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0 Introduction

This paper studies the analytic structure of the local hull of holomorphy of a 2-dimensional,

real analytic manifold that is embedded in C2. Our specific purpose is to solve a problem

of Jurgen Moser (see [MOS], [MOW]). [In the statement of this problem we shall use

certain standard terminology from the literature that will be defined later.] The result is:

THEOREM 0.1 Let M be a 2-dimensional, real analytic embedded submanifold of C2.

Suppose that z0 ∈ M is a non-degenerate elliptic point of M . Then the local hull of

holomorphy M̃ of M near z0 is a Levi flat hypersurface which is real analytic across the

boundary manifold M .

Recall that for a general closed subset E ⊆ Cn, we define here the hull of holomorphy

Ẽ of E to be the intersection of all Stein neighborhoods of E.

1Author supported in part by a grant from the National Science Foundation.
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The determination of the hull of holomorphy of a subset E ⊆ Cn is a fundamental

problem in complex analysis. In the 1960’s, when it was studied by E. Bishop [BIS], one

of the motivations was the study of analytic structure in the maximal ideal space of a

Banach algebra. Today, now that the function theory of several complex variables is more

developed, there are more basic reasons for studying this problem. The papers, [BEKL],

[GR], and [ELI] give several instances of the important role of this circle of ideas in the

literature.

In full generality, the aforementioned problem is very difficult. Bishop [BIS] first

proposed that the hull of holomorphy be determined by using analytic discs attached to

M , in the case when M is a smooth, regularly embedded submanifold of Cn (it is known

in general, however—see [STOLZ]—that a set may have a large hull of holomorphy that

contains no analytic discs). He classified the local study of the hull in terms of the local

geometry of the base point z0 ∈M . Namely, it is now understood that it is important to

distinguish the case when the tangent space Tz0M has a complex structure from the case

when Tz0M is totally real (that is, Tz0M ∩
√
−1Tz0M = {0}). Points of the second type

are of no interest for us because, by the work of Hörmander-Wermer [HOW], the local

hull of holomorphy near such a point contains no new points. The situation in the first

case is quite different.

When M is a two dimensional real submanifold in C2, Bishop [BIS] showed that, in the

case that z0 ∈M has an isolated complex tangent and satisfies a certain non-degeneracy

condition, then a holomorphic change of variables may be effected so that z0 = 0 and the
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manifold M may be described in complex coordinates (z, w) by

w = h(z) = zz + λ(z2 + z2) + o(|z|3)

with 0 ≤ λ < +∞ and λ 6= 1
2
. Here the constant λ is a biholomorphic invariant of the

manifold M . Now it is standard terminology to say that z0 is an elliptic or hyperbolic

point of M according to whether λ ∈ [0, 1/2) or λ > 1/2 respectively.

In the elliptic case, Bishop obtained a family of analytic discs attached to M by

using a Picard-type iteration theory. In the later work of Bedford-Gaveau [BG] and

Kenig-Webster [KW], it was shown that the local hull M̃ of M is foliated by a family of

embedded, pairwise disjoint analytic discs. Bedford-Gaveau proved that M̃ is Lipschitz

1 continuous near z0 provided that M itself is of class C5 near z0. Kenig-Webster proved

that M̃ is C∞ near z0 when M is of class C∞ near z0.

The analytic structure of M̃ was studied in the papers of Moser-Webster [MOW] and

Moser [MOS]. In [MOW], it was shown that M̃ is real analytic up to z0 when the original

manifold M itself is real analytic at z0, provided that 0 < λ < 1/2. The case λ = 0 is not

treated in [MOW]—indeed, the techniques presented there seem not apply to this case.

Instead, in [MOS], Moser showed that a formal power series change of variables could be

found in the case λ = 0 so that the manifold M is defined by an equation of the form

w = zz + zs + zs + φ(z) + φ(z).

Here z0 ↔ 0 and s, 3 ≤ s ≤∞, is a biholomorphic invariant of the surface M at z0. Note

also that φ is a formal power series in z beginning with terms of order at least s + 1.
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By using a “rapidly convergent” iteration scheme, Moser was able to prove that, when

s = +∞, this formal coordinate change is also a convergent analytic coordinate change.

