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An example of a real analytic strongly
pseudoconvex hypersurface which
is not holomorphically equivalent
to any algebraic hypersurface

Xiaojun Huang(1), Shanyu Ji and Stephen S. T. Yau(?)

1. Introduction

A submanifold in C™ is called algebraic if it can be defined by polynomials.
As is clear, any totally real analytic submanifold is locally biholomorphic to a cer-
tain coordinates space, hence equivalent to an algebraic manifold. By the work of
Moser and Webster [MW], the germ of a real analytic surface M CC? at an iso-
lated elliptic complex tangent pge M with 0<)\<% (where A denotes the Bishop
invariant), is biholomorphically equivalent to a real algebraic one. However, the
corresponding statement is generally false even for CR manifolds in C2. An explicit
example of this type has appeared in a recent survey article of Baouendi—Ebenfelt—
Rothschild [BER2, Section 7]: In [BER2], they constructed a real analytic hyper-
surface M in C? and a smooth CR map f from M into an algebraic non-Levi-flat
hypersurface such that f is locally biholomorphic away from a certain subset ECM,
but f is not real analytic along F, where FE is a non-trivial holomorphic curve. In
such an example, for each pe M\ E, (M, p) is equivalent to the germ of a strongly
pseudoconvex algebraic hypersurface, but for each p€ F, by the reflection principle
proved in [BHR], (M, p) can not be holomorphically equivalent to the germ of any
real algebraic hypersurface. The key feature in this example is the degeneracy of
M along E. (See also related examples in {E] and {[BHR]).

In this paper, using a different approach, we provide an explicit strongly pseu-
doconvex hypersurface in C?, that is not biholomorphically equivalent to any real
algebraic manifold in the complex spaces.

(*) Supported in part by NSF-9970439.
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Theorem 1.1. Let M={{(z, w)eC2:Imw=el""~1}, which is apparently
strongly pseudoconvex and real analytic. But for any peM, the germ of M at p
15 not holomorphically equivalent to the germ of any algebraic real hypersurface
in C2,

Real algebraic hypersurfaces form an important subclass of real analytic hyper-
surfaces in complex spaces. There are many substantial results in the CR geometry
which exclusively hold in this subclass. To name a few of the works in this re-
gard, we mention Webster’s algebraic mapping theorem [We], Baouendi-Ebenfelt—
Rothschild’s algebraicity theorem [BER1] and an algebraic Riemann mapping the-
orem of the first two authors [HJ]. (See also [BER2] and [H] for a detailed list of
references).

Our approach uses CR holomorphic invariant functions. For any strongly pseu-
doconvex real analytic hypersurface M C C2, we have a projective structure bundle
Y associated with it [C], [F], which will further be parametrized locally by 8 com-
plex variables: z, w, p, u, ui, u', vy and t. Using the curvature functions L'! and
Py;1, we will derive the following Cartan-type holomorphic invariant functions on Y
(see Lemma 4.1 for the explanation of notations):

Liws Lo Lli, Puw, and Py
In case M is rigid, we will show that these seven invariant functions depend only on
the variables z, p, u, ui, u! and v;. Hence, they would be generically functionally
dependent. If M would be locally biholomorphically equivalent to a certain real
algebraic hypersurface, there would exist a non-zero polynomial R such that
R(Lg s LM Lo LY, Pryy Prigy, Pyt ) =0

Finally when M is in the specific form as in Theorem 1.1, we will get a contradiction
to the existence of such an R.

Acknowledgement. The authors acknowledge many stimulating conversations
with S. Baouendi, P. Ebenfelt, L. Rothschild and S. Webster. Most of the symbolic
computation in this paper was further checked by using Maple V Release 4.

2. Preliminaries

Let M be a complex manifold of complex dimension 3. We say that a G-
structure G on M is admissible, if it is given by holomorphic subbundles A, BCT* M
such that the fiber dimension of A (respectively, B, ANB) is 2 (respectively, 2, 1).
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A basis (0,60%,6,) of T*M will be called a coframe of G if 6€ ANB, '€ A and
0, cB. Let M and M3 be two complex manifolds with admissible G-structures G,
and Go. A biholomorphic map from M7 onto M, is called a G-isomorphism from
M to Mo, if it preserves the G-structures of M; and M, respectively. The local
isomorphism of G-structures can be defined in a similar way.

