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1 Introduction

By the Cartan-Chern-Moser theory [CM], the germ of a strongly pseudoconvex real analytic
hypersurface M ⊂ Cn is determined, up to a local biholomorphic map, by a set of complete
invariants which can be expressed by the curvatures of a connection or the coefficients in a
normal form.

When n ≥ 3, the fourth-order pseudoconformal curvature tensor S of Chern-Moser [CM]
is of fundamental importance because it generates other invariants by differentiation. It is
known that S ≡ 0 if and only if M is locally biholomorphic to the sphere ∂Bn. When n = 2,
the fourth-order curvature tensor vanishes identically and its role is played by the Cartan
six-order invariant curvature tensor P [Car]. Similarly, P ≡ 0 if and only if M is locally
biholomorphic to the 3-sphere ∂B2. In both cases, a point on M , at which the Chern-Moser
tensor S (or the Cartan curvature tensor P for the case of n = 2) vanishes, is called a CR
umbilical point, or briefly, an umbilical point ([CM]). CR umbilical points are biholomorphic
differential invariants of M .

The study of CR umbilical points on a compact strongly pseudoconvex hypersurface M
provides useful information for the holomorphic structure of its enclosed domain, as well as
the intrinsic CR structure of M itself. However, different from the situation in the classical
Differential Geometry, except in the trivial spherical case, where S or P ≡ 0, computing
umbilical points seems to be a very difficult problem. This is because the explicit formula
for the fundamental Cartan-Chern-Moser curvature tensions is too complicated. Indeed, the
situation is already non-trivial even in the simplest non-spherical case— where M is a real
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ellipsoid. Recently, based on his previous work on the complex dynamics property of real
ellipsoids, Webster proved the following: (See §3 for the definitions)

Theorem 1.1(Webster [We2]): A generic real ellipsoid in Cn with n ≥ 3 does not admit
any umbilical point.

Umbilical points on a certain class of real hypersurfaces of revolution were also studied
by Webster [We3].

A natural question arising from [We2] is then to ask whether a generic real ellipsoid in
C2 shares the same property as its analogy in higher dimensions. It is indeed this problem
that motivated our present work, and we provide, in this paper, the following:

Theorem 1.1 Every real ellipsoid M ⊂ C2 admits at least four umbilical points.

Theorem 1.2 resembles the classical result for the umbilical points on the ellipsoids in
R3 [pp222, Spv]. A famous theorem of Hamburger [Ham] states that every compact real
analytic convex surface in R3 admits at least two umbilical points. We do not know if there
is a CR version of the Hamburger theorem. More precisely, it is an open question to us if
every compact strongly convex hypersurface in C2 admits at least two CR umbilical points.
Notice that only for n = 2, the fundamental curvature tension reduces to a function. It may
not be surprising that it is more likely to find umbilical points on a hypersurface in C2 than
to find umbilical points for a hypersurface in Cn (n ≥ 3).

The proof of Theorem 1.2 uses Chern’s inhomogeneous coordinates for the projective G-
structure bundle of the Segre family of a real analytic strongly pseudoconvex hypersurface
[Ch] [CJ], and a formula derived in Huang-Ji-Yau [Theorem 3.1, HJY] for the complexified
Cartan fundamental curvature tension represented under these coordinates. The formula of
[HJY] seems to fit particularly well with the computation here.

In the classical Differential Geometry [Spv], surfaces in R3 without umbilical points must
be diffeomorphic to a torus. The boundary of a small thickening of the unit circle in R2

provides examples of closed surfaces without any umbilical point. However, this type of
examples does not give compact CR manifolds without CR umbilical points. The following
theorem gives a precise description for the set of umbilical points for the thickening of a
closed real curve. It is not clear to us if there is any embeddable three dimensional compact
CR manifold which has no CR umbilical points.

Theorem 1.2 Let Mε ⊂ C2 be the boundary of the ε-thickening of the unit circle {|z| =
1, w = 0}in C2, defined by the equation (1− |z|)2 + |w|2 = ε2, where ε is a sufficiently small
positive number. Then the set of all umbilical points of Mε forms a disjoint union of a closed
real analytic curve and two two-dimensional totally real analytic tori.
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2 Umbilical Points of Real Hypersurfaces In C2

In this section, we briefly review the Cartan-Chern-Moser theory (cf. [C][HJ] [Hu]). We
restrict ourselves to the case of n = 2. Let

M = {(z,w) ∈ C2 : r(z,w, z, w) = 0} (1)

be a Levi non-degenerate smooth real analytic hypersurface with (z0, w0) ∈ M . Its com-
plexification, called the Segre family of M , is then the complex three-fold

M = {(z,w, ζ, η) | r(z,w, ζ, η) = 0} ⊂ C4.

