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A NEW GAP PHENOMENON FOR PROPER HOLOMORPHIC
MAPPINGS FROM Bn INTO BN

Xiaojun Huang, Shanyu Ji, and Dekang Xu

1. Introduction

Write Bn = {z ∈ Cn : |z| < 1} and Prop(Bn,BN ) for the collection of all proper
holomorphic mappings from Bn into BN . Recall that f and g ∈ Prop(Bn,BN ) are
said to be equivalent if there are automorphisms σ ∈ Aut(Bn) and τ ∈ Aut(BN ) such
that f = τ ◦g ◦σ. By a classical result of Poincaré and Alexander [A77], every proper
holomorphic self-map of Bn with n ≥ 2 is equivalent to the identity map.

For N > n > 1, denote by Rat(Bn,BN ) the collection of all rational proper
holomorphic mappings from Bn to BN . In the past thirty years, there has been much
work done on the classification of mappings in Rat(Bn,BN ). (For extensive references
on this and related studies, see the book of Baouendi-Ebenfelt-Rothschild [BER99]
and the survey articles [Fo92] [Hu01]). In [W79], Webster proved that Rat(Bn,Bn+1)
has only one equivalence class for n > 2. This result was proved to be true by Faran
[Fa86] for N ≤ 2n − 2. For N = 2n − 1, when n = 2, Faran [Fa82] proved that
Rat(B2,B3) has exactly four equivalence classes. For n > 2, the first two authors
[HJ01] proved that there are only two equivalence classes in Rat(Bn,B2n−1).

The situation for Rat(Bn,BN ) with N ≥ 2n is quite different. First, equivalence
classes may form a continuous family. For instance, among other things, D’Angelo
constructed in [DA88] the following continuous family of mutually inequivalent proper
polynomial embeddings from Bn into B2n:

(1) Fθ(z′, w) = (z′, (cos θ)w, (sin θ)z1w, · · · , (sin θ)zn−1w, (sin θ)w2), 0 < θ ≤ π/2,

where z = (z′, w) ∈ Cn−1 ×C. More recently, using the same argument that the first
two authors developed in [HJ01], Hamada [Ha05] showed that when n ≥ 4, any map
in Rat(Bn,B2n) is equivalent to Fθ for a certain θ with 0 ≤ θ ≤ π/2. In this paper,
we provide a new gap phenomenon for proper holomorphic mappings from Bn into
BN with N ≤ 3n − 4. We prove the following:

Theorem 1.1. Let F be a proper holomorphic map from Bn into BN , that is C3-
smooth up to the boundary. Suppose that 4 ≤ n ≤ N ≤ 3n − 4. Then F is equivalent
to

F ′
θ := (Fθ(z, w), 0, · · · , 0) = (z, w cos θ, z1w sin θ, · · · , zn−1w sin θ, w2 sin θ, 0, · · · , 0)

for some θ with (0 ≤ θ ≤ π
2 ).
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An interesting feature of Theorem 1.1, which is somewhat surprising to us, is that
there is no new map added when N runs from 2n to 3n − 4. When N = 3n − 3 with
n ≥ 3, the generalized Whitney map Wn,3 defined on [pp 463, Example 1.3, Hu03]
properly sends Bn into B3n−3. Notice that the just mentioned Wn,3 is polynomial
but can not be equivalent to F ′

θ, for Wn,3 has geometric rank 2 while F ′
θ has geometric

rank 1. (See Definition 2.2 of §2 for the definition of the geometric rank). Hence the
gap phenomenon in Theorem 1.1 breaks down when N ≥ 3n − 3.

Our proof of Theorem 1.1 is based on a careful analysis of proper holomorphic
maps between balls with the so-called degenerate geometric rank, along the lines of
researches first carried out in [Hu03]. To state our main theorem, which includes
Theorem 1.1 as an application, we next give more definitions and notation:

Denote by Propk(Bn,BN ) the collection of all proper holomorphic mappings from
Bn into BN that are Ck smooth up to the boundary (k ≥ 2). By the work in
[Hu03], each map F ∈ Prop2(Bn,BN ) can be associated with an invariant integer
κ0 ∈ {0, 1, · · · , n−1}, called its geometric rank (see Definition 2.2 in §2 for the precise
definition of κ0). An early result of the first author ([Hu99, Theorem 4.2]) states that
F has geometric rank κ0 = 0 if and only if F is equivalent to a linear fractional map.
For F ∈ Prop3(Bn,BN ) (n ≥ 3) with κ0 ≤ n− 2, we say F has degenerate geometric
rank. By the results of [Hu03] and [HJX05], such a map must be rational and (n−κ0)-
linear. Here F ∈ Prop(Bn,BN ) is said to be k-linear, if for any point p ∈ Bn, there is
an affine complex subspace Sa

p containing p and of complex dimension k such that the
restriction of F to Sa

p is a linear fractional map. At this point, we should mention a
theorem of Forstneric [Fo89] which states that PropN−n+1(Bn,BN ) = Rat(Bn,BN )
for N ≥ n > 1. (See also a very interesting paper of Mir [Mir03] later on a more
general situation).

Our main purpose of this paper is to study the normalization problem for maps in
Rat(Bn,BN ) with degenerate geometric rank. For n ≥ 3 and for maps with geometric
rank one, we will also describe precisely the hyperplanes along which the maps are
linear fractional, which will, in particular, give Theorem 1.1 as one of the immediate
applications. For the case with general degenerate geometric rank, the normal form
will be derived in the same manner. However, we have to leave open the question to
determine precisely the linearity directions. For a non-linear map F ∈ Rat(B2,BN )
with N ≥ 3, it has geometric rank 1 that is also n − 1. The structure of F could
be very complicated, as indicated by the work in [Fa82] [CD96]. Indeed, by a result
of Catlin-D’Angelo [CD96], any holomorphic rational map from B2 into BN can be
extended to an element in Rat(B2,BN∗

), by suitably choosing the last (N∗ − N)-
components, when N∗ is sufficiently large. In the last section of the paper, we give
a normal form for mappings in Rat(B2,BN ) with degree 2 under the action of the
isotropic automorphism group of the Heisenberg hypersurfaces.