Assume that M ={(z,w)cC?:r(z,w, z,w)=0, d|pr#0} is strictly pseudocon-
vex near p€M. Its Segre family is then the complex three-fold M={(z,w,{,n):
r(z,w,(,n)=0}CC* And, as is well known (see [CJ1]-[CJ2]), there is a canon-
ically associated admissible G-structure on M near the point (pg,Po), where A
(respectively, B) is generated by dz and dw (respectively, d¢ and dn), and ANB
is generated by 0=(0r/8z) dz+(0r/0w)dw. If MCC? is biholomorphic to an-
other real analytic hypersurface M’ C C?, namely, if there is a local biholomorphism
F=(f,g) from an open subset of C? onto an open subset of C? such that its restric-
tion Fp(M)CM’, then it induces a local G-isomorphism from the Segre family
M of M to the associated Segre family M’ of M’, through the map (z,w,{,n)—

(f(z,w), g(z,w), F(C, ), 3(C,m))-
Let M be as above. Assume further ro,(po)=(3r/0w)| s (po)£0. Define

—~ or Or
) 2 pl orLYer
(21) S M—MCC*xP", (z,w,(,n)+r—> (z,w, Iiaz.aw}(z,w,c,n)).

Here we may regard (z,w, () as a local coordinate system for M, and use (z,w,p)
as the local coordinate system for M with p=—7r,/Ty. We can define a unique
admissible G-structure bundle over M to make S a G-isomorphism, by assigning
its coframe along M as

(2.2) 0=dw—pdz, 6'=dz, 6, =dp—pidz,

where p11 (2, w,p) is holomorphic so that S*(61) is in the span of d¢ and (9r/0z) dz-+
(Or/Ow) dw. Since dd=0*A6; (mod ), the coframes, satisfying the normalization
condition dw=1w! Aw; (mod w), are in the form of

(2.3) w=ul, w'=ul0+uldl, w =v,0+v]0;,

where u, u}, u! and v; are holomorphic functions with u=iujv; #£0.

In what follows, we will perform calculations on M and its associated bundles.
This will greatly simplify the later computation.

Over M, there exists a holomorphic principal bundle Y, called the projective
structure bundle. A result of Chern [C] asserts that there is a uniquely deter-
mined holomorphic Cartan connection, called Hachtroudi connection, which is de-

fined on V. The Hachtroudi connection is given by the holomorphic 1-forms w, w?,
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wi, ¢, @1, ¢, @1 and ¢ defined on Y, which satisfy the structure equations

dw =iw! Awy +wAP,

dw' =wl APl +wAg?,

dwn :(ﬁ% Awi+wi Ap+wAPy,

dp =iw' Ay +ig Awp Fw Y,

B} :=dol —iwi AP +2id1 Awl + 3P Aw =0,

Pl i=dp — AP — P Ap+3YAW! = L wAw,,
@y :=dpy — P} A1+ 3P Awr = PriwAw?,
Ui=dip—dAY—2id ' Ay = HiwAw! + K wAw.

(2.4)

Here the functions L', Py, H; and K are called CR curvature functions. If we
let (o1, ...,08)=(w,w!, ..., ), it is known that M is locally G-isomorphic to M’
coming from M’ if and only if there is a local biholomorphic map F from Y onto
Y’ such that F*oj=0; for all 1<j<8. In what follows, we denote the push-forward

of:)/toj)byy.

3. CR curvature functions

Theorem 3.1. Let M be as given by (2.1) and let Y the corresponding holo-
morphic principle bundle associated to M. Keep the notation which we have set up
in (2.2) and (2.3). Then besides the three holomorphic 1-forms in (2.3), there exist
five more holomorphic 1-forms ¢, ¢}, ¢', ¢1 and 9, defined over Y, with complex
variables z, w, p, u, ul, u', v1 and t, where u,ui #0 and (z,w)~py. These holo-
morphic forms are linearly independent, satisfy the structure equations (2.4), and
are explicitly given by the formulas

o= —@—i-tw—kiﬂwl —ﬁwl,
u w U
1_ du%+iulwl+(%+%8pu> 1+<E_3W101 __U_llapn iazl’n)w’
ui Op 2 2u?  wul dp 4du Op?
du1 ul (t 3iu1v1 1 62]711) 1

§+ w2 4u Op?
t 1 s, 132 1 92 1 83
_‘_(L«Z(U )1 o P11 | U }.011>w7

2u 2u3 4u? 9p?  6u2 Op3
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dvi v v1 1 i Opn 1 t 3iulvg 1 32])11
= g Aty - - w
¢ uou ¢ u 91 (uh)? ow v 2 2wz du op® )
livlt iul (1}1)2 iU/l 5p11 v 82p11 21 82p11

2u B wwl)? dw 42 9p? " 3uul Ipow

7 pi B3pn Py
 6uu! (8p28z+p11 ap3 +p8p28w “

: .1 .1 1\2 152 3
i X jutt  (u')vy  ul O 1 4
Y= —dt+t¢+—ul¢1——*u ¢1+(~—( ot Opn p11>w1

2u 203 4u? 9p* buvi Op?

