1 = 75" =, p =% 2 # 1, pj,q;,f,9 = o(|(z,y)]). We will subject to 7;, ¢ a
transformation of the following form:

Jrx=t+ult,T)
(4.17) Y= {y =T +v(t,T)

For any formal power series p(t,T'), we can write it as
o0
p(t,T) =) ps(t,T),
—00

with p(7t, 771T) = 75ps(t, T), for any 7 € R. We call p, is of type s. We impose the normalization
condition for the transformation in (4.17): u; = v_; = 0. A fact is that for any ¢ as in (4.17),
there is a unique factorization: ) = 1)g o § where 1)y is normalized and 6(¢,T) = («(tT)t, B(tT)T)
for certain o, 8 with a(0) = 8(0) = 1.

Theorem 4.3 (Moser-Webster [MW]): Let 7, p, ¢ be in (4.13)-(4.14) with g = +? not a

root of unity. Then there is a unique normalized transformation 1 of the form (4.17) such that
¢_17'1¢(t; T) = (AT7 A_lt)a ¢_17'2¢(75, T) = (A_1T7 At);
YTIY(t T) = (Mt, MT), v~ pp(t,T) = p(t, T)
where A = v+ Y07 Ao (tT) = v+ o(1), M = A*(tT). The most general transformation that
makes 7; into the above normal form is of the form: ¢ o ¢ with o(t,T) = (r(tT)t,r(tT)T).
Here r(tT') = 7(tT") and r(0) # 0. Also in these coordinates, A satisfies either the property

A(tT) = A(tT) or A(tT)A(tT) = 1, according to the first form or the second form p takes in
(4.15)", respectively.
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Idea of the Proof of Theorem 4.3 The proof is done by an induction argument. Here, we
only sketch the the proof how to construct the unique normalized map v which puts 7;, ¢ into
their normal form. The reader can find the detailed proof for statements in the theorem, in the
original paper of Moser-Webster [§3, MW].

Assume that there is a 1) whose terms of order less than m can be chosen uniquely so that
w_lsz/J has the property in the theorem up to order m — 1. Thus we assume that 7; take the
following form:

J y’:Aj rT+q;+---
where Aj(zy) = A;(xy) are polynomial of degree < m — 1, p;, ¢; are holomorphic polynomials of
degree m > 2. The dots denote terms of order at least m + 1. Using 7'32 = Id and noting that
Aj(75) = Aj +O(m), we get

(4.17) 45, y) + pj (viw, v ty) = 0.

It then follows that

¥=Mzx+a+..,

¢ I oag—1

Yy =M y+b+..,

where M = AjA; " and a = 712 + p1(Y2y, 75 @), b(z,y) =17 pa(2,y) + ¢1 (729,75 ' @).
We want to choose u,v so that ¢ = 1)~ !¢t has the form given in Theorem 4.3, modifying

terms of order at least (m+1). Then one can see that it forces ¢»~!7;1) also to have the form as in
Theorem 4.3 modifying terms of order at least (m+1). Let ¢ be in Theorem 4.3. Since ¢ = ¢,

we have:

(4.18) { u(pt, p='T) — pu(t, T) = (a —a@)(t, T)

v(ut, p = T) — pto(t, T) = (b= b)(t, T).
We want to make a5 = 0 for s # 1 and by = 0 for s # —1. This leads to the equation:

(" = p)us = as, s # 1
(419) { (,U,S — /,L_l)Us = bs; S 7£ _17

which clearly can be solved by the assumption.
Then, @, = a1 = A(tT)t, b_y = b_1 = B(tT)T, and 1 is uniquely determined up to order m.
We next show that p;(x,y) = P;(zy)y, ¢;(x,y) = Q;(zy)x. By (4.17)", we have

g2 + p172 = tA, v 'p2 + 172 = TB.

By (4.17), ¢ = =y~ 'p171, g2 = —yp272 up to order m. Therefore, py — upy = v~ 'yA, p2 —p1¢ =
y1zB. This then leads to p; — up1¢d = y(v LA+ uyB), pa — up2¢ = y(y " uA + vB). Since p is
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not a root of unity, this implies that p; are of type s = —1. Similarly, we can get g; are of type
s = +1.
Returning to 7;, ¢, we may write

AT = (A + Q)+

with Ay = A7'. One can also verifies that (A; + Pj)(Aj_1 + @Q;) = 1+ O(m). By induction, we
proved the existence of ¢, which normalizes 7; and ¢.
The rest of the proof is similarly done, which we refer the reader to [§3, MW]) L.

The following result of Moser-Webster provides a convergence result when v does not have
norm 1. The proof is based on a majorant argument, motivated by the study of the normalization

problem for area preserving mappings in mechanics. (See [SM]). The proof can be found in [§4,
MW].