We now state our main result:

Theorem 1.2. Let F be a non-linear proper holomorphic map from Bn into BN with
N ≥ n ≥ 3. Assume that F is C3-smooth up to the boundary and has geometric rank
κ0 ≤ n − 2. Then F is equivalent to a proper holomorphic map of the form

H := (z1, · · · , zk0 ,H1, · · · ,HN−k0),
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where k0 = n − κ0 and Hj =
∑n

l=k0+1 zlHj,l with Hj,l holomorphic over Bn. More-
over, when κ0 = 1, (H1, · · · ,HN−n+1) = zn · h with h a rational proper holomorphic
map from Bn into BN−n+1. Both H and h are affine linear maps along each hyper-
plane defined by zn = constant.

When N ≤ 3n−3, then N −n+1 ≤ 2n−2. Assume that F is given as in Theorem
1.2 with geometric rank one. Then the corresponding map h must be linear fractional
by the linearity theorem in [Fa86] [Hu99]. Therefore, one sees that H reduces to
a proper map from Bn into B2n. Now, combining this with [Hu03, Theorem 1.1]
[HJX05, Corollary 1.3], [§ 6, HJ01] and [Theorem 1.1, Ha05], we can obtain the result
stated in Theorem 1.1. Theorem 1.2 can also be immediately used to derive the
following degree estimate:

Corollary 1.3. Let F ∈ Rat(Bn,BN ) have geometric rank 1. Assume that n ≥ 3.
The degree of F is then bounded by N−1

n−1 .

The degree estimate in Corollary 1.3 is optimal. Indeed, the Whitney map has de-
gree 2. By letting h in Theorem 1.2 be the Whitney map, we get a proper polynomial
map from Bn into BN with N = 3n − 2 of degree 3. Inductively, one can construct
a proper polynomial map from Bn into BN with N = kn − (k − 1) of degree k. At
this point, we mention a conjecture of D’Angelo which states that the degree of a
rational proper map from Bn into BN with n ≥ 3 is bounded by N−1

n−1 . Hence, Corol-
lary 1.3 partially provides an affirmative solution to the aforementioned conjecture of
D’Angelo.

The organization of the paper is as follows: We set up some notations in §2. We
prove Theorem 1.2 and Theorem 1.1 in §3. We also give the map Wn,k (first defined
in [Example 1.3, Hu3]) in Example 3.3, showing that Theorem 1.1 is optimal. In §4,
we give a normal form for rational maps of degree 2 from B2 into BN with N ≥ 4
under the action of the isotropic automorphisms of the Heisenberg hypersurfaces.

2. Notation and preliminaries

•Maps between balls Write Hn := {(z, w) ∈ Cn−1 × C : Im(w) > |z|2}
for the Siegel upper-half space. Similarly, we can define the space Rat(Hn,HN ),
Propk(Hn,HN ) and Prop(Hn,HN ). Since the Cayley transformation

(2) ρn : Hn → Bn, ρn(z, w) = (
2z

1 − iw
,

1 + iw

1 − iw
)

is a biholomorphic mapping between Hn and Bn, we can identify a map
F ∈ Propk(Bn,BN ) or Rat(Bn,BN ) with ρ−1

N ◦ F ◦ ρn in the space Propk(Hn,HN )
or Rat(Hn,HN ), respectively. Notice that

(3) ρ−1
n : Bn → Hn, ρ−1

n (z, w) = (
z

1 + w
,

i − iw

1 + w
)

Parameterize ∂Hn by (z, z, u) through the map (z, z, u) → (z, u + i|z|2). In what
follows, we will assign the weight of z and u to be 1 and 2, respectively. For a non-
negative integer m, a function h(z, z, u) defined over a small ball U of 0 in ∂Hn is
said to be of quantity owt(m) if h(tz,tz,t2u)

|t|m → 0 uniformly for (z, u) on any compact
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subset of U as t(∈ R) → 0. We use the notation h(k) to denote a polynomial h which
has weighted degree k.

• Partial normalization of F
Let F = (f, φ, g) = (f̃ , g) = (f1, · · · , fn−1, φ1, · · · , φN−n, g) be a non-constant C2-
smooth CR map from ∂Hn into ∂HN with F (0) = 0. For each p ∈ M close to 0, we
write σ0

p ∈ Aut(Hn) for the map sending (z, w) to (z + z0, w + w0 + 2i〈z, z0〉) and
τF
p ∈ Aut(HN ) by defining

τF
p (z∗, w∗) = (z∗ − f̃(z0, w0), w∗ − g(z0, w0) − 2i〈z∗, f̃(z0, w0)〉).

Then F is equivalent to

(4) Fp = τF
p ◦ F ◦ σ0

p = (fp, φp, gp).

Notice that F0 = F and Fp(0) = 0. The following is basic for the understanding
of the geometric properties of F .

Lemma 2.1 ([§2, Lemma 5.3, Hu99], [Lemma 2.0, Hu03]): Let F be a C2-smooth
CR map from ∂Hn into ∂HN , 2 ≤ n ≤ N . For each p ∈ ∂Hn, there is an automor-
phism τ∗∗

p ∈ Aut0(HN ) such that F ∗∗
p := τ∗∗

p ◦Fp satisfies the following normalization:

f∗∗
p = z +

i

2
a∗∗(1)

p (z)w + owt(3), φ∗∗
p = φ∗∗

p
(2)(z) + owt(2), g∗∗p = w + owt(4), with

〈z, a∗∗(1)
p (z)〉|z|2 = |φ∗∗

p
(2)(z)|2.

