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ON A SEMI-RIGIDITY PROPERTY FOR HOLOMORPHIC MAPS*

XIAOJUN HUANG†

Dedicated to Professor Yum-Tong Siu on the occasion of his 60th birthday

1. Introduction. In this paper, we are concerned with a rigidity problem for
holomorphic maps between balls in complex spaces of different dimensions. Write Bn

and BN for the unit balls in Cn and CN , respectively. Let F be a proper holomorphic
map from Bn into BN . We say that F is κ-linear if for any point p ∈ Bn, there is an
affine complex subspace Sκ

p , that passes through p and is of dimension κ, such that
for any affine complex line L contained in Sκ

p , F (L ∩ Bn) is contained in an affine
complex line in CN . Our main result is the following:

Theorem 1.1. Let F be a proper holomorphic map from Bn into BN , which is

C3-smooth up to the boundary. Write P (n, κ) = κ(2n−κ−1)
2 . If 1 ≤ κ ≤ n − 1 and

N − n < P (n, κ), then F is (n− κ+ 1)-linear.

For an affine complex subspace S ⊂ Cn of dimension at least 2 and a proper
holomorphic map F from Bn into BN , F maps each affine complex disk in S ∩Bn to
an affine complex disk in BN if and only if the restriction of F to S is a linear fractional
embedding to its image ([Alx]). As a consequence, Theorem 1.1 is equivalent to the
following:

Theorem 1.2. Let F be a proper holomorphic map from Bn into BN , which is

C3-smooth up to the boundary. Write P (n, κ) = κ(2n−κ−1)
2 . If 1 ≤ κ ≤ n − 1 and

N −n < P (n, κ), then for any point p ∈ Bn, there are certain σp ∈ Aut(Bn) and τp ∈
Aut(BN ) with σp(0) = p and τp(F (p)) = 0 such that τp◦F ◦σp(z1, · · · , zn−κ+1, 0, · · · , 0)
= (z1, · · · , zn−κ+1, 0, · · · , 0).

The following example shows that in Theorem 1.1, when N − n ≥ P (n, κ), one
can not expect the (n− k + 1)-linearity for the map in general.

Example 1.3. Let

ψ1 = (z2
1 ,
√

2z1z2, · · · ,
√

2z1zk−1, z1zk, · · · , z1zn),

ψ2 = (z2
2 ,
√

2z2z3, · · · ,
√

2z2zk−1, z2zk, · · · , z2zn),

· · ·
ψk−1 = (z2

k−1, zk−1zk, · · · , zk−1zn),

ψk = (zk, · · · , zn).

Let Wn,k = (ψ1, · · · , ψk). Then Wn,k is a proper polynomial map from Bn into BN

with N = n+ P (n, k). Notice that Wn,k is not (n− k + 1)-linear.
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Remark 1.4. When N < n(n+1)
2 in Theorem 1.1, our result says that at each

point in the ball, F has at least two independent directions along which the map is

linear. When N ≥ n(n+1)
2 , F usually has no partial linearity. To see this, we just need

to notice that the polynomial map that sends

(z1, · · · , zn) to

(z2
1 ,
√

2z1z2, · · · ,
√

2z1zn, z2
2 ,
√

2z2z3, · · · ,
√

2z2zn, · · · , zn−1zn−1,
√

2zn−1zn, z2
n)

is proper from Bn into BN with N = n + P (n, n − 1) = n(n+1)
2 . We mention the

interesting similarity between the minimal target dimension N for which the rigidity
breaks down in the case we are considering here and the minimal target dimension in
the classical Cartan-Janet theorem for which there is no more obstruction to locally
isometrically embed an analytic Riemannian manifold of dimension n into RN ([Sp]).

The study of holomorphic maps between balls in complex Euclidean spaces was
initiated from a paper of Poincaré [Po], and has attracted considerable attention since
then. WhenN = n > 1, a result of Alexander [Alx] states that any proper holomorphic
self-map of the unit ball Bn in Cn with n > 1 is an automorphism. Notice that for
an affine complex line L, L ∩ Bn is a complex geodesic in terms of the hyperbolic
Kobayashi metric of the ball and an automorphism of Bn maps an affine line to an
affine line. The result of Alexander hence tells that a proper holomorphic self-map of
Bn preserves the complex geodesics of Bn (n > 1). More generally, one says that a map
from Bn into BN is a linear map or a totally geodesic embedding if it maps a complex
geodesic in Bn to a complex geodesic in BN . Webster [We1] [We2] was the first one to
look at the geometric structure of proper holomorphic maps between balls in complex
spaces of different dimensions. He showed that a proper holomorphic map from Bn

into Bn+1 with n > 2, which is three times differentiable up to the boundary, is a
totally geodesic embedding. Subsequently, Cima-Suffridge [CS1] reduced the boundary
regularity in Webster’s theorem to the C2-regularity. Motivated by a conjecture posed
in [CS1], Faran in [Fa1] showed that any proper holomorphic map from Bn into BN

with N < 2n − 1, that is analytic up to the boundary, is also a totally geodesic
embedding. Forstneric in [Fo1] [Fo2] proved that any proper holomorphic map from
Bn into BN is rational, if the map is CN−n+1-regular up to the boundary, which,
in particular, reduces the regularity assumption in Faran’s linearity theorem to the
CN−n+1-smoothness.

The structure of the maps gets more complicated when N ≥ 2n − 1. (See the
book [Da1], [BER], and the survey article [Hu2] for more explanations). Recall that
two proper holomorphic maps f, g from Bn into BN are called equivalent if there are
σ ∈ Aut(Bn) and τ ∈ Aut(BN ) such that g = τ ◦ f ◦ σ. It is easy to verify that
a map is linear if and only if it is equivalent to the standard big circle embedding
L(z) : z → (z, 0). In [Fa2], it was shown that there are four different inequivalent
maps from B2 into B3, which are C3-smooth up to the boundary. By the work of
D’Angelo [Da2], any two proper holomorphic maps from Bn into BN are homotopically
equivalent through a family of inequivalent maps in a suitably larger space, which, in
particular, can be used to show that there is a continuous family of inequivalent proper
holomorphic quadratic polynomial embeddings from Bn into B2n. See also [DL] for
discussions on the classification of proper monomial maps between balls with certain
symmetry. At this point, we mention that the discovery of inner functions can be used
to show that there is a proper holomorphic map from Bn into Bn+1, which can not
be C2-smooth at any boundary point. (See [HS], [Low], [For2], [Dor], etc).
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In [Hu1] and, subsequently, a joint paper with Ji [HJ], we considered two natural
questions arising from the above mentioned work. In [Hu1], we proved that any
proper holomorphic map which is only C2-regular up to the boundary must be linear
if N < 2n − 1, by applying a different method from the above mentioned work. It is
not clear to us if this C2-regularity is optimal or not for the super-rigidity to hold, the
result in [Hu1] gives a first result in which the required regularity is independent of the
codimension. Moreover, some of the basic approaches developed in [Hu1] seem to be
quite useful for the study of many other related problems (see [HJ], [EHZ1] [EHZ2]),
and will also be used in the present paper. In a joint paper with Ji [HJ], it was shown
that any proper holomorphic map from Bn into BN with N = 2n − 1, n ≥ 3, which
is C2-smooth up to the boundary, is either linear or equivalent to the Whitney map
W : z = (z1, · · · , zn) → (z1, · · · , zn−1, znz) ([Theorem 1, Theorem 2.3; HJ]). Since the
Whitney map is not an immersion, together with the aforementioned work of Faran
[Fo2], this shows that any proper holomorphic embedding from Bn into BN with
N = 2n− 1, which is twice continuously differentiable up to the boundary, must be a
linear map.

The present paper continues the work in [Hu1] and [HJ]. Our main result, The-
orem 1.1, provides a description of the partial linearity for proper holomorphic maps

between balls for N < n + P (n, n − 1) = n(n+1)
2 . When N ≥ n + P (n, n − 1), the

partial linearity breaks down by Remark 1.4. However, there are still many problems
left to be understood. We refer the reader to the book of D’Angelo [Da3] for discus-
sions on this matter and we wish at least to mention here a result due to Catlin and
D’Angelo [CD] and D’Angelo [Da3], which states that for any polynomial functions
q(z), p1(z) with |p1(z)| < |q(z)| on the closure of Bn, there exists a vector valued

polynomial p(z) with N(q, p1)- components such that (p1(z),p(z))
q(z) properly holomor-

phically maps Bn into BN(q,p1), where N(q, p1) depends on (q, p1) and N(q, p1) → ∞
as max

z∈B
n |p1/q(z)| → 1.

Finally, we mention that in the past years, there has been much work done on
various related rigidity problems for holomorphic maps between complex hyperbolic
space forms, bounded symmetric domains, etc. To name a few, we refer the reader
to the work [We2], [CaMo], [Mok], [MSY], [Tu], [EHZ1], [EHZ2] and the references
therein.

Acknowledgment. This paper was written when the author was taking a year
long sabbatical leave from Rutgers University at UCSD (Spring, 2002), University of
Rouen (Summer, 2002) and The University of Chicago (Fall, 2002). The author would
like to thank these Institutes for providing him with an excellent research environment
during his stay. He also likes to thank S. Baouendi, P. Ebenfelt, J. D’Angelo, S. Ji,
N. Mir, L. Rothschild, S. Webster and D. Zaitsev for their interest to this work. He
thanks one of the referees for the very careful reading and many helful suggestions to
the paper, which has greatly improved the readability of the paper.