Clearly (z0, w0, z0, w0) ∈ M. Assume that

rw(z0, w0, z0, w0) :=
∂r

∂w
(z0, w0, z0, w0) 6= 0. (2)

Define

S : M → M̃ := S(M) ⊂ C2 × P1, (z,w, ζ, η) 7→
(
z,w,

[
∂r

∂z
:
∂r

∂w

]
(z,w, ζ, η)

)
. (3)

S is locally biholomorphic by the Levi non-degeneracy condition. (See Proposition 4.1 of
[CJ]). With the assumption in (2), we can regard (z,w, ζ) as a local non-homogeneous
coordinates system for M, and we can write S(z,w, ζ) = (z,w,− rz

rw
). Then we use (z,w, p)

as a local coordinates system, called the Chern coordinates system, for M̃, where

p = − rz

rw
. (4)

Making use of the implicit function theorem, we can find a unique holomorphic function
(in its argument) h(z, z, w) near (z0, z0, w0) with h(z0, z0, w0) = w0 such that w = h(z, z, w)
solves the equation: r(z,w, z, w) = 0. Then for (z,w, ζ, η) ∈ M, we have

p(z,w, ζ) =
∂h(z, ζ, η)

∂z
. (5)
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We have dp = p11dz + p̂1
1dζ + p̂2

1dη, where p11 = ∂2h
∂z2 , p̂1

1 = ∂2h
∂ζ∂z

and p̂2
1 = ∂2h

∂η∂z
; and we

have the following identity:

−pdz + dw − p̂1dζ − p̂2dη = 0 (6)

where p = p1 = ∂h
∂z

, p̂1 = ∂h
∂ζ

and p̂2 = ∂h
∂η

. Therefore, we obtain

dp|M =

(
p11 −

p̂2
1p1

p̂2

)
dz +

p̂2
1

p̂2
dw +

(
p,1

1 − p,2
1 p

,1

p,2

)
dζ. (7)

Hence, we have the following holomorphic coframe on M̃:

θ = dw − pdz = dw − p1dz,

θ1 = dz,

θ1 = =
p̂2

1

p̂2
θ +

(
p̂1

1 −
p̂2

1p̂
1

p̂2

)
dζ = dp − p11dz.

We emphasize again that p11 is a holomorphic function in (z,w, p) near (z0, w0, p0) with
(z0, w0) ∈M and p0 = p(z0, w0, z0); and p11 is given by the following formula:

p11 =
∂2h

∂z2
(8)

Define the holomorphic coframes over M:

ω = uθ, ω1 = u1θ + u1
1θ

1, ω1 = v1θ + v1
1θ1 (9)

where u, u1
1, u

1, v1 are holomorphic functions with u = iu1
1v

1
1 6= 0.

Now, the fundamental Cartan-Chern-Moser theory [CM] gives the following:

Let M = {r = 0} ⊂ C2, (z0, w0) ∈ M such that (2) is satisfied and let M̃ be as

in (3). Let π̃ : Ỹ → M̃ be the corresponding holomorphic projective structure bundle.
Then besides the 3 holomorphic 1-forms in (9), there exist 5 more holomorphic 1-forms

φ, φ1
1, φ

1, φ1, ψ, defined over Ỹ , with holomorphic coordinates z,w, p, u, u1
1, u

1, v1, t, with
u, u1

1 6= 0. These holomorphic 1-forms are C - linearly independent, and satisfy the following
structure equations

dω = iω1 ∧ ω1 + ω ∧ φ,
dω1 = ω1 ∧ φ1

1 + ω ∧ φ1,
dω1 = φ1

1 ∧ ω1 + ω1 ∧ φ+ ω ∧ φ1,
dφ = iω1 ∧ φ1 + iφ1 ∧ ω1 + ω ∧ ψ,
dφ1

1 = iω1 ∧ φ1 − 2iφ1 ∧ ω1 − 1
2
ψ ∧ ω,

dφ1 = φ ∧ φ1 + φ1 ∧ φ1
1 − 1

2
ψ ∧ ω1 + L11ω ∧ ω1,

dφ1 = φ1
1 ∧ φ1 − 1

2
ψ ∧ ω1 + P11ω ∧ ω1,

dψ = φ ∧ ψ + 2iφ1 ∧ φ1 +H1ω ∧ ω1 +K1ω ∧ ω1.