2u 20 wuwd)? dw | 4u? Op?  3uu! dpdw

+[_i711t ul(v1)? ut Opyy  ivy O*pu 2 &pn

1 (3% pn . Bpu 1

6uui (8]7282 e Op? +p8p28w) “
N _ﬁ+(u1)2(v1)2_iu1v1 82p11_ (u')? Opn  dul 9%pyy
2 2ut 20 9p? w(ul)? Gw  3uPui Gpdw

ut 831711 (iu%vl u1p11>83p11 Ulp 831911 1

 3uul 8p202 3ud 3uul ) 9p3  3ulul 9p2dw T 8u?

(

321711
Op?

1 Opu &Ppun 1 FPpn 1 3%y pndp | p 641711]

3u2 dp Op®  2u2 Owdp® | 3u? 8z0p® @ 3ud Opt | 3u? Hwdp? @

Moreover, the CR curvature functions are given by

I — #i(u%)Q *pu

6us  Opt’
po_ ! Ppu 19pn Ppu | 28pu Ppu  pu Ppu
1 w(ul)?| Ow? 2 dw 0p> 3 Op Opow 6 Op*Ow

6 dp \Op2dz +p8p28w 3

6\ 202 TP a0: P ap20z0w

P11 34])11 641711 841911
6 (8z8p3 P opt +p8p35‘w

p( O'pu *pu *pnr
+ 6 <Bz6p26w TP Ap3ow TP Op20w? ) |’

6 op3

+ 2101 _(9’11,_ +2U1

1
Uy

0z thu Op tp Oow
— QZU% 6P11 —2iu1 8P11 + 2iu1u% 8P11

u  Op du u  Oul’

K1:3<8L11 oL aLH) oLM 1<@;+ilapu
u; Op

Hy

10p11 [ O*pna Ppu 2( &Ppu Ppua Ppu
= - +piig S tP 5
8z0wdp Op2dw  Opdw
1( d'%pn d'p1y *p1s 18%p11 (Op1r . Opn
+ p
0z Ow

)

)2

aLll
) o’
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Proof. These forms are constructed by applying a similar, but complicated,
process for getting (2.4) as in [CM], [C]. Here, for the convenience of the reader, we
verify, in certain details, that the connection forms constructed satisfy the structure
equations in (2.4). This is good enough to complete the proof of the theorem, by
the uniqueness property of connection forms.

For simplicity, we write

du'  uwl

<,z$1:—~u———qb1+A1w1+Aw
dvi v V1 4 i Opn
S W Biwi+B
h1 " u¢+u¢1+(u%) o ——~w!+ Biw; + Bw,
¢:—dt+t¢+w1 ¢1*£¢1+01w1+01w1+0w

where Al A, By, B, C, C! and C; denote the corresponding coefficients in the
formulas.

It is easy to see that the first three equations in (2.4) hold. Let us first verify
the fourth identity in (2.4). In fact

iUy iut

do= d(—d—+t oW 1—7w1>

udvy —vy du
—12_1_/\wl+
u

01

101 U
w1 — —dwq
U

1.1

udut—ut du

ot
u

=ditAw+tdw+i 5
u

w1t u't
= (Cl—iBJr—u;l )wl/\w++(C’1+iA——w >w1/\w
u

+(it—iB) —iA Y w! Awy Fiw Ad1 it Awy +wAD
= 1w Ay +id! Awy +wAp.

Next we verify the fifth identity in (2.4),
d ! 23 10
dot=d [—‘EL-FE +(——w1+—1 p”)wl
u up Op
N t Jivlv;  u! Opn 1 8%p11
2 2w wul dp ' du 9p? v

! 2i 1
:1d<u )/\w1+—dw1+d< “}14- 18p11>/\ 1
u u o ujy Op

2ivy 1 Opny L t 3ivlv;  wl! 9p1y 1 Ppu
Y el o' +d( L - v - A
( + D W 2 2u?  wui Op +4u 9p? v
t 3iu! Lo 162
+< u v U P11 pll)/\dw

2 2u?  wul Op  4du Op?
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9yl i 52 t
:<1A1—2i31+ ! 3’6p11+’> "Aw

2u?  4u Op?
Jiut 't 3(uh)?v;  3iut 8%pn 1 &pu
A+2lB ——c _wt - A
(l + ! Y u? e Op?  4duvi opd v
. 3ivy 1 Opyy 3ul  dpyr | But(vy)?  2iut
2 B——C’1 — Al— —
+{ L +< 2u +u} dp 2u(ut)? dw T u

Op1y ((3wtvy 1 8pu1 pi _ 3iu 1y 1 &?p11
op \ 2u?ul  2ul ) duul Op Bp? AP Op?  wul Opdw
1 P11 &pia PPp1a 1 1 11
— A Wi NG =211 ANw™ — =P A
duui (823p2 thu op? TP Op?0w WAW i NG =2 N 210 w

=i A@' —2id1 Aw' — L Aw.