Definition 2.2. Let A(p) = −2i(∂2(fp)∗∗l

∂zj∂w |0)1≤j,l≤(n−1). We call the rank of A(p),
which we denote by RkF (p), the geometric rank of F at p.

RkF (p) depends only on p and F , and is a lower semi-continuous function on p.
Define the geometric rank of F to be κ0(F ) = maxp∈∂HnRkF (p). Notice that it
always holds that 0 ≤ κ0 ≤ n − 1. Define the geometric rank of F ∈ Prop2(Bn,BN )
to be the one for the map ρ−1

N ◦F ◦ ρn ∈ Prop2(Hn,HN ). By [Hu03], κ0(F ) depends
only on the equivalence class of F . It is known that F is linear fractional if and only
if the geometric rank of F is 0 ([Theorem 4.2, Hu99]). Hence, in what follows, we will
always assume that κ0(F ) ≥ 1.

Let F = (f, φ, g) ∈ Rat(Hn,HN ), which satisfies the normalization in Lemma 2.1.
Define Lj = 2iz̄j

∂
∂w + ∂

∂zj
, 1 ≤ j ≤ n − 1, which form a basis for the sections of the

complex tangent bundle T (1,0)∂Hn. Their complexifications are Lj = 2iξ̄j
∂

∂w + ∂
∂zj

.
Consider the basic equation:

(5)
g(z, w) − g(ξ, η)

2i
= f̃(z, w)f̃(ξ, η), w − η̄ = 2iz · ξ̄.

Letting z = w = η = 0 in (5), we get g(z, 0) ≡ 0. Applying T j (j = 1, · · · , k) with
T = 1

2 ( ∂
∂w + ∂

∂η ) to (5) and then letting z = w = η = 0, we get that g(z, w) =

w + o(|(z, w)|k) if g(0, w) − w, f̃(0, w) = o(wk). Finally applying Lj to (5) for each
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j and then letting ξ = w = η = 0, we have f(z, 0) = z. In summary, we derived the
following:

Lemma 2.3: Let F = (f, φ, g) ∈ Rat(Hn,HN ), which satisfies the normalization
in Lemma 2.1. Then
(A) g(z, 0) = 0, ∂g

∂w (z, 0) ≡ 1, and f(z, 0) = z.
(B) If we further assume that (f̃(0, w), g(0, w)) = (0, w), then g ≡ w.

Statements in (A) are well-known in the literature (see, for instance [BER99]
[HJ01], etc). (B) was first obtained in [HJ01] for N = 2n − 1 and was later gen-
eralized to the case of N = 2n in [Ha05]. The argument in [Ha05] can also be used
to get the statement in (B) for any N ≥ n.

• Degree of a rational map For a rational holomorphic map H = (P1,...,Pm)
Q

over Cn, where Pj , Q are holomorphic polynomials and (P1, ..., Pm, Q) = 1, we define

deg(H) = max{deg(Pj), 1 ≤ j ≤ m, deg(Q)}.
For a rational map H and a complex affine subspace S of dimension k, we say that
H is linear fractional along S, if S is not contained in the singular set of H and for
any linear parameterization zj = z0

j +
∑k

l=1 ajltl with j = 1, · · · , n, H∗(t1, · · · , tk) :=
H(z0

1 +
∑k

l=1 a1ltl, · · · , z0
n +

∑k
l=1 ajntj) has degree 1 in (t1, · · · , tk).

3. Mappings with geometric rank bounded by n − 2

Let F ∈ Prop3(Hn,HN ) have geometric rank κ0 with 1 ≤ κ0 ≤ n−2. By [Theorem
2.3; Hu03] and [Corollary 1.3; HJX05], we know that F is a rational map. Making
use of [Lemmas 3.2, 3.3, 4.1, 4.3, Corollaries 4.2, 5.2, (3.6.4), Claim 4.4; Hu03] and
making use of Lemma 2.3, this map is equivalent to a new map with the following
normalization:

(6)

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

fl = zl +
√−1

2 μlzlw + a
(2)
l (z)w + owt(4); μl > 0, l ≤ κ0

fj = zj + owt(4), for κ0 + 1 ≤ j ≤ n − 1;
φjl = μjlzjzl + owt(2), for (j, l) ∈ S0; φjl = owt(2), for (j, l) 
∈ S0;
g = w;
F (0, · · · , 0, zκ0+1, · · · , zn−1, w) = (0, · · · , 0, zκ0+1, · · · , zn−1, 0, · · · , 0, w).

Here, for 1 ≤ κ0 ≤ n − 2, we write S0 = {(j, l) : 1 ≤ j ≤ κ0, 1 ≤ l ≤ (n − 1), j ≤ l}.

Also, μjl =
√

μj + μl for j < l ≤ κ0; and μjl = √
μj if j ≤ κ0 and l > κ0 or if

j = l ≤ κ0.