Theorem 4.4: Let {7, p} be as in Theorem 4.3. Assume that |y| # 1. Then the normal-

ization 9 in Theorem 4.3 and the normal forms for 7;, ¢ are convergent near the origin.

Making using of Theorem 4.2, Theorem 4.3 and a similar way for constructing Bishop surfaces
from the involutions as discussed in §4.2, Moser-Webster obtained the following Theorem. (See
[§5, MW])

Theorem 4.5 (Moser-Webster): Let (M,0) be a real analytic Bishop surface with Bishop
invariant A € (0,1/2). Then there is a holomorphic change of coordinates, such that in the new

coordinates, M is represented by an equation of the form:

(4.20) w=2Z+ (A ew®) (22 + 22), e€=0,+1.

§5. Geometric Method to the Study of Local Equivalence Problems
The method we discussed in the previous sections is fundamentally based on the understand-
ing of the associated power series. Results obtained in such a manner are usually easy to apply;
and invariants obtained so are relatively easy to computer. However, it mainly applies to real
analytic submanifolds. The convergence issue may also be very difficult to handle in certain cases.
In this section, we introduce to the reader a geometric approach for the study of the equivalence
problem, initiated from the work of E. Cartan. This method applies to smooth CR generic sub-

manifolds. The invariants are the so-called curvature functions and their covariant derivatives.
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Notice that the invariants from the power series method are usually embedded into the coefficients
of the normal forms. There are many references related to the topics discussed here. We mention
[Ga] [CM] [Ch] [CJ] [Ja] [HJY] [HJ2], to name a few.

5.1 Cartan’s theory on the equivalent problem: Let V, V C R"™ be open subsets with
peVandpeV. Let Oy = (61, ...,07%)" and 5‘7 = (5%7,,53)’5 be co-frames on V and V,
respectively. Let G C GL(n,R) be a connected linear subgroup. We would like to understand
the following question: When does there exist a diffeomorphism ® from V to V with d(p) =q
such that @*(5‘7)(17) = Y,7(p)fv, where v, = (p) € G for each p?

To answer the question, we construct its G-co-frame bundle (Y,n,V), where Vp € V,
m(p) = {g-0v(p) : g € G}. (Since we only consider the local problem, we can identify Y
as the product manifold V' x G.)

Notice that G acts smoothly from the left on Y, which is defined as follows: VC € G, and
P=g-0y(p) e (p),

(C,P)=(Cg)-0v(p) € = " (p).

This action makes Y into a so-called G-structure bundle over V'

Now, 0y can be lifted naturally to globally defined 1-forms w = (w1, -+, wn)*: wilgoy (p) =
g (64 (0). o

Similarly, we can define a G-structure co-frame bundle (Y, 7, V)

In what follows, when there is no confusion, we identify the space Y with V' x G through a
manner, which should be obvious from the context. For instance, in the following lemma, Y is
identified with V' x G. through the map g0y (p) — (p, g).

Lemma 5.1 is simple but important for Cartan’s theory.

Lemma 5.1: There exists a diffeomorphism ® : V — V with ®(p) = p satisfying @*(5‘7) =
Yy 0v, where v, & smoothly maps V' into G, if and only if there exits a diffeomorphism ol
V x G — V x GG such that
Y% =w, with ®'(P) =P,

where P € ;' (p) and Pe 7T§1<ﬁ).

Proof of Lemma 5.1: We need only to show that the existence of ®! gives the required ®.
(This is because if we know ®, we can set ®!(u,S) = (®(u), Sy;%(u)))

Assume that ®! : ¥ — Y is a diffeomorphism such that ®*(&) = w. Write ®*(u, S) =
(®(u, S), T(u,S)) with u € V, ®(u,S) € V and T(u, S) € G.
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The assumption that ®*(w) = w gives that
O (Tr(05)) = Smir(Bv), or
(m 0 @) (6) = (T(u. 9)) 'Sy (By), or
(@(u, 9))*(05) = (T(u, $)) SOy

Since {5‘7} is a co-frame fro T*(V) and {0y} is a co-frame for T*V, we conclude that the partial
derivatives of ®(u,.S) with respect to the group variables must be zero. Hence ®(u,S) = ®(u).
In particular, T'(u, S)~1S = 'yv‘~/.(u). The proves the existence of the required map from V to V.
|

Let dim G = r. Then dim(Y') = n+r. With the forms wy, ..., w,, we would like to add r more
1-forms w™™, ... W™ on V x G to form a co-frame Q over Y such that ®1*(0) = w if and only
if Cbl*(fl) = (). If this is the case, we call such an equivalence problem an e-equivalence problem.
Whether we can extend w to 2 to reduce to an e-equivalence problem depends strongly on the
property of the group G. Fortunately, for the CR equivalence problem for Levi non-degenerate
hypersurfaces, we do have such a reduction which is the content of the Cartan-Chern-Moser theory
([CM)). N

Suppose that w has an extension to €2 such that there is a diffeomorphism ® from Y to Y
with ®*(w;) = w; (j < n) if and only if ®*(2) = Q, namely, &*(&7) = w for any j € {1,...,n+7}.
The forms {w’} for j > n + 1 are called the connection forms.