We check the sixth identity ®'=L'wAw; in (2.4) as follows,
O =dg! — AP —d ApL 5y AW

4 _di_u ot tu1 i(u1)2v14U_182p11 u_{a‘gpn
u ! 2u 2u3 4u? Op? 6u2 Op3

t 3zuv1 _1_8p11 L
+<§+ 2u? +4u Op? ) } GNP = NI+ 1/1/\w

w4 1t dulny 1 &%py; Bivy 4
/\[((ﬁ—tw e +—w —¢1+§w— 2 Y 82 wt— W
1 1 1
+< ¢+t¢+wl¢>1 ¢1+Clw1+01w1+0¢u>/\(;—uw+§w1)
U1 U1 4 ) 6p11 1 i(ul)Q 3iu1 1
L WL R Biwi+Bw | Al - i
+< $1 ¢+ ¢1+(u%)2 5y @ THt w) ( gz W, v
1 1 1 132 152
vy 1 tu w4 tu 3i(u' )y ut 0%p1y
o+ttt ot R Sl -
—l—( ¢+w+uw uw1>/\<u¢1 oyt s Whas B2 w
_ui Opu Bile y 1Py
3u? Op3 u? 4u Op?
1 .
2iv 1 0p
1 1 1Y) 1
— N + — -
| e (S )

N ¢ 3iulvl_ ul Opy; 1 O?pn A ul pn
2 2u?2 wul Op  4du Op? 6u? Op3
1

1
- % <iw1 APt =2 Aw' — §¢/\w)
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2u 2u3 4u? 9p® ' 6u® Op?

i) 20wl 92 1 53
+(u {ut)?n D11 Ug pll)(z’wl/\w1+w/\¢)

2
+= ” )(wl/\¢}+w/\¢1)—¢A¢1—¢1A¢>i+%w/\w1

ul [ 8%p1y p1 ’p1n 1
"@d( 6]92 )/\w+@5d< a 3 )/\ +—d< 8 5 )/\w

=L wAw;.

We continue to check the seventh identity ®;=PjjwAw! in (2.4),

1 =dp1—P1 A1+ 2P Awr

dvy i Opn 1
—d———— + 8t 4B Bw | — ¢l A+ =
( u ¢+ ¢1+(u%)2 w +Biwi+Bw |~ ¢1+2”¢1/\w1
U v i 0
=(—¢1——1¢+i¢%+( 7 pnw1+Blw1—|—Bw>
uj
3iut t iulvy 1 &%pn
( ¢—|—tw+—w1~zlw1)
Jiul v1 1 8%pyy vt 3iul(v)? vt Opia
[ ¢ (bl I o T 2T T 2B w+u(u%)2 w
U1 3]911&)* 2 52;011w i 83p11+ & pu +p *pu w
C 2u2 9p? Buul Opdw Buui \ Op20z pu op3 Op2ow
1 221)1 1 8p11 1
#lots e (B )

2 2u2  wul 8p | 4du Op?

20 6p11w1 2iu1 8p11w 21 (92;011

(ul)? ow u(ul)? ow 3uu} 8p8'w

i PPp1 831011 &p1n
(202 P,

7/’01

<t Jivtvr  ul Oppg 132]711)]
+ — w

¢1~Eu—¢1+01w1+01w +Cw> ( w1—|——w)
1)2 o 7 8p11w
2 (u)? ow

iwl Ay +igh /\wl—!—w/\w) ul(wl/\qﬁ —2i Aw ——w/\w>

¢1A%¢%+Aw+A1w1>A( 3“}1 (2
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i Opu
Tl ou
<E_3z’u1v1 1 0%pua

(cu1 /\qbi—(—w/\gbl)

+ 2 2u2  4du 9p?

1

) AP Awr +wi Ad+wAdy)

n U_1?f+wl(f11)2_ wt Opu v FPpu 2% Ppn
2u 203 uw(ui)? Ow  4u? 9p?  3uul Ipow

. 3 3 3
i (8 D11 0°p11 pn )] (1" Awr +wAd)

- + +
6uui \ Op20z P op3 p8p23w

1 1 ( Jp1i 1
Stnar+ g+ rsd( B )

1 82p11 jul 81711 U1 82pll
——d Ay ————=d| —— —d A
Tu (ap2> )2 (m)“"%ﬂ (ap2> ?
7

2 2 3 ; 3
! d<3p11>/\w_ 1d(apll)/\w— ! aplldpn/\w
buug uug

3uui  \ dpdw Op20z Guul Op3
i1 0°pu i OPpn D O*p11
- d - d ——d{ ——|A
6uuy ( op® ) v 6uui Op2ow PAW 6uul "\ Op?Ow w
:Pllw/\wl.

