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1. Introduction

In this paper, we are concerned with the classification problem of proper
holomorphic maps between balls in complex spaces. Write Bn = {z ∈ Cn :
|z| < 1} and Prop(Bn, BN ) for the collection of all proper holomorphic
maps from Bn into BN . We recall that f, g ∈ Prop(Bn, BN ) are said to be
equivalent if there are elements σ ∈ Aut(Bn) and τ ∈ Aut (BN ) such that
f = τ ◦ g ◦ σ . It is a well-known result of Poincaré [Po] and Alexander
[Alx] that when N = n > 1, then any f ∈ Prop(Bn, Bn) is equivalent to
the identity map. For the case of N > n > 1, due to the discovery of inner
functions, it is clear that solving the classification problem in Prop(Bn, BN )
is unrealistic. Therefore, one focuses on the important subclass of mappings,
Rat(Bn, BN ), the collection of all rational proper holomorphic mappings
from Bn into BN . And here, there are already many non-trivial and interesting
questions ([DA1]).

A first result along these lines is due to Webster [We], who showed that
Rat(Bn, Bn+1) has only one equivalence class for n > 2. This was proven
to hold also for Rat(Bn, BN ) by Faran [Fa2] in the larger codimensional
case: N ≤ 2n − 2. For the case N ≥ 2n − 1, the collection of all equiva-
lence classes, denoted by R̃(n, N), of Rat(Bn, BN ) carries a real algebraic
structure from the work of [Fo1], [BER]. However, the specific description
of R̃(n, N) remains to be quite mysterious in general. In [DA2], D’Angelo
discovered a continuous family of mutually inequivalent polynomial proper
embeddings from Bn into B2n (see Example 3), which in particular indicates
that the set R̃(n, N) contains infinitely many elements when N ≥ 2n. On
the other hand, in a paper of Faran [Fa1] in the early 80’s, it was shown that
R̃(2, 3) has exactly four elements. This then leads to the natural question of
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clarifying the border case of N = 2n − 1 with n > 2. It is indeed this prob-
lem that motivates the present work; and we will show that unlike Faran’s
result concerning R̃(2, 3), there are only two elements in R̃(n, 2n − 1) for
n ≥ 3. Namely, we provide in this paper the following:

Theorem 1: When n ≥ 3, Rat(n, 2n − 1) has exactly two equivalence
classes. One is generated by the standard linear embedding L(z1,· · ·, zn) :=
(z1, · · · , zn, 0, · · · , 0), and the other is generated by the Whitney map
W(z1, · · · , zn) := (z1, · · · , zn−1, znz1, znz2, · · · , znzn). More precisely, any
rational proper holomorphic map from Bn into B2n−1 with n > 2 is equiva-
lent either to the standard linear map L(z) or to the Whitney map W(z).

One of the striking developments of complex analysis in the early 80′s
is the discovery of the fact that Prop(Bn, BN ) is a much larger class than
Rat(Bn, BN ) (see [HS], [Low], [Fo2], [Hu2] for related references). This
makes it a natural but also a subtle direction in complex analysis to un-
derstand the conditions under which an element in Prop(Bn, BN ) becomes
linear or rational. (Indeed, for many applications of complex analysis in
classical dynamics and geometry, see [Yue] and [LN] and the references
therein, a good understanding of such a phenomenon always appears to be
quite crucial). Along these studies, there have recently appeared a number of
papers (see [Fo2], [Yue], [Hu2], [Hu3] for surveys and related references), in
which the interaction of the boundary regularity or the dynamical property
of the maps with the rationality and the linearity of the maps was investi-
gated. Here we mention a theorem of Forstneric [Fo1]: If f : Bn → BN ,
(1 < n < N), is a proper holomorphic mapping which is (N−n+1) contin-
uously differentiable up to the boundary, then f is rational. In a recent work
of the first author [Hu1], a new approach was introduced for such a study.
It was shown in [Hu1–2] that the linearity and rationality hold in fact for
maps which are only assumed to be twice continuously differentiable up to
the boundary in case N < 2n − 1 or N ≤ 2n − 1, respectively. While it is
still an open question if this is also the case for general codimensions, we
mention that these results are good enough for us to reformulate Theorem 1
for proper maps which are only twice differentiable up to the boundary.
Notice that a proper holomorphic embedding from Bn into B2n−1 cannot
be equivalent to the Whitney map, the previous result of the first author
(say, [Corollary 1.2, Hu2]) together with Theorem 1, in particular, provides
the following rigidity theorem for holomorphic embeddings between balls.
(Notice in case n = 2, it is contained in the work of Faran [Fa2]):

Theorem 2: Let F be a proper holomorphic embedding from Bn into B2n−1

(n > 1), which is twice continuously differentiable up to the boundary. Then
F is equivalent to the standard linear embedding L(z).

Example 3 (D’Angelo [pp87, DA2]): Let z=(z′, zn) and Ft =(z′, cos(t)zn,
sin(t)znz) with t ∈ (0, π/2). Then Ft is a proper holomorphic embedding
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from Bn into B2n. Clearly, Ft cannot be linear; for it has degree two. Fur-
thermore, Ft is equivalent to Fs if and only if t = s. Hence, R̃(n, 2n) has
infinitely many elements.

Now, we say a few words about the proof of Theorem 1. Part of the
approaches and techniques we need to use are based on the work done in
[Hu1]. We first establish the Chern-Moser formal theory for the normalized
map, which gives us some sort of the jet relation (namely, a certain kind of
the curvature relations). In particular, we will prove the rank of a certain
matrix formed by the second derivatives of the map is generically one if the
map is not linear. This rank condition holds exclusively for N = 2n − 1,
but only gives a non-trivial and intrinsic restriction to the map for n > 2.
Using the large automorphism groups of the balls, we derive from this rank
condition a partial differential equation. Unlike the situation considered in
[Hu1], it is now very difficult to solve the equations directly. However, by
performing certain formal arguments to the equations, we can derive some
connection between the third derivatives of the map (Lemma 4.1). With
such a relation provided in Lemma 4.1, we will prove the existence of what
we call the characteristic direction along which the map is linear and the
solutions must take certain specific normal form. We next show the degree
of the map as in the theorem is at most two, to further simplify the obtained
normal form. Finally, we show that the map is either linear or is equivalent
to the Whitney map. Once Theorem 1 is proved, Theorem 2 is an immediate
consequence of Theorem 1 and the results in [Hu1–2].

Acknowledgements. The authors wish to thank J. D’Angelo and S. Webster for their stimu-
lating conversations related to this work. Also, they would like to thank the referee for many
helpful suggestions, which have greatly improved the readability of the paper.

2. Notations, preliminaries and brief description of the proof of
Theorem 1

In this section, we set up some notation and recall some results from [Hu1],
which will be used through the paper. We will also discuss briefly the proof
of Theorem 1.

First, it is well-known that the ball Bn is holomorphically equivalent
to the Siegel upper-half space Hn = {(z, w) ∈ Cn−1 × C : Im(w) >
|z|2} and the sphere is equivalent to the Heisenberg hypersurface ∂Hn.
Let L j = ∂

∂z j
+ 2

√−1z j
∂

∂w
for j = 1, · · · , n − 1. Then {L1, · · · , Ln−1}

form a basis of T(1,0)∂Hn. We assign the weight of z to be 1 and w to
be 2, and use the notation (·)(σ) for a holomorphic polynomial of weighted
degree σ . For a function h defined over ∂Hn, we say that h ∈ owt(k) if
limt→0

h(tz,t2w)

tk → 0 uniformly on (z, w) over any compact subset of ∂Hn.
We also use the notation: 〈a, b〉 = ∑

j a jb j and |a|2 = 〈a, a〉.
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Next, let F be a rational proper holomorphic map from Bn into BN .
By a result of Cima-Suffridge [CS2], F extends holomorphically up to the
boundary. Hence, it induces naturally a (non-constant) holomorphic map
from ∂Hn into ∂HN , which will still be denoted by F for simplicity of
notation. Since we are only interested in the normalization problem of F
up to the action of the automorphisms of the Heisenberg hypersurfaces, we
can assume without loss of generality that F(0) = 0. Moreover, we have

Lemma 2.1 ([Lemma 5.3, Hu1]): After composing F with certain auto-
morphisms of the Heisenberg hypersurfaces, the map F = ( f, φ, g) =
( f1, · · · , fn−1, φ1, · · · , φN−n , g) can be assumed to take the following nor-
mal form (N > n > 1):

f = z + i

2
a(1)(z)w + owt(3), φ = φ(2)(z) + owt(2), g = w + owt(4),

(2.1)

with

〈z, a(1)(z)〉|z|2 = |φ(2)|2.(2.2)

As in Lemma 5.3 of [Hu1], the above holds for F which is only assumed
to be C2-smooth over the source hypersurface. Equation (2.2), which comes
as a consequence of the normalization as in (2.1), reflects the lowest order
CR curvature terms, which may be useful for further understanding of
problems for mappings between Heisenberg hypersurfaces. In particular,
we mention that the polynomials a(1)(z), φ(2)(z) contain the information
on how far the map is away from a linear one. Equation (2.2) relates the
second order jets of F at the point p = 0. To make it useful for our analysis,
we will produce from the F in Lemma 2.1 a family of maps from Hn into
HN , denoted by F∗∗

p , with parameter p ∈ ∂Hn. Notice that if we apply the
curvature equation (2.2) to F∗∗

p , we will get a relation of the second order
jets of F at any point p ∈ ∂Hn. Hence, we derive differential equations
for F, through which we take the control of the map F.

In case N = 2n − 1, we will see in Lemma 3.1 that after composing F
with certain automorphisms of the Heisenberg hypersurfaces, we can further
simplify a(1)(z) and φ(2)(z). Moreover, (2.2) implies a rank condition for
the second derivatives of the map F at 0 (see Remark 3.1′). It is this rank
condition that enables us to find a direction along which the map F is
linear. It should be mentioned that such a condition becomes empty when
n = 2. Hence, our approach here is not usable when n = 2. Indeed, by the
examples of Alexander [Alx] and Faran [Fa2], when n = 2, F may not have
any direction at all in which F is linear.