Next we introduce Cartan’s method for the study of the e-equivalence problem, by introducing
a new type of invariant functions from what presented in the above sections.

Let Q© = {w;} be a coframe over a domain V' C R". For any differentiable function v over

V', we define its covariant partial derivative:

(5.1) dy = Z'y‘iwi.
Since {w;} is a co-frame, we can uniquely write dw’ = Y C%w’/ A w” with Cf = —C};. Let
1 = {w;} be a co-frame over another domain V' C R". Apparently, if there is a ® with ®*(Q) = (2,
then it mus hold

é;k\l °od = ‘I’*(é;ku) = C;k\l'
Hence {C’;,€| ,} are the simplest invariant functions attached to the e-equivalence problem for the
co-frame €). Now, we can inductively take the covariant derivatives of the obtained invariants to

get new invariant functions. More precisely, for each integer s with s > 1, we define

(5.2) DL (Q.V) = {C;k,C;ikul, Oy, |10k s < n+r},
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which is written as a lexicographically ordered set. We define
(5.3) ks(p) :=rank{d I's(Q,V)}(p), p€eV,

to be the dimension of the span of the differentials which occur in the ordered set I's(€2, V). The
order of the e-structure Q at p € V' is the smallest jo = jo(p) such that

kjo (p) = kjo+1(p)-

In this case, the rank of the e-structure 2 at p is defined as

po = po(p) = kj, (p).

We say that the e-structure €2 is regular of order jo and of rank py at p € V if there exists
a neighborhood U, of p in V such that the order jy(q) = constant and rank po(q) = constant,
Vq € Up. Then we can find po- functions {g1,...,9,,} C I';,(©2, V), and a certain neighborhood
Up,of pinY sothatd g1 A---ANd g,, #0,

(5.4) dgndgiN---Ndg,, =0 on Uy, foranygel;+1(Q,V).

Notice 0 < jo < n+r — 1. The case jo = 0 occurs when the functions C;k = constant for
all 7, j and k. And the case jo = n+r — 1 occurs if and only if one invariant function is added at
each jet level. Notice that 0 < pg <n+r—1. When py = n +r — 1, we say that I'(2, V) is of
the maximal rank.

Next, for each g € I'j,+1(2,Y), since dg A dgi A ... Adg,, = 0, we conclude that there is a

unique function A, such that

g = A9(917 ceey gpo)

where A, is defined near a neighborhood of (gi(p),...,g,(p)) which is called the the relation
function of g with respect to {g1,...,9p, }

The following fundamental theorem is due to Cartan.

Theorem 5.2 (E. Cartan [Ga]): Let © and Q be two smooth regular e-structures of order
Jjo and rank pg. Let ¢1,...,g,, be as in (5.14). Let g1, ..., g,, be such that they have the identical
lexicographic indices as for g1, ..., g,,- Then the following statements are equivalent:
(i) There exists a C° diffeomorphism @ : (V, p) — (V,p) with ®*Q = Q.
(i) §;(p) = g;(p) holds for 1 < j < py, and for any function g € T';,11(€, V), and § € Tj, 4+1(, V)
with the same lexicographic order, it holds that Ay = A near (91(p), ..., gp(0)).

43



Suppose that €2 is a real analytic co-frame and V is connected. Then, there is a proper real
analytic subset E such that any point in V' — E is a regular point. Also, from the uniqueness
property of real analytic functions, the order and the rank of €2 are all the same in V' — E. We
define the order and the rank of 2 in V' to be the order and the rank of €2 at any point in V' — E.

We call 2 an algebraic co-frame if w/ = h{ da! with hf Nash algebraic smooth functions.
We define the algebraic degree of w’ to be the maximum degree of the algebraic functions h{ .
Here, we recall that for a Nash algebraic smooth function h # 0, there is an irreducible polynomial
P(xz,X) in (z,X) such that P(z,h) = 0. Then we define the degree of h to be the degree of the
polynomial P(x, X). It is apparent that when ) is an algebraic co-frame, then any curvature

functions and relation functions are algebraic, too. Suppose that the order of €2 is jo. We set
(5.5) £(2) = maxger, ., deg(g).