Finally, we verify the last equation in (2.4). Taking differential on the fifth

equation of (2.4), ] =0, we obtain

dip = 20 Ay + I A+ pw Aw* + 20w Awy + X Aw.

83

Taking differential on the sixth equation of (2.4): ®1=L1'wAw;, we get x=0, and

x=2(L"),,
2 8L11 8P11 8L11 8L11 2’“)1 1 6])11 BLH
== iy T2 ot 2L 2 OP1
1< 5, P dp P >+ et u1< ul 8p) ou
~ K.

Taking the exterior differentiation on the seventh equation in (2.4), we obtain

22"&1 apll . 8P11 Qiulul 8P11
= 2 dP wy — 1 "2 L 1 =
0=2(dPu)e, 9p ) T Oul

H,.

So the last equation in (2.4) holds. O
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Lemma 3.2. Let h(z,p,u,ul) be any differentiable function on Y. Then it
holds that

oh Oh iul Oh oh iulu} Ok
he Ot O g1 | OR . 1 OR 1 o
d u8u¢ ul@u%(pl—k[ uwop 5ut T u Bu%}wl
+ _1_ (_92_1_ @ +4v %_‘_ul %+i8p11 % wl
ui \ 0z g, "oul M\ w T ul ap ) oul

1 1 1
+[< iutv up11>8h u' Oh t@—

1<t Jivtvy o Opy 1 32;011) ah]

3 22w op Tau o )oul)?

Proof. First, from (2.3) we can easily derive

1 ul
dz:—lwl——i—w,
Uy Uiy
iug P11 v u'pn
dp:——1w1+—Tw1+ —— T W
U Uy uvy  uug

Applying the formulas in Theorem 3.1, we then also see that
vy 4 dut
du=u{ —¢p+tw+—w ——uw |,
U U
- 1 .
22’01 1 8])11
dul =ut -t 4 1
! ul{ ¢1+u 1 u +u} Op w

n £_3iU1’U1_U_13p11 1 &%pu w
2 2u?  wul O9p  4u Op?

Now, to conclude the proof of the lemma, it suffices to substitute the above to

h . dh . Oh  Oh
dh=— dz+ —dp+ —du+ —dul. O
3z T ap Pt g M g

4. Calculation of invariant functions

For any differentiable function A on the projective bundle 37, there is a unique
representation for its differential dh into the covariant differentials in terms of the
connection forms in Theorem 3.1,

dh = hyw+he, w1 +hgrw! +hed+hg @1 +hg ¢t +hg, d1+hyt.
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Using the CR curvature functions L'! and Pj; defined in Theorem 3.1, we can
get five more invariant holomorphic functions from their first and second covariant
differentials,

Li,ll, Li}lllwl, Pll,wly P11 and Pll,wl'
Notice that when r is Nash algebraic, all these holomorphic invariant functions
become algebraic too, by the way they were constructed from the defining function.

Lemma 4.1. Let M be defined as in Theorem 1.1. Then we have the following
formulas for the above invariant functions:

(u%)QAl (27 4)

L11:
e3¢ (1+20)7’
Pi= AQ(ng)
N PG
g1 (1)°Ba(z.0) | wl(u1)?4s(2,0)

wi u46424(1+2{)9 u4e3ZC(l+zC)7 ’

Lll — u:llB‘l(ZvC) Ul(u%)2A4(z)<)
w! u3e37€(1420)° ' udedC(1+420)7

A (’“%)405(270 ul(u%)385(z,o (U1)2(UD2A5(27 ¢)
wilwy T ue5# ¢ (1+2¢)1 T uSed=¢(1+2()? u5e37C(1+2¢)7 ’
P _ BG(%() u1A6(ZaC)
11,w1 — U2U%€224(1+Z<)9 UZ(U%)2€ZC(1+ZC)7’
Pl = Br(z,¢) v1A7(2,()

W(uIe (14200 T w2 (u et (14+20)7
Here, A;, B; and C; are polynomials in (z,() with A;(x,x)=D;x*+o(x*) and
D;#0.
Proof. When M is as in Theorem 1.1, then r(z,w,(,n)=2i(e** —1)+n—w. A
simple calculation shows that
(4.1) p=2iCe*, p1p =2i(%e*.
In particular, we get p11(z, {)=(p(z, £); and for any integer k>1, we have
ak 8k—1 ak
P _ __€+p_C.
apF aph—1 " Popk
Applying the differential operator 9/8p to (4.1), we find