However he was unable to prove this statement when s <∞. Equivalently, he left open

the question of whether M̃ is real analytic near z0 when s <∞.

The purpose of the present work is to answer the above question of Moser. The ideas

that motivate our proof can be described as follows: Instead of considering a normal

form for the analytic surface M near the distinguished point z0, we blow up the point z0

twice. This process makes M into a totally real cylinder in C2 with a twisted real analytic

boundary. We then use a suitable infinite dimensional implicit function theorem to obtain

a real analytically parametrized family of (meromorphic) analytic discs that are attached

to this cylinder. Before blowing back down, we verify the real analyticity of our foliation

in the normal direction at z0; we finally obtain the full statement of real analyticity of M̃

near z0 by using the uniqueness of analytic continuation.

As an application of Theorem 0.1, we use a classical result of É. Cartan [CA] (which

essentially states that an analytic Levi flat hypersurface in C2 is locally biholomorphic to

an open subset of R3 = {Im w = 0}) to derive the following consequence:

THEOREM 0.2 Let M be a real analytic surface in C2 and let z0 ∈ M be an elliptic

point with λ = 0. Then there is a holomorphic change of coordinates near z0 so that

z0 ↔ 0 and, in the new coordinates, M is given by

w = zz + zs + zs +
∑
i+j>s

aijz
izj

with aij = aji and s ≥ 3.
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Observe that the content of the corollary is that the non-linear functional equation

(1.5) on Page 398 of [MOS] possesses a holomorphic solution. (This assertion has also

been conjectured by Moser).

We are pleased to thank Laszlo Lempert for useful conversations. Also, we thank the

referee for several useful suggestions.

1 Proof of the Main Result

We now present the proof of Theorem 0.1. For clarity, we divide our discussion into two

subsections. We first study the analytic dependence of analytic discs on a real parameter.

Then we investigate the local hull of M near the exceptional point.

1.1 Analytic Dependence on a Real Parameter

Let M ⊆ C2 be an embedded, real, two dimensional manifold. Let z0 be an isolated

complex tangent point of M . Moreover we assume that z0 is non-degenerate and elliptic

(see [BIS] for as discussion of this terminology). By the work of Bishop [BIS] and Kenig-

Webster [KW] we know that, after a holomorphic change of coordinates, we may assume

that z0 = 0 and the manifold M is given, in the new coordinates (z, w), by

w = h(z) = zz + λ(z2 + z2) + p(z) +
√
−1k(z), (1.1.1)

where p, k are real functions with

p(z) =
∑
i+j≥3

aijz
izj and k(z) =

∑
i+j>m

bijz
izj .
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Here m(≥ 6) is an a priori given positive integer and λ ∈ [0, 1
2
). Of course, we can make

aji = aij and bji = bij.

We mention that, although our argument works equally well for λ ∈ (0, 1/2) as for

λ = 0, we will assume that λ = 0 in this paper to simplify our notation. Another major

reason we do this is that our main theorem has been settled in the case λ ∈ (0, 1
2
) by the

work of Moser-Webster [MW].

In what follows, an analytic disc is a continuous function ψ from the closed unit disc

∆ in C to C2 that is holomorphic on the interior ∆. We say that an analytic disc ψ is

attached to M if ψ(∂∆) ⊆M .

Next we set up the equation that will describe our analytic discs. Set Iε = (−ε, ε) ⊆ R,

with ε > 0 and ε << 1. Let S1 denote the unit circle in C. We consider a function

Φ : Iε × S1 → C2. The function Φε acts on variables (r, ξ) with r ≈ 0 and ξ ∈ S1. We

would like to arrange for Φ(r, · ) to have a holomorphic extension to ∆ for each fixed r

and also that Φ(r, ξ) ∈M when ξ ∈ S1.

Write Φ(r, ξ) = (φ1(r, ξ), φ2(r, ξ)). For r ∈ Iε, we let Dr denote the domain

Dr ≡ {z ∈ C1 : |z|2 +
∑
i+j≥3

aijr
i+j−2zizj < 1}.

Here the numbers aij are just the same as those coefficients in the formula for p(z). For

each r, let σr(ξ) = σ(r, ξ) be a conformal mapping of ∆ to Dr. Assume in advance that

σ(r, 0) = 0 and σ′(r, 0) > 0. These last two conditions can always be arranged and make

our choice of σ(r, ξ) unique.