2. Preliminaries, a geometric invariant and partial linearity. Our proof
of Theorem 1.1 is based on the approach developed in [Hu1] and [HJ]. In this sec-
tion, we start by recalling some notation, definition and various formulas established
in [Hu1] and [HJ], which will be used throughout the paper. Then we introduce a
geometric invariant for the map and discuss how it is related to the partial linearity.

2.1. In this subsection, we recall some notation and formulas established in [Hu1]
[HJ]. Then we introduce the concept of the geometric rank, which is the invariant
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closely related to the dimension of the affine complex subspaces along which the map
is linear.

First, since the ball Bn ⊂ Cn is equivalent to the Siegel upper-half space, denoted
by Sn := {(z, w) ∈ Cn−1 ×C : Im(w) > |z|2}, and the punctured sphere is equivalent
to the Heisenberg hypersurface, we will mainly focus on mappings between Heisenberg
hypersurfaces. In the last section of the paper, we will see how this will immediately
give results for mappings between balls by applying the Cayley-type transformations.

Let M1 ⊂ Hn and M2 ⊂ HN be two connected open pieces of the standard
Heisenberg hypersurfaces in Cn and CN , respectively. Here

(2.1)

Hn := {(z, w) ∈ Cn, Imw =

n−1∑

j=1

|zj |2}; HN := {(z∗, w∗) ∈ CN , Imw∗ =

N−1∑

j=1

|z∗j |2}.

Write Lj = 2izj
∂

∂w
+ ∂

∂zj
for j = 1, · · · , n − 1 and T = ∂

∂u
with w = u + iv. Then

{L1, · · · , Ln−1} forms a global basis for the complex tangent bundle T(1,0)Hn of Hn,
and T is a tangent vector field of Hn transversal to T (1,0)M ∪ T (0,1)M . Parameterize
Hn by (z, z, u) through the map (z, z, u) → (z, u + i|z|2). In what follows, we will
assign the weight of z and u to be 1 and 2, respectively. For a non negative integer
m, a function h(z, z, u) defined over a small ball U of 0 in Hn is said to be of quan-

tity owt(m), if h(tz,tz,t2u)
|t|m → 0 uniformly for (z, u) on any compact subset of U as

t(∈ R) → 0. (In this case, we write h = owt(m). By convention, we write h = owt(0)
if h→ 0 as (z, z, u) → 0). Also, we write χ(z, z, u) ∈ P+owt(m) if χ = h1+h2 with h1

a polynomial in (z, z, u) and h2 = owt(m). For a function h(z, z, u) defined over U , we
use h(k)(z, z, u) for the sum of terms of weighted degree k in the weighted expansion
of h up to order k. If h is not specified, we use it to denote a weighted homogeneous
polynomial of weighted degree k. For a weighted homogeneous holomorphic polyno-
mial of degree k, we use the notation: (·)(k)(z, w), or (·)(k)(z) if it depends only on
z.

For two m-tuples x = (x1, · · · , xm), y = (y1, · · · , ym), we write (x, y) = x · yt =∑m
j=1 xjyj , and |x|2 =

∑m
j=1 |xj |2.

In all that follows, we assume that N ≥ n > 1. Also, S ⊂ Cn is called an affine
complex subspace of dimension k, if S − p0 with p0 ∈ S is a k- dimensional complex
linear subspace of Cn.

Let
F = (f, φ, g) = (f1, · · · , fn−1, φ1, · · · , φN−n, g)

be a non-constant C2-smooth CR map from M1 into M2. Then for each p ∈ M1, we
have an associated CR map Fp from a small neighborhood of 0 ∈ Hn to HN with
Fp(0) = 0, defined by

(2.1.0) Fp = τF
p ◦ F ◦ σ0

p = (fp, φp, gp),

where for each p = (z0, w0) ∈ M1, we write σ0
(z0,w0)

∈ Aut(Hn) for the map send-

ing (z, w) to (z + z0, w + w0 + 2i < z, z0 >) and we define τF
(z0,w0)

∈ Aut(HN )

by τF
(z0,w0)

(z∗, w∗) = (z∗ − f̃(z0, w0), w∗ − g(z0, w0) − 2i < z∗, f̃(z0, w0) >), where

f̃ = (f, φ).
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Let

(2.1.1) λ(p) = g′w(p) − 2i < f̃ ′w(p), f̃(p) >= |Lj(f̃)|2.

Then under the assumption that F is not a constant map, one has λ(p) > 0. (See
[Hu1]).

Let

(2.1.2)

El(p) = (
∂f̃p

∂zl

)|0 = (
∂fp,1

∂zl

, · · · ∂fp,n−1

∂zl

,
∂φp,1

∂zl

, · · · ∂φp,N−n

∂zl

)|0 = Ll(f̃)(p),

Ew(p) = (
∂f̃p

∂w
)|0 = (

∂fp,1

∂w
, · · · ∂fp,n−1

∂w
,
∂φp,1

∂w
, · · · ∂φp,N−n

∂w
)|0 = f̃ ′w(p) = T (f)(p).

Then the rank of {E1(p), · · · , En−1(p)} is (n− 1). (See [Hu1]). Let Cl(p) be so chosen
that (see [pp 17, Hu1])

(2.1.3) A(p) = A(z,w) :=




E1(p)/
√
λ(p)

·
·
·

En−1(p)/
√
λ(p)

C1(p)
· · ·

CN−n(p)




is a unitary matrix.

Define F ∗
p = (f̃p

∗
, g∗p) = ((fp)

∗
1, · · · , (fp)

∗
n−1, (φp)

∗
1, · · · , (φp)

∗
N−n, g

∗
p) by

(2.1.4)
1√
λ(p)

Fp ·
(
At(p) 0

0 1/
√
λ(p)

)
.

Then F ∗
p is still a C2 CR map from a neighborhood of the origin of Hn into HN with

F ∗
p (0) = 0 and

f∗p = z +O(|w| + |(z, w)|2), φ∗p = O(|w| + |(z, w)|2), g∗p = w +O(|(z, w)|2).

As in [Hu1], [HJ], we further modify F ∗
p as follows:

Let

(2.1.5)
a(p) :=

∂f̃p

∗

∂w
(0) = (a1(p), · · · , an−1(p), b1(p), · · · , bN−n(p)) with

al(p) =
1

λ(p)
Ew(p) · El(p)

t
for l ≤ n− 1.

It can be easily seen that

(2.1.5′) |a(p)|2 =
1

λ(p)
|Ew(p)|2

(see [§2, Hu1])). Also let
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(2.1.6)

dlj(p) :=
∂2(fp)∗l
∂zj∂w

|0 =
1

λ(p)
(f̃p)

′′

wzj (0) · El(p)t =
1

λ(p)
Lj(f̃ ′w)(p) · El(p)t;

cl(p) :=
∂2g∗p
∂zl∂w

|0 =
1

λ(p)
(gp)

′′

wzl(0) =
1

λ(p)
Ll(g′w − 2if̃ ′w · f̃(p)

t

)|0 =
2i

λ(p)
T (f̃) · Ll(f̃)t;

r(p) :=
1

2
Re(

∂2g∗p
∂w2

)|0 =
1

2λ(p)
Re((gp)

′′

ww(0)) =
1

2λ(p)
Re(g

′′

ww − 2if̃
′′

ww · f̃(p)
t

).

Define

(2.1.7)

Gp :=
( z∗ − a(p)w∗

1 + 2i〈z∗,a(p)〉 + (r(p) − i〈a(p),a(p)〉)w∗
,

w∗

1 + 2i〈z∗,a(p)〉 + (r(p) − i〈a(p),a(p)〉)w∗

)
.

Then Gp ∈ Aut0(HN ). Finally, F ∗∗
p is the composition of F ∗

p with Gp:

(2.1.8) F ∗∗
p := (f∗∗p , φ∗∗p , g∗∗p ) = (f̃∗∗p , g∗∗p ) := Gp ◦ F ∗

p .

As in the work of [Hu1] [HJ], the following lemma is of fundamental importance
for the understanding of the map F :

Lemma 2.0. ([§2, Lemma 5.3, Hu1]): Let F be a C2-smooth CR map from a
connected open subset M ⊂ Hn into HN . For each p ∈ M , F ∗∗

p , defined as above,
satisfies the normalization condition:

(2.2.1) f∗∗p = z +
i

2
a
∗∗(1)
p (z)w + owt(3), φ∗∗p = φ∗∗p

(2)(z) + owt(2), g∗∗p = w + owt(4),

with

(2.2.2) 〈z, a∗∗(1)p (z)〉|z|2 = |φ∗∗p
(2)(z)|2.

In passing, we notice that there is a τ∗∗p ∈ Aut0(HN ) such that

(2.2.3) F ∗∗
p = τ∗∗p ◦ Fp.

Also, for a fixed p0 ∈M , we can make Cl(p) in (2.1.3) depend smoothly on Ej and p
for p ≈ p0.

From (2.2.2), it is easy to see that

(2.2.4)
a
∗∗(1)
p (z) = zA(p) with A(p) a certain

(n− 1) × (n− 1) semi-positive Hermitian matrix.