S
0z 1+2(’
¢ 1

op  2ie*¢(142¢)’
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9% 2z+2%C

o9 AP (120
3¢ —922-823¢-224¢2

o 8iedH(14-2()5
I 642°4792%C+362°C*+62°¢C°
opt 16e4=¢ (14 2¢)7

Hence

dp11 ¢ ¢ 2¢+2¢?
op po— 142¢°
dpu _ 2i¢%e
0z  14zC’
92 2,2
P11 2422¢+2%C
% 2ex(1+20)3’
*p1 __3(2+32C3+22C4

020p (14=¢)% 7
*pus — 940 3¢t +22¢°
572 (14203
3p11 624622 +423C% 4243
o 4e22¢(14-2(¢)5 ’
Bpu 6C+62¢2+422¢3+23¢4
opRoz 2ie*¢ (1+2¢)° ’
PBprr 123 +162¢* +922¢5 +223¢8
pd2 (14+2¢)5 ’
*piy 3622 +4023¢42924¢24+1225¢3 +-226¢*
apt 8ie3*¢(14+2¢)"
Opir 6—1820—1822¢2—1423¢3 —624(1—25(5
Ppoz 4e22¢(14-2¢)7
Opii B36C2+402C3+2922¢4 +1223¢5+221¢
op2022 2ie#¢(1+2¢)7 ’

Now applying Theorem 3.1 and the above data, we get

= (u%)2A1(z, <)
U3€3Z<(1+ZC)7’

with Aj(z,€)=362244023¢+2924¢?4+122°¢3 4+225¢4.

2

b
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Notice that p11 depends only on (z,¢). Applying Theorem 3.1, we get

1 10p11 &3p11 1 O*p11  p1 0*p1in | 18%p11 Opun | phy O'pun

Py = 2 Z Pu 1 P ,
1 uw(ul)?2| 6 dp Op20z 69p2022 3 Op30z 6 Op> 0z 6 Opt

Hence, applying the data we just obtained, we can get

A2(27C)
u(uf)?e*¢ (1+2¢)"

Py =

with Ag(z,()=36¢%+1122¢3+14522¢* +11023¢°4+-552*¢0+1625¢" +225¢®. Apply-
ing the just obtained formulas for L'' and P;;, we have

OLM™  (u1)?(722—9622¢ —12023¢? —962*¢* —5325¢* —162°¢5 —227¢")

0z 48uBed3%¢ (1+2¢)? ’
OLM  (u})?(—3202°—4102%¢—3162°¢2—16325(¢3—4827¢*—625(%)
op 96iudet=¢ (142()? ’
OLM™  (u1)?(3622+4023C+2921 (% +122°¢3+225(¢*)
ou 16ute3#¢(14-2¢)7 ’
ALY ud(36224+4023¢4+2924¢2+1225¢3+225¢%)
ul 24u3e32¢(1+2¢)7 ’
1 /oLt oL
(55 m )
 uf(722—9622( ~44073¢2 - 506243 —36925¢* — 179285 —5027¢% —625¢7)
B 48ude3<¢(14-2¢)? ’
Py
0z
| —248(%—8262(* ~116622¢° —9852%(% ~58024(7 — 23325 (8 —5625(° —627(1°
B 12u(ul)?e* (1+2¢)*? ’
aP,
Ip

720412022 —1622¢3 —14223¢* — 14527 (° — 10825 (6 — 5520¢7 —1627(® ~228(?
B 24iu(ul)?e?=<(1+2¢)? ’
0Py, 36¢24+1122¢3 +14522¢*+11023¢°+5524¢0 4+ 162°¢7 +225¢®
ou 12u2(ul)Ze*¢ (14 2¢)7 ’
0Py 36¢%+1122¢3+14522¢* +11023¢° +5524¢0 +162°¢7+225¢®
ouf — 6u(ul)PexC (14 2C)7 ’
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(—176¢3 —7062¢* —11822%¢°

" 12u(ul)BeX(1+20)°
—112723¢8 —72521¢7 —3412°¢® —11125¢° —2227¢10 —228¢ ).
We next use Lemma 3.2 to compute some covariant derivatives of L'" and Py;.
We have
u ui 8Lt oLM +iu1u% oLt

“ oy dp ou v Oul’
1 (9L11 8L11 8L11 2i’l]1 1 (9]711 8L11
L == g — gt I Py
( 9 g, dp >+wl Ou +u1< u +u} p ) out’
o _duj oL L iyl oL +zu Lul OLL
wiler ™ T Ty du u am% ’
iul 8P11 8P11 iulul oP
Py, = ! 10071
then dp " e T dul’
1 8P11 8P11 . 6P11 1 2i01 1 8p11 8P11
Phgi=— (21 4p, 20 9% (2 ,
! u%( 5. TP dp gt ul 8p ) dul