A useful observation from classical function theory is that the mapping σ(r, ξ) will be
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real analytic in (r, ξ) and holomorphic in the ξ variable in a neighborhood of ∆ (see, for

example, [Hu, Lemma 4.1]). In particular, we have

σ(r, ξ) =
∑
i≥0

σi(ξ)r
i ξ ∈ ∆(0, 1), r ∈ Iε.

Here σi ∈ Hol(∆)∩Cm,1/2(∆) and ‖σi‖ < Ri for some R >> 1. Here and in what follows,

we use ‖ ‖ to stand for the standard norm in the Banach space Cm,1/2(S1) and R for

a large positive constant which may be different in different contexts. After a suitable

renormalization, the mapping

Φ0(r, ξ) = (rσ(r, ξ), r2)

gives rise to all of the analytic discs attached to the model surface M0 of M . Here the

“model” surface is given by

M0 = {(z, w) : w = zz + p(z)}.

Typically, the strategy for constructing discs attached to M is that (i) it is easy to attach

discs to the model surface, (ii) the surface M osculates the model surface to high order

at z0, and (iii) we may then obtain discs attached to M itself from those attached to M0

by a deformation process.

The ideas in the last paragraphs motivate us to consider a map Φ(r, ξ) = (φ1(r, ξ), φ2(r, ξ))

such that

φ1(r, ξ) = rσ(r, ξ)(1 + F(r, ξ)), (1.1.2)

where F(r, ξ) ≈ 0 when r ≈ 0 and holomorphic in ξ for each fixed r. This will be our

approach, and we shall construct such a function F later.
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Given (1.1.1) and (1.1.2), we find that

φ2(r, ξ) = |φ1(r, ξ)|2 + p(φ1(r, ξ)) +
√
−1 k(φ1(r, ξ)),

where ξ ∈ S1. In particular, we see that

1

r2
φ2(r, ξ) = |σ(r, ξ)(1 + F(r, ξ))|2 +

1

r2
p(φ1(r, ξ)) +

√
−1

1

r2
k(φ1(r, ξ)).

Denote by H the standard Hilbert transform on the unit circle (see [KAT]). Then we

see that

|σ(r, ξ)(1 + F(r, ξ))|2 +
1

r2
p(φ1(r, ξ)) = − 1

r2
H(k(φ1)) + C

for some real constant C. We seek a function F such that C = 1.

Let

Ω(r,F) = |σ(r, ξ)(1 + F)|2 +
∑
i+j≥3

aijr
i+j−2σiσj(1 + F)i(1 + F)j.

Linearizing near F = 0, we find that

Ω(r,F) = Ω(r, 0) + Ω′(r,F) + Ω∗(r,F).

These terms are defined as follows:

Ω(r, 0) = 1;

Ω′(r,F) = lim
t→0

Ω(r, tF)− Ω(r, 0)

t

= 2Re {[|σ|2 +
∑
ij

aijr
i+j−2σiσji]F};

Ω∗(r,F) =
∑
i+j≥2

cijl(ξ)r
lF iF j.

Here cijl = cjil. By standard Taylor expansion estimates we have that ‖cijl‖ <
∼

Ri+j+l.
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Let us write

c(r, ξ) = 2
[
|σ|2 +

∑
aijr

i+j−2σiσji
]
.

We see that

Re {c(r, ξ)F}+ Ω∗(r,F) = −H
(

1

r2
k(rσ(1 + F))

)
.

Now notice that IndS1c(r, ξ) = 0 for |r| << 1. Therefore, if we write c(r, ξ) = a(r, ξ)b(r, ξ)

with a = |c|, b = c/|c|, then ln b is a well-defined real analytic function. Let

c∗(r, ξ) =
1

a(r, ξ)
e
√
−1H(ln b(r,ξ)).

Then, by the real analytic hypoellipticity of the Hilbert transform (which can be easily

proved, for instance, by using the classical Schwartz reflection principle), we can see that

c∗(r, ξ) is also real analytic in (r, ξ) ∈ Iε × S1. (More precisely, what we need in our

argument is the fact that: c∗(r, ξ) =
∑

c∗j(ξ)r
j with ‖c∗j‖ < Rj). We observe that c∗ is a

positive real function.