Now, we describe how F∗∗
p is defined. Let F be as in (2.1). F induces

a holomorphic map Fp0 : ∂Hn → ∂HN for any p0 = (z0, w0) ∈ ∂Hn defined
as follows. We write σp0 ∈Aut(Hn) for the map given by σp0(z, w)=(z+z0,
w + w0 + 2i〈z, z0〉) (σp0(0) = p0), and τp0 ∈ Aut(HN ) by τ(z∗, w∗) =
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(z∗ − f̃ (z0, w0),w
∗ − g(z0, w0) − 2i〈z∗, f̃ (z0, w0)〉). Here we write f̃ =

( f, φ). Then Fp0(z, w) = ( f p0, φp0, gp0) = ( f̃ p0, gp0) := τp0 ◦ F ◦ σp0 is
a holomorphic map from ∂Hn into ∂HN with Fp0(0) = 0.

However, the map Fp0 constructed in this way does not satisfy (2.1) in
general. By further composing Fp0 with suitable automorphisms of HN , we
will get F∗∗

p0
for which (2.1) and thus (2.2) holds. Such a process and related

formulas have been carefully discussed in [§2, §4, Hu1] and are reviewed
as follows:

Let λp0 := ∂gp0
∂w

|0 = g′
w(z0, w0) − 2i〈( f̃ )′w(z0, w0), f̃ (z0, w0)〉;

(El)p0 := ∂ f̃ p0
∂zl

|0 = Ll( f̃ )(z0, w0);

(Ew)p0 := ∂ f̃ p0
∂w

|0 = f̃ ′w(z0, w0);

and let (Cl)p0 be so chosen that (see [pp 17, Hu1])

Ap0 = A(z0,w0) :=



(E1)p0/
√

λp0
...

(En−1)p0/
√

λp0

(C1)p0
...

(CN−n)p0


is a unitary matrix.

Define F∗
p0
= ( f̃ ∗p0

, g∗
p0

)= (( f1)
∗
p0

,· · ·, ( fn−1)
∗
p0

, (φ1)
∗
p0

,· · ·, (φN−n)
∗
p0

, g∗
p0

)
by

1√
λp0

Fp0 ·
(

At
p0

0
0 1/

√
λp0

)
.

Then F∗
p0

is a proper holomorphic map from Hn into HN with F∗
p0

(0) = 0
and f̃ ∗ p0

= (z, 0) + owt(1), g∗
p0

= w + owt(1). To further modify F∗
p0

so
that (2.1) holds, we let

ap0 := (
(a1)p0, · · · , (an−1)p0, (b1)p0, · · · , (bN−n)p0

)
, with

(al)p0 = 1
λp0

(Ew)p0 · (El)p0

t
, (bl)p0 = 1√

λp0

(Ew)p0 · (Cl)p0

t
. It can be seen

that |ap0 |2 = 1
λp0

|(Ew)p0 |2. Also let

(dl j)p0 := ∂2( f ∗l )p0
∂z j∂w

|0 = 1
λp0

( f̃ p0)
′′
wzl

(0) · (E j)
t
p0

= 1
λp0

Ll( f̃ ′w)(p0) · (E j)
t
p0

;

(cl)p0 :=
∂2g∗p0
∂zl∂w

|0 = 1
λp0

(gp0)
′′
wzl

(0) = 1
λp0

Ll(g′
w − 2i f̃ ′w · f̃

t
)(p0);

rp0 := 1
2

∂2(g)∗p0
∂w2 |0 = 1

2λp0
Re((gp0)

′′
ww(0)) = 1

2λp0
Re(g

′′
ww − 2i f̃

′′
ww · f̃

t
)(p0).

Define

G p0 (z
∗, w∗) :=

(
z∗ − ap0 w

∗

1 + 2i〈z∗, ap0 〉 − (−r + i〈ap0 , ap0 〉)w∗ ,
w∗

1 + 2i〈z∗, ap0 〉 − (−r + i〈ap0 , ap0 〉)w∗

)
.

Then G p0 ∈ Aut(HN ).
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Finally, F∗∗
p0

is the composition F∗
p0

with G p0 :

F∗∗
p0

= (
f ∗∗p0

, φ∗∗
p0

, g∗∗
p0

) = (
f̃ ∗∗p0

, g∗∗
p0

) := G p0 ◦ F∗
p0

.

By [§2, Lemma 5.3, Hu1], F∗∗
p0

satisfies the normalization conditions (2.1),
and thus (2.2) too.

As in [Hu1], it is desirable to know how F∗∗
p gives the feedback to the

original function F (see Lemma 2.1 of [Hu1], for instance). For our purpose
later, we need the following formula, which can been easily obtained by
collecting the coefficients of the z jw-terms in the Taylor expansion of the
right hand side of [(2.7)′, Hu1]:

∂2( fl)
∗∗
p0

∂z j∂w
|0 = (dl j)p0 − (al)p0(c j)p0 − δl

j

(
i|ap0 |2 + rp0

)
, 1 ≤ l, j ≤ n − 1.

(2.3)

Here p0 ∈ ∂Hn and δl
j takes value 1 for j = l and 0 otherwise. We notice

that F∗∗
p0

depends on p0 and the choice of (Cl)p0 . However,
∂2( fl )∗∗p0
∂z j∂w

∣∣∣
0

is

independent of the choice of (Cl)p0 by the formula in (2.3).
The key point to the proof of the theorem is to simplify a non-linear map

F as in Lemma 2.1 in such a way that we can recognize its equivalence
class. Hence, we need a test to distinguish a non-linear map from a linear
one. To this aim, we will need the following linearity criterion which will
be the starting point for the proof of Theorem 1:

Proposition 2.2 ([Theorem 4.2, Hu1]): Suppose that for any p0 = (z0, w0)
∈ ∂Hn close to the origin (N > n > 1), there is a certain choice of

(Cl)p0 so that
∂2φ∗∗

p0
∂zl∂zk

∣∣∣
0
= 0 (1 ≤ k, l ≤ n − 1) for the corresponding

F∗∗
p0

= ( f ∗∗p0
, φ∗∗

p0
, g∗∗

p0
). Then F(z, w) ≡ (z, 0, w).

The above was actually proved in [Hu1] for F which is only assumed
to be C2-smooth over the source hypersurface. Also we remark in passing

that the condition that
∂2φ∗∗

p0
∂zl∂zk

∣∣∣
0
= 0 for each l, k is independent of the choice

(Cl)p0 . (Namely, if it holds for one choice of (Cl)p0 , then it holds for any
other admissible choices of (Cl)p0 .) This can be easily seen from the formula
(2.2) and the fact that the formula in (2.3) is independent of (Cl)p0 . (It also
follows from [Lemma 2.1, Hu1] and the formula for q j

kl there).
For the proof of Theorem 2, we need the following result from [Hu1-2]:

Theorem 2.3 ([Corollary 1.2, Hu2]): Let M1 and M2 be two open con-
nected pieces of the boundaries of the unit balls Bn and B2n−1, respectively
(n ≥ 2). Let F be a non-constant twice continuously differentiable CR map-
ping from M1 and M2. Then F extends to a rational proper holomorphic
map from Bn to B2n−1.
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The rest of the paper will be arranged as follows: In what follows, we
always assume that N = 2n−1, n > 2 and F satisfies (2.1). We also assume
that F is not linear. In Sect. 3, we will simplify a(1) and φ(2) by applying
(2.2). In particular, we get a rank condition (Lemma 3.1 (i) or Remark 3.1′)
for the second order derivatives of F at 0. For the proof of Theorem 1, we
need consider the 5th order formal equation to get relations of the higher
order jets of F near 0 (see Lemma 3.2). In Sect. 4, we will seek the direction
in which F is linear. Notice that for the g in Lemma 2.1, g = w + owt(4).
Since Im(g) ≥ 0, by a generalized version of the Hopf lemma due to Burns-
Krantz, to show that g(0, w) ≡ w, it suffices to find a further normalization
in which g′′′

www(0) = 0. To this aim, we need to get a certain relation between
the two third order derivatives of g: g′′′

z1ww(0) and g′′′
www(0). Since they stay

in different weighted-order terms, such a relation can not be obtained just
by looking at the Moser formal equation. Our method is to apply the rank
condition (Lemma 3.1 (i)) to F∗∗

p and the feedback formula (2.3) to get
a system of differential equations for F. Then we perform a formal argument
for such equations (instead of the Chern-Moser formal equation) to get the
desired formula (Lemma 4.1). With Lemma 4.1 at our disposal, in Sect. 5
we will show that after composing F with suitable automorphisms, we
can further assume that the map in Lemma 2.1 has the following partial
linearity: g(0, w) ≡ w, f̃ (0, w) ≡ 0 and F has degree two when restricted
to the Segre variety Q0. After re-employing F∗∗

p , we can similarly show
that the degree of F also has degree two along the Segre variety Q p for
any p(≈ 0) ∈ Hn. This then allows us to prove that the degree of F is two
(Lemmas 5.2–5.3) and takes the special normal form as in (6.1). Once we
get Lemma 6.1, the proof of Theorem 1.1 can be achieved by explicitly
writing down the maps which intervine F into the Whitney map. We also
attach an appendix after Sect. 6, in which we give an explicit map and its
Taylor expansion (see (A.I)–(A.III)). The reader may like to compare this
example with some of the formulas in Lemmas 3.1, 3.2, and 4.1

3. The formal consideration

We now let F = ( f, φ, g) = ( f1, ..., fn−1, φ1, ..., φn−1, g) = ( f̃ , g) :
∂Hn → ∂H2n−1 be a non-constant rational map, which satisfies the normal-
ization condition (2.1). Assume in all that follows that F is not equivalent
to a linear map and n > 2, N = 2n − 1, unless otherwise stated spe-
cifically. Our purpose is then to show that F is equivalent to the Whitney
map.

It is well known that any local non-constant holomorphic map H , which
sends ∂Hn into ∂Hn and satisfies a normalization condition similar to (2.1),
must be the identity map. For a holomorphic map from ∂Hn into ∂H2n−1,
the normalization condition (2.1) is not enough to determine the structure
of F. Our first objective is to normalize F to make it take even simpler form.
To this aim, we will first look at the formal implication of the functional
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equation Im(g) = | f̃ |2 for Im(w) = |z|2. It should be mentioned that (2.2)
actually comes as a consequence of the normalization condition [(3.1), Hu1]
(which is even weaker than (2.1) here), by considering the weighted third
and 4th order terms of this functional equation ([Lemma 5.3, Hu1]).

Since F∗∗
p is equivalent to F, by Proposition 2.2, after replacing F by

F∗∗
p0

for a certain p0 if necessary, we can assume in what follows that
a(1)(z), φ(2)(z) �≡ 0. Indeed, by (2.3), we can further assume that the
a(1)(z), φ(2)(z) coming from F∗∗

p0
do not vanish identically neither for any

p0 sufficiently close to 0. Write a(1)(z) = z · A. Then 〈z, a(1)(z)〉 = z Azt

and A
t = A by (2.2).