(10)
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All of these forms ω, ω1, ω1, φ, φ
1
1, φ

1, φ1 and ψ, as well as all of the curvature functions
L11, P11,H1 and K1, have been calculated explicitly in [Theorem 3.1, HJY]. In particular,
we have

L11 = − i(u1
1)

2

6u3
∂4p11

∂p4 ,

P11 = i
u(u1

1)2

[
∂2p11

∂w2 − 1
2

∂p11

∂w
∂2p11

∂p2 + 2
3

∂p11

∂p
∂2p11

∂p∂w
+ p11

6
∂3p11

∂p2∂w

−1
6

∂p11

∂p

(
∂3p11

∂p2∂z
+ p ∂3p11

∂p2∂w

)
− 2

3

(
∂3p11

∂z∂w∂p
+ p11

∂3p11

∂p2∂w
+ p ∂3p11

∂p∂w2

)

+1
6

(
∂4p11

∂p2∂z2 + p11
∂4p11

∂p3∂z
+ p ∂4p11

∂p2∂z∂w

)
+ 1

6
∂3p11

∂p3

(
∂p11

∂z
+ p∂p11

∂w

)

+p11

6

(
∂4p11

∂z∂p3 + p11
∂4p11

∂p4 + p ∂4p11

∂p3∂w

)
+ p

6

(
∂4p11

∂z∂p2∂w
+ p11

∂4p11

∂p3∂w
+ p ∂4p11

∂p2∂w2

)]
.

(11)

On the CR structure bundle Ŷ over M̂ = S({(z,w, z, w) : (z,w) ∈ M}), there are

R-linearly independent 1-forms ω, ω1, ω1, φ1
1, φ = φ1

1 + φ1
1, φ

1, φ1, ψ satisfying the structure
equations

dω = iω1 ∧ ω1 + ω ∧ φ,
dω1 = ω1 ∧ φ1

1 + ω ∧ φ1,

dφ1
1 = iω1 ∧ φ1 − 2iφ1 ∧ ω1 − 1

2
ψ ∧ ω,

dφ1 = φ ∧ φ1 + φ1 ∧ φ1
1 − 1

2
ψ ∧ ω1 + L̂11ω ∧ ω1,

dψ = φ ∧ ψ + 2iφ1 ∧ φ1 + (−Ĥ1ω
1 − Ĥ1ω1) ∧ ω.

(12)

Ii is known that the projective connection underlines the CR connection [C] [F]. Hence
the structure equations (10), when restricted on Ŷ , reduce to (12). Consequently, L̂11 =
L11|Ŷ = P11|Ŷ . L̂11, when pulled back to (Y, π,M), is the Cartan fundamental curvature
function. Hence, (z0, w0) ∈ M is an umbilical point if and only if L11|Ŷ = 0 along the fiber

π̂−1(z0, w0), where π̂ : Ŷ → M̂ is the natural projection. Notice that (z0, w0) is an umbilical
point of M if and only if there is a biholomorphic change of coordinates under which (z0, w0)
is mapped to the origin and M̂ is defined by an equation of the form: Im(w) = |z|2 + o(|z|6).
(See [CM]).

From (11), we notice that L11 vanishes at a point in the fiber π̂−1(S(z0, w0, z0, w0)) if
and only if L11 vanishes along the whole fiber π̂−1(S(z0, w0, z0, w0)). Since u 6= 0, u1

1 6= 0 in
(11), we obtain

Theorem 2.1 Let M = {r = 0} ⊂ C2. Let r and (z0, w0) ∈ M be as in (1). Assume that
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(2) is satisfied. Then (z0, w0) ∈M is an umbilical point if and only if

∂4p11

∂p4
(z0, w0, p0) = 0

where p0 = − rz

rw
(z0, w0, z0, w0).

3 Umbilical points of ellipsoids in C2

Recall that a real ellipsoid M ⊂ Cn is the image of the unit sphere ∂Bn under a real-
affine transformation of R2n := Cn. It is known [We1] that after a holomorphic affine
transformation, any real ellipsoid is given by an equation of the form:

∑n
j=1(Ajx

2
j +Bjy

2
j ) = 1

where Aj ≥ Bj > 0 and zj = xj + iyj. The complex structure of ellipsoids was first studied
by Webster in his famous paper [We1]. He showed that when n ≥ 2, two ellipsoids are
biholomorphically equivalent if and only if the set of ratios (Aj −Bj)/(Aj +Bj) is the same
for the two. Hence any ellipsoid M can be made into the form:

n∑

j=1

(
(1 + aj)x

2
j + y2

j

)
= 1 (13)

where aj ≥ 0. Notice that M is spherical if and only if aj = 0 for all j. In particular, after
a holomorphically linear change of coordinates, any ellipsoid M in C2 can be given by

(1 + a1)x
2
1 + y2

1 + (1 + a2)x
2
2 + y2

2 = 1, a1, a2 ≥ 0; (14)

or equivalently,

a1z
2 + a1z

2 + 2(2 + a1)zz + a2w
2 + a2w

2 + 2(2 + a2)ww = 4. (15)