Moreover, it is independent of the choice of Cj(p) by the following formula (see [pp224,
(2.3), HJ]):

(2.3.1) P l
j :=

∂2(fp)∗∗l

∂zj∂w
|0 = dlj(p) − al(p)cj(p) − δl

j(i|a(p)|2 + r(p)), 1 ≤ l, j ≤ n− 1.
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Using the aforementioned formulas, one gets (see [pp231, (4.1), HJ]):

(2.3.2)
2λP j

l = 2Ll(f̃w

′
) · Lj(f̃)

t

− 2

λ

(
f̃ ′w · Lj(f̃)

t
)
· Ll

(
g′w − 2if̃ ′w · f̃

t
)
−

− 2iδj
l |f̃ ′w|2 − δj

l Re{g′′ww} + 2δj
l Re{if̃ ′′ww · f̃

t

}

and

(2.3.3)

qj
l := 2λP j

l −δ
j
l (2iT

2(f̃)·f̃
t

−T 2(g)) = 2Ll(f̃w

′
)·Lj(f̃)

t

− 4i

λ(p)

(
f̃ ′w·Lj(f̃)

t
)(

Ll(f̃)·f̃ ′w
t
)

Another way to see that A(p) is independent of the choice of Cj is as follows:
In passing, we mention that there is a typo in the expressions of [(4.1)-(4.3), HJ]:

The indices {l, j} in the second term after the equality sign should be switched to
{j, l}.

First, we notice that

(2.3.4) (φ∗∗p )j =
(φ∗p)j − bj(p)g∗p

1 + 2i < f̃∗p ,a(p) > −(−r(p) + i < a(p),a(p) >)g∗p
.

As in [Hu1], write φ
∗∗(2)
p =

∑n−1
k,l=1 qklzkzl with qkl = qlk = (q1kl, · · · , q

(N−n)
kl ). Compar-

ing the coefficients of terms with factor zlzk in the Taylor expansion of (2.3.4) (or see
[(2.6), Hu1]), it follows easily that

(2.3.5)

qj
kl(p) =

1

2

∂2(φ∗p)j

∂zl∂zk

(0) =
1

2

∂2(φ∗∗p )j

∂zl∂zk

(0)

=
1

2
√
λ(p)

(f̃p)′′zlzk(0) · Cj(p)
t
=

1

2
√
λ(p)

LlLk(f̃)(p) · Cj(p)
t

Hence, by (2.3.5) and (2.2.1) it follows that

(2.3.6)

zA(p)zt|z|2 = |φ∗∗(2)p (z)|2 =
n−1∑

k,l,k′,l′=1

< qkl, qk′l′ > zkzlzk′zl′ =

=

n−1∑

k,l,k′,l′=1

K
klk′l′

(p)zkzlzk′zl′

with K
klk′l′

(p) =
1

4λ(p)
< LlLk(f̃)(p), Ll′Lk′(f̃)(p) > −

− 1

4λ2(p)

n−1∑

j=1

(
LlLk(f̃)(p) · Ej(p)

t
)(

Ll′Lk′(f̃)(p) · Ej(p)
t
)
.

In particular, we conclude that |φ∗∗p (z)|2 and thus A(p) is independent of the choice
of Cj . With this property at our disposal, we make the following definition:

Definition 2.1. The rank of A(p) = −2i(P l
j)1≤j,l≤(n−1), which we denote by

RkF (p), is called the geometric rank of F at p.
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Notice that A(p) depends continuously on p, and RkF (p) is a lower
semi-continuous function on p.

2.2. In this subsection, we present an elementary but useful lemma based on the
calculations in §2.1. Let σ ∈ Aut0(Hn) be given by

(2.4.1) σ(z, w) :=
(λ(z + aw) · U, λ2w)

q(z, w)

with q(z, w) = 1− 2i < a, z > +(r− i|a|2)w, where λ > 0, r ∈ R, a is an (n− 1)-tuple
and U is an (n− 1) × (n− 1) unitary matrix. Let τ∗ ∈ Aut0(HN ) be given by

(2.4.2) τ∗(z∗, w∗) :=
(λ∗(z∗ + a∗w∗) · U∗, λ∗2w∗)

q∗(z∗, w∗)

with q∗(z∗, w∗) = 1 − 2i < a∗, z∗ > +(r∗ − i|a∗|2)w∗, where λ∗ > 0, r∗ ∈ R, a∗ is an
(N − 1)-tuple and U∗ is an (N − 1) × (N − 1) unitary matrix.

Lemma 2.2. (A). Suppose that F = (f, φ, g) and F ∗ = (f∗, φ∗, g∗) are two C2-
smooth CR map from a neighborhood of 0 in Hn into HN (N ≥ n > 1), that satisfy
the normalization condition (2.2.1). Assume that F ∗ = τ∗ ◦F ◦ σ with σ, τ∗ given in
(2.4.1) and (2.4.2), respectively. Then it holds that

(2.5.1) λ∗ = λ−1, a∗1 = −λ−1a · U, a∗2 = 0, r∗ = −λ−2r,

(2.5.2) U∗ =

(
U−1 0
0 U∗

22

)
,

where a∗ = (a∗1, a
∗
2) with a∗1 its first (n− 1) components, U∗

22 is an (N − n)× (N − n)
unitary matrix. Conversely, suppose τ∗ and σ, given in (2.4.1)-(2.4.2), are related
by (2.5.1)-(2.5.2). And suppose that F satisfies the normalization condition (2.2.1).
Then F ∗ must also satisfy the normalization in (2.2.1).
(B). Let F1 be a non-constant C2-CR map from M ⊂ Hn into HN . Assume that
F2 = τ ◦ F1 ◦ σ with σ ∈ Aut(Hn) and τ ∈ Aut(HN ). Then RkF2(p) = RkF1(σ(p)).
(C). Suppose that F satisfies the normalization condition as in (2.2.1) and assume
that RkF (0) = κ0 > 0. Then there are σ ∈ Aut0(Hn) and τ ∈ Aut0(HN ) such that
τ ◦ F ◦ σ := (f, φ, g) satisfies the following normalization condition:

(2.5.3)

fj = zj +
iµj

2
zjw + owt(3), for j ≤ κ0,

fj = zj + owt(3), for j > κ0

g = w + owt(4),

φ = φ(2)(z) + owt(2),

∂2fj

∂w2
(0) = 0, for j ≤ κ0

where µ1 = 1 and µj ≥ 1 for j ≤ κ0.
(D). Let F be a C2-CR map from a small neighborhood of 0 in Hn into HN satisfying
the normalization in (2.5.3) with κ0 > 0. Then for any complex line L transversal to
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Hn at 0, if F |L is linear fractional, then L must be contained in S0 := {(z, w) ∈ Cn :
z1 = · · · = zκ0 = 0}.

Proof of Lemma 2.2. Let F and F ∗ be as in Lemma 2.2 (A). Write F ∗ = (f̃∗, g∗) =
(f∗, φ∗, g∗). Then a direct computation shows that g∗ = λ2λ∗2w + O(|(z, w)|2) and

f̃∗ = λ∗(λ(z + aw) · U, 0) · U∗ + λ∗a∗λ2U∗w + O(|(z, w)|2). Hence, we get λ∗ = λ−1,
(zU, 0)U∗ = (z, 0), and (aU, 0)U∗ + λa∗U∗ = 0. Write

U∗ =

(
U∗

11 U∗
12

U∗
21 U∗

22

)
.

Then it follows that UU∗
11 = Id, or U∗

11 = U−1. Since U∗ is unitary, we see that
U∗

12 = 0, U∗
21 = 0 and U∗

22 is also unitary. Hence, we have a + λa∗1U
∗
11 = 0 and

a∗2U22 = 0. This gives that a∗2 = 0 and a∗1 = −λ−1aU . To get the relation between r∗

and r, we notice that

g∗(0, w) =
λ∗2g ◦ σ(0, w)

q∗(f̃ ◦ σ(0, w), g ◦ σ(0, w))

=
w

(1 + (r − i|a|2)w)(1 − 2i < a∗1, f ◦ σ(0, w) > +(r∗ − i|a∗|2)g ◦ σ(0, w))
+ o(w2)

= w(1 − (r − i|a|2)w)(1 − 2i|a|2w − (r∗λ2 − i|a|2)w) = w(1 − (r + r∗λ2)w) + o(w2).

Therefore, we have r∗ = −λ−2r.
Write f = z + i

2zAw + owt(3) and f∗ = z + i
2zA∗w + owt(3) as before. Notice

that

f∗ =
(λ∗f (λ(z + aw) · U/q(z, w), λ2w/q) + λ∗a∗1g (λ(z + aw) · U/q(z, w), λ2w/q))U−1

q∗(f ◦ σ(z, w), g ◦ σ(z, w))
.

A similar calculation then shows that

(2.5.4)
A∗ = λ2UAU−1 and thus

RkF∗(0) = RkF (0);
∂2f∗

∂w2
(0) = iλ2aUAU−1 + λ3

∂2f

∂w2
(0)U−1.

Conversely, suppose the formulas in (2.5.1)-(2.5.2) hold, and suppose that F
satisfies the normalization (2.2.1). Then F ∗ = (f∗, φ∗, g∗) satisfies the normalization:

f∗(z, w) = z +O(|(z, w)|2), φ∗ = φ(2)(z) + owt(2),

and g∗(z, w) = w +O(|(z, w)|2), T 2(g∗)(0) = 0.

By [Lemma 5.3, Hu1], we conclude that F ∗ also satisfies the normalization (2.2.1).
To prove the statement in (B), we just notice that in the context of (B), there

are σ0 ∈ Aut0(Hn) and τ0 ∈ Aut0(HN ) such that F ∗∗
2,p = τ0 ◦ F ∗∗

1,σ(p) ◦ σ0. Hence, by

Lemma 2.2 (A) (2.5.4), we conclude the statement in (B).
Next, let F be as in (C). By (2.5.4), we can apparently make

A = diag(µ1, · · · , µκ0 , 0, · · · , 0) with µj ≥ µ1 = 1, by choosing λ,U suitably. To
get the normalization in the last line of (2.5.3), by (2.5.4) we need only to replace F
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by τ ◦ F ◦ σ, where σ and τ are as in (2.5.1)-(2.5.2), respectively, with U = Id, λ = 1,
r = 0, U∗

22 = Id, and

a = (
2
√
−1a02,1

µ1
, · · · , 2

√
−1a02,κ0

µκ0

, 0, · · · , 0) where a02,j =
1

2

∂2fj

∂w2
(0).