Lemma 3.1: Assume that F is as above such that a(1), φ(2) are not identi-
cally zero. Then the following holds:

(i) Rank (A) = 1;
(ii) F is equivalent to a map which satisfies (2.1) with a(1) (z) = (z1, 0, ..., 0)

and φ
(2)
j = z1z j, 1 ≤ j ≤ n − 1. Namely, F is equivalent to a map of

the following form:
f1 = z1 + i

2 z1w + owt(3),

f j = z j + owt(3), 2 ≤ j ≤ n − 1,

φ j = z1z j + owt(2), 1 ≤ j ≤ n − 1,

g = w + owt(4), near 0 ∈ ∂Hn.

(3.1)

Proof of Lemma 3.1: By (2.2), it is clear that A is a semi-positive Hermitian
matrix. Since A �≡ 0, there is a unitary matrix U such that U−1 AU =
diag(κ1, ..., κk, 0, ..., 0) with κv > 0, 1 ≤ v ≤ k. Replacing F(z, w) by(

f(zU−1, w) · U, φ(zU−1, w), g(zU−1, w)
)
, we can assume without loss of

generality that A already takes such a diagonal form.
We claim k = 1. In fact, write φ

(2)
j = ∑

α≤β b( j)
αβzαzβ. Then∣∣φ(2)

j (z)
∣∣2 =

∑
α≤β

∣∣b( j)
αβ

∣∣2|zα|2|zβ|2 +
∑

(α,β) �=(γ,l),α≤β,γ≤l

{
b( j)

αβb( j)
γl zαzβzγ zl

}
.

Write Bαβ := (b(1)
αβ , ..., b(n−1)

αβ ). Notice that (2.2) now reads as( k∑
j=1

κ j |z j |2
)
|z|2 ≡

n−1∑
j=1

∣∣φ(2)
j (z)

∣∣2.(3.2)

Comparing the coefficients of the |z1|2zlzβ-terms, we get |B1β|2 > 0 and
B1l · B1β

t = 0, ∀ l �= β. Hence {B11, B12, ..., B1 n−1} forms an orthogonal
basis of Cn−1. For Bsl with s �= 1, since we can similarly see from (3.2)
that B1β · Bsl

t = 0 for all β, we get that Bsl = 0 for s �= 1. Therefore we
conclude that k = 1, for the right hand side of (3.2) contains z1 factor.
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Combining the above, we conclude that the left hand side of (3.2)
becomes κ1|z1|2|z|2 and φ

(2)
j = z1

∑
β b( j)

1β zβ = z1 B̃ j · zt , where B̃ j :=

(b( j)
1 1, ..., b( j)

1 n−1). Write

 φ
(2)
1
...

φ
(2)

n−1

 = z1 B̃ · zt , where B̃ :=
 B̃1

...

B̃n−1

 . Apply-

ing (3.2), we get B̃ B̃t = κ1(id).

Replacing ( f, φ, g) by ( f, φ B̃√
κ1

, g), the new map then takes the form

f1 = z1 + i
2κ1z1w + · · · , φ j = √

κ1z1z j + · · · . Next replacing it by

(z, w) �→
(√

κ1 f̃

(
z√
κ1

,
w

κ1

)
, κ1g

(
z√
κ1

,
w

κ1

))
,

then we get a new map, which is equivalent to the original F and is now of
the desired form. ��
Remark 3.1′: Suppose that F is an arbitrary non-linear holomorphic map
from ∂Hn into ∂HN , satisfying the normalization condition (2.1) with a(1),
φ(2) not identically zero. As we mentioned before, (2.2) then holds auto-
matically. Hence Lemma 3.1 (i) shows that for N = 2n − 1,

Rank

(
( f1)z1w ... ( f1)zn−1w

... ... ...
( fn−1)z1w ... ( fn−1)zn−1w

)∣∣∣∣∣
0

= 1.

We remark that when N < 2n−1, the rank of the above matrix becomes zero
as is shown in [Proposition 3.1, Hu1]. It was such a rank-zero geometric fact
that leads to the proof in [Hu1]. For the case considered in this paper, the
rank is 1, which appears to be the key geometric fact that leads to the result
in Theorem 1. (Notice that when n = 2, the rank-one condition simply says
that f ′′zw(0) �= 0, which generically holds for any non-linear map. Namely,
the rank condition only gives a crucial restriction for the map when n > 2).

In the next section, we will apply the above rank condition to the map
F∗∗

p0
introduced in Sect. 2 to obtain a certain type of second order non-linear

partial differential equations (see (4.5)) of F. Such a system of equations
is complicated. For the proof of Theorem 1, we need to carry out a formal
argument for this system to derive a formula for the two third order deriva-
tives of g at 0 (Lemma 4.1). To facilitate the formal consideration in Sect. 4,
we next study the information contained in the 5th order curvature equation.

In what follows, we assume that F takes the normal form as in (3.1).
Collecting the weighted-5th order terms in the equation Im(g) = | f̃ |2

over Im(w) = |z|2, we obtain

Im{g(5) − 2iz f (4)} = 2Re
n−1∑
j=1

φ
(2)
j φ

(3)
j , ∀(z, w) ∈ ∂Hn.(3.3)
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Letting z1 = 0 and using (3.1), we get Re
∑n−1

j=1 φ
(2)
j φ

(3)
j ≡ 0. By

the Chern-Moser lemma (see [Lemma 2.1, CM] or [Lemma 3.0, Hu1],
or by a straightforward computation), we get g(5)(0, z′, w) ≡ 0 and
f (4)

j (0, z′, w) ≡ 0 for j > 1, where z = (z1, z′). Therefore, we can write
f (4)
1 = a(4)(z) + a(2)(z)w + a02w

2,

f (4)
j = z1(a

(1)
j (z)w + a(3)

j (z)), 2 ≤ j ≤ n − 1,

φ
(3)
j = b(3)

j (z) + b(1)
j (z)w, 1 ≤ j ≤ n − 1,

g(5) = z1
[
c(2)(z)w + c12w

2 + c(4)(z)
]
.

(3.3′)

Lemma 3.2: With the above notation, the following holds:

a(2)(z) = z1ã(1)(z), a(1)
j (z) = µ

2
z j, b(1)

1 (z) = b1z1, b(1)
j = bj z1 + µ

2
z j,

c(2)(z) = 0, c(4)(z) = 0, a(4)(z) = 0, a(3)
j (z) = 0

where µ, b1 and bj( j > 1) are complex numbers, ã(1)(z) is a linear function
in z. Moreover, we have:

µ = 2c12 = 4ia02.(3.4)

Proof of Lemma 3.2: Substituting (3.3)′ into (3.3), we get

Im
{

g(5) − 2iz · f (4) − 2i
∑

φ
(2)
j φ

(3)
j

}
≡ 0 or

Im
{

z1
[
c(2)(z)w + c12w

2 + c(4)(z)
]− 2iz1

[
a(2)(z)w + a02w

2 + a(4)(z)
]−

−2iz′ · [z1(a
(1)′(z)w + a(3)′(z))

]− 2iz2
1

(
b(3)

1 (z) + b(1)
1 (z)w

)
−

−2iz1

∑
j≥2

z j

(
b(3)

j (z) + b(1)
j (z)w

)}
≡ 0,(3.5)

where a(k)′ = (a(k)
2 , ..., a(k)

n−1), (z, w) ∈ ∂Hn.
Since w = u + i|z|2 on ∂Hn, we can replace w by u + i|z|2 in (3.5).

By comparing the coefficients of the u2 terms in (3.5), we get Im{c12z1 −
2iz1a02} = 0 for any z1, which implies c12 = 2ia02. Collecting the harmonic
terms in (3.5), we get c(4)(z) = 0.

Comparing the coefficients of the u terms in (3.5), we get an identity for
any z ∈ Cn−1:
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Im
{

z1c(2)(z) + 2ic12z1|z|2 − 2iz1a(2)(z) − 2iz1a02(2i|z|2)−

−2iz1

∑
j≥2

a(1)
j (z)z j − 2iz1

∑
j≥1

z jb
(1)
j (z)

}
≡ 0.

Hence it follows that c(2)(z) ≡ 0 and that

2iz1
∑
j≥1

z jb
(1)
j (z) + 2iz1

∑
j≥2

a(1)
j (z)z j + 2ia(2)(z)z1

≡ 2ic12z1|z|2 − 4a02z1|z|2.
(3.5′)

Now collecting in (3.5) terms of the form: zαzβ with |α| = 4, |β| = 1, we
get a(4) = 0, a(3)′ = 0.

Back to (3.5)′, since its left hand side divides z1, we get a(2)(z) =
z1ã(1)(z) for a certain ã(1)(z). Write µ := 2c12 = 4ia02. We have

z1b(1)
1 (z) +

∑
j≥2

z jb
(1)
j (z) +

∑
j≥2

a(1)
j (z)z j + ã(1)(z)z1 ≡ µ|z|2.(3.6)

Considering the coefficients of |z1|2, z1zi (i > 1), z j zl terms (l, j > 1)
in (3.6), respectively, we obtain

µ ≡ ∂b(1)
1 (z)

∂z1
+ ∂ã(1)(z)

∂z1
,

∂b(1)
1 (z)

∂zi
+ ∂a(1)

i (z)

∂z1
≡ 0,

∂b(1)
j

∂zl
+ ∂a(1)

l

∂z j
=
{

0, l �= j,
µ, l = j.

(3.7)

Collecting terms in (3.5) without u-factor and recalling that c(2)(z), c(4),

a(4), a(3)
j ≡ 0, we get

Im

{
z1c12(−|z|4)−2iz1

(
a(2)(z)i|z|2−a02|z|4

)
−2iz′ ·

[
z1a(1)′(z)(i|z|2)

]
−

−2iz2
1

(
b(3)

1 (z) − i|z|2b(1)
1 (z)

)
− 2iz1

∑
j≥2

z j

(
b(3)

j (z) − i|z|2b(1)
j (z)

)}
≡ 0.

Considering terms with zI z J factor in the above identity, where |I | = 3 and
|J| = 2, we get

(−c12z1+2ia02z1)|z|4+2z1z1ã(1)(z)|z|2+2z1z′·a(1)′(z)|z|2−2z2
1b(1)

1 (z)|z|2−

−2z1

(∑
j≥2

z jb
(1)
j (z)

)
|z|2 − 2iz2

1b(3)
1 (z) − 2iz1

∑
j≥2

z jb
(3)
j (z) ≡ 0.
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Since c12 = 2ia02, the above implies

z1|z|2
(

z1ã(1)(z) + z′ · a(1)′(z) − z1b(1)
1 (z) − ∑

j≥2
z jb

(1)
j (z)

)
≡ iz1

2b(3)
1 (z) + iz1

∑
j≥2

z jb
(3)
j (z).