Then we have the following versions of the Cartan theorem in the analytic category and

algebraic category, which are a lot of more convenient to apply:

Theorem 5.3: Let  and ) be analytic e- structures at p and p, respectively, with p a
regular point of €2. Then the following are equivalent:
(i). There exists a C* diffeomorphism @ : (V,p) — (V, p) such that

O Q) = Q.
(ii). Tr(Q, V)(P) = T(Q, V) (p) holds for all k.
(iii). Suppose that 2 and Q have order jo and rank pg at p and p, respectively. Also assume
that p is a regular point for Q. Let g1 ---» Gp, e as above, and let gy, ..., g,, be the corresponding
relation functions with the same lexicographic order as for g1, ...,g,,. Then g;(p) = g;(p) holds

for 1 < j < pg, and for any function g € I';;+1(Q,V), and g € FjOH(Q,V) with the same
lexicographic order, it holds that A, = A}; near (g1(p), ---, 9p(0)).

Theorem 5.4([HJ2]): Suppose that © and Q are algebraic co-frames with

lo = max{/(Q),£(Q)}.

Assume that p € V' is a regular point for . (See (5.5) for the definition of ¢(Q2) and ¢(f2)). Let

pE V. Then the following statements are equivalent:
(i) Tars (2, V) () = Ty (2, V) ().
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(ii) There is a real analytic diffeomorphism ®! from a neighborhood of p € V' to a neighborhood
of p inV such that ®1*(Q) = Q.

We mention that both Theorem 5.3 and Theorem 5.4 can be stated in the holomorphic
category when {2, Q are holomorphic or holomorphically algebraic co-frames. For instance, we

have the following:

Theorem 5.3': Let  and © be holomorphic co-frames at p € V and p € V, respectively.
Here V' (or, ‘7) is a neighborhood of p (or, p, respectively) in C". Then the following are

equivalent:
(i). There exists a biholomorphic map ® : (V,p) — (V,p) such that

*0=0Q, d(p)=p
(ii). Tr(Q, V)(P) = T(Q, V) (p) holds for all k.

The proof of these results are based on the Frobenius Theorem. We first prove Theorem 5.2.
Apparently, we need only to show that (i7) = (7). ((¢) = (ii) can be seen by the basic fact that if
® is a C* diffeomorphism from (V,p) to (V,p) with ®*(Q) = Q, then rQ,Vv)= I‘j(ﬁ, V)o®.)

Proof of Theorem 5.2: Consider the manifold M C V x V defined by gj(xz) = g;(z) for
(z,7) = (p,p). Here {g;}/2, and {g;} are as in the Theorem. M is apparently a smooth manifold
of codimension p near (p,p), for dgi A ... Adgy,(p) # 0, dgi A .... Ndg,,(p) # 0.

Consider the differential ideals A: A is generated by {7*(€2) — 7*(Q)}, where 7 is the pro-
jection from V' x V to V and 7 is the projection from V' x V to V. We first claim that A, when
restricted to M, is an integral differential system.

Indeed, on V' x ‘7,

d(m*w® — 75 =Y (ChHom)m™ (W) A (wh) =) (O o m)T* (@) x 7 (@).

Since C7), = Ajk(gl,. ., gp) and Ce S = A w(91,---,0,), when restricted to M, we see that

Clpom= C’]k o7. Hence on M, we have
d(m*w® — T w®) Z G om{m” (W) A% (WF) = 7@ A7 (&5)}
= Chom{n* (W) A (m*wh — F&F) - 7 (@) A (n(w) - T@7) .
Next, we claim that the rank of Ay is n — pp.
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Let us write y; = g; for j =1,..., pp and extend (y1, ...,¥,,) to a coordinate system

(yla s Ypgs ey yn)

near (g;(po), 0, ...,0). Then the regularity assumption at p gives that

dyj = nyl(yla '“7ypo)w%/ fOT j S Po-

Also the matrix (y%) must have rank py by the rank assumption of €.
By relabelling {w; } if necessary, we can assume that det(y[3)1<a,<p, # 0. Let (y‘oé)*1 = Gap-
Then

Z Japdy® = w* + Z ba=po+1,---nw®, OF

Po n
w = Zgaﬂdyﬂ — Z baaw®.
B=1 a=po+1

Similarly, we have go3 = @f‘ﬁ)_la

oo = pz Gopdy? — Y baa®

a,8=1 a=po+1,--,n

By the assumption in (ii), gog = Gas; baa = Do for y; = Y; (4 < po). Hence, when restricted
to M,

~ ~a

(W) =7 (W) mod,y,t1<a<n{m (W) — 7" (@)}

This proves that the rank of A, when restricted to M, is bounded by n — pg.
We next show that {7*(w®)—7*(w0*) } po+1<a<n, When restricted to M, is linearly independent.
Indeed, since dy; A ... A dy,y A dwPo T A LA dw™ = det(yg)wi A ... Awy # 0,

dyi A oo A dip, A dw T AL AG™ £ 0.

We see that {dy, ..., dy,,, dw? ", .. dw™} {dy1, ..., dY,,, dwPoT, .. d@™} are co-frames.