This proves (C).

Now, we turn to the proof of (D). Let L be a line defined by z = ct =
(c1, · · · , cn−1)t, w = t and assume that F |L is linear fractional. Let

σ =
(z + cw,w)

1 − 2i < z, c > −i|c|2w, τ =
(z∗ − (c, 0)w∗, w∗)

1 + 2i < z∗, (c, 0) > −i|c|2w∗
,

and F ∗ = τ ◦ F ◦ σ. Then F ∗ must map {(0, w) : Im(w) ≥ 0} into itself. However
f∗j (0, t) = i

2µjcjt2 + o(t2). We see that cj = 0 for j ≤ κ0. The proof of Lemma 2.2 is
now complete.

Let F be a C2-smooth CR map from M ⊂ Hn into HN as before. We say that
F is k-linear at p ∈ M if there are σ ∈ Aut0(Hn) and τ ∈ Aut0(HN ) such that
τ ◦ Fp ◦ σ(z1, · · · , zk−1, 0, · · · , 0, w) = (z1, · · · , zk−1, 0, · · · , 0, w). From Lemma 2.2 (C)
(D), it follows easily that if RkF (p) ≥ κ0, then F cannot be (n− κ0 + 1)-linear at p.
The following theorem, which is regarded as the main technical Theorem of the paper,
says that under a certain assumption, F is always (n− κ0)-linear at p:

Theorem 2.3. Let F be a non-constant C3-CR map from a connected open
subset M of Hn into HN . Assume that RkF (p) ≡ κ0 < n − 1 is constant for each
p ∈M . Then F is (n−κ0)-linear at any point in M . Moreover for each p ∈M , there
is a unique affine complex subspace Sp of dimension (n− κ0) transversal to Hn such
that the restriction of F to Sp is linear. Also, Sp − p, as an element in the complex
Grassmannian manifold Gn,n−κ0(C) of (n− κ0)-dimensional linear subspaces in Cn,
depends C1-continuously on p.

3. Analysis of the associated differential equations. Let F be a CR map
from a small neighborhood M of 0 in Hn into HN (N ≥ n > 1) with F (0) = 0.
We will prove in this section and §4 that it must be (n − κ0)-linear at each point
in M if it is C3-smooth and RkF ≡ κ0 < n − 1. By [Theorem 4.2, Hu1], we can
assume, in what follows, that κ0 > 0. By the Lewy extension theorem ([BER]), F
extends holomorphically to a subdomain Ω in Sn which has M as part of its smooth
boundary. In this section, F is only assumed to be C2-smooth over M .

3.1. In this subsection, we derive a system of differential equations by (2.2.2),
through which we take control of F . Then we derive some consequences of the system
for the purpose of the later application.

For each p ∈ M , write Ep := {ξ(p) = (ξ1(p), · · · , ξn−1(p)) ∈ Cn−1 : ξ(p) · Ap ·
ξ(p)

t
= 0}. Since Ap is semi-positive, Ep = {ξ(p) : ξ(p) · Ap = 0}. By (2.2.2), it

follows that ξ(p) ∈ Ep if and only if φ
∗∗(2)
p (ξ(p)) = 0. We start with the following

generalization of [Lemma 2.1, Lemma 4.3] of [Hu1]:
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Lemma 3.1. ξ(p) = (ξ1(p), · · · , ξn−1(p)) ∈ Ep if and only if

(3.1.0)

n−1∑

j,l=1

ξj(p)ξl(p)LjLl(f̃)(p) =
n−1∑

l=1

Λl(p)Ll(f̃)(p) with

Λl =

n−1∑

j=1

4
√
−1

λ(p)
ξj(p)ξl(p)f̃ ′w(p) · Lj(f̃)t(p).

Proof of Lemma 3.1. The proof can be done in an essentially identical way as for
the proof of [Lemma 2.1, Hu1], with a slight modification due to the fact that we now

only know that φ
∗∗(2)
p (ξ(p)) = 0. For convenience of the reader, we include here the

following details:
Comparing the coefficients of terms of the form zlzk in the Taylor expansion of

(2.3.4) and using the given hypothesis, it follows easily that
∑n−1

k,l=1 ξl(p)ξk(p)qj
kl(p) =

0 for any j. By (2.3.5), one gets that the (N − 1)-tuple
∑

k,l ξkξl(f̃p)′′zlzk(0) =
∑n−1

k,l=1 ξkξlLlLk(f̃) stays in the space spanned by {E1, · · · , En−1}. Namely, there
exist scalar numbers {λ∗j (p)} such that

(3.1.1)

n−1∑

k,l=1

ξkξlLlLk(f̃)(p) =

n−1∑

j=1

λ∗j (p)Ej(p).

Next, considering the Taylor expansion of (f∗∗p )j in the following

(3.1.2) (f∗∗p )j =
(f∗p )j − aj(p)g∗p

1 + 2i < f̃∗p ,a(p) > −(−r(p) + i < a(p),a(p) >)g∗p

and using (2.2.1), we obtain
∑
ej
kl(p)zkzl − 2i

∑
l al(p)zjzl ≡ 0, where ej

kl(p) =
1
2

∂2(f∗

p )j

∂zl∂zk
(0). Hence, it follows that ej

kl(p) =
√
−1(δj

kal(p) + δj
l ak(p)). Therefore,

(3.1.3)
1

2λ
LlLk(f̃)(p)Ej

t
=

√
−1δj

k

λ(p)
Ew(p) · El(p)t +

√
−1δj

l

λ(p)
Ew(p) · Ek(p)t.

Combing this with (3.1.1) and making use of the orthogonality: El(p)·Ej(p)
t
= λ(p)δj

l ,

we get λ∗j = 2
√
−1

λ

∑n−1
k,l=1 ξk(p)ξl(p)(δ

j
kEw(p) · El(p)t + δj

lEw(p) · Ek(p)
t
). Returning

to (3.1.1), we get the proof of Lemma 3.1.

Denote by S0 = {(j, l) : 1 ≤ j ≤ κ0, 1 ≤ l ≤ (n− 1), j ≤ l} and write S := {(j, l) :

(j, l) ∈ S0, or j = κ0 + 1, l ∈ {κ0 + 1, · · · , N − n− (2n−κ0−1)κ0

2 }}.

Lemma 3.2. Let F be a C2-smooth CR map from M ⊂ Hn into HN with

F (0) = 0 and RkF (0) = κ0. Let P (n, κ0) = κ0(2n−κ0−1)
2 . Then N ≥ n+ P (n, κ0) and

there are σ ∈ Aut0(Hn) and τ ∈ Aut0(HN ) such that τ ◦ F ◦ σ := (f, φ, g) satisfies
the following normalization condition:
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(3.2)

fj = zj +
iµj

2
zjw + owt(3),

∂2fj

∂w2
(0) = 0, j = 1 · · · , κ0, µj > 0,

fj = zj + owt(3), j = κ0 + 1, · · · , n− 1

g = w + owt(4),

φjl = µjlzjzl + owt(2),

where (j, l) ∈ S with µjl > 0 for (j, l) ∈ S0 and µjl = 0 otherwise.

Moreover, µjl =
√
µj + µl for j, l ≤ κ0 j 6= l; and µjl =

√
µj if j ≤ κ0 and l > κ0 or if

j = l ≤ κ0. Here and in what follows, we label the components of φ by double indices
(j, l) ∈ S.

Proof of Lemma 3.2. By Lemma 2.2, we can assume that F already takes the

form (2.5.3). From the equation (2.2.2), we get
∑κ0

j=1 µj |zj |2|z|2 =
∑

l |φ
(2)
l (z)|2.

Write φ
(2)
j (z) =

∑
k≤l a

j
klzkzl. We then have

κ0∑

j=1

µj |zj |2|z|2 =
∑

j

aj
kla

j
k′l′zkzlzk′zl′ .

Write αjl = (a1
jl, · · · , aN−n

jl ). We have∑κ0

j=1 µj |zj |2|z|2 =
∑

k≤l,k′≤l′(αkl, αk′l′)zkzlzk′zl′ . We immediately see that αkl ⊥
αk′l′ for (k, l) 6= (k′, l′), and |αkl|2 = µk + µl for k, l ≤ κ0, k 6= l; |αkl|2 = µk

for k ≤ κ0, l > κ0 or k = l ≤ κ0. Hence, {αkl}(k,l)∈S0
is a linearly independent

system, which implies that N −n ≥ |S0| = P (n, κ0). Next, extend { αjl

|αjl|}(j,l)∈S0
to an

(N −n)× (N −n) unitary matrix Ũ and replace φ by φ · Ũ
t

. Then the rest statements
in Lemma 3.2 can be easily seen.

We remark that in Lemma 3.2, we can further make µj ≥ µ1 = 1 if we like. But
we do not require such a normalization for the convenience of later application.

For the rest of this subsection, we fix an integer k with κ0 + 1 ≤ k ≤ (n − 1),
and let Ik(p) = (ξ1, · · · , ξn−1) ∈ Ep be such that its jth component is δk

j for j >
κ0. Apparently, under the assumption that RkF (p) ≡ κ0 is constant, Ik(p) depends
continuously on p and is uniquely determined by the linear equations:

(3.3.1)

κ0∑

j=1

P l
jξj = −P l

k, for l = 1, · · · , κ0.