(3.8)

Considering the coefficients of the z j zl( j �= 1, l �= 1) terms in (3.8), we
find

zla
(1)
j (z) + z ja

(1)
l (z) − zlz1

∂b(1)
1

∂z j
− z j z1

∂b(1)
1

∂zl

− z j zl
∂b(1)

l

∂zl
− zlz j

∂b(1)
j

∂z j
≡ 0.

(3.9)

Further considering the z1 zl terms in (3.9) (l �= 1), we get
∂a(1)

j (z)

∂z1
− ∂b(1)

1
∂z j

≡ 0,
∀ j �= 1. Combining it with the second equation in (3.7), we conclude
∂b(1)

1 (z)
∂z j

≡ ∂a(1)
j (z)

∂z1
≡ 0, ∀ j �= 1. Hence

b(1)
1 (z) ≡ b1z1, for a certain b1 ∈ C;

and a(1)
j (z) has no z1 terms for 2 ≤ j ≤ n − 1.

(3.10)

Considering terms with z j
2 factor in (3.8), where j �= 1, we get a(1)

j (z)−
z1

∂b(1)
1 (z)
∂z j

− ∑n−1
k=2 zk

∂b(1)
k (z)
∂z j

≡ 0. Since we have proved b(1)
1 (z) = b1z1, we

have

a(1)
j (z) −

n−1∑
k=2

zk
∂b(1)

k (z)

∂z j
≡ 0.(3.11)

From this and the third equation in (3.7), it yields that a(1)
j (z) has only z j

term for 2 ≤ j ≤ n − 1, and
∂a(1)

j

∂z j
= ∂b(1)

j

∂z j
, ∀ j �= 1. Again by (3.11) and the

third equation in (3.7), we get

a(1)
j = µ

2
z j, 2 ≤ j ≤ n − 1.(3.12)

From the third equation in (3.7), and (3.12), (3.11), we get b(1)
j = bj z1 +

µ

2 z j, 2 ≤ j ≤ n − 1, where bj ∈ C are some complex numbers. The proof
is complete. ��
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4. An application of the group structure of the Heisenberg
hypersurface

A major step toward the proof of Theorem 1 is to find a direction in which
the map is linear (see Lemma 6.1). For this purpose, we need to establish
a connection between the weighted 5th order term in g and the weighted 6th

order term in g. More specifically, we need to have c03 = |c12|2 (Lemma 4.1).
(With such a property, we can show in Sect. 5 that after composing F with
certain automorphisms, we can make g(0, w) ≡ w). However, as explained
in Sect. 2, this cannot be done just by the formal consideration as we
did in Lemma 3.1 and Lemma 3.2. The way we achieve this is to apply
Lemma 3.1 (i) (Remark 3.1′) to F∗∗

p to get a system of differential equations
of F (see (4.5)). Then we can obtain the required formula by considering
the coefficients of the u and |zl|2-terms.

Lemma 4.1: Let F be as in (3.1). Write c03 = 1
6

∂3g
∂w3

∣∣∣
0

and c12 = 1
2

∂3g
∂z1∂w

2

∣∣∣
0
.

Then c03 = |c12|2.

Proof of Lemma 4.1: As in Sect. 2, the Heisenberg group structure can be
used to produce the map F∗∗

p from F for any p = (z, w) ∈ ∂Hn. By (2.3)
and the formulas preceding it, we have

∂2( f ∗∗j )p

∂zl∂w

∣∣∣∣
0

= 1

λp
( f̃ p)wzl

′′
∣∣∣∣
0

· (E j)p
t − 1

λ2
p

((Ew)p · (El)p)
t
(gp)

′′
wz j

∣∣∣∣
0

−

−δ
j
l

(
i|(Ew)p|2

λp
+ 1

2λp
Re{(gp)

′′
ww(0)}

)
.

Writing P j
l := ∂2( f j )

∗∗
(z,w)

∂zl∂w

∣∣∣
0

and applying again the formulas in Sect. 2 (or

[Sect. 2, 4, Hu1]), we get the following

2λP j
l = 2Ll( f̃w

′
) · L j( f̃ )

t − 2

λ

(
f̃ ′w · Ll( f̃ )

t
)
· L j

(
g′

w − 2i f̃ ′w · f̃
t
)
−

− 2iδ j
l | f̃ ′w|2 − δ

j
l Re{g′′

ww} + 2δ
j
l Re{i f̃ ′′ww · f̃

t},(4.1)
at any p = (z, w) ∈ ∂Hn,

where λ = λ(p) := λp is a smooth positive function in p. On the other
hand, we can apply T 2 to the basic equation Im(g) = | f̃ |2, where T := ∂

∂u
is the real tangent vector field along ∂Hn and w = u + i|z|2 to get

0 = 2i Im

{
i f̃ ′′ww · f̃

t
}
+ 2i| f̃ ′w|2 − iIm

{
g′′

ww

}
, ∀(z, w) ∈ ∂Hn.
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Multiplying it by δ
j
l and then adding it to (4.1), we have:

2λP j
l = 2Ll( f̃w

′
) · L j( f̃ )

t − 2
λ

(
f̃ ′w · Ll( f̃ )

t
)
· L j

(
g′

w − 2i f̃w
′ · f̃

t
)

−δ
j
l

(
g′′

ww − 2i f̃ ′′ww · f̃
t
)

,

∀p = (z, w) ∈ ∂Hn. Applying the operator L j T to the basic equation
Im(g) = | f̃ |2, we have

L j

(
g′

w − 2i f̃w
′ · f̃

t
)
= 2iL j( f̃ ) · f̃ ′w

t
, ∀(z, w) ∈ ∂Hn.

Write

λ∗ := 2i f̃ ′′ww · f̃
t − g′′

ww.(4.1′)

Notice by Lemma 3.1 and (3.1), λ = 1 + |z1|2 + owt(2). We then get

2λP j
l = 2Ll( f̃w

′
) · L j( f̃ )

t

−4i

(
f̃ ′w · Ll( f̃ )

t
)(

L j( f̃ ) · f̃ ′w
t
)
+ δ

j
l λ

∗ + owt(2),
(4.2)

for any (z, w) ∈ ∂Hn. Writing q j
l := 2λP j

l − δ
j
l λ

∗, one obtains from (4.2)

q j
l = 2Ll( f̃w

′
) · L j( f̃ )

t − 4i

(
f̃ ′w · Ll( f̃ )

t
)(

L j( f̃ ) · f̃ ′w
t
)
+ owt(2),

(4.3)

and

2λP j
l = q j

l + δ
j
l λ

∗.(4.4)

Applying Lemma 3.1 (i) or Remark 3.1′ to F∗∗
p , we get Rank(P j

l ) ≡ 1.

Therefore we obtain
P1

1
P1

l
= Pl

1

Pl
l
, 2 ≤ l ≤ n − 1, i.e., ql

l +λ∗ = q1
l

q1
1+λ∗ ql

1, 2 ≤
l ≤ n − 1. (Note that this is the place where the crucial restriction that
n ≥ 3 comes out). Hence, we get the following system of (second order)
differential equations:

(λ∗)2 + λ∗(q1
1 + ql

l

)+ (
q1

1ql
l − q1

l ql
1

) ≡ 0,

2 ≤ l ≤ n − 1, ∀(z, w) ∈ ∂Hn.
(4.5)

(4.5) gives a complicated system of second order partial differential equa-
tions for the map. Fortunately, for the proof of Lemma 4.1, it suffices for us
to do some formal analysis for (4.5) of weighted order two.
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In the following, we fix an l(> 1) and only consider the u and |zl|2 terms
in the Taylor expansion of the left hand side of (4.5).

We now compute λ∗, q1
1, ql

l , q1
l and ql

1 in (4.5) as follows.

By (3.1), (3.3)′ and Lemma 3.2, we have f1 = z1 + i
2 z1w + a02w

2 +
z1ã(1)(z)w + ã(1)

1 (z)w2 + ã(3)
1 (z)w + owt(5), and f j = z j + µ

2 z1z jw +
ã(1)

j (z)w2 + ã(3)
j (z)w + owt(5) for j > 1. The fact that f does not contain

terms of degree 5 purely in z in its Taylor expansion can be obtained
from a simple formal consideration of the weighted-6th order truncation

in the equation Im(g) = | f̃ |2: Im{g(6) − 2iz f (5)} = 2 Re
(∑

j(φ
(2)
j φ

(4)
j +

1
2φ

(3)
j φ

(3)
j )

)
.

For convenience, we first fix some notation and terminology: For func-
tions A, B, C1, · · · , Cm , we will write A = B mod(C1, · · · , Cm) if A =
B+∑m

j=1 k jC j for some constants {k j}. For real analytic functions H(Z, Z)

and and Q(Z, Z) defined near the origin, we will write H = Q mod(terms

other than Zα1 Z
β1

, · · · , Zαk Z
βk

) if ∂|αm |+|βm |(H−Q)

∂Zαm ∂Z
βm

∣∣∣
0
= 0 for 1 ≤ m ≤ k.

Remark that ∂Hn can be identified with R2n−1 with coordinates (x, y, u)
through the map z = x + iy and w = u + i|z|2. Notice that the weight of u
is two.

We start with the following expansions which, as explained, come as
consequences of (3.1), (3.3)′ and Lemmas 3.1–3.2:

f1 = z1 + i

2
z1w + a02w

2 + z1ã(1)(z)w + ã(1)

1 (z)w2 +

+ ã(3)
1 (z)w + owt(5) ∩ o(|(z, w)|4), mod(zsztw

2, zsw
3, w3, w4),

f j = z j + µ

2
z1z jw + ã(1)

j (z)w2 + ã(3)
j (z)w + owt(5) ∩ o(|(z, w)|4),

mod(zsztw
2, zsw

3, w3, w4), j ≥ 2.

φ1 = z2
1 + b1z1w + b(0)

1 w2 + b(3)

1 (z) + o(|(z, w)|2) ∩ owt(3),

φ j = z1z j +
(

bj z1 + µ

2
z j

)
w + b(0)

j w2 + b(2)
j (z)w

+ b(3)
j (z) + owt(3) ∩ o(|(z, w)|2) ( j > 1),

g = w + c12z1w
2 + c03w

3 + owt(5) ∩ o(|(z, w)|3).