Now, in the (y,y)-coordinates, M is defined by y; = y; for j < po. Hence, it is easy to
see that {7*(w®)}a>pe+1 is of rank n — py when restricted to M near (p,p). Hence the rank of
™ (w?) — 7 (w?) is of rank n — pg.

Now, A induces a foliation in M with each leaf of real dimension 2n — pg — (n — pg) = n.
Letting £ be a leaf in M, that passes through (p,p). We claim that 7, : Tp,g)ﬁ — T,V is an

(
isomorphism. For this, we need only to show that m, is injective.
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Suppose X € T, ;)5 be such that m,(X) = 0. Then
0 =< 7"(w!) —7T(&?), X >= — (&, 7.(X))

for all j. Since {&7} forms a co-frame in V, we get 7, (X) = 0. Thus X = 0.
Finally, let ® be such that £ = {(x,®(x)) : x &~ p}. Then one sees that ® is precisely the

map that we are looking for. W

Next we give the proof of Theorem 5.3:

Proof of Theorem 5.3: Let (X4, ..., X,,) be the dual frame of (w1, ...,wy). Namely, (w;, X;) =
55.. Let €9 be sufficient small such that for any constant vector (a1, ..., an) with >~ laj]? < €d.
The integral curve 74 (t) with 7,(0) = p of }°, a;X; is defined for [t[ < 2. Namely,

dva
Z a;j X ; Ya(0) =p

has a unique solution for |¢| < 2.
We can similarly define (X, ..., X,,) and 7, (¢). We then claim that

L2, V) (7a(1)) = T; (V) Fa(t)) for [t] < 2.

To this aim, for g; € I'(2,V) and g; € I'; (ﬁ, 17) with the same lexicographic order, we first
notice that g;(v4(t)) — g;(Va(t)) is real analytic for |t| < 2. To prove that g;(va(t)) = g;(Va(t)),
we need only to verify that G;(t) = ¢;(Va(t)) — g;(Va(t))) vanishes to infinite order at 0. In fact,

Zgﬂl 7a wlazaka 7&( )) g]|l 7a wlvzaka:
= Z{gju Ya(t))ar — gj1(Va(t))ar }
l

Hence, it follows that G(0) = G’(0). By induction and the given hypothesis, we can conclude
that G;k)(t) = 0 for all k.

Now, we can define M C V x V' := {(z,z) : T'(Q,V)(z) = T'(2,V)(Z)}. Define A the same
way as in the proof of Theorem 5.2. Then we can similarly construct the required map ¢. (In

fact, one can choose ® that sends 7v,(1) to Y4(1), when |a| < ¢y varies. ) B

For the proof of Theorem 5.4, we refer the reader to [HJ2].
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5.2. Segre family of real analytic hypersurfaces: We now explore how Cartan’s method
can be adapted to the study of the equivalence problem of real hypersurfaces in C". We mainly
focus on the real analytic category.

Let M be a real analytic hypersurface in D C C" with real analytic defining function
r € C¥(D). Apparently, for any other local defining function r* of M, r* = s*r with s*|,; # 0.
Hence we can well define its complexification as the complex submanifold: M = {(z,£) € D x
Conj(D) :r(z,&) =0}. M is a complex submanifold of complex codimension 1 in C™ x C™ near
M x conj(M). Here for a set E C C", Conj(E):={z | z € E}. For each { ~ Conj(M)), we can
define a complex analytic variety Q¢ := {z € C" : r(z,£) = 0}. We call Q¢ the Segre variety of
M with respect to £. Notice that M is foliated by {Q¢} (In some references, say, in [Wel] [Hu4],
one defines Q¢ := {2 € D : r(2,£) = 0} for £ € D). A fundamental fact for Segre family is its
invariant property for holomorphic maps. More precisely, if f is a local holomorphic map from
(M, p) to (M/,@, then f<QE) C Q/?\(JZ) for any & near p. Here Q;(JE) is the Segre variety of M with
respect to f(£). In particular, when f is a holomorphic map from (M, p) to (M,p), f induces a
holomorphic map (f(2), f(£)) from (M, (p,p)) to (M, (,p)).

We mention that the above simple property for Segre family has been a basic tool to study
the analyticity problem for CR mappings between real analytic hypersurfaces, based on ideas
from the original paper of Webster. (See [Hul] [Hu4| for historic discussions and many related
references.) Here, we will use it for a different purpose.

In what follows, we assume that 0 € M and we use (z,&) for the coordinates of C" x C™.
Also, we can assume, without loss of generality, that M is defined by an equation of the form
r = 2Im(z,) + O(|2| + |Re(z,)]). In what follows, the indices «, # will have range from 1 to n — 1.
Occasionally, we will write w,n for z,,&,, respectively. We also use the summation convention:
repeated indices imply summation.

On M, there are (n — 1) independent holomorphic one forms
(5.6) 0% = dz%|\pm, Oo = déalm, 0 = id.r|pm = iradz®|pm + irndz" | pm.