We notice from (14) that M can be parameterized by three real parameters α, β ∈
[0, 2π], c ∈ [0, 1] through the following equation:

z =
c√

1 + a1

cos α + i c sin α, w =

√
1 − c2√
1 + a2

cos β + i
√

1 − c2sin β (16)

In fact, for any c ∈ [0, 1], consider w = x2 + iy2 with (1 + a2)x
2
2 + y2

2 = 1 − c2. Then

w =
√

1−c2√
1+a2

cos β + i
√

1 − c2sin β for β ∈ [0, 2π]. Since (1 + a1)x
2
1 + y2

1 = c2, the formula for
z = x1 + iy1 = c√

1+a1
cos α+ i c sin α follows.
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Complexifying (15), we obtain the Segre family M ⊂ C2 × C2 of M , defined by the
equation:

a1z
2 + a1ζ

2 + 2(2 + a1)zζ + a2w
2 + a2η

2 + 2(2 + a2)wη = 4. (17)

Choose the defining function of M to be r := a1z
2 + a1z

2 + 2(2 + a1)zz + a2w
2 + a2w

2 +
2(2 + a2)ww − 4. Then a point (z,w) satisfies (2) if and only if a2w + (2 + a2)w 6= 0. By
(16), this is equivalent to the condition that c 6= 1, or equivalently, w 6= 0. We assume

c 6= 1, i.e., w 6= 0. (18)

Then making use of the implicit function theorem, we have a unique function w = h(z, z, w),
which solves the the equation r = 0 near the point under study. Applying ∂

∂z
and ∂2

∂z2 to (17),

we get a1z+(2+a1)ζ+a2w
∂h
∂z

+(2+a2)η
∂h
∂z

= 0 and a1+a2

(
∂h
∂z

)2

+a2w
∂2h
∂z2 +(2+a2)η

∂2h
∂z2 = 0.

Since p = ∂h
∂z

and p11 = ∂2h
∂z2 on M, we obtain

a1z + (2 + a1)ζ + a2wp + (2 + a2)ηp = 0 and (19)

a1 + a2p
2 + a2wp11 + (2 + a2)ηp11 = 0. (20)

At the point (z,w, z, w) ∈ M, we then have

p = − a1z + (2 + a1)z

a2w + (2 + a2)w
. (21)

Now, we can use (17-20) to cancel out ξ, η as follows:
Multiplying (2 + a1)

2 to the equation (17) and making use of the equality: (2 + a1)ζ =
−a1z − a2wp − (2 + a2)ηp from (19), we have

(2 + a1)
2a1z

2 + a1

[
a1z + a2wp + (2 + a2)ηp

]2

+2(2 + a1)
2z

(
− a1z − a2wp− (2 + a2)ηp

)

+a2(2 + a1)
2w2 + a2(2 + a1)

2η2

+2(2 + a1)
2(2 + a2)wη = 4(2 + a1)

2.

(22)

Multiplying (22) by (2+a2)
2p2

11 and making use of (20): (2+a2)ηp11 = −a1−a2p
2−a2wp11,
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we obtain the following

a1(2 + a1)
2(2 + a2)

2z2p2
11 + a1(2 + a2)

2

(
a1zp11 − a1p− a2p

3

)2

−2(2 + a1)
2(2 + a2)

2p11z(a1zp11 − a1p − a2p
3)

+a2(2 + a1)
2(2 + a2)

2p2
11w

2 + a2(2 + a1)
2

(
a1 + a2p

2 + a2wp11

)2

−2(2 + a1)
2(2 + a2)

2wp11(a1 + a2p
2 + a2wp11) = 4(2 + a1)

2(2 + a2)
2p2

11.

(23)

Write (23) as

Ãp2
11 + 2B̃p11 + C̃ = 0, where (24)

Ã = −4a1(1 + a1)(2 + a2)
2z2 − 4a2(1 + a2)(2 + a1)

2w2 − 4(2 + a1)
2(2 + a2)

2, (25)

B̃ = 4(a1 + a2p
2)

[
(1 + a1)(2 + a2)

2zp − (2 + a1)
2(1 + a2)w

]
, (26)

C̃ = (a1 + a2p
2)2

[
a1(2 + a2)

2p2 + a2(2 + a1)
2

]
. (27)

Assume that Ã 6= 0 at the point (z,w) ∈ M with w 6= 0. We can then solve p11 from
(24):

p11 =
−B̃ ± H̃

Ã
(28)

where

H̃2 = B̃2 − ÃC̃ = 4(a1 + a2p
2)2

{
4

[
(1 + a1)(2 + a2)

2zp− (1 + a2)(2 + a1)
2w

]2

+

[
a1(2 + a2)

2p2 + a2(2 + a1)
2

]
·
[
a1(1 + a1)(2 + a2)

2z2

+a2(1 + a2)(2 + a1)
2w2 + (2 + a1)

2(2 + a2)
2

]}
.