The following lemma will be basic for our later discussion:

Lemma 3.3. Assume that F is normalized as in (3.2), and assume that RkF (p) ≡
κ0 for p ≈ 0 with 0 < κ0 < n− 1.
(A): For any j, l, l′ ∈ {1, · · · , n− 1}, it holds that

Lj(Ik), Lj(Ik), Lj(Λl), LjLl(Ik), LjLl(Λl′) ∈ C0(M).
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Moreover, write Ik(p) = (ξ1(p), · · · , ξκ0(p), 0, · · · , 1, · · · , 0) as above. Then for j ≤
κ0, k′ > κ0,

(3.3.2)

ξj =
2i

µj

n−1∑

l=j+1

∂2φjl

∂zk∂w
(0)µjlzl +

2i

µj

∑

j′<j

∂2φj′j

∂zk∂w
(0)µj′jzj′+

+
4i

µj

∂2φjj

∂zk∂w
(0)µjjzj +

2i

µj
LkT (fj) + owt(1),

Lk′(ξj) =
2i

µj

∂2φjk′

∂zk∂w
(0)µjk′ + owt(0).

(B): With the notation in (A), it holds that

(3.4.1)
n−1∑

j,l=1

Lk(ξjξl)LjLl(f̃) + 4i
n−1∑

l=1

ξlLlT (f̃) =
n−1∑

l=1

Lk(Λl)Ll(f̃) + 2iΛkT (f̃);

(3.4.1)′

n−1∑

j,l=1

Lk
2
(ξjξl)LjLl(f̃) + 8i

n−1∑

l=1

Lk(ξl)LlT (f̃) − 8T 2(f̃)

=

n−1∑

l=1

Lk
2
(Λl)Llf̃ + 4iLk(Λk)T (f̃)

(C): For any (j, l) ∈ S, it holds that
∂2φjl

∂zk∂w
(0) = 0 and ∂2f

∂w2 (0) = 0. Also, for (j, l) ∈ S
with l 6= k, it holds that

∂2φjl

∂w2 (0) = 0. When l = k,
∂2φjk

∂w2 (0) = 1
4Lk

2
(ξj)(0).

(D): It holds that

(3.4.2)

n−1∑

j,l=1

Lk
2
(ξjξl)LjLl(g) + 8i

n−1∑

l=1

Lk(ξl)LlT (g) − 8T 2(g)

=
n−1∑

l=1

Lk
2
(Λl)Llg + 4iLk(Λk)T (g).

Proof of Lemma 3.3. (A): From (3.3.1), it follows that for j ≤ κ0

(3.4.3) (ξ1, · · · , ξκ0) = −(P 1
k , · · · , Pκ0

k )P−1 and thus ξj =
2i

µj
P j

k + o(

κ0∑

l=1

|P l
k|).

where P = (P j
l )1≤j,l≤κ0 with P (0) = diag( iµ1

2 , · · · , iµκ0

2 ). Hence, shrinking M if
necessary, we see that for each j0, there is a holomorphic function Hj0 in its argument
such that ξj0 = Hj0(P

j
l ). Without loss of generality, we assume that M is sufficiently

small. We first prove the following:

Claim 3.4. Let G be a Cν-smooth CR map from a neighborhood of M in
Hn into CN . Let h(G) = H(p, p, LαLβT γ(G))|α|+|β|+|γ|≤ν with H holomorphic in

its argument. Let D0 = Lα1Lβ1T γ1 be a differential operator along M . Suppose
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that there is a certain holomorphic function H0 in its argument such that for each
polynomial map G∗ from Cn into CN ,

D0(h(G∗)) = H0(p, p, LαLβT γ(G∗))|α|+|β|+|γ|≤ν .

Then the distribution D0(h(G)), acting on C∞
0 (M), coincides with the continuous

function H0(p, p, LαLβT γ(G))|α|+|β|+|γ|≤ν .

Proof of Claim 3.4. The claim is an immediate application of the Baouendi-Treves
approximation theorem [BT]. (See already a version of this in [Lemma 4.1, Hu1]). In
details, by [BT], there is a sequence of holomorphic polynomial maps, denoted by
{Gm}∞m=1, which converges to G in the Cν-norm over M . Hence h(Gm) → h(G) in
the C0-norm over M , and D0(h(Gm)) → D0(h(G)) in the sense of distribution. By
the assumption, D0(h(Gm)) converges also to H0(p, p, LαLβT γ(G))|α|+|β|+|γ|≤ν in the

C0-norm over M . This completes the proof.

We continue our proof of Lemma 3.3. Recall that

(3.4.4)

2λP j
l (F ) = 2Ll(f̃ ′w)Lj(f̃)t − 4i

λ
((f̃ ′w) · Lj(f̃)t))(Ll(f̃) · f̃ ′w

t

) − δj
l (g

′′
ww − 2if̃ ′′ww · f̃

t

).

If we replace F by a polynomial map G in the above formula, a direct computation
then shows that Ll1(P

j
l (G)) can be written as G∗(p, p, LαLβT γ(G))|α|+|β|+|γ|≤2 with

G∗ holomorphic in its argument. Hence, by Claim 3.4, Ll1(ξj) is continuous. Since A
is Hermitian, P l

j = −P j
l , from which it follows easily that Ll1(ξj) ∈ C0(M). To see

Ll1Ll2(ξj) ∈ C0(M), we notice that by considering the φjk-components of f̃ in (3.1.0)

with (j, l) ∈ S0, we have for each j ≤ κ0 that ξj(F ) = H∗
j (Llf̃ , Ll1Ll2(f̃), λ(p), T (f̃) ·

Ll3(f̃)t), where H∗
j is a certain holomorphic function in its variables. Notice that

(3.4.5)

T (f̃) · Lj(f̃)t =
1

2i
LjT (g) − (LjT (f̃)) · f̃ ,

Ll1Ll2

(
1

2i
LjT (f̃) − (LjT (f̃)) · f̃

)

= −2iδl1
j T

2(f̃) · Ll2(f̃) − 2iδl2
j T

2(f̃) · Ll1(f̃) − LjT (f̃) · Ll1Ll2(f̃)

(if F is smooth). We easily conclude that if we replace F by a polynomial map G
above, we have Ll1Ll2(ξj(G)) = H∗∗

j (p, p, LαLβT γ(G))|α|+|β|+|γ|≤2. Hence, we see

that Ll1Ll2(ξj) is continuous over M . Similarly, making use of (3.4.5) and the second
formula in (3.1.0):

Λl =
∑ 4i

λ
ξj(P

j′

l′ )ξl(P
j′

l′ )T (f̃) · Lj(f̃)t,

we can show that Lj(Λl), Lj(Λl) and Lj′Lj(Λl) are continuous over M . For the later
application, we give here the following explicit formulas:
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(3.5.1)

Lk(Λl) = II1 + II2 + II3 + II4, where

II1 =

n−1∑

j=1

−4i

λ2
Lk(λ)(f̃ ′w · Lj f̃ t)ξjξl, II2 =

n−1∑

j=1

4i

λ
(Lk(f̃ ′w) · Lj f̃ t)ξjξl,

II3 =
−8

λ
(f̃ ′w · (f̃ ′w)t)ξl, II4 =

n−1∑

j=1

4i

λ
(f̃ ′w · Lj f̃ t)Lk(ξjξl).

(3.5.2)

Lk
2
(Λl) =

n−1∑

j=1

4iLk
2
(

1

λ(p)
)Kjξjξl +

n−1∑

j=1

Lk(
8i

λ(p)
)Lk(Kj)ξjξl

+

n−1∑

j=1

Lk(
8i

λ(p)
)KjLk(ξjξl) +

n−1∑

j=1

4i

λ
L2

k(Kj)ξjξl

+

n−1∑

j=1

8i

λ
Lk(Kj)Lk(ξjξl) +

n−1∑

j=1

4i

λ
KjL2

k(ξjξl), with

Kj = T (f̃) · Lj(f̃)t, Lk(Kj) = LkT (f̃) · Lj(f̃)t + 2iδk
j T (f̃) · T (f̃)t,

Lk
2
(Kj) = −4iδk

j T
2(f̃) · Lk(f̃)

t

− LjT (f̃) · L2
k(f̃)

t

.

Next, we have for j ≤ κ0 that

2λP j
k = 2Lk(f̃ ′w) · Lj(f̃)t − 4i

λ
((f̃ ′w) · Lj(f̃)t))(Lk(f̃) · f̃ ′w

t

) = 2

n−1∑

l=j+1

∂2φjl

∂zk∂w
(0)µjlzl+

+ 4
∂2φjj

∂zk∂w
(0)µjjzj + 2

∑

j′<j

∂2φj′j

∂zk∂w
(0)µj′jzj′ + 2LkT (fj) + owt(1)

With (3.4.3), this gives immediately (3.3.2).

To see (B), we just need to apply Lk and Lk
2

to (3.1.0), respectively, with an
application of Claim 3.4.

Notice that ξj = owt(0) for j 6= k and Λl = owt(0). For a (j, l) 6∈ S0, considering

the φjl-component of f̃ in (3.4.1), and then collecting terms of weighted degree 0, we

see that
∂2φjl

∂w∂zk
(0) = 0. For (j, l) ∈ S0, considering the φjl-component in (3.4.1) we

have (2 − δl
j)Lk(ξjξl)LjLl(φjl)(0) + 4iLkT (φjl)(0) = 0. Assume that l 6= k. Since

Lk(ξjξl)(0) = 0, we derive that LkT (φjl)(0) = 0. When l = k, by (3.3.2), we have

0 = Lk(ξj)LjLk(φjl)(0) + 4iLkT (φjl)(0) =
2i

µj
µ2

jkLkT (φjk)(0) + 4iLkT (φjk)(0) =

= 6iLkT (φjk)(0).