Let E0 be the (proper) complex analytic variety consisting of the poles and the
non-immerse points of F in (6). As in [Hu03], we define

VF :={(Z, SZ)∈(Cn\E0)×Gn,k0(C), F is linear fractional when restricted to SZ+Z}.
Here Gn,k0(C) is the Grassmannian manifold consisting of all k0-dimensional complex
subspaces in Cn with k0 = n− κ0. Then, as in [Hu03, Lemma 5.1], one can similarly
verify that VF is a complex analytic variety with π : VF → Cn \ E0 as its proper
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holomorphic projection. Also, making use of a similar argument as in [Lemma 5.3,
Hu03], we see, away from a certain proper complex analytic subvariety E1 of X :=
Cn \ E0, that any point Z ∈ X \ E1 has a unique preimage in VF . Namely, for any
Z ∈ X \ E1, there is a unique complex subspace SZ of dimension k0 such that F is
linear fractional when restricted to SZ + Z. Indeed, write ∪jV(j) for the irreducible
decomposition of VF . Then there is only one irreducible component, say V(1), whose
projection to Cn \ E0 contains a sufficiently small domain that lies inside Hn and
has a small piece of ∂Hn containing 0 as part of its boundary. (See the proof of
[Lemma 5.3, Hu03]). Let (K, ρ,V(1)) be the desingularization of V(1). Let A be the
singular set of π ◦ ρ, namely, the set where π ◦ ρ fails to be biholomorphic. Write
B = π ◦ ρ(A) ∪ π(sing(V(1))). Then E1 can be taken as the locally finite union of B
with the proper projections of the other irreducible components. Hence, by moving to
a nearby point, if necessary, we can assume that 0 
∈ E1 and thus π is biholomorphic
near (0, S0) ∈ VF . Then for any ε = (ε1, · · · , εκ0) ≈ 0, S(ε,0) + (ε, 0) can be defined
by an equation of the form:

zl =
n∑

j=κ0+1

ajl(ε)zj + εl, l = 1, · · · , κ0,

with ajl holomorphic in ε. Here, we identify zn with w. Notice that ajl(0) = 0.
Consider the equations:

zl =
n∑

j=κ0+1

ajl(z′1, · · · , z′κ0
)zj + z′l, l = 1, · · · , κ0.

We see that

z′l = ψl(z1, · · · , zn) = zl +
n∑

j=κ0+1

O(|z|)zj , l = 1, · · · , κ0.

We will next show that fj ≡ zj for j ≥ κ0+1. Fix a j ≥ κ0+1. Indeed, since (f̃(z), w)
has degree one along each complex affine subspace defined by z′l = εl (l = 1, · · · , κ0),
we can write

fj(z, w) = b0(z′1, · · · , z′κ0
) +

n−1∑
l=κ0+1

bl(z′1, · · · , z′κ0
)zl + bn(z′1, · · · , z′κ0

)w.

Since fj(z1, · · · , zn−1, 0) = zj , we have 0 = fj(z1, · · · , zκ0 , 0
′) = b0(z′1, · · · , z′κ0

). We
conclude that b0 ≡ 0.

Write

bl(z′1, · · · , z′κ0
) − δj

l = b
(kl)
l (z′1, · · · , z′κ0

) + o(|(z′1, · · · , z′κ0
)|kl)

with b
(kl)
l a certain homogeneous polynomial in (z′1, · · · , z′κ0

) of degree kl. Here, we
assume that b

(kl)
l 
≡ 0 when bl 
≡ δj

l . Then by the formulas for ψl, we conclude that

bl = δj
l + b

(kl)
l (z1, · · · , zκ0) +

n∑
l=κ0+1

O(|(z1, · · · , zn)|kl)zj .
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Since fj(z1, z2, · · · , zn−1, 0) = zj , we get

n−1∑
l=κ0+1

b
(kl)
l (z1, · · · , zκ0)zl +

n−1∑
l=κ0+1

o(|(z1, · · · , zn−1)|kl)zl = 0.

We claim that the above equation implies that bl ≡ 0 for l 
= n. Suppose not. Assume
then b

(kl0)

l0

≡ 0 has a minimum degree for a certain l0 ≤ n − 1. Comparing the

coefficients of the homogeneous polynomials in (z1, · · · , zn−1) of degree kl0 + 1, we
immediately see that b

(kl0 )

l0
≡ 0. This is a contradiction. Hence bl ≡ 0 for l < n.

Complexifying the first equation in [(3.4.5), Hu03]:

(7) T (f̃) · Lj(f̃)t =
1
2i

LjT (g) − (LjT (f̃)) · f̃ ,

and letting z, w, η = 0, we conclude, from the normalization in (6) and the property
that ∂2φjl

∂zj∂w |0 = 0 for any j ≥ κ0 + 1 ([Lemma 3.3(C), Hu03]), that

bn(ψ1(z1, · · · , zn−1, 0), · · · , ψκ0(z1, · · · , zn−1, 0)) ≡ 0,

which then forces bn ≡ 0 as argued above. This proves that fj ≡ zj .
Since φ, fl(0, · · · , 0, zκ0+1, · · · , zn−1, w) ≡ 0 for l ≤ κ0, we see

fl =
κ0∑

τ=1

zτf∗
lτ , φ =

κ0∑
τ=1

zτφ∗
lτ .

Now, assume κ0 = 1 and write the defining equation of S(ε,0) + (ε, 0) for ε ≈ 0 as
z1 =

∑n
j=2 aj(ε)zj + ε. (Here we identify zn with w). There are three cases to be

considered:

Case (11). aj(ε) = εa0
j (ε) with a0

j0
(ε) 
= constant for a certain j0 ≤ n.

Case (22). aj(ε) = εa0
j with a0

j = constant and �a0
n = −∑n−1

j=2 |a
0
j

2 |2.
Case (33). aj(ε) = εa0

j with a0
j = constant but not in the case of (22).