(29)

After taking out the common factor 2(a1 + a2p
2), (28) can be simplified as

p11 =
−B̂ ± Ĥ

Ã
· 2(a1 + a2p

2) (30)
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where 2(a1 + a2p
2)B̂ = B̃, and

Ĥ2 = 4

[
(1 + a1)(2 + a2)

2zp− (1 + a2)(2 + a1)
2w

]2

+

[
a1(2 + a2)

2p2 + a2(2 + a1)
2

]

·
[
a1(1 + a1)(2 + a2)

2z2 + a2(1 + a2)(2 + a1)
2w2 + (2 + a1)

2(2 + a2)
2

]
.

(31)
Write

Ĥ2 = Ap2 +Bp+ C, where (32)

A = 4(1 + a1)
2(2 + a2)

4z2

+a1(2 + a2)
2

[
a1(1 + a1)(2 + a2)

2z2 + a2(1 + a2)(2 + a1)
2w2 + (2 + a1)

2(2 + a2)
2

]
,

(33)

B = −8(1 + a1)(1 + a2)(2 + a1)
2(2 + a2)

2zw, (34)

C = 4(1 + a2)
2(2 + a1)

4w2

+a2(2 + a1)
2

[
a1(1 + a1)(2 + a2)

2z2 + a2(1 + a2)(2 + a1)
2w2 + (2 + a1)

2(2 + a2)
2

]
.

(35)
Assume that Ĥ2 = Ap2 + Bp + C 6= 0 at the point (z,w) ∈ M with p being given as

before. Notice that Ã is independent of p and that the degree of B̂ in p is 1. From the
formula of p11 in (30), it follows that at (z,w, z, w),

∂4p11

∂p4
= 0 ⇔ ∂4

∂p4

(
(a1 + a2p

2)Ĥ

)
= 0. (36)

Assume that Ĥ(z∗, w∗, p∗) = 0 with (z∗, w∗) ∈M and p∗ = p(z∗, w∗, z∗), where

w∗, A(z∗, w∗), Ã(z∗, w∗) 6= 0.

Since p11(z,w, p) is a holomorphic function for (z,w, p) ≈ (z∗, w∗, p∗), we easily see from (30)
that J(z,w, p) := Ĥ ·(a1+a2p

2) is also holomorphic for (z,w, p) ≈ (z∗, w∗, p∗). In particular,
J(z∗, w∗, p) is holomorphic in p for p ≈ p∗. Now, suppose that 2A(z∗, w∗)p∗ +B(z∗, w∗) 6= 0.
Then Ĥ = ±(p − p∗)1/2h∗ with h∗ 6= 0 holomorphic for p ≈ p∗, by (32). This clearly

9



contradicts the fact that J(z∗, w∗, p) is holomorphic in p for p ≈ p∗. Hence, we conclude
that Ĥ(z∗, w∗, p∗) = 0 can only occur at the point where

2A(z∗, w∗)p∗ +B(z∗, w∗) = 0. (37)

Next, we have

∂4

∂p4

(
(a1 + a2p

2)Ĥ

)
= 12a2

∂2Ĥ

∂p2
+ 8a2p

∂3Ĥ

∂p3
+ (a1 + a2p

2)
∂4Ĥ

∂p4
. (38)

Since Ĥ2 = Ap2 + Bp+ C, we get 2Ĥ ∂Ĥ
∂p

= 2Ap +B. We continue to differentiate it to

get

(
∂Ĥ
∂p

)2

+ Ĥ ∂2Ĥ
∂p2 = A. Hence

∂2Ĥ

∂p2
=

A−( ∂Ĥ
∂p

)2

Ĥ
= 4AĤ2−(2Ap+B)2

4Ĥ3 = 4A(Ap2+Bp+C)−(4A2p2+4ABp+B2)

4Ĥ3 = 4AC−B2

4Ĥ3 . (39)

Continuing differentiation on

(
∂Ĥ
∂p

)2

+ Ĥ ∂2Ĥ
∂p2 = A, we obtain 3∂Ĥ

∂p
∂2Ĥ
∂p2 + Ĥ ∂3Ĥ

∂p3 = 0 and

thus

∂3Ĥ
∂p3 = − 3

Ĥ
· ∂Ĥ

∂p
· ∂2Ĥ

∂p2 = − 3
Ĥ
· 2Ap+B

2Ĥ
· 4AC−B2

4Ĥ3
= − 3

8Ĥ5
(2Ap +B)(4AC −B2). (40)