Here, a function of the form X(m)(z) denotes a holomorphic polynomial in
z of degree m. Therefore it yields
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( f1)
′
w = i

2 z1 + 2a02w + z1ã(1) + 2ã(1)
1 w + ã(3)

1 + o(|(z, w)|3),
mod

(
zsztw, zsw

2, w2, w3
)
,

( f1)
′′
ww = 2a02 + 2ã(1)

1 (z) + o(|(z, w)|2), mod
(
zszt, zsw,w,w2

)
,

( f j)
′
w = µ

2 z1z j + 2˜a(1)
j (z)w + ã(3)

j (z) + o(|(z, w)|3),
mod

(
zsztw, zsw

2, w2, w3
)
,

( f j)
′′
ww = 2ã(1)

j (z) + o(|(z, w)|2), mod
(
zszt, zsw,w,w2

)
,

(φ1)
′
w = b1z1 + 2b(0)

1 w + o(|(z, w)|),
(φ1)

′′
ww = 2b(0)

1 + o(1),

(φ j)
′
w = bj z1 + µ

2 z j + 2b(0)
j w + b(2)

j (z) + owt(2),

(φ j)
′′
ww = 2b(0)

j + o(1),

g′′
ww = 2c12z1 + 6c03w + o(|(z, w)|2), mod

(
zsz j, zsw,w2

)
,

where 2 ≤ j ≤ n − 1. Thus we obtain

λ∗ = 2i f̃ ′′ww · f̃
t − g′′

ww = 4i
∂ã(1)

l

∂zl
|zl|2 − 6c03w,(4.6)

mod
(
terms other than 1, zl, zl, |zl|2, u

)
.

Hence

(λ∗)2 = 0, mod
(
terms other than |zl|2, u

)
.(4.7)

Computation for q1
1: With a direct computation, we have the following:

L1( f1) = 1 + i
2w

L1
(
( f1)

′
w

) = i
2 + ∂^a(1)(z)

∂zl
zl + 2 ∂ã(1)

1 (z)
∂z1

w

L1( f j) = 0

L1
(
( f j)

′
w

) = µ

2 δ
j
l zl + 2

∂ã(1)
j (z)

∂z1
w

mod
(
terms other than 1, zl, zl, |zl|2, u

)
L1(φ1) = b1w

L1
(
(φ1)

′
w

) = b1 + o(1)

L1(φ j) = z j + bjw

L1
(
(φ j)

′
w

) = bj + ∂b(2)
j (z)

∂z1
+ owt(1),

where 2 ≤ j ≤ n − 1. Hence
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q1
1 = 2L1( f̃ ′w) · L1( f̃ )

t − 4i

∣∣∣∣ f̃ ′w · L1( f̃ )
t
∣∣∣∣2 =

= i + 2
∂ã(1)(z)

∂zl
zl + 4

∂ã(1)
1 (z)

∂z1
w + 1

2
w + 2

n−1∑
j=1

|bj |2w + 2blzl+

+ 2
∂2b(2)

l (z)

∂z1∂zl
|zl|2, mod

(
terms other than 1, zl, zl, |zl|2, u

)
.

(4.8)

Computation for ql
l : With a straightforward computation, we have the fol-

lowing:

Ll( f j) = δ
j
l , 1 ≤ j ≤ n − 1

Ll

(
( f1)

′
w

) = 4ia02zl + 4i
∂ã(1)

1
∂zl

|zl|2 + 2
∂ã(1)

1
∂zl

w

Ll
(
( f j)

′
w

) = 4i
∂ã(1)

j

∂zl
|zl|2 + 2

∂ã(1)
j

∂zl
w, j �= 1
mod

(
terms other than 1, zl, zl, |zl|2, u

)
Ll(φ1) = owt(1),

Ll(φk) = δl
kiµ|zl|2 + µ

2 δl
kw,

Ll
(
(φ1)

′
w

) = o(1),

Ll

(
(φk)

′
w

) = µ

2 δl
k + 4ib(0)

k zl + ∂b(2)
k (z)
∂zl

+ owt(1),

where 2 ≤ k ≤ n − 1. Hence

ql
l =2Ll( f̃ ′w)·Ll( f̃ )

t−4i

∣∣∣∣ f̃ ′w ·Ll( f̃ )
t
∣∣∣∣2=2

(
4i

∂
˜a(1)

l (z)

∂zl
|zl|2+2

∂ã(1)
l

∂zl
w

)
+

+ 2
(

µ

2
+ 4ib(0)

l zl + ∂b(2)
l (z)

∂zl

)(
iµ|zl|2 + µ

2
w

)
+ owt(2) =(4.9)

= 8i
∂
˜a(1)

l (z)

∂zl
|zl|2 + 4

∂
˜a(1)
l (z)

∂zl
w − i|µ|2|zl|2 + |µ|2

2
w,

mod(terms other than 1, zl, zl, |zl|2, u). Therefore from (4.8), we get

q1
1ql

l = −8
∂
˜a(1)
l (z)

∂zl
|zl|2 + 4i

∂
˜a(1)

l (z)

∂zl
w + |µ|2|zl|2 + i

2
|µ|2w,(4.10)

mod(terms other than |zl|2, u), ∀(z, w) ∈ ∂Hn.

Computation for ql
1 and q1

l : Similarly, we can get{
ql

1 = µzl, mod(terms other than 1, zl, zl),

q1
l = 8ia02zl + µzl, mod(terms other than 1, zl).

(4.11)

Since by Lemma 3.2, a02 = iµ
4 , we thus obtain from (4.11):

ql
1q1

l = −|µ|2|zl|2, mod
(
terms other than |zl|2, u

)
,∀(z, w)∈∂Hn.(4.13)
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Now from (4.6) (4.8) and (4.9), we get

(4.14)

λ∗(q1
1 + ql

l

) = −i6c03w − 4
∂
˜a(1)
l (z)

∂zl
|zl|2, mod

(
terms other than |zl|2, u

)
.

Therefore by (4.7), (4.10), (4.11), (4.13), and (4.14) and by writing up
the u and zi z j-terms in (4.5), we get over ∂Hn the following, which holds
modifying terms other than u and |zl|2. Namely, we have

−i6c03w − 4
∂
˜a(1)
l (z)

∂zl
|zl|2 − 8

∂
˜a(1)
l (z)

∂zl
|zl|2 + 4i

∂
˜a(1)
l (z)

∂zl
w + |µ|2|zl|2 +

+ i

2
|µ|2w − (− |µ|2|zl|2

) ≡ 0, mod
(
terms other than |zl|2, u

)
.(4.15)

Collecting the u terms in (4.15), we get the identity −6ic03 + 4iγ +
i
2 |µ|2 = 0, where γ := ∂

^

a(1)
l (z)
∂zl

, i.e.,

12c03 = 8γ + |µ|2.(4.16)

Collecting the |zl|2 terms in (4.15), we get

−i6c03(i) − 4γ − 8γ + 4iγ(i) + |µ|2 + i

2
|µ|2(−i) + |µ|2 = 0.(4.17)

From (4.16), (4.17) and the fact µ = 2c12, we get c03 = 1
4 |µ|2 = |c12|2.

The proof of Lemma 4.1 is complete. ��

5. Linear direction and degree estimate

With the normalization (3.1), we get g = w + owt(4). It was mentioned
that if we have in addition c03 = 0, then we get immediately g(0, w) ≡ w
by applying a generalized Hopf lemma due to Burns-Krantz (see [BK] or
the argument following the proof of Lemma 5.1). This will certainly make
the map more accessible. c03 may not be zero in general. However, we
will show in this section, by making use of Lemma 4.1 that if we replace
F by a suitable F̂c in the same equivalence class, c03 will vanish while
(3.1) still holds. With the simple expression of F̂c, we will show that it
has degree 2 along the Segre variety Q0. By considering F∗∗

p instead of F,
we will further show that F has degree two when restricted to Q p. This
will force deg(F) = 2. In Lemma 6.1, with the analysis in this section, we
will further show that F is linear when restricted to some subspace (see
Lemma 6.1), which then plays an essential role in proving Theorem 1.

Let us define F̂c as follows. Write p1 = −c12, p = (p1, 0′) ∈ Cn−1

and (p, 0′) ∈ C2n−2. Let F̂c = τc ◦ F ◦ σc, where the two automorphisms
σc ∈ Aut(∂Hn) and τc ∈ Aut(∂H2n−1) are given by
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σc(z, w) =
(

z + wp
1 − 2i p1z1 − i|p1|2w,

w

1 − 2i p1z1 − i|p1|2w
)

,(5.1)

τc(z
∗, w∗) =

(
z∗ − w∗(p, 0′)

1 + 2i p1z∗1 − i|p1|2w∗ ,
w∗

1 + 2i p1z∗1 − i|p1|2w∗

)
.(5.2)

Lemma 5.1: Let F be as in (3.1) and F̂c = τc ◦ F ◦ σc = ( f̂c, φ̂c, ĝc) =
(
˜̂fc, ĝc) = ( f̂1,c, · · · , φ̂n−1,c, ĝc) be defined as above (n > 2). Then F̂c

satisfies the normalization condition (3.1). Moreover, we have ∂3 ĝc
∂w3

∣∣∣
0
= 0.

Proof of Lemma 5.1: First, by a direct computation, it is clear that ĝc =
w + o(|(z, w|), f̂c = z + o(|(z, w)|) and φ̂c = o(|(z, w)|). By [Lemma 5.3,

Hu1], to verify that F̂c satisfies (2.1), it suffices to show that Re( ∂2 ĝc
∂w2 )

∣∣∣
0
= 0,

for ∂2 ĝc
∂zk∂zl

∣∣∣
0
= 0 holds automatically (see Sect. 2 of [Hu1]).

We next calculate the coefficients of w2 and w3 in the expansion of ĝc.
For this, let z = 0 and consider

ĝc(0, w) =
g
(

p1w

1−i|p1|2w
, 0, w

1−i|p1|2w

)
1 + 2i p1 f1

(
p1w

1−i|p1|2w
, 0, w

1−i|p1|2w

)
− i|p1|2g

(
p1w

1−i|p1|2w
, 0, w

1−i|p1|2w

) .