In the case of (11), S0 intersects S(ε,0) +(ε, 0) for a generic ε. As ε varies, we conclude
that the union of all such intersections contains an open piece of S0. Notice that
S0 \ E0 is an irreducible complex analytic variety of Cn \ E0. By the uniqueness of
complex analytic varieties, we see that S0 ⊂ E1 ∪ E0. This contradicts the initial
assumption that 0 
∈ E1 ∪ E0. (One can also argue as follows: By the continuity of
aj(ε) on ε, we also see for any 0 < |ε0| << 1, that E1 ∪ E0 contains an open piece
of S(ε0,0) and thus S(ε0,0) ⊂ E1 ∪ E0. That is a contradiction.) Therefore, Case (11)
cannot occur.

Consider Case (22). We can write

z′1 =
z1

1 +
∑n

j=2 a0
jzj

=
z1

1 − 2i〈α, z〉 + (r − i|α|2)w
with a certain r ∈ R and α = (0, α2, · · · , αn−1) ∈ Cn−1. Define

σ(z′, w′) :=
((z′ − αw′), w′)

q′(z′, w′)
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with q′(z′, w′) = 1 + 2i〈α, z′〉 + (−r − i|α|2)w′, and define

τ∗(z∗, w∗) :=
((z∗ + α∗w∗), w∗)

q∗(z∗, w∗)

with q∗(z∗, w∗) = 1 − 2i〈α∗, z∗〉 + (r − i|α∗|2)w∗, where α∗ = (α, 0). Then σ ∈
Aut0(Hn) and τ∗ ∈ Aut0(HN ). Moreover, as in [Lemma 2.2 A, Hu03], it is straight-
forward to verify that τ∗ ◦ F ◦ σ still satisfies the normalizations in (6). The new
map, still denoted by F , now is linear fractional along each hyperplane defined by
z′1 = constant. Since g = w, F has to be affine linear along the hyperplanes defined
by z′1 = constant. Write (z, w) for (z′, w′). Then f1 = z1f

∗
1 and φj = z1φ

∗
j . Also,

it is easy to see that Ψ =: (φ∗
j , f

∗
1 ) properly maps Hn into BN−n+1 and Ψ is affine

linear along z1 = constant. In particular, letting z1 = 0, we get that

Ψ(0, z2, · · · , w) = (b1w, z2 + b2w, · · · , zn−1 + bn−1w, 0, · · · , 0, 1 +
i

2
w)

maps Im(w) =
∑n−1

j=2 |zj |2 into the unit sphere. Namely,

|b1w|2 +
n−1∑
j=2

|bjw + zj |2 + |1 +
i

2
w|2 = 1 over w = u + i

n−1∑
j=2

|zj |2.

Comparing the coefficients of terms with the u factor, we get a contradiction. Namely,
this case cannot occur neither.

In the case of (33), after composing F by unitary transformations on both sides, we
can assume that F is linear fractional (in fact, affine linear) along hyperplanes defined
by equations: z1 = constant · (1 + bz2 + cw) with b ≥ 0. Next for α = (0,K, 0, · · · , 0)
with K ∈ C, we notice that the inverse of the map

σ(z′, w′) :=
((z′ − αw′), w′)

q(z′, w′)

with q(z′, w′) = 1 + 2i〈α, z′〉 + (−r − i|α|2)w′ transforms the hyperplanes defined by
z1 = constant · (1 + bz2 + cw) into hyperplanes defined by z′1 = constant · (q(z′, w′) +
bz′2 − bKw′ + cw′). Notice that

q(z′, w′) + bz′2 − bKw′ + cw′ = 1 + 2i(K − i

2
b)z′2 + (−r − i|K|2 + c − bK)w′.

Choose K = − i
2b and r = Re(c). Hence, we can easily see that in Case (33), we can

make b = 0 and c(
= 0) purely imaginary, after composing F with this σ on the right
and some other suitable τ on the left as discussed in Case (22). Moreover, composing
F by suitable dilation of both sides of F , we can further make c = ±i. We will see
later that the case c = i can not occur. Assuming this statement, we thus obtain the
following normalization:
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Theorem 3.1: Let F ∈ Prop3(Hn,HN ) have geometric rank κ0 ≤ n− 2. Then F
is equivalent to a map of the following form, which is still denoted by F :

(8)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

fl =
∑κ0

j=1 zjf
∗
lj(z); l ≤ κ0

fj = zj , for κ0 + 1 ≤ j ≤ n − 1;
φlk = μlkzlzk +

∑κ0
j=1 zjφ

∗
lkj for (l, k) ∈ S0,

g = w;

f∗
lj(z, w) = δj

l + iδj
l μl

2 w + O(|(z, w)|)2),
φ∗

lkj(z, w) = Owt(2), (l, k) ∈ S0,

φlk =
∑κ0

j=1 zjφ
∗
lkj = O(|(z, w)|3) for (l, k) 
∈ S0

Here μj , μjl are as in (6). Moreover, when κ0 = 1, F is an affine linear map along
each hyperplane defined by: z1 = constant · (1 − iw).

Completion of the proof of Theorem 3.1 and proof of Theorem 1.2: We first notice
that when κ0 = 1, F in Theorem 3.1 must be affine linear along the hyperplanes
defined by: z1 = constant · (1 − iw) due to the fact that deg((f̃ , w)) = 1 along such
hyperplanes.

To complete the proof of Theorem 3.1, it remains only to explain that the case of
kappa0 = 1, F can not be affine linear along the hyperplanes defined by z1 = constant·
(1+ iw). Let F be normalized as in (8). Following the procedure in [HJ01] and using
the part of Theorem 3.1 which we have proved, we can use the Cayley transformation
to obtain the corresponding proper holomorphic mapping H = ρN ◦F ◦ ρ−1

n from Bn

to BN , which takes the following form:

H = (H1, · · · ,Hκ0 , zκ0+1, · · · , zn−1,Hn, · · · ,HN−1, w),

where Hj =
∑κ0

l=1 zlHj,l with Hj,l holomorphic over B
n
. Notice that

ρ−1(z′, w′) = (
iz′

i + iw′ ,
w′ − 1
i + iw′ ).