Again from the equation 3∂Ĥ
∂p

∂2Ĥ
∂p2 + Ĥ ∂3Ĥ

∂p3 = 0, we get by differentiation

3

(
∂2Ĥ

∂p2

)2

+ 4
∂Ĥ

∂p

∂3Ĥ

∂p3
+ Ĥ

∂4Ĥ

∂p4
= 0, and thus

∂4Ĥ

∂p4
=

1

Ĥ

[
− 3

(
∂2Ĥ

∂p2

)2

− 4
∂Ĥ

∂p

∂3Ĥ

∂p3

]
=

3(4AC −B2)

16Ĥ7

(
B2 − 4AC + 4(2Ap+B)2

)
. (41)

By Theorem 2.1, (36), (38), (39), (40) and (41), (z,w) ∈M is an umbilical point if and
only if

a2(4AC −B2)

Ĥ3
− a2p(2Ap +B)(4AC −B2)

Ĥ5

+

(
a1 + a2p

2

)
(4AC −B2)[B2 − 4AC + 4(2Ap +B)2]

16Ĥ7
= 0,
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which amounts to say that either 4AC −B2 = 0 or

a2Ĥ
4 − a2p(2Ap +B)Ĥ2 +

1

16
[a1 + a2p

2][B2 − 4AC + 4(2Ap +B)2] = 0. (42)

Since Ĥ2 = Ap2 +Bp+ C, it follows from (42) that

4a2(Bp+ 2C)2 + 4a1(2Ap+B)2 + (a1 + a2p)(B
2 − 4AC) = 0.

Hence, we have proved the following criterion on umbilical points.

Theorem 3.1 Let M ⊂ C2 be as in (14). Let (z,w) ∈ M be such that w 6= 0, Ã(z,w) 6= 0
and Ĥ(z,w, p(z,w, z)) = Ap2 + Bp + C 6= 0. Then (z,w) is an umbilical point if and only
if either 4AC −B2 = 0 or

4a2(Bp+ 2C)2 + 4a1(2Ap +B)2 + (a1 + a2p)(B
2 − 4AC) = 0 (43)

at (z,w, p). Here p is as in (21); A,B and C are as in (33), (34) and (35).

4 Proof of Theorem 1.2

Lemma 4.1 Let M be as in (14). Assume that a1 > 0. If 16a1 +16a1a2 + 3a1a
2
2 − 4a2

2 > 0,
then M is umbilical at ( c√

1+a1
, i
√

1 − c2) ∈ M for a certain c ∈ (0, 1).

Proof: Consider the curve Γ ⊂M with the parameter c ∈ [0, 1], defined by:

z(c) =
c√

1 + a1

, (44)

w(c) = i
√

1 − c2, 0 ≤ c < 1. (45)

Then along Γ, from (21), we have

p(c) = −a1z + (2 + a1)z

aw + (2 + a)w
= −i(

√
1 + a1)c√
1 − c2

. (46)

By (33),(34) and (35), we have

A(c) = 4(1 + a1)(2 + a2)
4c2

+a1(2 + a2)
2

[
a1(2 + a2)

2c2 − a2(1 + a2)(2 + a1)
2(1 − c2) + (2 + a1)

2(2 + a2)
2

]
,

(47)
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B(c) = −8(1 + a1)(1 + a2)(2 + a1)
2(2 + a2)

2ic
√

1−c2√
1+a1

, (48)

C(c) = −4(1 + a2)
2(2 + a1)

4(1 − c2)

+a2(2 + a1)
2

[
a1(2 + a2)

2c2 − a2(1 + a2)(2 + a1)
2(1 − c2) + (2 + a1)

2(2 + a2)
2

]
.

(49)

By Theorem 3.1, it is enough to show that there is a certain c ∈ (0, 1) such that at the

point (z(c), w(c), p(c)) ∈ M̃

Ã 6= 0, (50)

Ap2 +Bp+ C 6= 0, and (51)

4a2(Bp+ 2C)2 + 4a1(2Ap+B)2 + (a1 + a2p
2)(B2 − 4AC) = 0. (52)

We first prove that (50) holds for any point in Γ. By (25), Ã = 0 at (z(c), w(c)) ∈ Γ if
and only if

−4a1(2 + a2)
2c2 + 4a2(1 + a2)(2 + a1)

2(1 − c2) − 4(2 + a1)
2(2 + a2)

2 = 0,

namely,
−4a1(2 + a2)

2c2 − 4(2 + a1)
2[4 + 3a2 + c2a2 + c2a2

2] = 0.

But this is a contradiction because the left hand side is strictly negative for any c ∈ [0, 1].
We also notice that A > 0 along Γ, too.
Next, after restricted to Γ, (52) can be written as

[
4a2B

2 + 16a1A
2 + a2(B

2 − 4AC))

]
p2 + (16a2BC + 16a1AB)p

+

[
16a2C

2 + 4a1B
2 + a1(B

2 − 4AC)

]
= 0.