It thus follows that LkT (φjk)(0) = 0. This proves that
∂2φjl

∂w∂zk
(0) = 0 for any (j, l) ∈ S.

Also, it implies by (3.3.2) that

(3.5.3) Lk′(ξj)(0) = 0, for k′ > κ0
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Next, we proceed to show that T 2(f)(0) = 0. By the normalization condition,

we need to show that T 2(fj)(0) = 0 for j > κ0. By (3.5.2), we have Lk
2
(Λl)(0) =

16δk
l T

2(fk)(0). Applying (3.4.1)′, we arrive at −8T 2(fj)(0) = 16δk
j T

2(fk)(0), from
which it follows easily that T 2(fj) = 0. Moreover, considering the φjl component
with (j, l) 6∈ S0 in (3.4.1), we get T 2(φjl)(0) = 0. When (j, l) ∈ S0, we get

Lk
2
(ξjξl)(0)LjLl(φjl)(0)− 4T 2(φjl)(0) = 0. Hence, if l 6= k, since Lk

2
(ξjξl)(0) = 0, it

holds that T 2(φjl)(0) = 0. If l = k, we get T 2(φjk)(0) = 1
4Lk

2
(ξj)(0).

For the proof of (D), we just need to dot-multiply both sides of (3.1.0) by the

vector 2
√
−1f̃ and then apply L2

k as before.

3.2. In this subsection, we first derive a new system of differential equations
by making use of Lemma 3.3. Then we use it, together with Lemma 3.3, to achieve
an approximate partial linearity theorem for F . We also discuss the distribution
introduced by the partial linearity of F and its relation with Ep introduced at the
beginning of §3.1.

From Lemma 3.3 (C), for k > κ0, we have ∂2f̃
∂zk∂w

(0) = 0 for any F satisfying the

normalization in (3.2). This fact can be easily applied to F ∗∗
p to derive a new system

of some useful differential equations. In details, we explain it as follows:
Let Ik(p) = (ξ1, · · · , ξn−1) and f∗∗p = z + i

2wzA(p) + owt(3) be as before. We
notice that {Iκ0+1(p), · · · , In−1(p)} is a basis of the 0-eigenspace of the Hermitian
matrix i

2A(p). By using the Schmit normalization procedure, we can find a unitary

matrix U(p,k), whose kth row is Ik

|Ik| such that

U(p,k)A(p)U−1
(p,k) = diag(µ1(p), · · · , µκ0(p), 0, · · · , 0).

Moreover, we can assume that the last (n−κ0−1) rows of U(p,k) depend continuously
on p(≈ 0); and at p = 0, they are precisely {Iκ0+1(0), · · · , In−1(0)}.

Notice that Ik(p)
|Ik(p)| = e′kU(p,k), where e′k is the vector in Cn−1 whose component

at the jth position is δk
j . Also, from the proof of Lemma 3.2, there is an (N − n) ×

(N − n) unitary matrix Ũp such that φ∗∗p (zU(p,k), w) · Ũp

−1
takes the form as in the

last expression of (3.2). Write

(3.6.0)

F̂ ∗∗
p =

(
f∗∗p (zU(p,k), w)U−1

(p,k), φ
∗∗
p (zU(p,k), w)Ũp

−1
, g(zU(p,k), w)

)
, F ∗∗∗

p = τ̂p◦F̂ ∗∗
p ◦σ̂p

with

σ̂p =
(z + âw, w)

1 − 2i < â, z > −i|â|2w
, τ̂p =

(z∗ − (â, 0)w∗, w∗)

1 + 2i < (â, 0), z∗ > −i|â|2w∗

where â is chosen so that the first κ0 components of the vector:

(3.6.0)′
∂2f∗∗∗p

∂w2
(0) = iâU(p,k)A(p)U−1

(p,k) +
∂2f∗∗p

∂w2
(0)U−1

(p,k)

are zero. (See Lemma 2.2(B), especially (2.5.4)). Write η = âU(p,k). We can uniquely
choose â so that η = (η1, · · · , ηκ0 , 0, · · · , 0). η is then also uniquely determined.

By the way â is chosen, we have
∂2f∗∗∗

p

∂w2 (0) = 0. It thus follows from (3.6.0)′ that

(3.6.0)′′ η · A(p) = i
∂2f∗∗p

∂w2
(0)
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Hence, as in (3.4.4), we conclude that ηj = i
µj(0)

T 2(f∗∗p,j)(0) + T 2(f∗∗p )(0) · o(1), and

depends holomorphically on {T 2(f∗∗p )(0), P l
j (F )}. Moreover by (3.1.2) and (2.1.5)

(2.1.6), we have

(3.6.1)

T 2(f∗∗p,j)(0) =
1

λ(p)

(
T 2(f̃) · Lj f̃

t

− 1

λ
(T f̃) · Lj f̃

t
(
T 2(g) − 2iT 2(f̃) · f̃

t
))

ηj =
i

λ(p)µj

(
T 2(f̃) · Lj f̃

t

− 1

λ
(T f̃) · Lj f̃

t
(
T 2(g) − 2iT 2(f̃) · f̃

t
))

+

+ T 2(f∗∗p (0)) · o(1)

Lk(ηj)(0) =
i

µj
T 2(φjk)(0)µjk.

Next notice that (φ∗∗∗p )′′zkw(0) = 1
|Ik(p)|

(∑
j ξj(φ

∗∗
p )′′zjw(0) +

∑
j,l ξjηl(φ∗∗p )′′zjzl(0)

)
×

×Ũp

−1
= 0; for, by Lemma 2.2 (B), F ∗∗∗

p satisfies the normalization in (3.2). Arguing
the same way as in the proof of Lemma 3.1, by (2.3.4) and formulas in (2.1.2)-(2.1.6),
we have the following:




n−1∑

j′,l=1

ξj′ηlLlLj′(f̃) + LξT (f̃) − 2i

λ(p)
T (f̃) · Lξ(f̃)tT (f̃)


 · Cj(p)t = 0

for any j. Here, we write Lξ =
∑
ξjLj . Thus there are Ωj(p)′s such that

(3.6.2)

∑

j,l

ξjηlLjLl(f̃) + LξT (f̃) − 2i

λ(p)
T (f̃) · Lξ(f̃)tT (f̃) =

=

n−1∑

j=1

Ωj(p)Ej(p) =

n−1∑

j=1

Ωj(p)Lj(f̃)(p)

with Ωj(p) =

=
1

λ(p)


∑

j,l

ξj′ηlLj′Ll(f̃)) + LξT (f̃) − 2i

λ(p)
T (f̃) · Lξ(f̃)tT (f̃)


 · Lj(f̃)t;

Making use of the fact that
∑n−1

l=1 ξlP
j
l (p) = 0 and (3.4.4), we notice that Ωj is

also given by the following:

(3.6.2)′ Ωj(p) =
ξj

2λ(p)
(T 2(g) − 2iT 2(f̃) · f̃ t) +

1

λ(p)

∑

j′,l

ξj′ηlLj′Ll(f̃) · Lj(f̃).

Applying Lk to (3.6.2) with an application of Claim 3.4, we obtain

(3.6.3)

n−1∑

j,l=1

Lk(ξjηl)LjLl(f̃) + 2i
n−1∑

l=1

ηlTLl(f̃) + 2i
n−1∑

j,l=1

ξjηkLjT (f̃) + 2iT 2(f̃)

=

n−1∑

j=1

Lk(Ωj)Lj(f̃) + 2iΩkT (f̃) + Lk

(
2i

λ(p)
T (f̃) · Lξ(f̃)tT (f̃)

)
−

−
∑

Lk(ξj)LjT (f̃).
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Still assume that F is as in Lemma 3.2. Considering the φjl-component in (3.6.3) and
then evaluating at 0, we have

κ0∑

l′=1

Lk(ηl′)(0)LkLl′(φjl)(0) + 2iT 2(φjl)(0) = 0.

Together with Lemma 3.3(C) and (3.6.1), the above formular gives immediately the
following:

(3.6.4) T 2(φjl)(0) = 0 for any (j, l) ∈ S.

With (3.6.4) and Lemma 3.3 at our disposal, we now are ready to give the following
approximate partial linearity theorem for F :

Theorem 3.5. Suppose that F is a C2-smooth CR map from a connected open
subset M of 0 in Hn into HN . Suppose that RkF (p) ≡ κ0 < n− 1 is constant for any
p ∈M .
(A): Then for any p ∈ M , there is a unique affine complex subspace Sp of dimension
(n − κ0) transversal to Hn at p such that there is a linear fractional map Lp which
maps Sp ∩ Hn into HN with the following property

(3.7.1) F (Z) − Lp(Z) = o(|Z − p|2) for Z ∈ Sp ∩ Hn.

(B): For any affine complex line Cp transversal to Hn at p, if there is a linear fractional
map Ψp sending Cp ∩ Hn into HN such that F (Z) − Ψp(Z) = o(|Z − p|2) for Z ∈
Cp ∩ Hn, then Cp ⊂ Sp.