Hence in case κ0 = 1, H is affine linear along one of the following two families of
the hyperplanes defined by (1): z1 = constant; (2): z1 = constant · w. Suppose
that F is affine linear along each hyperplane defined by z1 = constant · w. Then
H∗(z1, · · · , zn) = (H1,1, · · · ,HN−1,1) must be a constant map along each hyperplane
defined by z1 = constant · w. That is impossible, for H∗ is proper from Bn into
BN−n+1. This completes the proof of Theorem 3.1.

After re-ordering the coordinates, we can assume that the map H is of the following
form:

H = (z1, · · · , zk0 ,H1, · · · ,HN−k0),
where k0 = n − κ0 and Hj =

∑n
l=κ0+1 zlHj,l.

Apparently, when κ0 = 1, write (H1, · · · ,HN−n+1) = zn ·h = zn(h1, · · · , hN−n+1).
Then h is a proper holomorphic mapping from Bn to BN−n+1, and h is affine linear
along each hyperplane defined by zn = constant. This completes the proof of Theorem
1.2. �

Proof of Corollary 1.3: For each N ≥ n ≥ 3, there is a unique positive integer k such
that k(n−1)+1 ≤ N ≤ (k+1)(n−1). We apply the induction on k. When k = 1, F ∈
Rat(Bn,B2n−2) and thus deg(F ) = 1 ≤ N−1

n−1 . Assume deg(F ) ≤ N−1
n−1 for k = k0. For
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k = k0 +1 and N ≤ (k0 +2)(n−1), by Theorem 1.1, F is equivalent to (z, wh) where
h ∈ Rat(Bn,BN−n+1) with geometric rank 0 or 1. Since N−(n−1) ≤ (k0+1)(n−1),
by the induction assumption, deg(F ) ≤ 1 + deg(h) ≤ 1 + (N−n+1)−1

n−1 = N−1
n−1 . �

Proof of Theorem 1.1: Let F be as in Corollary 1.3. We assume that F is not linear.
By [Hu03], F must have geometric rank one. By Theorem 1.2, we can assume that F is
equivalent to H, that is of the following special normal form: H = (z1, · · · , zn−1, w ·
h(z, w)) with h(z, w) a proper holomorphic rational map from Bn into BN ′

with
N ′ = N − n + 1. Since we now have N ≤ 3n − 3 and N − n + 1 ≤ 2n − 2, h is
equivalent to a linear embedding. Hence, there is a unitary transformation U which
maps h(Bn) into the intersection of the ball with the affine complex subspace of CN ′

defined by z1 = c1, · · · , zN ′−n = cN ′−n, where c′js are non-negative constant. Write

|c|2 =
√

c2
1 + · · · + c2

N ′−n. Hence composing H by (Id, U) from the left, we see that
H is equivalent to a map of the form: (Still denote the new map by H)

H = (z1, · · · , zn−1, (c1, · · · , cN ′−n)w,
√

1 − |c|2wh̃(z, w)).

Here h̃(z, w) is an automorphism of Bn. After a unitary transformation, the above
map is equivalent to the following map:

H = (z1, · · · , zn−1, |c|w, 0, · · · , 0, w
√

1 − |c|2h̃).

Hence, H is reduced to the following rational map from Bn into B2n:

H ′ = (z1, · · · , zn−1, |c|w,w
√

1 − |c|2h̃), h̃ ∈ Aut(Bn).

Now, we can apply a result of Hamada [Ha05, §4] to conclude that H is equivalent
to the map H = (Fθ,0), θ ∈ (0, π/2]. (See already very similar arguments on this
matter in §6 of [HJ01]). Indeed, at this stage, we can just apply [Ha05, Theorem 1.1]
to make a conclusion. The proof of Theorem 1.1 is complete. �

The above argument apparently also gives the following slightly stronger result
than what is stated in Theorem 1.1:

Theorem 3.2 Let F ∈ Prop3(Bn,BN ) with 4 ≤ n ≤ N = 3n − 3. Suppose that
F has geometric rank 1. Then F is equivalent to

F ′
θ := (Fθ(z, w), 0, · · · , 0) = (z, w cos θ, z1w sin θ, · · · , zn−1w sin θ, w2 sin θ, 0, · · · , 0)

for some θ with (0 ≤ θ ≤ π
2 ).

The following example, copied from Example 1.3 of [Hu03], shows that Theorem
1.1 is optimal.

Example 3.3 ([Example 1.3, Hu03]): Let
ψ1 = (z2

1 ,
√

2z1z2, · · · ,
√

2z1zk−1, z1zk, · · · , z1zn),
ψ2 = (z2

2 ,
√

2z2z3, · · · ,
√

2z2zk−1, z2zk, · · · , z2zn),
· · ·
· · ·

ψk−1 = (z2
k−1, zk−1zk, · · · , zk−1zn),

ψk = (zk, · · · , zn).
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Let Wn,k = (ψ1, · · · , ψk). Then Wn,1 is the identical map, Wn,2 is the standard
Whitney map. More generally, for any k ≤ n, Wn,k is a proper polynomial map from
Bn into BN with N = n+P (n, k−1). Notice that Wn,k is not (n−(k−1)+1)-linear,
where P (n, k) = k(2n−k−1)

2 . In particular, Wn,3 (for n ≥ 3), from Bn into B3n−3, can
not be (n − 1)-linear. Hence, Wn,3 is not equivalent to (Fθ, 0, · · · , 0). (Notice that
first and the third k in the last line of page 463 of [Hu03] are misprint and should be
k − 1.)