Write d(r, ξ) = c∗c, which is real analytic in (r, ξ) ∈ Iε × S1 and holomorphic in

ξ. In fact, let d(r, ξ) =
∑
j≥0 dj(ξ)rj . Then we need, in what follows, that dj(ξ) ∈

Hol(∆)∩ Cm+1/2(∆) and ‖dj‖ < Rj for j ≥ 0. Therefore

Re (d(r, ξ)F) = −c∗(r, ξ)Ω∗(r,F)− c∗(r, ξ)H
(

1

r2
k(rσ(r, ξ)(1 + F))

)
.

Let F̃ = d(r, ξ)F ≡ U(r, ξ) +
√
−1H(U(r, ξ)). We observe that d(r, ξ) 6= 0. Then we

obtain the equation

U(r, ξ) = −c∗(r, ξ)Ω∗
(
r,

U +
√
−1H(U)

d(r, ξ)

)

−c∗(r, ξ)H
(

1

r2
k

(
rσ(r, ξ)

(
1 +

U +
√
−1HU

d

)))
.
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Let

Λ1(r, U) = −c∗(r, ξ)Ω∗
(
r,

U +
√
−1HU

d

)

= −c∗(r, ξ)
∑
i+j≥2

cijl(ξ)r
l (U +

√
−1H(U))i

di
· (U −

√
−1H(U))j

dj

=
∑
i+j≥2

c̃ijl(ξ)r
lU i(H(U))j.

Observe that the real function c̃ijl(ξ) satisfies the same sort of Cauchy-type estimates as

does cijl.

Write

k∗(r, U) =
1

r2
k

(
rσ

(
1 +

U +
√
−1HU

d

))

=
∑

i+j≥m
bijr

i+j−2σiσj
1

di
1

d
j (d + U +

√
−1HU)i(d + U −

√
−1HU)j

≡
∑

i,j;l≥m−2

b̃ijl(ξ)r
lU i(HU)j .

Then the real function b̃ijl satisfies the Cauchy estimates ‖b̃ijl‖ <
∼

Ri+j+l .

Denote

Λ2(r, U) = −c∗(r, ξ)H
 ∑
i,j≥0;l≥m−2

b̃ijl(ξ)r
lU i(HU)j

 .

We then need to solve the equation

U = Λ1(r, U) + Λ2(r, U) (1.1.3)

for U . We note here that for the model surface, i.e. k ≡ 0, the only solution for each

r ∼ 0 is U ≡ 0.
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Now we are going to apply a suitable version of the (real analytic) implicit function

theorem to (1) to obtain a solution U that is real analytic in the variable r. To this end,

we write

Bm,1/2
ε = {φ ∈ Cm,1/2(S1) : φ is real valued and ‖φ‖ ≡ ‖φ‖m,1/2 < ε}.

The index m is the same as before.

Consider now the operator

Λ : Bm,1/2
ε → Cm,1/2(S1)

(r, U) 7→ Λ1(r, U) + Λ2(r, U).

By the boundedness of the Hilbert transform acting on the Banach space Cm, 1
2 (S1),

we easily see that Λ is a well-defined operator when ε << 1. Moreover, by a tedious but

routine verification, one sees that Λ is smooth and real analytic in (r, U) near the origin

in a sense which we will describe below. Detailed arguments of this nature can be found

in Claim 1 and Lemma 4.3 of Chapter 4 of [Hu] (see also Lemma 5.1 of [HT] for the proof

of the smoothness part):

Λ(r, U) =
∑
i,j

riD(i,j)(Λ(0, 0))(U j)

i!j!
,

for any (r, U) ∼ 0. Here D(i,j)(Λ(r0, U0))(U j) is the (i, j)-mixed derivative of Λ with

respect to (r, U), evaluated at (r0, U0), and then applied to U j. Note that Di,j(Λ(r, U))

is an i + j- multilinear operator; however the action in the first i components factors out

as ri. We also require the Cauchy estimates for the operator norm: ‖D(i,j)Λ(r, U)‖ <

11



i!j! ·Ri+j when (r, U) ∼ 0. For completeness and clarity, we shall verify in what follows

the analyticity of Λ2 (the analyticity of Λ1 can be checked similarly).