(53)

In order to solve the equation (52), by (46) and (53), it is enough to show that there exists
a point c ∈ (0, 1) such that K(c) = 0, where

K(c) : =

[
4a2B

2 + 16a1A
2 + a2(B

2 − 4AC))

](
a1z + (2 + a1)z

)2

−(16a2BC + 16a1AB)

(
a1z + (2 + a1)z

)(
a2w + (2 + a2)w

)

+

[
16a2C

2 + 4a1B
2 + a1(B

2 − 4AC)

](
a2w + (2 + a2)w

)2

.

(54)
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By (54) (47) (48) and (49), K(c) is a real-valued function defined on [0, 1]. When c = 0, we
have z = 0, w = i and

A = a1(2 + a2)
2

[
− a2(1 + a2)(2 + a1)

2 + (2 + a1)
2(2 + a2)

2

]

= a1(2 + a1)
2(2 + a2)

2(4 + 3a2), B = 0,

C = −4(1 + a2)
2(2 + a1)

4 + a2(2 + a1)
2

[
− a2(1 + a2)(2 + a1)

2 + (2 + a1)
2(2 + a2)

2

]

= −(2 + a1)
4(2 + a2)

2.

Hence
K(0) = −16C(4a2C − a1A) < 0, (55)

by noticing that C < 0 and A > 0.
When c = 1, we have z = 1√

1+a1
, w = 0 and

A = 4(1 + a1)(2 + a2)
4 + a1(2 + a2)

2

[
a1(2 + a2)

2 + (2 + a1)
2(2 + a2)

2

]

= (2 + a2)
4(1 + a1)(2 + a1)

2, B = 0,

C = a2(2 + a1)
2

[
a1(2 + a2)

2 + (2 + a1)
2(2 + a2)

2

]

= a2(2 + a1)
2(2 + a2)

2(1 + a1)(4 + a1)

Hence
K(1) = 4A(4a1A− a2C)4(1 + a1)

= d∗[4a1(2 + a2)
2 − a2

2(4 + a1)].
(56)

Here d∗ > 0. Hence, when

4a1(2 + a2)
2 − a2

2(4 + a1) = 16a1 + 16a1a2 + 3a1a
2
2 − 4a2

2 > 0,

K(0) < 0 and K(1) > 0. Thus, K(c) = 0 for a certain c ∈ (0, 1). Namely, we showed that
(52) holds for a certain c.

It remains to prove that (51) cannot hold for the above c ∈ (0, 1). Suppose that Ĥ(c)2 =

0. Since Ã(c) > 0 and A(c) > 0, w conclude by (37), that 2Ap+B = 0. Making use of (46),
(47) and (48), we thus have

−8(1 + a1)(1 + a2)(2 + a1)
2(2 + a2)

2 ic
√

1 − c2√
1 + a1

=
2i(

√
1 + a1)c√
1 − c2

·A(c) (57)
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This is a contradiction, for after dividing the fact i, the left hand side of (57) is negative,
while its right hand side is strictly positive. The proof of Lemma 4.1 is complete.

Proof of Theorem 1.2: If M is spherical, then every point is umbilical point. We assume
that M is not spherical. Then a1+a2 > 0. We notice that (1+a1)x

2
1+y

2
1 +(1+a2)x

2
2+y

2
2 = 1

is holomorphically equivalent to the ellipsoid defined by (1+a2)x
2
1 +y2

1 +(1+a1)x
2
2 +y2

2 = 1
through the map (z,w) → (w, z). Hence, we need only to prove Theorem 1.2 for the case
when a1 ≥ a2. Then the assumption in Lemma 4.1 holds automatically and thus we have an
umbilical point of the form ( c√

1+a1
, i
√

1 − c2) (c ∈ (0, 1)). Notice that M has automorphisms

sending (z,w) to (±z,±w). We easily conclude that M possesses at least four umbilical
points.

5 Proof of Theorem 1.2

The ε-thickening Ωε of the unit circle {|z| = 1, w = 0} is defined to be the set of points whose
distance to the circle is less than ε. It is straightforward to verify that the boundary Mε of Ωε

is defined by the following equation, which is strictly plurisubharmonic when 0 < ε < 1/4:

|z|2 − 2|z| + 1 + |w|2 = ε2. (58)

Here and in what follows, we assume 0 < ε << 1. Also, since Ωε is a Reinhardt domain,
we need only to study the points (z,w) ∈ Mε with z = x1 ≥ 0 and w = x2 ≥ 0. Also, we
assume that x2 > 0. Notice that when ε << 1, x2 ≈ 1.