Recall f1(z1, 0, w) = z1 + i
2 z1w + a02w

2 + z1
˜a(1)(z1, 0)w + owt(5), and

g(z1, 0, w) = w + c12z1w
2 + c03w

3 + o(|(z1, 0, w)|3). Then, by a Taylor
expansion consideration we get

ĝc(0, w) =
(

w

1 − i|p1|2w + c12 p1w
3 + c03w

3

)
×

×
[

1 − 2i p1

(
p1w

1 − i|p1|2w + i

2

p1w
2

(1 − i|p1|2w)2
+ a02w

2

)
+

+ i|p1|2 w

1 − i|p1|2w +
(
− 2i p1

p1w

1 − i|p1|2w + i|p1|2w
)2]

+

+ o(w3)

= (
w + i|p1|2w2 + (−|p1|4 + c12 p1 + c03)w

3)×
×
{

1 − 2i p1

[
p1w

(
1 + i|p1|2w

)+ i

2
p1w

2 ++a02w
2

]
+

+ i|p1|2
[
w
(
1 + i|p1|2w

)]+

+
[
− 2i|p1|2w(1 + i|p1|2w) + i|p1|2w)

]2}
+ o(w3)
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= w +
(

i|p1|2 − 2i|p1|2 + i|p1|2
)

w2 +
(
− |p1|4 + c12 p1 + c03 +

+ 2|p1|4 − |p1|4 + 2|p1|4 + |p1|2 − 2ia02 p1 − |p1|4 − |p1|4
)
×

× w3 + o(w3) = w + o(w3).

Here we used the key fact that p1 = −c12 = 2ia02 and c03 = |c12|2 = |p1|2,
as provided by Lemma 3.2 and Lemma 4.1.

Hence, (2.1) (2.2) hold for F̂c. Notice that

φ̂c, j(z, 0) =
φ j

(
z

1−2i p1z1
, 0
)

1 + 2i p1 f1

(
z

1−2i p1z1
, 0
)
− i|p1|2g

(
z

1−2i p1z1
, 0
) .

Then from the normalization in (3.1) for F, it follows easily that (φ̂ j)c =
z1z j + owt(2). In a similar manner, we can verify that f̂1,c = z1 + i

2 z1w +
owt(3) and f̂1, j = z j + owt(3) for j ≥ 2. Therefore, F̂c satisfies the normal-
ization in (3.1) and (ĝc)

′′′
www(0) = 0. This completes the proof of Lemma 5.1.

��
Now, since Im(ĝc(0, w)) ≥ 0 for Im w ≥ 0 and ĝc(0, w) = w +

o(|w|3), by a generalized version of the Hopf Lemma due to Burns-Krantz
[BK], it follows that ĝc(0, w) ≡ w. Indeed, consider the harmonic function

h(w) = Im
(

1
w
− 1

ĝc(0′,w)

)
over the upper half plane H+ = {w ∈ C1 :

Imw > 0}. Then it is easy to verify that h(w) = o(|w|) as w → 0 and
limw(∈H+)→x∈(R∪∞)h(w) ≥ 0. Hence 0 is the minimum value of h(w). By
the Hopf lemma, it follows that h(w) ≡ 0. Namely, ĝc(0′, w) ≡ w. Since

Im(ĝc(0, w)) = |˜̂fc(0, w)|2 for Im w = 0, it follows that ˜̂fc(0, w) ≡ 0.
Hence for the F̂c defined above, we have the following weighted expansion:

F̂c(0, w) = (0, w),

f̂1,c = z1 + i
2 z1w + z1ã(1)(z)w + owt(4),

f̂l,c = zl + owt(4), 2 ≤ l ≤ n − 1,

φ̂ j,c = z1z j + bj z1w + b(3)
j (z) + owt(3), 1 ≤ j ≤ n − 1,

ĝc = w + o(|(z, w)|3).

(5.3)

Here we used the fact that for the c03 = 1
6(ĝc)

′′′
www(0), c12 = (ĝc)

′′′
wwz1

(0),

and a02 = 1
2 ( f̂1,c)

′′
ww(0) corresponding to F̂c, we have |c12|2 = c03 = 0 (by

Lemma 4.1) and 2ia02 = c12 = 0 (by Lemma 3.2).
We will show in the rest of this section that F has degree two, by applying

some basic Segre family theory.
We write L j for the complexification of L j , namely, L j = 2iζ j

∂
∂w

+ ∂
∂z j

.
Then {L1, ..., Ln−1} form a basis of the holomorphic tangent space of the
Segre variety Q(ζ,η) =

{
(z, w) : w−η

2i = ∑
z jζ j

}
for any (ζ, η).
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Lemma 5.2: When restricted to Q0 = {w = 0}, the complex tangent space
of ∂Hn at 0, F̂c = ( f j,c, φ j,c, ĝc) has degree 2. Namely, F̂c(z, 0) = P(z)

Q(z)
where P and Q are polynomials in z with deg(P), deg(Q) ≤ 2.

Proof of Lemma 5.2: Along any Q(ζ,η), we have

ĝc(z, w) − ĝc(ζ, η)

2i
=

n−1∑
l=1

f̂l,c(z, w) f̂l,c(ζ, η) +
n−1∑
l=1

φ̂l,c(z, w)φ̂l,c(ζ, η).

(5.4)

Applying L j and L1L j to the above equation, using (5.3) and letting
(z, w) = 0, η = 0, we get ζ1

. . .

ζn−1
0

 =
(

I(n−1)×(n−1) 0
A(n−1)×(n−1) B(n−1)×(n−1)

)(
f̂c(ζ, 0)

φ̂c(ζ, 0)

)
.

Here I(n−1)×(n−1) is the identical (n − 1) × (n − 1) matrix,

A(n−1)×(n−1) = A =


−2ζ1 0 · · · 0
−ζ2 0 · · · 0
. . . 0 · · · 0

−ζn−1 0 · · · 0

 and

B(n−1)×(n−1) = B =


2 + 4ib1ζ1 4ib2ζ1 . . . 4ibn−1ζ1

2ib1ζ2 1 + 2ib2ζ2 . . . 2ibn−1ζ2

. . . . . . . . . . . .

2ib1ζn−1 2ib2ζn−1 . . . 1 + 2ibn−1ζn−1

 .

Briefly, one has

˜̂fc(ζ, 0)

t

= C−1

(
ζ

t

0

)
where C =

(
I 0
A B

)
, ζ = (ζ1, . . . , ζn−1).

Next we notice that C−1 =
(

I 0
−B−1 A B−1

)
. Hence

˜̂fc(ζ, 0)

t

=
(

I 0
−B−1 A B−1

)(
ζ

t

0

)
=
(

ζ
t

−B−1 Aζ
t

)
.

It remains to study B−1 Aζ
t
. We write B = D + B̃ with

D =
 2 0 0 . . . 0

0 1 0 . . . 0
. . . . . . . . . . . . . . .
0 0 0 . . . 1

 and B̃ =


4iζ1

2iζ2
. . .

2iζn−1

(
b1, b2, . . . , bn−1

)
.
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Write B−1 = (D + B̃)−1 = (I + B∗)−1 D−1, where B∗ = 2iζ
t · b and

b = (b1, b2, . . . , bn−1). Note that B∗2 = (2i)l(ζ)B∗ with l(ζ) = ∑
j≥1 bjζ j ,

B∗3 = (2i)2l2(ζ)B∗, · · · . We have

B−1 =
(∑∞

j=0(−1) j B∗ j

)
D−1 =

(
I −∑∞

j=0(−1) j(2i) j l(ζ) j B∗
)

D−1

=
(

I − 1
1+2il(ζ) B∗

)
D−1,

−B−1 Aζ
t =

(
I − 2iζ

t ·b
1+2il(ζ)

)
ζ1

2

ζ1ζ2
. . .

ζ1ζn−1

 , and

˜̂fc

t

(ζ, 0) =
 ζ

t(
I − 2iζ

t ·b
1+2il(ζ)

)
ζ1ζ

t

 =
(

ζ
t

ζ1ζ
t

1+2il(ζ)

)
.

Therefore

˜̂fc(z, 0) =
(

z,
z1z

1 − 2i
∑

j≥1 bj z j

)
.(5.5)

Finally, by putting z = w = η = 0 in (5.4), we get ĝc(ζ, 0) = 0 by (5.5).
Hence, it is clear that F̂c(z, 0) can be written as the quotient of a vector-
valued quadratic polynomial with a linear function. ��

For any rational map H �≡ 0, write H = (P1,··· ,Pm)

R , where Pj , R are
holomorphic polynomials and (P1, · · · , Pm, R) = 1. We then define

deg(H) = max(deg(Pj) j=1,··· ,m, deg(R)).

(When H ≡ 0, we set deg(H) = −∞.) For any q = (q1, · · · , qn) ≈ 0,
we define the degree of H|Qq to be the degree of the rational mapping

H(z1, · · · , zn−1, qn + 2i
∑n−1

j=1 qj z j) in z. Recall that H is said to be linear
if deg(H) = 1. Notice that any automorphism of Hm is linear and has
degree 1.

Lemma 5.3: Assume that F takes the normal form as in (3.1). Then
deg F = 2.

Proof of Lemma 5.3: For each p0 = (z0, w0) ∈ ∂Hn close to the origin,
starting from F∗∗

p0
, we can similarly construct the map ( ˆF∗∗

p0
)c such that

Lemma 5.2 is applicable to (F̂∗∗
p0

)c. Notice that there is a τ ∈ Aut(H2n−1)

and σ ∈ Aut(Hn) such that τ ◦ (F∗∗
p0

)c ◦ σ = F ◦ σp0 by the way F∗∗
p0

and
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( ˆF∗∗
p0

)
c

were constructed, where σ(0) = 0 and σp0(z, w) = (z+z0, w+w0+
2i < z, z0 >) as defined in Sect. 2. Also notice that σp0(Q0) = Q p0 and
σp0 |Q0 = (z+z0, w0+2i〈z, z0〉). Since deg( ˆF∗∗

p0
)c|Q0 = 2 by Lemma 5.2 and

since σ(Q0) = Q0, it is clear that deg(( ˆF∗∗
p0

)
c
◦σ)|Q0 = 2. Since τ is a linear

map, it follows easily that deg
(
(τ◦( ˆF∗∗

p0
)c◦ σ)|Q0

)
=deg( ˆ(F∗∗

p0
)

c
◦ σ)|Q0 =2.

Namely, we proved that

∀p(≈ 0) ∈ ∂Hn, deg(F)
∣∣

Q p
= 2.

Now the rest of the proof follows from the following lemma. ��
Lemma 5.4: Let H = (P1,··· ,Pm)

R be a rational map from Cn into Cm, where
Pj , R are holomorphic polynomials with (P1, · · · , Pm, R) = 1 (m >n >1).
Assume for each p ∈ ∂Hn close to the origin, deg(H|Q p) ≤ k with k > 0
a fixed integer. Then deg(H) ≤ k.