Let Λ = c∗(r, ξ)Λ∗. By noting that c∗ is real analytic, we only have to worry about

the analyticity of Λ∗. Since

‖b̃ijs‖ <
∼

Ri+j+s

for some R >> 1 and since when |r|, ‖U‖ << 1 then ‖HU‖ << 1, we see that

D(α,β)Λ∗2(r, U) = H
(∑

b̃ijsD
(α,β)(rsU i[H(U)]j)

)
.

We claim that

‖D(α,β)(riU j [H(U)]s‖

<
∼

i · (i− 1) · · · (i− α + 1) · (j + s) · (j + s− 1)

· · · (j + s− β + 1)Ri+j+sεi+j+s−α−β ,

where εR << 1. This assertion can be verified using an induction argument. For example,

we present here the case when α = β = 1. Then

D(1,1)(riU j[H(U)]s) = iri−1D(0,1)(U j[H(U)]s).

For any U1 ∈ Cm,1/2, we see that

‖D(1,1)(riU j[H(U)]s)(U1)‖ ≤ i|r|i−1cj+s(j‖U1‖ · ‖U‖j−1‖HU‖s

+s‖HU1‖ · ‖U‖j · ‖HU‖s−1).

Notice here that ‖HU‖ ≤ c‖U‖ and ‖UV ‖ ≤ c‖U‖ · ‖V ‖ for some constant c. Next,

‖D(1,1)(riU j[H(U)]s‖ ≤ i|r|i−1cj+s(jcs‖U‖j+s−1 + scs‖U‖j+s−1)
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<
∼

i(j + s)cj+2s|r|i−1‖U‖j+s−1

<
∼

i(j + s)Ri+j+sεi+j+s−2 ,

where we have selected R >> c and |r|, ‖U‖ < ε. In conclusion,

‖D(α,β)(Λ∗2(r, U)‖

≤ C
∑
‖b̃ijs‖s(s− 1) · · · (s− α + 1)

·(i + j)(j + i− 1) · · · (j + i− β + 1)Ri+j+lεi+j+s−α−β

< α!β!Rα+β
∗

as long as R∗ >> 1 and |r|, ‖U‖ << 1. As a result, from the Taylor formula, we can

conclude that Λ∗2(r, U) is real analytic near (0, 0). This concludes the proof of the claim.

Now we notice that Λ(0, 0) = 0 and DΛ(0, 0) = 0. Thus, from the implicit function

theorem in the analytic case (Proposition 1.1 below), we conclude that for (1.1.3) there

is a unique analytic solution R(r) =
∑∞
j=1 φj(ξ)rj with each φj ∈ Cm,1/2 and ‖φj‖ <

∼
Rj

for some R >> 1.

Now we formulate the precise version of the implicit function theorem that we have

just used.

Proposition 1.1 Let O be an open subset of the (real) Banach space E and let o ∈ O.

Suppose that f : Iε×O → E is analytic near (0, o) and that f(0, o) = 0, D(0,1)f(0, o) = 0.

Then there is a unique analytic solution X near 0 with X(0) = o for the equation X =

f(r, X).

Remark: Variants of this proposition have been commonly used in the literature. See,
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for example, [LEM]. Its proof is analogous to the finite dimensional case (for which see,

for instance, [KRP]); however, for lack of a reference with a cogent statement and a proof,

we include the following details.

Proof of Proposition 1.1:

First we note that

f(r, X) =
∑

j+k≥1

rjLk(Xk),

where Lk is a symmetric k-multilinear form and ‖Lk‖ <
∼

Rk. Let Ec ≡ E ⊗ C be the

complexification of E. We let ∆ε be the disc with center 0 and radius ε > 0 in C. Let us

define

F (r, Z) =
∑

rkLck(Zk),

where r ∈ ∆ε, Z ∈ Ec, Z = X + iY , and Lck is the natural complexification of Lk. Thus

we see that F (r, Z) is also analytic near (0, o) ∈ ∆ε × Ec.