From the above calculation and applying these formulas, it is clear that A;, B;
and C; are polynomials in (z,¢) with A;(x, x)=D;x*+0o(x?) and D;#0. Indeed, a
tedious but routine calculation yields
Az = Zi(362%+402°¢+292*(*+ 12253 +220¢*),
Bj =(—3202°—41021¢ —3162°¢? —16325¢% —4827¢* - 625¢®),
Ay = £i(3622+4023¢+2924¢% +122°¢3 +225¢Y),
By = 45(7224482°¢—642°C* — 782" (3 —672°¢* —4125¢° —1427¢% —228(7),
As=—2(362"+402¢+292*(*+122°¢3 +25¢%),
Bs = —£1(3202° +4102*(+3162°(*+1632°¢3 +4827¢* +62°¢°),
Cs= %(3750;; 1556825 +46272°¢2 42702273 +105428¢* +2402°¢° +24219¢9),
Ag=—51(36¢7+1122¢3 +14522¢* +11023¢5 455240 +162°¢7+225¢8),
Bg = 5 (72¢+1202¢% —162°¢% —14223¢* — 14521¢°
—10825¢% —5528¢7~1627¢® —228¢Y),
Az =—2i(36¢%+1122¢3 +14522¢* +11025¢° + 55240 +1625¢7 +225¢8),
By =—2(320¢3+13702¢* +250622¢° +266125¢5+189524¢7
+9552°C% +32525¢%+6627¢104-628¢). O
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Remark 4.2. One of the main features of Lemma 4.1 is that the invariant
functions there depend only on z, p, u, ui, u; and v1. Indeed, the same computation
also shows that even if M is a general rigid strongly pseudoconvex hypersurface,
namely M ={(z,w):Imw=p(z,Z)}, the same property holds.

5. Proof of Theorem 1.1

We now give the proof of Theorem 1.1. To proceed, we start with a general
fact. Let F(z)=(f1,..., fm)(z) be a holomorphic map from a domain D in C"
into C™. Assume that the generic rank k of F is strictly smaller than m. As-
sume, for simplicity, that {fm—x,-.., fm 18 generically functionally independent.
Then there is a complex variety E such that for each ac D\ E and [<m—k one
can find a unique holomorphic function A, in the variables (Y3, ...,Y%), defined
near (fm—r{a),..., fm{a)), such that fi(z)=Ag;(fm—r(2), ..., fm(2)) for z=a. In
particular, when I is Nash algebraic, then so is A4 ;.

Proof of Theorem 1.1. Seeking a contradiction, suppose for some point a€
M, that (M,a) is equivalent to the germ of a certain algebraic hypersurface. By
Lemma 4.1, we have seven holomorphic invariant functions L1} o i L, Lt
P13y, Pi1., and Pyq 1. Since ¢ depends only on z and p, we see that these seven
invariant functions are only depending on the six variables z, p, u, ui, u; and vy,
by the formulas in Lemma 4.1. Let k£ be the generic rank of the map
L

Y:(Yl)“') ) (Lwl|w17 w1 wl7P117P11,w17P11,w1))

then k<6.
Assume without loss of generality that {Y7_g, ..., Y7} is the maximally indepen-
dent set. (Indeed, by a tedious calculation, it can be shown that k=6 and the last
six invariant functions are generically independent.) Then, for a generic point Aey
whose projection is sufficiently close to a, there is a unique holomorphic function
A ; such that Y1=A,(Y1, ..., Y)) near A. Notice that A, is also intrinsically defined.
Since we assumed that (M,a) is CR isomorphic to some real algebraic hyper-
surface M C C?2, it implies that A 4 can also be derived in the same manner from
an algebraic hypersurface and thus must be algebraic as observed in the beginning
of Section 4 and Section 5. Hence, there exists a non-constant polynomial R such
that
L Ll

(5.1) R(L, w1|u17 o Ly, Py, Py, Pyt ) =0,

We next show that such an R is identically constant, obtaining a contradic-
tion. It should be noticed that a priori, (5.1) is only known to hold on a certain
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open subset. However, by the holomorphic continuation and using the formulas in
Lemma 4.1, it is clear that (5.1) holds for any w,ui, (1+2¢)#0.
The formula (5.1) can be written as

(52 Y Comasper (L) (Pro ) (LR (P )P (L2 VP (L) (Pr) =0,

m4n+a+g
+pt+s+r<N

Suppose that i is the biggest integer such that Cypapgpusr #0 for some m-+n=i;,
and non-negative integers «, 3, u, s and 7.