Proof of Theorem 3.5. We can assume that F satisfies the normalization condition

(3.2). Also, from (2.2.3) and (3.6.0), there are σ̃0
p ∈ Aut(Hn) and τ̃F

p ∈ Aut(HN ) such
that

(3.7.2) F ∗∗∗
p = τ̃F

p ◦ F ◦ σ̃0
p with σ̃0

p(0) = p, τ̃F
p (F (p)) = 0. More precisely,

(3.7.3) σ̃0
p = σ0

p ◦ U(p,κ) ◦ σ̂p,

where σ0
p is as in (2.1.0), σ̂p is as in (3.6.0) and

(3.7.3)′ U(p,κ)(z, w) = (z, w)

(
U(p,k) 0

0 1

)
with Ik(p) = |Ik(p)|e′kU(p,k).

Notice that F ∗∗∗
p satisfies the normalization condition in (3.2). Let S0 = {Z =

(z1, · · · , zn−1, w) : z1 = · · · = zκ0 = 0} be as before and let

L0(z1, · · · , zn−1, w) = (0, · · · , 0, zκ0+1, · · · , zn−1, 0, · · · , 0, w).

By Lemma 3.3 and (3.6.4), if we define Sp = σ̃0
p(S0) and Lp = (τ̃F

p )−1 ◦ L0 ◦ (̃σ0
p)

−1
,

then (3.7.1) holds. To prove the uniqueness of Sp, it suffices for us to prove the
statement in (B) with p = 0. This can be trivially seen as follows:



ON A SEMI-RIGIDITY PROPERTY FOR HOLOMORPHIC MAPS 481

Suppose that C0 is parametrized by z = (a1, · · · , an−1)t = at, w = t and suppose
Ψ0|C0 = bt

1+b0t
= bt− b0bt2 + o(t2). Since, when restricted to C0,

F = (at, 0, t) +
i

2
(a1µ1, · · · , aκ0µκ0 , 0, · · · , 0, · · · , ajal + ∗, · · · , 0)t2 + o(t2),

it follows that

b = (a, 0′, 1),
i

2
(a1µ1, · · · , aκ0µκ0 , 0, · · · , ajal + ∗, 0 · · · , 0) = −b0b.

Thus, we conclude that b0 = 0, aj = 0 for j ≤ κ0. Namely, C0 ⊂ S0. Finally, we
emphasize again the fact that

(3.7.4) Sp = σ̃0
p(S0),

which will be used later. The proof of Theorem 3.5 is complete.

For each p ∈ M , let Sp be as in Theorem 3.5. Define VF (p) = CTp(Sp ∩ Hn)
and write VF for the vector subbundle of CTM , whose fiber at p is VF (p). In what
follows, for an (n − 1)-vector valued function J(p) = (v1(p), · · · , vn−1(p)) along M ,

we write JL for the vector field
∑n−1

j=1 vj(p)Lj . We call that VF is integrable in the
strong sense if M can be foliated by VF -integrable C2 submanifolds of real dimension
2(n − κ0) − 1. The study of the strong integrability of VF is closely related to the
partial linearity of F . We will not address this issue here. Instead, we will be content
with presenting the following proposition, which gives a partial integrability statement
for the distribution Γ(VF ).

Proposition 3.6. Let F be as in Theorem 3.5. Assume the notation we just set

up. Write V(1,0)
F = VF ∩ T (1,0)M .

(I). Then the space Γ(V(1,0)
F ) of cross sections of V(1,0) has {IL

k }k=κ0+1,···,n−1 as its
basis.
(II). For each k′ > κ0, Γ(VF ) has {IL

κ0+1, I
L
κ0+1, · · · , IL

n−1, I
L
n−1, [I

L
k′ , IL

k′ ]} as its basis.
Moreover, for each k′, k′′ > κ0, it holds that

(3.8.1) [IL
k′ , IL

k′′ ], [IL
k′ , IL

k′′ ], [IL
k′ , IL

k′′ ] ∈ Γ(VF ).

(III) Let Sp be as in Theorem 3.5. Then Sp − p, as an element in the complex Grass-
mannian manifold Gn,n−κ0(C) of (n−κ0)-dimensional linear subspaces in Cn, depends
continuously on p. Moreover, if F ∈ Ck(M), then Sp depends Ck−2-continuously on
p.

Proof of Proposition 3.6. Let σ̃0
(p,k) be as in (3.7.2). (Here we put the index k to

emphasize its dependence on k). Then

V(1,0)
F (p) = span{D0(σ̃0

(p,k))(e
′L
k |0)}k=κ0+1,···,n−1,

where D0(·) denotes the differential push-forward map. Notice that σ̂p(0) = 0,
D0(σ̂p)|T (1,0)

0 (M)
= Id, σ0

p is as defined in (2.1.0).
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In what follows, we start to write Ik = (ξk
j )1≤k≤n−1 to emphasize its dependence

on the index k. Then

D0(σ̃0
(p,k))(e

′L
k |0) = D0(σ0

p ◦ U0
(p,k))(e

′L
k |0)

=
1

|Ik(p)|D0(σ0
p)(

∑
ξk
j (p)e

′L
j |0) =

1

|Ik(p)|
∑

ξk
j (p)e

′L
j |p =

IL
k (p)

|Ik(p)| .

In terms of (3.7.4), this gives the proof of the statement in (I).

Next, since P l
j = −P j

l , by (3.4.3) and (3.4.4), for Z0 ∈ S0, we have

(3.8.2) ξk
j (Z0) =

−2i

µj
P k

j (Z0) + o(|
κ0∑

l=1

P k
l (Z0)|) =

−2i

µj
LjT (fk)(Z0) + owt(1).

We conclude that

(3.8.2)′ Lk′(ξk
j )(0) = 0.

Notice that Lk′(ξk
j )(0) = 0 by (3.5.3). We can easily arrive at the following:

(3.8.3) VF (0) = span{IL
κ0+1|0, IL

κ0+1|0, · · · , IL
n−1|0, IL

n−1|0, [IL
k′ , IL

k′ ]|0}.

Moreover, for each k′, k′′ > κ0, it holds that

(3.8.4) [IL
k′ , IL

k′′ ]|0, [IL
k′ , IL

k′′ ]|0, [IL
k′ , IL

k′′ ]|0 ∈ VF (0).

Notice that {IL
κ0+1|0, IL

κ0+1|0, · · · , IL
n−1|0, IL

n−1|0, [IL
k′ , IL

k′ ]|0} must be a basis for VF |0;
for it is a linearly independent system and has the right dimension. This proves the
statement in (II) at the origin.

To achieve (3.8.3) (3.8.4) at any other point p0(≈ 0) ∈ M , we need to go back

to the map F ∗∗∗
p0 defined in (3.7.2). Write p′ = ˜σ0

(p0,k)

−1
(p) or p = ˜σ0

(p0,k)(p
′). For

p ≈ p0, notice that J̃k

L
:= Dp′( ˜σ0

(p0,k))(e
′L
k (p′)) is a smooth (1,0)-type vector field,

which, when restricted to Sp0 ∩Hn, must be tangent to Sp0 ∩Hn near p0, by the way
Sp0 was constructed. Write SF∗∗∗

p0
(p′) for the affine complex subspace of dimension

(n − κ0) along which F ∗∗∗
p0 is approximated by a linear fractional map as in Theo-

rem 3.5. (Apparently, we can apply Theorem 3.5 to F ∗∗∗
p0 .) Then it is clear that

˜σ0
(p0,k)

(
SF∗∗∗

p0
(p′)

)
= SF (p) and thus Dp′( ˜σ0

(p0,k))(V
(1,0)
F∗∗∗

p0

(p′)) = V(1,0)
F (p). Hence, there

are functions bk,k′(p)′s such that

(3.8.5) IL
k (p) =

n−1∑

k′=κ0+1

bk,k′(p)Dp′( ˜σ0
(p0,k))

(
IL
k′(p′, F ∗∗∗

p0 )
)
,

where IL
k′(p′, F ∗∗∗

p0 ) is the corresponding IL
k′-vector field associated to the map F ∗∗∗

p0 at
p′. Also, bk,k′(p) can be uniquely solved by noting the fact that {IL

k (p′, F ∗∗∗
p0 )}n−1

k=κ0+1

is a linearly independent system for p′ ≈ 0. In fact, it can be seen that

(3.8.6) bk,k′(p) = Bk,k′(Ik′′(p), Ik′′(p′, F ∗∗∗
p0 ), p, p)
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for a certain Bk,k′ holomorphic in its own variables. By Lemma 3.3 (A) and (3.8.6),
Lj(bk,k′(p)) and Lj(bk,k′(p)) are continuous near p0. Now, write

(3.8.7) JL
k (p) =

∑

k′≥κ0+1

bk,k′(p)J̃L
k′(p).

Then JL
k is tangent to Sp0 ∩ Hn near p0 and

(3.8.8)

IL
k − JL

k =

n−1∑

k′=κ0+1

bk,k′(p)Dp′( ˜σ0
(p0,k))

(
IL
k′(p′, F ∗∗∗

p0 ) − e
′L
k (p′)

)

=
n−1∑

k′=κ0+1

bk,k′(p)Dp′( ˜σ0
(p0,k))

(
ξk
j (p′, F ∗∗∗

p0 )Lj(p′)
)
.

Write Dp′( ˜σ0
(p0,k))(Lj(p′)) =

∑
j′ cj′,jLj′(p). Then

(3.8.8)′ IL
k − JL

k =
∑

j

χk
j (p)Lj

with

χk
j (p) =

∑

k′=κ0+1,···,n−1;j′=1,···,n−1

bk,k′ξk′

j′

(
( ˜σ0

(p0,k))
−1(p), F ∗∗∗

p0

)
cj,j′(p).