Moreover, it can be seen that

∂F

∂r
=

1√
−1

(
∂F

∂µ
+
√
−1

∂F

∂η

)
= 0

and

∂F

∂Z
=

1√
−1

(
∂F

∂X
+
√
−1

∂F

∂Y

)
= 0, (1.1.4)

where r = µ+
√
−1 η and Z = X +

√
−1 Y . Now we apply the standard implicit function

theorem to the equation

Z = F (r, Z).
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We obtain a C∞ solution

Z = Rc(r)

with Rc(0) = o such that Rc(r) = F (r,Rc(r)). By (1.1.4),

∂Rc(r)

∂r
=

∂F

∂r
+

∂F

∂Z

∂Rc

∂r
.

As a result,

(id− ∂F

∂Z
)
∂Rc

∂r
= 0

hence

∂Rc

∂r
= 0;

for
[
id− ∂F

∂Z

]
is invertible when Z ∼ 0.

In conclusion, Rc is holomorphic in r (see [Rud]). Therefore Rc(r) =
∑
j φjr

j with

‖φi‖ <
∼

Ri. Notice that when r is real (and small) then we also have a real C∞ solution.

Thus, by the uniqueness part of the implicit function theorem, the proof is complete.

1.2 The Hull of Holomorphy

We continue our discussion from the last subsection and retain all notation introduced

there.

Let

U(r, ξ) = R(r)(ξ) =
∞∑
j=1

φj(ξ)r
j ∈ Cm,1/2(S1 × Iε).
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A useful observation is that ‖U(r, ξ)‖ <
∼

rm−2. In fact,

‖U(r, ξ)‖ ≤ ‖Λ1(r, U)‖+ ‖Λ2(r, U)‖

≤ ε‖U‖+ O(rm−2),

that is,

‖U(r, ξ)‖ ≤ C · 1

1− ε
rm−2.

Now, returning to the function

F =
U +
√
−1H(U)

d(r, ξ)
,

we have that

F =
∑

j≥m−2

fjr
j with ‖fj‖ <

∼
Rj.

Here fj ∈ Hol(∆). Notice that

Φ(r, ξ) = (φ1, φ2) = (rσ(1 + F), C(h(rσ(r, ξ)(1 + F))),

where C is the Cauchy integral operator. We have the following properties:

(i) φ1(r, ξ) = rσ(r, ξ)(1 + F) = rσ(r, ξ) + `1(r, ξ)

with `1(r, ξ) = O(rm−2);

(ii) Let h(rσ(r, ξ)(1 + F)) =
∑
j hjr

j = r2 +
∑∞
j=m hjrj with ‖hj‖ <

∼
Rj for

each j. Then

φ2 = r2 +
∞∑
j=m

C(hj)rj = r2 + `2(r, ξ)
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and

`2(r, ξ) =
∞∑
j=m

h̃jr
j

with h̃j ∈ Cm,1/2(∆) ∩ Hol(∆) and ‖h̃j‖ <
∼

Rj.

Now we study the hull of M near 0. Let

M0 = {(z, w) ∈ C2 : w = q(z) ≡ zz + p(z)},

as before. Then M̃0, the hull of M0, is the set {(z, w) ∈ C2 : u ≥ q(z) ≡ |z|2 + p(z)} ∩

{v = 0} and is foliated in a trivial and natural fashion by a family of imbedded discs

Φ0(r, ξ) = (rσ(r, ξ), r2) (r > 0).

Let 0 < u << 1. Define

Ψ : M̃0 − 0→
⋃

0<r<<1

Φ(r, ∆)

by

Ψ(z, u) = Φ(
√

u, ξ(u, z)),

where ξ(u, z) is determined by the equations z = rσ(r, ξ), r =
√

u.

Claim: The function Ψ has a C1 extension across 0 ∈ M̃0 and is real analytic on M̃0 \M0

(in fact, Ψ is of class C(m−2)/2 near 0, but we do not need this result here).

Proof of the Claim: Now

Ψ(z, u) = (z, u) + (φ̃1, φ̃2),
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where

φ̃1(z, u) = `1(
√

u, ξ(u, z)) = u2`∗1(
√

u, ξ(u, z))

φ̃2(z, u) = `2(
√

u, ξ(u, z)) = u2`∗2(
√

u, ξ(u, z)).