We remark that the left-hand side of (5.2) is a polynomial in u; and v;, by the
formulas in Lemma 4.1. Since the only terms containing vy are Li}l and P 1, and
by considering the highest v;-power terms in (5.2), we can conclude

> c o)A, Y vy )
mnafusT\ (46320 (142¢)7 u?(uf)?e (1+20)7

(5.3) atBtptstT<N—iy
m4n=t1

XL ¥ (Pi1o )P (Lo LM ) (Pr)” =0,
Suppose that iz is the biggest integer such that Cppnagusr 70 for some m-+n=is,
a+ [+ p=is, and non-negative integers s and 7. And suppose that g is the biggest
possible integer such that Crnaguesr 70 for some m+n=i;, a4 54 pp=12, and non-
negative integers s and 7.

Since the only terms containing u' are L}, Piy ,, and Lilllwl, we similarly get,
by considering the highest power u!-terms in (5.3),
(5.4) > Conas ( e >m< = )
. mnafiesT 4,3 7 2(,,1\2 7
s+T<N—i1—i2 uve ZC(1+ZC) v (ul) €Z<(1+Z<)
m4tn=:1
a+f4po=i2

(@A Y u' g (WP A5 N s p 2
u463z§(1+zo7 u2(u})26324(1—}—z§)7 u5e3z<(1+z§)7
Using the formulas for L' and P;;, we get from (5.4),

1y
c (v1)" (u')™

} : mnaBosT L m 1 antdat 26+ 5o 357
s+7<N—i1—1i2

i
(5'5) a?ﬁfuogiz

1\2m—2n4+2a—28+2p0+2s—2 i B Ao
(u1) o 2P+ 2ot 2s TAT ATASAGAS° ATAT

e(Bm+n+3at-38+3ue+3s+7)2(¢ (1 _}_24)7@1 +ig+s+7)

=0.
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Observe that in the summation in (5.5), 41, is and g are fixed. Deleting the
common factors 1/(1+2z¢)70ti2) | (yf) =2 —2iatdpo g~ 20-20=300 o= (i+3p0) - plo

etc., we can simplify it as follows:

(uf) et et 22 AP AR AG A AL A7

(56) Z CmnaﬂHoST u2m+2a+3s—‘re(2m+33+r)zC(1+ZC)7(3+T) =
=i
oHTrnﬁ-FnMoz:liz
Rewrite
(u%)4m+4a+23—27 (’U,%)Al

u2m+2a+3s+7'e(2m+3s+~r)zc (1+Z<)S+T - u)\g e)\szC (1 +Z<)s+‘r

with
AL =4dm+4a+2s—2r,
Ao =2m+2a+3s+T,
A3 =2m-+3s+7.
We have
(5.7) s=3d—1A—7, m=—37+ix—3s, a=1il—1);.

Notice that the basic property of the exponential function also indicates that

ZDk1k2k3 o C> (kzeiszﬁ

if and only if Dy, g,k,(2,¢)=0 for all ky, ko and ks, where k; are running over a
finite set of integer numbers and Dy, .4, (2, () are rational functions.
Hence by (5.6}, we arrive at

3 A AR A3 AG A3 A

(58) Cm,naﬁ,uos‘r (1+Z()7(T+5)

=0,
Tgig—s
n:il—m .

B=—a—po+is

where m, v and s are determined in (5.7) and the summation is taken over 7.

Let 19 be the smallest integer 7 in (5.8) such that the corresponding coefficient
Crnonoaofosore 18 NOn-zero. Let z=(=x in (5.8). Applying Lemma 4.1, we conclude
that (5.8) can be expressed as

2(iy +is— 2iy iz — —
Kcmonoozo,@oso‘rox (i1+is u0+80+70)+0(x 11412 M0+To+80)) :0’
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for some non-zero constant K. This is apparently a contradiction. The proof of
Theorem 1.1 is complete. [

Remark 5.1. By Remark 4.2 and the discussion in this section, it is clear that
a general rigid strongly pseudoconvex hypersurface M cannot be equivalent to any
algebraic one if there is no non-zero polynomial R such that

R(LLY o, LM LY LS, Py, Pry g, Pry) =0.

wi|wy? w1 Hwhs
More generally, let M be a real analytic strongly pseudoconvex hypersurface.
Let Y be its structure bundle with E:={R,, }, being the complete set of its Cartan—
Chern—Moser curvature functions. Write { Ry, ..., Ry} for a maximal subset whose
elements are generically functionally independent. Then, when M is equivalent
to an algebraic strongly pseudoconvex hypersurface, for any R€ F there is a non-
constant polynomial Pg in N+ 1-variables such that Pgr(R, Ry, ..., Ry)=0 along ).

It is not clear to us if the converse of this statement holds or not. (See Section 1.C
in [H] for some related questions.)
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