{6,0%,0,} is a co-frame for M, which depends on the choice of the defining functions.

Next, let (M ,p) be another real analytic hypersurface near p = 0 in C" with a defining
function 7 = 2I'm(Z,) + O(|Z]). Define similarly the co-frame {6, 6,6, } on M near (p,p)-

If there is a biholomorphic map f from (M,0) to (M ,0), then we have a holomorphic map
(f(2), F(€)) from (M, 0) to (M,0). We say that (M,0) is Segre equivalent to (M, 0) if there is
a holomorphic map ® = (®1(z), ®2(£)) from (C?",0) to (C?",0) such that ® sends each Segre
variety Q¢ of M mnear 0 to the Segre variety Qg,) of M. (Apparently, such a map sends
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(M,0) to (Mv, 0)). In particular, we see that when (M, 0) is equivalent to (]\7, 0), then (M,0)
is Segre equivalent to (Mv ,0). We mention that even if M, M are strongly pseudoconvex, Faran
constructed in [Fa] examples showing that the converse of the above statement fails. However,

see Remark 5.7.

Lemma 5.5: (M,0) is equivalent to (MV, 0) if and only if there is a holomorphic map
O = (B, Dy) = (¢;,1%) from (M,0) to (M,0) such that

O*(0) = ud,
(5.7) Q)*(g‘)‘) = u®f + u36”,

Q*(0,) = uab + va 3.

where u, u®, ug, vg are holomorphic near 0 and the holomorphic 1-forms are defined as in (5.6).

Proof of Lemma 5.5: Suppose the existence of the Segre isomorphism ® = (®1(z), P2(§)).
Notice that 7(®) is also a defining function for M near 0. Hence 7(®) = r(z,£)S5(2,£) near M
with S(z,&) # 0 near S.

Since 6 = i on M, we have

O7(0) = 107(®1(2), P2(§)) = i5(2,§)0r(2,€) = i5(z,£)0.

~ _ O, O
¢* o) — ®* a) = a = —_ n
(0%) (dzy) = dopa(z) 925 dzg + 9. dz
_ a(rba 8¢a .0 7P
=92 T o, (— T adzﬂ)
_ (3% _ 0¢a T_ﬁ)eg B Z,a% 1,
0z Oz, Ty 0zy Tn

Similarly, we can verify the last equality in (5.7). This proves the first part of the lemma.

Similarly, if ® = ($1, P2) is a holomorphic map satisfying (5.7). Then %@1 = 0 and 2‘52 = 0.

Hence
q)l = (I)l(zlv cey Bn—1y Rn, £n) and (I)2 - (I)Q(fla SR gn—lv Zny En)
Since M can be parameterized either by (24, &) or (2,£,), 1 and @5 can be completely expressed

as holomorphic functions in z or &, respectively. Also, it is obvious that ® preserves the Segre

varieties.

Now let (M, P) be as before with holomorphic co-frame {6,0%,6,}. Then we can form a
G-structure co-frame bundle ) over M, where G consists of invertible matrices of the form

u 0 0
u® ul 0

v 0 VP
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To solve the Segre equivalence problem by using Cartan’s method, the key step is to find the
co-frame on Y, through which the G-equivalence can be reduced to the {e}-equivalence problem.

Assume that M is strongly pseudoconvex at 0 and M is defined by
r=zn = p(2%,6a;§") = 2 — &+ 0o(|2%] + |p%]).

It is easy to see that (p2)|o is precisely the Levi-form of M at 0. Hence, det(p?) # 0 near 0.
Following Chern [Ch]| and Chern-Ji [CJ], we choose a co-frame over M of the following form:

0 =i(dz" + rodz®)
0 = dz*,

(58) rm rnrﬁ
O =126 — (rg - f;—)dgg,
where and in what follows, we write r, = 8877", rB = a%“ e %, etc..

For forms in (5.8), we have:
(5.9) df =i0“ N 0,.

Indeed, notice that
dre, = rapdz” +ridé, +rdeP
= rogds” + :—g(—w — PdeP) + rPdeg
= raﬁdzﬁ —0,.

Hence 6, = —dr, + Tagdzﬂ and df = idr, N dz® = i0“ N\ 0,.
Now, by the Levi non-degeneracy of M at 0,

2% = z¢
{ Zn = Zn
pa = pa(za7£a7€n)
can be used to uniquely solve for (2% &,,z2,) by the data (2%, pa,2"). Hence, we can use

(2%, pa, 2™) for the coordinates of M. In the (2%, z,,pg) coordinates, we have the following

formula:

0 =i(dz" — padz®),
(5.10) 0% = dz*,
0o = dpo — pa/gdzﬂ, df = i0* A 8,,.