We note that

ξ(u, z) = [(σ(r, · )]−1

(
z√
u

)
= [σ(

√
u, · )]−1

(
z√
u

)
≡ σ−1(

√
u, z/
√

u),

and σ−1(r, z∗) is jointly real analytic in its variables for (r, z∗) ∈ Iε ×Dr with ε << 1.

Thus we easily see that Ψ(z, u) is real analytic jointly in z, u, when (z, u) ∈ M̃0 \M0.

Observe that ‖z/
√

u‖ = O(1) when (z, u) ∈ M̃0. We have

∂i+j+s`k
∂zi∂zj∂us

= O(1) when k = 1, 2; i + j + s ≤ 2; and r→ 0.

Thus Ψ is of class C1 near 0 and dΨ|0 = id. In particular, we see that Ψ(M̃0) is a C1

smooth, (Levi flat) hypersurface spanned by M near 0, which is certainly real analytic on

the interior points.

However, by the Kenig-Webster theorem, we know that M̃ is of class C∞ near 0 with

boundary M (we may also see this assertion by using our own arguments just presented

by first letting m → ∞ and then proving a sort of unique determination theorem of the

local hull by analytic discs). Thus we can easily conclude that Ψ(M̃0) = M̃ near 0 by

noting the fact that Ψ(M̃0) ⊂ M̃ .

As an immediate application of our function Ψ, we see that the tangent space T0M̃ =

R3 (= T0(M̃0)). Now let us define the projection mapping π : M̃ → R3 by π(z, u +

iV ) = (z, u). Then we can conclude that π is a C∞ diffeomorphism. Moreover, since
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π(∂M̃) = π(M) = M0 and (π(M̃ \M))∩(M̃0 \M0) is not empty, we see that π(M̃) = M̃0.

That is, M̃ can be viewed as the graph of some function V (z, u) over M̃0. That is,

M̃ = {(z, u + iV (z, u)) : (z, u) ∈ M̃0}.

We remark now that the graph of a function is a Cα smooth manifold if and only if

the function itself is Cα smooth (here α is either a positive integer or ∞ or ω). Thus we

have that V (x, u) ∈ C∞(M̃0) and is real analytic on M̃0 \M0.

We are going to show next that

V (z, u) =
∑
i,j,s

1

i!j!s!

(
∂i+j+sV (z, u)

∂zi∂zj∂us

)
(0,0)

zizjus

when |z|, u ≈ 0. That is, V (z, u) is real analytic near 0. This will complete the proof of

our theorem.

To this end, we first note that the point (z, u+ iV (z, u)) ∈ M̃ −M if and only if there

is a unique pair (r, ξ) ∈ I+
ε ×∆ such that

z = φ1(r, ξ)

u + iV = φ2(r, ξ),

that is,

z = rσ(r, ξ)(1 + F(r, ξ)) (1)

u = Re φ2 = r2 + Re `2(r, ξ) (2)

V = Im φ2 = Im `2(r, ξ) (3)

Here we note that `2(r, ξ) =
∑
i+j≥m `ijr

iξj with (r, ξ) ∈ Iε ×∆ for ε << 1. From (2), we
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obtain
√

u = r + r2`∗1(r, ξ) with `∗1(r, ξ) real analytic jointly in r, ξ when (r, ξ) ∈ Iε ×∆

(|r| << 1).

When |r| << 1, applying the implicit function theorem we then see that

r = g̃(η1, ξ) = η1 · (1 + g̃∗(η1, ξ)),

where η1 =
√

u in case 1 >> u ≥ 0 and g̃∗ = o(|η1|) is jointly real analytic in (η1, ξ).

Thus by (1) we see that

z =
√

u(1 + g̃∗(η1, ξ))σ(g̃(η1, ξ), ξ)(1 + F(r, ξ)).

Write η2 = z/
√

u. We then have

η2 = (1 + g̃∗(η1, ξ))σ(g̃(η1, ξ), ξ)(1 + F(g̃(η1, ξ), ξ)) = η2(η1, ξ). (1.2.1)

Notice that when η1, ξ ≈ 0, we have (a) η2 is real analytic in ξ and η1; (b) η2(0, 0) = 0;

(c) dξ(g̃∗(η1, ξ), dξF(g̃(η1, ξ), ξ) ≈ 0; and (d) dξσ(g̃(η1, ξ), ξ) 6= 0.