Proof of Lemma 5.4: Seeking a contradiction, suppose deg(H)≥k+1.
Consider the irreducible decomposition of the affine algebraic variety:
Zero(P, R) = {P1 = · · · = Pm = R = 0} := Z1 ∪ Z2 ∪ . . . ∪ Zl.
Since (P1, · · · , Pm, R) = 1, Z ′

j s are of at least codimension two in Cn.
Notice that for any polynomial h(z, w) = ∑

|α|+ j≤s aα j zαw j of de-
gree s > 0, there is a proper real analytic subvariety S of ∂Hn such
that for any p ∈ ∂Hn \ S, deg(h|Q p) = s. Indeed, note that h|Q p =∑

|α|+ j=s aα j zα(2i
∑n−1

j=1 pj z j)
j+lower order terms. Hence, there is a proper

complex analytic subvariety A of Cn−1 such that

∑
|α|+ j=s

aα j z
α(2i

n−1∑
j=1

pj z j)
j �≡ 0

for any (p1, · · · , pn−1) �∈ A. Now, S can be taken as (A × C) ∩ ∂Hn.
Back to our H , we thus can find a real analytic subvariety S0 inside

∂Hn such that deg(Pj) = deg(Pj |Q p) and deg(R) = deg(R|Q p) for any
p ∈ ∂Hn \ S0. For such a p, from the hypotheses, we conclude that
{P1|Q p, · · · , Pm |Q p, R|Q p} must have a (non-constant) common polynomial
factor H∗

p , whose zero induces a complex analytic subvariety, denoted by
Z(p), in Q p. Since Z(p) ⊂ Zero(P|Q p, R|Q p) and Z(p) is of codimension
one in Q p, there must be some irreducible component Z j0 with Z j0 ∩ Q p
containing an irreducible component of maximum dimension of Z(p). (Here
j0 may depend on p). Since the irreducible variety Z j0 is of at least codi-
mension 2 in Cn and since Z j0 ∩ Q p has to be of codimension 1 in Q p, it
yields easily that Z j0 ⊂ Q p.

Since there are only finitely many choices of such Z j0’s and since for
any Z j the set {p : Z j ⊂ Q p} is a closed subset in ∂Hn \ S, we see
that there is a non-empty open subset U ⊂ ∂Hn such that for any p ∈ U ,
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Q p contains a certain fixed Z j , which has codimension two in Cn. This is
clearly a contradiction. Indeed, if not, pick a point z∗ ∈ Z j . Since z ∈ Qz∗ if
and only if z∗ ∈ Qz, we would have Qz∗ containing an open piece of ∂Hn.
That is impossible. ��

6. Completion of the proof of Theorem 1

We now give the proof of the main theorem. First we let F be normalized
to F̂c as in Lemma 5.1. Still write F = ( f, φ, g). Recall that deg(F) = 2,
F(0, w) = (0, w), f(z, 0) = z, φ(z, 0) = z1z

1−2iR(z) with R(z) = ∑n−1
j=1 bj z j ,

g = w+ O(|(z, w)|4) from (5.5) and (5.3). We first show that F is partially
linear:

Lemma 6.1: It holds that fl = zl for l ≥ 2, g = w, φ j = z1φ̃ j , f1 = z1 f̃1,
where Φ = ( f̃1, φ̃1, . . . , φ̃n−1) extends as a biholomorphic map from Hn
to Bn.

Proof of Lemma 6.1: Write g̃ = g − w = P
Q with deg(P), deg(Q) ≤ 3.

Then g̃Q = P. Assume that P �≡ 0. Since deg(P) ≤ 3, there is an index α
with |α| ≤ 3 such that Dα P|0 �= 0. However, Dβ(̃g)|0 ≡ 0 for any |β| ≤ 3
because g = w + O(|(z, w)|4). This is a contradiction. Hence g ≡ w.

Next by (5.5), (5.3), Lemma 5.3 and the fact that F(0, w) = (0, w), φl
takes the form:

φl = z1zl + blz1w

1 − 2iR(z) + B(0)w + B̃(1)(z)w + B̃(0)w2
.

In particular, we get φl(0, z′, w) ≡ 0, where z′ = (z2, . . . , zn−1).
Now, returning to the equation Im g = | f |2 + |φ|2 and letting z1 = 0,

we get

Im(w) = | f(0, z′, w)|2, when Im(w) = |z′|2.(6.0)

We claim that

f(0, z′, w) ≡ (0, z′).(6.1)

In fact, when n ≥ 4, by (6.0) and [We], the map ( f(0, z′, w),w) is a linear
map. Since f1(0, z′, w) = o(|(z′, w)|), it follows that f1(0, z′, w) ≡ 0. Since
fl(0, z′, w) = zl + owt(4) by (5.3), it follows easily that fl(0, z′, w) ≡ zl
for l > 1.

When n = 3, by Lemma 5.3, the map ( f(0, z2, w),w) : H2 → H3 can
be written as ( P1

Q , P2
Q ) where P1, P2 and Q are polynomials with degree ≤ 2.

Since f(0, w) = 0 and f(z, 0) = z by (5.5), this map can be written as f1(0, z2, w) = A1z2w

1+B1z2+B2w+B3z2
2+B4z2w+B5w

2 ,

f2(0, z2, w) = z2+A2z2w+A3z2
2

1+B1z2+B2w+B3z2
2+B4z2w+B5w

2 .
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Since f1(0, z2, w) = owt(4), it follows that A1 =0, namely f1(0, z2, w)≡0.
Since |z2|2 = | f2(0, z2, w)|2 holds for Im(w) = |z2|2 by (6.0), we can easily
get f2(0, z2, w) ≡ z2. Hence, (6.1) also holds when n = 3. This proves (6.1)
for any n > 2.

Next, by Lemma 5.3, we can write

fl = zl + A(1)
l (z)w + A(2)

l (z) + A(0)
l w + Ã(0)

l w2

1 + A(1)(z)w + Ã(1)(z) + A(2)(z) + A(0)w + Ã(0)w2
, ∀l ≥ 2.

By (5.5) and letting w = 0, we have fl(z, 0) = zl+A(2)
l (z)

1+^A(1)(z)+A(2)(z)
= zl.

It follows that A(2)
l = zlÃ

(1)(z) and A(2)(z) ≡ 0. Since fl(0, w) =
A(0)

l w+Ã(0)
l w2

1+A(0)(z)w+Ã(0)w2
≡ 0, we get A(0)

l = Ã(0)
l = 0. Hence

fl = zl + A(1)
l (z)w + zlÃ

(1)(z)

1 + A(1)(z)w + Ã(1)(z) + A(0)w + Ã(0)w2
, ∀l ≥ 2.

By (6.1), we have

zl = zl + A(1)
l (0, z′)w + zlÃ

(1)(0, z′)

1 + A(1)(0, z′)w + ˜A(1)(0, z′) + A(0)w + Ã(0)w2
.

This implies Ã(0) = 0, A(1)(z) = az1 and A(1)
l (z) = a∗

l z1 + zlA
(0). So

fl = zl +
(
a∗

l z1 + A(0)zl
)
w + zlÃ

(1)(z)

1 + az1w + Ã(1)(z) + A(0)w

, ∀l ≥ 2.

Since fl = zl + owt(4), by comparing the coefficients of the z1w-terms, we
get a∗

l = 0. Hence,

fl = zl + A(0)zlw + zlÃ
(1)(z)

1 + az1w + Ã(1)(z) + A(0)w

= zl − az1zlw + owt(4). ∀l ≥ 2.

We conclude also that a = 0 and thus

fl = zl + A(0)zlw + zlÃ
(1)(z)

1 + Ã(1)(z) + A(0)w

= zl, ∀l ≥ 2.

Finally, in terms of (6.1) and the expression obtained for φ, we know
that f1 = z1 f̃1, φ = z1φ̃. Moreover, it is easy to conclude that | f̃1|2 +
|̃φ|2 ≡ 1 over ∂Hn. Notice that φ̃l = zl + blw + o(|(z, w)|2), f̃1 = 1 +
i
2w + o(|(z, w)|3). Φ = (̃φ1, . . . , φ̃n−1, f̃1) is biholomorphic from Hn to
Bn with Φ(0) = (0, · · · , 0, 1), by the classical Poincaré-Tanaka-Alexander
Theorem [Po], [Ta]. ��
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Next, return to the map H : Bn → B2n−1 by letting H = Ψ2n−1◦F◦Ψ−1
n ,

where

Ψk(z, w)(z, w) =
(

2z

i + w
,

i − w

i + w

)
is the Cayley transformation from Hk into Bk. Then it can be easily verified
that

H =
(

z1h̃1, z2, . . . , zn−1, z1h̃2, . . . , z1hn−1, w

)
.

Here (h̃1, h̃2, . . . , h̃n−1) ∈ Aut(Bn).
Summarizing what we did so far, we get

Proposition 6.2: Any non-linear rational proper holomorphic map from
Bn into B2n−1 with n > 2 is equivalent to a map of the form: H(z) :=
(z1, · · · , zn−1, znh(z)) with h ∈ Aut(Bn).

Next, we show the following:

Lemma 6.3: Let H = (z1, z2, . . . , zn−1, znh1, znh2, . . . , znhn) be a proper
holomorphic map from Bn into B2n−1 with (h1, h2, . . . , hn) ∈ Aut(Bn). Then
F is equivalent to the Whitney map.

Proof of Lemma 6.3: We first remark that in Lemma 6.3, we need only to
assume that n ≥ 2.

Let h = (h1, . . . , hn) be such that h(0) = p0. Then there is a unitary
matrix U such that h(0)U = (0, 0, . . . , 0, b) with 1 > b ≥ 0. Replacing
H by (z′, znhU) where z′ = (z1, . . . , zn−1), we can assume that h(0) =
(0, 0, . . . , , b) with b ∈ [0, 1). Hence h = ϕb · Ũ , where

ϕb(z
′, zn) =

(
sbz′

1 − bzn
,

b − zn

1 − bzn

)
(6.2)

sb = √
1 − b2 and Ũ is a certain unitary matrix. Therefore we can assume,

without loss of generality, that

H = (z′, znϕb) with b ∈ [0, 1).(6.3)

On the other hand, starting from the Whitney map W(z′,zn)=(z′,z′zn,z2
n)

and for any a ∈ [0, 1),

W ◦ ϕa =
(

saz′

1 − azn
,

saz′(a − zn)

(1 − azn)2
,

(a − zn)
2

(1 − azn)2

)
.