Here p,p are holomorphic functions in (z, py ).
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Next, let (Mv ,0) be the complexification of another real analytic hypersurface (M ,0). We
also choose the same type of the co-frame (5, 0, é;) on (Mv, 0) as in (5.10). Now, suppose that
® is a Segre isomorphism from (M, 0) to (M, 0), then

with df = i0% A 5(1 and u, ug, vg, u”, vz holomorphic near the origin.
Hence du A 6 + udf = i(u%Qﬁ +u®0) A (v205 + v, 0), from which we get the following

Stu = uPok,
du = iugvoﬁﬁ — u*vPl5 + to.

Next, we consider the C* := C\ {0} structure bundle & = M x C* on M, which can be identified
with the C*-fiber bundle whose fiber 7=1(P) over P € M is precisely {uf} with u € C*. Then

w = uf is a tautological global holomorphic 1-form on &y. Notice that

d
dw:ud9+duA0:iu9aA0a+w/\(——u).

u
Define co-frame
w® =u*f + u%@ﬂ,
We = Vo0 + vg(?g,
where u}v = §7u. Then
d «
dw = 1w Nwy +w A <— o iu—vgag +iugva06>.
u u
Let ¢ = —%“ - i%vg% + iugvcﬂﬁ + tw. Then, the above motivates us to consider co-frames of
the following form:
w = udh,
w* = u*f + ugﬁﬁ,
(5.11) Wa = Va0 + 0503,
¢=—2 — 0805 + iuGva0° + 10
Stu = ul v

A basic property for the above co-frames is the relation:
(5.12) dw = iw* ANwy +w A .
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Choose a special co-frame:

w® = udb,

WO = uh>,
0

wy = b,

¢O _du

Then, we have
w=wO,
uOé

Ve 0 4 3, 0
Wo = W i— VW4 s
¢ = ¢° — i vl + iug 2w + .
Hence the space of the co-frames in (5.11) form a Gj-structure bundle ) over M, where G,

consists of matrices of the following form:

1 0, 0 0
w2 0 0
u u

Lo 0 8 0
t zZ—Zug —itevg 1

with u! v® = 6l u. Or

1 0 0 0
u®  ug 0 0
Vg 0 vg 0
t o iv*ul —iuqug 1

with ul v® = 6t.

Now, the Segre family (M, 0) and (MV ,0) are equivalent if and only if there is a holomorphic
map F' from & to go, sending a certain point in the fiber over 0 to a certain point in the fiber of
0, such that

w w
w™ w®
F* ~ =YF
Wy Wey
¢ ¢

with vp valued in (G;. Indeed, this assertion follows directly from the holomorphic version of

Lemma 5.1.

Now, we consider the G1-structure bundle Y over &, and lift the above co-frames to globally
defined forms over ). To be able to use the Cartan theorem, one needs to further complete these
forms into a certain co-frame over ) so that the Gi-equivalence problem is to be reduced to an
e-equivalence problem over ). This completion is done in the paper of Chern-Moser and Chern,

which we state as follows:
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Theorem 5.6 (Chern [Ch], Chern-Moser [CH]): Let (M, 0) be a strongly pseudoconvex real
analytic hypersurface at 0 with (M, 0) its Segre family. From the holomorphic forms w, w®, w,,, ¢
in (5.11)-(5,12), after lifting them up to ) (which we still denote by the same letters), one can
construct holomorphic 1-forms ¢%, %, ¢g, ¥ on Y such that

Q:={V, 1<j<(n+2)? -1} := {w,w* ws, b, ¢G5, %, dp, 1} forms an e-structure on Y

and these 1-forms are uniquely determined by the following structure equations
do =1W* Nwg + WA @
dwo‘:wﬁ/\¢g—|—w/\¢o‘
dws = gbg/\wg Fwa NP+ wA @
dp = 1w A ¢q + 10" Nwy +w A Y
dgf = ¢ N ¢5 +iwa N ¢F —igq ANwP — i85 (g Nw?) — 5050 Aw + @5
dp™ = ¢ N o™ + @7 N oG — P Aw™ +
dda :¢§A¢ﬁ_%wAwa+¢a
dp = GNP+ 210" N po + ¥
where ®5 = 89w N wy + RS w AW +THw A w,
O =Ty WP Nwy — 2QFw A WP + LPw Awg
b, = nguﬂ Nwg + Pygw A wh — %ng A wg
U = ngo‘ ANwg + How Aw® + K% A wq

and S50 = S0¢ = Sq), RO, = RS, T§" = TJ", L* = L, Pap = Ppa, Shg = Ry =T3P =
Qa =0.

Remark 5.7 Since the Segre isomorphism does not induce the equivalence of the underlying
hypersurfaces as demonstrated by Faran in [Fa|, the existence of the e-equivalence map ¥ from
(¥,0) to (Y,0) does not induce automatically the biholomorphic equivalence of (M, 0) with (M, 0).
However,if an element P € ) with a certain reality condition is mapped to P with a certain reality
property, then we do have the holomorphic equivalence of (M,0) with (]\7 ,0). We will briefly

discuss this in the following subsection.