We see from the implicit function theorem that (1.2.1) can be solved as

ξ = f(η1, η2)

with f real analytic near (0, 0) and f(0, 0) = 0. Now

r = g̃(η1, f(η1, η2)) = g(η1, η2),

which is also real analytic near 0.

Returning to (3), we see that

V (z, u) = Im φ2(g(η1, η2), f(η1, η2)),
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which is also analytic in η1, η2 when η1, η2 ≈ 0. Let η1 be real and write

Im φ2(g(η1, η2), f(η1, η2)) =
∑

i,j,s≥0

Sijsη
i
1η
j
2η
s
2

with |Sijs| <∼ Ri+j+s for some R >> 1.

Now, when 0 < u < ε2 and |z|/√u < ε with 0 < ε << 1, we have that

V (z, u) =
∑
i,j,s

Sijsu
(1/2)(i−j−s)zjzs.

However we note that V (z, u) is C∞ near 0. In particular,

∂j+sV (z, u)

∂zj∂zs

∣∣∣∣
(0,u)

is C∞ in u, as long as 0 ≤ u << 1.

Meanwhile,

V (j,s)(0, u) =
∂j+sV (z, u)

∂zj∂zs

∣∣∣∣
(0,u)

=
∞∑
i=0

j!s!Sijsu
(1/2)(i−j−s) .

This obviously implies that Sijs = 0 when (1/2)(i− j − s) is not a positive integer. Thus

V (z, u) =
∑
i,j,s

Sijsu
1
2

(i−j−s)zjzs =
∑

τ,j,s∈Z
+

S2τ+j+s,j,su
τzjzs

when 0 < u < ε2, |z| < ε
√

u.

On the other hand,

|S2τ+j+s,j,s| <∼ R2τ+j+s+j+s <
∼

(R2)τ+j+s.

Thus we conclude that

Ṽ (z, u) =
∑
τ,j,s

S2τ+j+s,j,su
τzjzs
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is real analytic when u, |z| ≈ 0. Also Ṽ (z, u) ≡ V (z, u) when 0 < u < ε2 and |z| < ε
√

u.

Notice that V (z, u) is real analytic on M̃0 \ M0 and it is C∞ on M̃0. By the unique

continuation property of real analytic functions, it follows that Ṽ (z, u) ≡ V (z, u) for all

z, |u| ≈ 0 and (z, u) ∈ M̃0.

At last this completes the proof of the theorem.

2 Closing Remarks

Our main theorem fails in the case that 0 ∈ M is a degenerate elliptic point. As an

example, consider the real analytic submanifold

M = {(z, w) : w = |zz|2 + |zz|3(|z|2z +
√
−1 )}

in two dimensional complex space. It turns out the M̃ is only C3/2 up to the point

0 ∈M—certainly not real analytic.

To verify this last assertion, we invoke the unique determination of the local hull in

terms of the attached analytic discs. If we can write down a foliation by analytic discs

that spans M̃ near 0, then that is a unique representation of the local holomorphic hull.

In detail, consider the model domain M0 = {(z, w) : w = |z|4}. Near the point (0, 0) ∈

M0, we may attach analytic discs to M0 in this way: {(z, u) : for each fixed u, |z|4 < u}.

Here the parameter is the real variable u ≥ 0: for each value of u, the associated disc is

attached to M0. Now we may map M0 to M1, and M̃0 to (what will turn out to be) M̃1,

by way of the mapping

Φ(z, w) = (φ1(z, w), φ2(z, w))
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with

φ1(z, w) = z

φ2(z, w) = u + u3/2(u1/2z + i).

One can easily see that this Φ takes each analytic disc in M̃0 to an analytic disc

attached to M1. Thus Φ(M̃0) becomes M̃1. After some calculation (which we omit), it

can also be verified that Φ(M̃0) is only C3/2 and no better. We leave the details to the

interested reader. Examples of this type, and extensions of some of our results to higher

dimensions, will be developed in a future paper.
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[CA] É. Cartan, Sur la géometrie pseudo-conforme des hypersurfaces de l’espace de

deux variables complexes, Oeuvres complètes Partie II, Vol. 2, Gauthier-Villars,
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