We take ϕ̃a2 ∈ Aut(B2n−1) as follows:

ϕ̃a2

(
z∗′, z∗2n−1

) = (
sa2 z∗′

1 − a2z∗2n−1

,
a2 − z∗2n−1

1 − a2z∗2n−1

)
,
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where z∗′ = (z∗1, . . . , z∗2n−2). Then

ϕ̃a2 ◦ W ◦ ϕa =
(

sa2 z′(1 − azn)

sa(1+a2−2azn)
,

sa2 z′(a − zn)

sa(1+a2−2azn)
,

2azn−(1+a2)z2
n

1 + a2 − 2azn

)
.

Let Ua be a (2n − 1) × (2n − 1) unitary matrix given by

Ua :=
(

A B 0
C D 0
0 0 1

)

where A = 1√
1+a2

I , B = − a√
1+a2

I , C = a√
1+a2

I , D = 1√
1+a2

I and I is

the (n − 1) × (n − 1) identity matrix. Define

Ψ := Ua ◦ ϕ̃a2 ◦ W ◦ ϕa = (I, II, III ),

where 
I = z′(1−a2)

1+a2−2azn
,

II = z′[2a−(a2+1)zn]
1+a2−2azn

,

III = zn [2a−(a2+1)zn]
1+a2−2azn

.

Put β := 2a
1+a2 . Then Ψ can be written as

Ψ =
(

sβz′

1 − βzn
,

z′(β − zn)

1 − βzn
,

zn(β − zn)

1 − βzn

)
.

Define (z′∗, z∗n) := ϕβ(z′, zn). Then it follows that

Ψ ◦ ϕ−1
β = (

z′∗, z∗nϕβ

(
z′∗, z∗n

))
.(6.4)

Here we need to use the fact that ϕ−1
β = ϕβ. By choosing a suitable a such

that b = β, we see that the Whitney map is equivalent to (6.5) which is the
same as the map in (6.4). ��
Proof of Theorem 1 and Theorem 2: The proof of Theorem 1 follows
from Proposition 6.2 and Lemma 6.3, while Theorem 2 follows from Theo-
rem 1 and Theorem 2.3. (We remark that since Lemma 3.1 holds for maps
which are only assumed to be C2-smooth up to the boundary, the proof of
Theorem 2.3 can also be obtained by applying Proposition 2.2 and by an
argument similar to that for the proof of Lemma 5.2). ��
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Appendix: The explicit calculation of an example

In this appendix, for convenience of the reader, we give an explicit example
to demonstrate some of the complicated calculations performed in the paper.
The computation here was verified in Maple V Release 4.

Consider the Whitney map from B3 to B5: H(z1, z2, w) = (z2
1, z1z2,

z1w, z2, w).
Let Ψn be the Cayley transformation from Hn into Bn as defined in

Sect. 6 right before Lemma 6.2. Considering the map Ψ5 ◦ H ◦ Ψ−1
3 and

then multiplying it on the right by the matrix
0 0 1 0 0
0 0 0 1 0
1 0 0 0 0
0 1 0 0 0
0 0 0 0 1

 ,

we get a map F from H3 into H5:

F =
(

z1(1 + iw)

1 − iw
, z2,

2z2
1

1 − iw
,

2z1z2

1 − iw
,w

)
.

Take a point p0 = (z0, w0) := (1, 0, 2+ i) ∈ ∂H3, and consider the map
Fp0 := F(z0,w0) = τp0 ◦ F ◦ σp0 as defined in Sect. 2. Then, it is given by:

( f1)p0(z, w) = −4z2
1+2iz1w+(−2+2i)z1+(−1+i)w

2[2z1−iw+(2−2i)] ,

( f2)p0(z, w) = z2,

(φ1)p0(z, w) = 4z2
1+(6−2i)z1+(−1+i)w
2[2z1−iw+(2−2i)] ,

(φ2)p0(z, w) = 2(z1+1)z2
2z1−iw+(2−2i) ,

gp0(z, w) = −iw2+(3−i)z1w+3(1−i)w
2z1−iw+(2−2i) .

Computing its first derivatives and choosing (C j)p0 as required in Sect. 2,
we have: 

(E1)p0 =
(− 1

2 , 0, 2+i
2 , 0

)
,

(E2)p0 =
(
0, 1, 0, 1+i

2

)
,

λp0 = (E1)p0 · (E1)p0 = (E2)p0 · (E2)p0 = 3
2 ,

(C1)p0 = 1√
6
(2 − i, 0, 1, 0) ,

(C2)p0 =
√

3
2

(
0, −1+i

3 , 0, 2
3

)
,

(E p0)w = (− 1
4 , 0,− 1

4 , 0
)
.
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Then by the definition of F∗
p0

in Sect. 2, one obtains

f ∗p0
= ((

f ∗1
)

p0
,
(

f ∗2
)

p0

) = 1

λp0

f̃ · E
t
p0

=
(
−1

3
( f1)p0 +

2 − i

3
(φ1)p0,

2

3
( f2)p0 +

1 − i

3
(φ2)p0

)
,

φ∗
p0

= ((
φ∗

1

)
p0

,
(
φ∗

1

)
p0

) = 1√
λp0

f̃ · C
t
p0

=
(

2 + i

3
( f1)p0 +

1

3
(φ1)p0,

−1 − i

3
( f2)p0 +

2

3
(φ2)p0

)
,

g∗
p0

= gp0

λp0

= 2

3
gp0 .

Moreover, ( f ∗p0
)′w|0 = (−1+i

12 , 0
)
, (φ∗

p0
)′w|0 = (−3−i

12 , 0
)
, a = (−1+i

12 , 0,

−3−i
12 , 0

)
, and ‖a‖2 = 1

12 , and r := 1
2 Re

{
∂2g∗p0
∂w2

∣∣∣
0

}
= − 1

12 . Now, F∗∗
p0

is

given as follows:(
f ∗∗1

)
p0

(z, w) =
12(3 − i)z2

1 + (−1 − i)w2 + (2 − 10i)z1w + 36(1 − i)z1

(−1 + i)w2 + 2(1 − i)z1w + 12(3 − i)z1 − 12iw + 36(1 − i)
,

(
f ∗∗2

)
p0

(z, w) =
12z2[(3 − i)z1 − iw + 3(1 − i)]

(−1 + i)w2 + 2(1 − i)z1w + 12(3 − i)z1 − 12iw + 36(1 − i)
,

(
φ∗∗

1

)
p0

(z, w) =
−12(1 + i)z2

1 + (1 − 3i)w2 + (4 + 12i)z1w

(−1 + i)w2 + 2(1 − i)z1w + 12(3 − i)z1 − 12iw + 36(1 − i)
,

(
φ∗∗

2

)
p0

(z, w) =
6z2[(2 − 2i)z1 + (−1 + i)w]

(−1 + i)w2 + 2(1 − i)z1w + 12(3 − i)z1 − 12iw + 36(1 − i)
,

g∗∗
p0

(z, w) =
12[−iw2 + (3 − i)z1w + 3(1 − i)w]

(−1 + i)w2 + 2(1 − i)z1w + 12(3 − i)z1 − 12iw + 36(1 − i)
.

Remark that F∗∗
p0

satisfies (2.1). With this map, we can define a new map,
which satisfies the normalization in (3.1):
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(z, w) �→
(

κ
(

f ∗∗1

)
p0

(
z1

κ
,

z2

κ
,

w

|κ|2
)

, κ
(

f ∗∗2

)
p0

(
z1

κ
,

z2

κ
,

w

|κ|2
)

,

κ
(
φ∗∗

1

)
p0

(
z1

κ
,

z2

κ
,

w

|κ|2
)

, κ
(
φ∗∗

2

)
p0

(
z1

κ
,

z2

κ
,

w

|κ|2
)

, |κ|2g∗∗
p0

(
z1

κ
,

z2

κ
,

w

|κ|2
))

,

where κ = − i
3 . This new map, still denoted by F = ( f1, f2, φ1, φ2, g) for

simplicity, is explicitly given by:

f1(z, w) = (−1 + 2i)z2
1 + 3

4w2 + 3−2i
2 z1w + z1

− 9
4w

2 + 3i
2 z1w + (−1 + 2i)z1 + 3(1−i)

2 w + 1
,

f2(z, w) = (−1 + 2i)z1z2 + 3(1−i)
2 z2w + z2

− 9
4w

2 + 3i
2 z1w + (−1 + 2i)z1 + 3(1−i)

2 w + 1
,

φ1(z, w) = z2
1 + 3(−1−2i)

4 w2 + (−1 + 2i)z1w

− 9
4w

2 + 3i
2 z1w + (−1 + 2i)z1 + 3(1−i)

2 w + 1
,

φ2(z, w) = z1z2 + 3i
2 z2w

− 9
4w

2 + 3i
2 z1w + (−1 + 2i)z1 + 3(1−i)

2 w + 1
,

g(z, w) =
3(1−i)

2 w2 + (−1 + 2i)z1w + w

− 9
4w

2 + 3i
2 z1w + (−1 + 2i)z1 + 3(1−i)

2 w + 1
.

(A.I)

For it, we have the following Taylor expansion:

f1(z, w) = z1 + i

2
z1w − 3

4
w2 + (1 − i)wz2

1 +
9

4
z2w

2 −

−
(

3 + 3

2
i

)
z2

1z2w + owt(5),

f2(z, w) = z2 − 3

2
iz1z2w + 9

4
z2w

2 − 3wz2z2
1 −

3

2
iz2

1z2w +
+ owt(5),

φ1(z, w) = z2
1 + (−1 + 2i)z1w + (1 − 2i)z3

1 + owt(3),

φ2(z, w) = z1z2 + 3

2
iz2w + (1 − 2i)z2

1z2 + owt(3),

g(z, w) = w − 3

2
iz1w

2 + 9

4
w3 −

(
3 + 3

2
i

)
z2

1w
2 + owt(6).

(A.II)

For this map, the data defined in Lemma 3.2 and Lemma 4.1 are as follows:

µ = −3i, c12 := 1

2
g′′′

z1ww(0) = −3i

2
, a02 := 1

2
( f1)

′′
ww(0) = −3

4
,

c03 := 1

6
g′′′

www(0) = 9

4
, and γ := 1

2
( f2)

′′′
z2ww(0) = 9

4
.



Mapping Bn into B2n−1 249

In such an example, one easily sees the following: (The reader may compare
(A.III) with the results (for the general maps) in Lemma 3.2, Lemma 4.1
and (4.16))

µ = 2c12 = 4ia02, c03 = |c12|2 and 12c03 = 8γ + |µ|2.(A.III)
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