4. A normal form for F ∈ Rat(B2,BN ) with degree 2

In this section, we study the normalization problem for mappings, which have
geometric rank one, but may not be partially linear. By the work in [Hu03] and
[CD96], such maps have to be from B2 to BN and may take very abstract form. We
thus focus on the normalization problem under the action of the isotropic group of
the Heisenberg hypersurfaces. Even in this setting, we still have to restrict ourselves
to maps which have degree 2 to be able to get some clean results.

Let F = (f, φ, g) be a proper rational map of degree two from H2 into HN . Assume
that F (0) = 0 and 0 is a generic point of F , namely, κF (0) = 1. Without loss of
generality, we assume that N ≥ 4. We then want to give a complete classification of
F under the action of Aut0(∂H2) and Aut0(∂HN ). By [Lemma 3.2, Hu03], we have
σ ∈ Aut0(∂H2) and τ ∈ ∂Aut0(HN ) such that τ ◦F ◦σ, still denoted by F = (f, φ, g),
takes the following form:

(9)

f =z +
i

2
zw + owt(3),

∂2f

∂w2
(0) = 0,

g =w + owt(4),

φ1 =z2 + A1zw + B1w
2 + E1z

3 + · · · ,

φj =owt(2), j ≥ 2.

Replacing (φ2, · · · , φN−2) by (φ2, · · · , φN−2) ·U with U a certain (N −3)× (N −3)
unitary matrix, we can assume that φj = Ajzw + Bjw

2 + o(|(z, w)|2) for j ≥ 2 and
Aj = 0 for j ≥ 3. In a similar manner, we can assume that Bj = 0 for j ≥ 4 (if
N ≥ 6). Making use of the assumption that F has degree 2, we can thus assume in
(9) that

(10)

φ2 =A2zw + B2w
2 + o(|(z, w)|2),

φ3 =B3w
2 + o(|(z, w)|2),

φj =0, j ≥ 4.

Considering the weighted 5th-order terms of the basic equation

(11) �g = |f |2 + ‖φ‖2, �w = |z|2

we get �(g(5) − 2izf (4)) = 2�(z2A1zw + z2E1z3). ¿From this, we easily see that
g(5) ≡ 0 and f (4) = az2w with
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(12) a = −A1, E1 = −2ia.

Also, by considering the coefficients of u3 in the weighted 6th-order terms of (11),
we can see that

(13) g = w + μw3 + O(|(z, w)|4) ∩ owt(5) with μ ∈ R.

Now, write f = P0/Q, φj = Pj/Q, j = 1, · · · , N − 2, g = G/Q. Here P0, Pj , G
are polynomials of degree at most 2, and Q = 1 + L(z, w) + Q0(z, w) with L, Q0

linear and quadratic polynomials in (z, w), respectively. Then from (9) and (13), it
follows easily that P0 = z(1 + L(z, w) + iw/2), G = w(1 + L(z, w)) and Q0 = −μw2.

Write L = id1z + id2w. Let

σ =
(z, w)
1 + rw

, τ =
(z∗, w∗)
1 − rw∗

with r = −�(id2). Replacing F by τ ◦F ◦σ, we can assume, without loss of generality,
that d2 ∈ R.

Next, replacing F by τ ◦F ◦σ, where σ(z, w) = (eiθz, w) and τ(z∗1 , z∗2 , · · · , z∗N−1, w
∗)

= (e−iθz∗1 , e−2iθz∗2 , eiβ3z∗3 , · · · , eiβN−1z∗N−1, w
∗) with appropriate θ, β′

js, we can as-
sume that A1 ≥ 0, A2 ≥ 0, B3 ≥ 0. Also, when A2 = 0, we can make B2 ≥ 0.

Rewrite (11) as

(14)
�

(
w(1 + L(z, w))(1 + L(z, w) − μw2)

)
= |z(1 + L(z, w) + i/2w)|2+

+|z2 + A1zw + B1w
2|2 + |A2zw + B2w

2|2 + |B3w
2|2.

Comparing the coefficients of weighted degree 8, we obtain

−�(id2μw2w2) =
3∑

j=1

|Bj |2|w|4.

From this, we obtain

(15) −μd2 =
3∑

j=1

|Bj |2

Comparing the coefficients of weighted degree 7 in (14), we get

−�(id1μzww2) =
2∑

j=1

(AjBjzww2 + BjAjw
2zw),

from which, it follows that

(16) −μd1 = 2
2∑

j=1

AjBj .

Similarly, comparing the coefficients of weighted degree 6 in (14), we get precisely the
following:

(17) B1 = 0, μ = 1/4 + d2 +
2∑

j=1

|Aj |2.
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Since E1 = −id1 and a = d1/2, by (12), we have d1 ∈ R and A1 = −d1/2. Thus,
d1 ≤ 0.

Making use of (16), we get that B2 ∈ R. When A2 
= 0, (16) can be also used to
show that B2 ≥ 0. If A2 = 0, then we can similarly make B2 ≥ 0, B3 = 0 by applying
a unitary action to the (φ2, · · · , φN−2)-components as we mentioned before.

Notice that when μ = 0, then g = w, f = zf∗, φ = zφ∗ with (f∗, φ∗) a linear
fractional map from H2 into BN−1. As in the proof of Theorem 1.1, we can see, in
a similar way, that the pull back of F to the map from B2 into BN then must be
equivalent to the D’Angelo map

Fθ(z, w) = (z, cos(θ)w, sin(θ)zw, sin(θ)w2, 0, · · · , 0).