5.3: Cartan-Chern-Moser theory for germs of strongly pseudoconvex hypersur-
faces: The materials in §5.2 can be directly used to study the equivalence problem for strongly
pseudoconvex (or Levi non-degenerate) hypersurfaces. Here we give a quick account on this
matter. The reader is referred to [CM] for more details.

Let (M,0) be the germ of a smooth strongly pseudoconvex hypersurface, defined by r = 0.
Here, we assume that ;7’;(0) # 0. As before, let § = i0r and 0% = dz,. We have a co-frame
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{6,6%,0°} on M. Let
u
(5.13) G = { u_"‘ ug i u € R, ug,u® € C, u>0, det(ug) # 0, }

be the connected linear subgroup of G(2n —1,C). M x G is a G-space. Similarly, let (M, 0) be
another strongly pseudoconvex real hypersurface with a similar co-frame {5, 5‘*, 50‘}

It can be verified that there exists a smooth CR mapping ®(z) such that ®(M) C M if and
only if there is a C'"*° diffeomorphism ® : M — M satisfying

0 u 0 0 0 0
(5.14) o* 0> | = f ug i 0« | =(vg) | 0°
0, u® 0 u%‘ 0o, 0,

where the (2n—1) x (2n—1) matrix (v§) defines a smooth mapping from M into G. By Lemma 5.1,
there exists a CR isomorphism & : M — M if and only if there exists a smooth diffeomorphism
®!: M x G — M x G such that

(5.15) VD = w, LY = w*, G, = Wq,

where w,w® are similarly defined as in Lemma 5.1.
Define
E=Mx{w=ul:w=0w, u>0}

Choose 0% := u*0 + ugdzﬂ for some smooth functions u*, uj so that dff = 6 A 0, mod(9).
We obtain a co-frame (w, 0%, 0% ¢o) on E, where dw = iuf® A 0 + w A ¢o. Let G be as before.
Let E be the associated bundle over M with the corresponding co-frame {w, g~ 90‘, ¢0}

Let ® : M — M be a CR, isomorphism. It is easy to verify that ® induces a unique smooth
diffeomorphism, still denoted as ®, from E to E satisfying

9 10 0 0\ /0 0

. | 6 o u g 0 0 A I
1o, | == o @ ool le. | =0,
¢ s wtuf —iuuf 1) \ o ¢

where the (2n+2) X (2n+2) matrix (v§) defines a smooth mapping from E into G, 0, = 0« etc.
(GY consists of the matrices of the above form). By Lemma 5.1, the existence of a CR isomorphism
d: M — M is equivalent to the existence of a smooth diffeomorphism ®!: Y := E x G} — Y =
E x G such that

UG =w, PG = w?, VD, = w,, 0V = ¢.
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(Y, m, E) is called the CR-structure bundle over M.
The fundamental theorem proved by Cartan-Chern-Moser [CM] asserts that from w,w®,
Wq, @, one can construct 1-forms P35 ¢*, ¢*, 1y on Y, with w = @, ¢ = ¢, ¥ = 1), such that

Q= {07, 1<j<(n+2)? -1} = {w,w", 0%, 6,63, 6%, 6, ¥}

forms an e-structure on Y, and they are uniquely determined by certain structure equations.
These structure equations are precisely the restriction of those in Theorem 5.6 from ) to Y,
together with several other reality conditions (see [Theorem 5.5, pp 151, Fa] [BS]), if we assume
that M is real analytic.

We let 0, 6, be again as defined in §5.2. Since we have the embedding M — M, by mapping
z — (z,z), we can regard the bundles E,Y as the subbundles of £,)), respectively, as follows
(cf.[Fa, (5.9)][BS]): Let

E* = {(2,z,uf) | z€ M, ,uf =ub, (ud)(T) >0} C &,

over M. Here T is a certain real tangent vector field transversal to T 0Ar + 7OV On
E*, we see w* = w* := ufl. Let Y* be the collection of the frames in ) restricted to E* such
that w’ = w*@, ¢* = ¢* over E*. Since w* = w*, W’ = w*@ and ¢* = ¢* hold on Y*, one
can check that the structure equations defining Q* over Y* are the same ones defining €2 on Y.
Hence, Y and Y* are G7-isomorphic. Identify E and Y with E* and Y, respectively. Then the
restriction of a function g € I'(2,)) on Y equals to the lexicographically corresponding function
gly € T'(Qly,Y).

Finally, we mention that the reality condition mentioned in Remark 5.7 is precisely the

condition that P, P arein Y* or 17*, respectively. This explains the statement in Remark 3.7
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