The complexification of (58) is given by

r := zζ − 2(zζ)1/2 + 1 + wη − ε2 = 0. (59)

As we did in §3, we have

rz = ζ − (zζ)−1/2ζ + pη = 0, and (60)

rzz =
1

2
(zζ)−3/2ζ2 + p11η = 0. (61)

From (60), we have
zζ − (zζ)1/2 + pzη = 0. (62)

Subtracting (59) from (62), we obtain

(zζ)1/2 = 1 − ε2 + (w − pz)η. (63)
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Returning to (61) and making use of (63), we get

1 − ε2 + (w − pz)η + 2ηz2p11 = 0. (64)

Here, we remark that near the point under study, η ≈ x2 6= 0. Hence 1−ε2

η
+(w−pz)+2z2p11 =

0 and
∂4p11

∂p4
= 0 ⇐⇒ ∂4

∂p4

(
1

η

)
= 0. (65)

Set X = 1
η
. Substituting (63) into (59), we get

[
(1 − ε)2 + (w − pz)η

]2

− 2

[
(1 − ε2) + (w − pz)η

]
+ 1 + wη − ε2 = 0, or

(w − pz)2η2 +

[
2(1 − ε2)(w − pz) − 2(w − pz) + w

]
η + (1 − ε2)2 − 2(1 − ε2) + (1 − ε2) = 0,

−ε2(1 − ε2)X2 +

[
− 2ε2(w − pz) + w

]
X + (w − pz)2 = 0.

Hence

X =
−(−2ε2(w − pz) + w) ±H

−2ε2(1 − ε2)
(66)

where
H2 := (2ε2(w − pz) − w)2 + 4ε2(1 − ε2)(w − pz)2.

Hence
∂4p11

∂p4
= 0 ⇐⇒ ∂4H

∂p4
= 0. (67)

Write H2 = Ap2 +Bp+ C where

A = 4ε2z2 + 4ε2(1 − ε2)z2 = 4ε2z2,
B = −4ε2z(2ε2w) − 8ε2(1 − ε2)wz = −4ε2wz,
C = ε2w2.

(68)

By (41), we conclude that ∂4p11

∂p4 = 0 if and only if

either 4AC −B2 = 0 or B2 − 4A+ 4(2Ap +B)2 = 0. (69)

Since 4AC−B2 = 4ε2(zw)2(1−4ε2) 6= 0, the first equality in (69) never occurs. The second
equality in (69) is equivalent to 4AC −B2 = 4(2Ap +B)2, namely,

2εzw
√

1 − 4ε2 = ±2(2Ap +B). (70)
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At the point in M with z = x1 > 0 and w = x2 > 0, by (60), we find x1−1+px2 = 0, or

p =
1 − x1

x2
. (71)

Hence we get from (68)

A = 4ε2x2
1, B = −4ε2x1x2 and C = ε2x2

2. (72)

Then (70) is equivalent to

2εx1x2

√
1 − 4ε2 = ±2

(
8ε2x2

1 ·
1 − x1

x2
− 4ε2x1x2

)
. (73)

Since x1 ≈ 1, we get from (73):

x2
2

√
1 − 4ε2 = ±

(
8ε(x1 − x2

1) − 4εx2
2

)
. (74)

Recall x2
2 = ε2 − (1−x1)

2. Let T = 1−x1. Then x1−x2
1 = T −T 2 and x2

2 = ε2 −T 2. Hence
(74) is equivalent to

(ε2 − T 2)
√

1 − 4ε2 = ±4ε(2T − T 2 − ε2), (75)

or
f(T ) := (

√
1 − 4ε2 ∓ 4ε)T 2 ± 8εT + (−ε2

√
1 − 4ε2 ∓ ε2) = 0.

Notice that −ε < T < ε. From the fact that

f ′(T ) = 2(
√

1 − 4ε2 ∓ 4ε)T ± 8ε = 0 ⇐⇒ |T | ≈ 4ε

for ε << 1, we conclude that the real-valued function f(T ) is monotonic for T ∈ (−ε, ε).
We further compute

f(−ε) = (
√

1 − 4ε2 ∓ 4ε)ε2 ∓ 8ε2 + (−ε2
√

1 − 4ε2 ∓ 4ε3) ≈ ∓8ε2

and
f(ε) = (

√
1 − 4ε2 ∓ 4ε)ε2 ± 8ε2 + (−ε2

√
1 − 4ε2 ∓ 4ε3) ≈ ±8ε2

for ε << 1. Then we see that (69) has two solutions in (−ε, ε). A little more effort actually
shows that these two solutions are different. Therefore, by Theorem 2.1, we conclude that
M admits two distinct umbilical points with z = x1 > 0, w = x2 > 0. One can similarly
verify that points in M with w = 0 are umbilical points. The statement Theorem 1.3 thus
follows from the Reinhardt property of Ωε.
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