In summary, we have the following:

Theorem 4.1: Let F ∈ Rat(H2,HN ) have degree 2 with F (0) = 0 and κF (0) = 1
(N ≥ 4). Then there are σ ∈ Aut0(∂H2) and τ ∈ Aut0(∂HN ) such that τ ◦ F ◦ σ,
still denoted by (f, φ, g), takes the following normal form:

f(z, w) = z−2id1z2+(i/2−id2)zw
1−id2w−μw2−2id1z ; φ1(z, w) = z2+d1zw

1−id2w−μw2−2id1z ;
φ2(z, w) = c1w2+νzw

1−id2w−μw2−2id1z ; φ3(z, w) = c2w2

1−id2w−μw2−2id1z ;
φj ≡ 0, j ≥ 4, g(z, w) = w−id2w2−2id1zw

1−id2w−μw2−2id1z .

(18)

Here when N = 4, φ only has two components (φ1, φ2). ν, μ, d1, d2, c1, c2 are non-
negative real numbers. Also, the following relations hold:

(19) μd2 = c2
1 + c2

2, μ + d2 = 1/4 + d2
1 + ν2, μd1 = νc1; c2 = 0 if ν = 0.

Moreover, we have
(I). ν, μ, d1, d2, c1, c2 are uniquely determined by F . Conversely, for any non-negative
real numbers

ν, μ, d1, d2, c1, c2

satisfying the relations in (19), the map F defined in (18) is an element in
Rat(H2,HN ) of degree 2 with F (0) = 0 and κF (0) = 1.
(II). If μ = 0, then ρ−1

N ◦F ◦ ρ2, where ρn is defined as in (2), is equivalent to (Fθ, 0)
with Fθ as in (1).

Remark 4.2: An immediate consequence of Theorem 4.1 is that any rational
proper holomorphic map from B2 into BN with N ≥ 5 of degree 2 is equivalent to a
rational proper holomorphic map from B2 into B5. A similar argument can be used
to show that for any positive integers k, n,N with N ≥ n ≥ 2, there is an integer N0,
depending only on k, n, N , such that any rational proper map of degree bounded
by k from Bn into BN is equivalent to a rational proper holomorphic7 map from Bn

into BN0 .

Proof of Theorem 4.1: It only remains to prove the uniqueness of μ, ν, d1, d2, c1, c2.
Suppose F ∗ = τ∗ ◦F ◦ σ = (f∗, φ∗, g∗) with σ ∈ Aut0(∂H2) and τ∗ ∈ Aut0(∂HN ).

And suppose that both F and F ∗ satisfy the normalization in Theorem 4.1. By
[Lemma 2.2(A), Hu03] [(2.4.1), Hu03] and [(2.4.2), Hu03], we have

σ =
(λ(z + aw) · U, λ2w)

q(z, w)
, τ∗(z∗, w∗) =

(λ∗(z∗ + a∗w∗) · U∗, λ∗2w∗)
q∗(z∗, w∗)

.(20)
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Here q(z, w) = 1 − 2i〈a, z〉 + (r − i|a|2)w, λ > 0, r ∈ R, a ∈ C, |U | = 1, q∗(z∗, w∗) =
1−2i〈a∗, z∗〉+(r∗−i|a∗|2)w∗, λ∗ > 0, r∗ ∈ R, a∗ ∈ CN−1 and U∗ is an (N−1)×(N−1)
unitary matrix. Also the following holds (see [((2.5.1), (2.5.2), Hu03]):

(21) λ∗ = λ−1, a∗
1 = −λ−1aU, a∗

2 = 0, r∗ = −λ−2r, U∗ =
(

U−1 0
0 U∗

22

)
,

where a∗ = (a∗
1, a

∗
2), U∗

22 is an (N − 2) × (N − 2) unitary matrix. Write

A = −2i
∂2f

∂z∂w
(0), Bi =

∂2φi

∂z2
(0), B∗i =

∂2φ∗
i

∂z2
(0), i = 1, · · · , N − 2,

B = (
∂2φ1

∂z∂w
, · · · ,

∂2φN−2

∂z∂w
),B∗ = (

∂2φ∗
1

∂z∂w
, · · · ,

∂2φ∗
N−2

∂z∂w
).

The same computation in [Hu03, Lemma 2.2 (A)] yields the following:

(22)

∂2f∗

∂w2
(0) = iλ2aU · A · U−1 + λ3 ∂2f

∂w2
(0)U−1,

[B∗1, · · · , B∗N−2] = λU [B1, · · · , BN−2]U tU∗
22,

B∗ = λU [B1, · · · , BN−2]U tatU∗
22 + λ2UBU∗

22,

∂2φ∗

∂w2
(0) = λaU [B1, · · · BN−2]U tatU∗

22 + 2λ2aUBU∗
22 + λ3 ∂2φ

∂w2
(0)U∗

22.

Since both F and F ∗ satisfy the normalization in (18), we have a = 0, λ = 1. Also,
since d2, d

∗
2 ∈ R, a direct computation shows that r = 0. Write U22 = (αkl). By

the second equality in (22), we see that α11e
2iθ = 1 and α1j = 0 for j ≥ 2. Notice

that d1, d
∗
1, ν, ν∗ ≥ 0. Making use of this and the third equality of (22), we see that

(d∗1, ν
∗) = (d1, ν). If μ = 0, then g∗ = g = w. Thus, we have c1, c2, c

∗
1, c

∗
2, μ

∗ = 0.
Since f∗ = f , we get d1 = d∗1, d2 = d∗2, ν = ν∗. Next, suppose that μ, μ∗ 
= 0. If
ν does no vanish neither, then making use of the fact g∗ = g and (19), we can also
conclude the proof of the theorem. The case that μ 
= 0 and ν = 0 can be treated
similarly. �
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