Hence, Ll(χk
j (p)) and Ll(χk

j (p)) continuous near p0. Moreover, we have

(3.8.9) χk
j (p0) = JL

k′(χk
j )(p0) = JL

k′(χk
j )(p0) = 0,

by (3.8.2)′ and (3.5.3) (but for Ik(·, F ∗∗∗
p0 )). Hence,

[IL
k′ , IL

k′′ ](p0) =


[JL

k′ , JL
k′′ ] +

∑

j,l′

JL
k′′(χk′

l )Ll −
∑

j,l

JL
k′′(χk′

l )Ll + owt(0)


 ∣∣

p0

= [JL
k′ , JL

k′′ ](p0)

by making use of (3.8.9). Notice that [JL
k′ , JL

k′′ ](p0) ∈ VF (p0) and [JL
k′ , JL

k′ ](p0) 6∈
V(1,0)

F (p0) ∪ V(0,1)
F (p0), we conclude the first statement in (II) by counting the dimen-

sion.
Similarly, we can verify the other identities in Proposition 3.6 (II).

By the results in (I) and (II), we notice that the complex linear space T
(1,0)
p (Sp)

has basis

{IL
κ0+1(p), · · · , IL

n−1(p), [I
L
n−1, I

L
n−1](p) − iJ ([IL

n−1, I
L
n−1])(p)},

where J is the standard complex structure in Cn. We easily conclude the statement
in (III).

The proof of Proposition 3.6 is complete.
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4. Proof of Theorem 2.3. In this section, with the preparation in §3, we will
complete the proof of Theorem 2.3. Since F is now assumed to be C3, there are two
ways to achieve it. One way is to continue the study of the integrability of VF and
then restrict the equation (3.1.0) to each leaf to reduce the linearity problem to the
uniqueness of differential equations. Another method is to obtain the linearity by
reducing the problem to a boundary uniqueness problem for holomorphic functions,
as in §4 of [HJ]. Here, we present a discussion on the latter approach, which mainly
depends on results obtained in §3.1.

We now proceed to explain how the proof of Theorem 2.3 can be obtained by
reducing the problem to the uniqueness problem of holomorphic functions so that we
can apply a version of the classical Hopf Lemma due to Burns-Krantz. This approach
was motivated by the argument in §4 of [HJ]. We first start with the following lemma,
for whose proof one just needs to copy the argument from [Lemma 5.3, Hu1] with a
notice of the Cl-smoothness assumption for the map here.

Lemma 4.0. Let F be a Cl-smooth CR map from a neighborhood M of 0 ∈ Hn

into HN with l ≥ 2. Assume that F satisfies the normalization condition (2.2.1).
Then

g ∈ P + owt(l + 2), f ∈ P + owt(l + 1).

For the rest of this section, we will assume that F is C3-smooth.
We next present the following generalization of Lemma 3.2 of [HJ].

Lemma 4.1. Let F = (f, φ, g) be a C3-smooth CR map from M into HN , which
satisfies the normalization condition (3.2). Then f ∈ P + owt(4), g ∈ P + owt(5).
Moreover, we have the following weighted decomposition:

(4.1)

f
(4)
j = a

(2)
j (z)w+ a02,jw2, g(5) = c(1)(z)w2, φjl = φ

(2)
jl (z) + b

(3)
jl (z) + b

(1)
jl (z)w+ owt(3)

with

(4.2)

a02,j = 0 for j ≤ n− 1, c(1)(z) ≡ 0,
∂b

(1)
jl (z)

∂zk

= 0 for k > κ0 and (j, l) ∈ S0;

a
(2)
j (z) = 0 for j ≥ κ0 + 1, and aj(0, · · · , 0, zκ0+1, · · · , zn−1) = 0 for j ≤ κ0.

Proof of Lemma 4.1. Applying Lemma 4.0, we can conclude that f ∈ P + owt(4)
and g ∈ P + owt(5).

Collecting terms of weighted degree 5 in the basic equation Im(g) = |f̃ |2 for
Im(w) = |z|2, we obtain the equation:

(4.3) Im
(
g(5) − 2iz · f (4)

)
= 2Re

(
φ2 · φ(3)

)
.

As in [Lemma 3.2, HJ], it is easy to conclude from (4.3) the expansion in (4.1).
Moreover, letting z1 = · · · = zκ0 = 0 in (4.3) and applying the uniqueness of the Chern-
Moser Lemma ([Lemma 3.1, CH] (or by a direct calculation), we have that a02,j = 0
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for j ≥ κ0 + 1. Collecting coefficients of u2 in (4.3), we get c(1)(z) = 2i
∑κ0

j=1 a02,jzj .

Since a02,j = 0 for j ≤ κ0 by the normalization in (3.2), we see that g(5) = 0. Hence,
(4.3) can be simplified as follows:

(4.4)

Im


2i

n−1∑

j=1

zj · a(2)
j (z)w + 2i

∑

(j,l)∈S0

φ
(2)
jl · (b(3)jl (z) + wb

(1)
jl (z))


 = 0, w = u+ i|z|2.

Collecting the coefficients of u in (4.4), we get
∑n−1

j=1 zj ·a(2)
j (z) = −∑

(j,l)∈S0
φ

(2)
jl (z) ·

b
(1)
jl (z). Thus, we get

(4.5) a
(2)
m = −

∑

(j,l)∈S0

φ
(2)
jl (z)

∂b
(1)
jl (z)

∂zm
.

By the normalization in (3.2), we get a
(2)
m (0, · · · , 0, zκ0+1, · · · , zn−1) = 0 for any m.

Collecting terms in (4.4) without the u-factor, we get

(4.6)

n−1∑

j=1

zja
(2)
j (z)|z|2 =

∑

(j,l)∈S0

φ
(2)
jl (z)b

(1)
jl (z)|z|2 + i

∑

(j,l)∈S0

φ
(2)
jl (z)b

(3)
jl (z).

Collecting terms in the above equation with the factor |zk|2zk with k > κ0, we have

(4.7) a
(2)
k (z) =

∑

(j,l)∈S0

φ
(2)
jl (z)

∂b
(1)
jl (z)

∂zk

.

Combining (4.5) with (4.7), we thus obtain a
(2)
k (z) = 0 and

∂b
(1)

jl

∂zk
= 0 for (j, l) ∈ S0

and k > κ0.

We now let F be as in Theorem 2.3 with constant geometric rank κ0 over M .
Without loss of generality, we further assume that 0 ∈ M , n − 1 > κ0 > 0 and F
satisfies the normalization in (3.2). Also, we keep the notations which we have set up.
Write

q = (0, · · · , 0, q1, · · · , qn−κ0−1) ∈ Cn−1.

Let F q
c = τ q

c ◦F ◦σq
c , where the two automorphisms σq

c ∈ Aut(Hn) and τ q
c ∈ Aut(HN )

are given by

(4.8) σq
c (z, w) =

(
z + wq

1 − 2iqz − i|q|2w,
w

1 − 2iqz − i|q|2w

)
,

(4.9)

τ q
c (z∗, w∗) =

(
z∗ − w∗(q, 0′)

1 + 2i < (q, 0′), z∗ > −i|q|2w∗ ,
w∗

1 + 2i < (q, 0′), z∗ > −i|q|2w∗

)
.

Corollary 4.2. Let F be as in (3.2) and let σq
c , τ

q
c be as in (4.8)-(4.9). Define

F q
c := τ q

c ◦ F ◦ σq
c , which we write as F q

c = (fq
c , φ

q
c , g

q
c ) = (f̃q

c , g
q
c )
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= (fq
c,1, · · · , φq

c,jl, · · · , g
q
c ). Then F q

c still satisfies the normalization condition (3.2).

Moreover, we have gq
c = w + owt(5),

∂2fq
c

∂w2 (0) = 0,
∂2φq

c

∂w∂zk
(0) = 0 for k > κ0, (fq

c )
(4)

=

(aq
c)(2)(z)w2 with (aq

c,j)
(2)(0, · · · , 0, zκ0+1, · · · , zn−1) = 0 for j ≤ κ0, and (aq

c,j)
(2) = 0

for j ≥ κ0 + 1.

Proof of Corollary 4.2. By Lemma 2.2 (A) (C), Lemma 3.3 (C), (2.5.4) and a
direct verification, we conclude that Fc satisfies the normalization condition (3.2).
Hence, Corollary 4.2 follows from Lemma 4.1.

Let S0 = {(z1, · · · , zn−1, w) : (z1, · · · , zκ0) = 0} and

S′
0 = {(z∗1 , · · · , z∗N−1, w

∗) : z∗1 = · · · = z∗κ0 = z∗n = · · · = z∗N−1 = 0}.

Then S0 and S′
0 are complex subspaces of dimension n−κ0 in Cn and CN , respectively.

They are also transversal to the corresponding Heisenberg hypersurfaces. With the
above preparation, we are ready to prove the following:

Lemma 4.3. Let F be a C3-smooth CR map from a neighborhood of 0 ∈ Hn

into HN , that has constant geometric rank κ0 > 1 and satisfies the normalization
condition (3.2). Assume the above notation. Then F (S0 ∩M) ⊂ S′

0 ∩ HN .

Proof of Lemma 4.3. For q = (q1, · · · , qn−κ0−1) ∈ Cn−κ0−1 with |q| >> 1, we let
F q

c be defined as in Corollary 4.2.

Claim 4.4. gq
c (0, w) = w + o(w3).

Proof of Claim 4.4. For a fixed k > κ0, let Iq
c,k = {(ξq

c,j)} be the corresponding

vector associated to the map F q
c . Notice that F q

c satisfies the normalization condition
in (3.2). Hence, by Lemmas 3.3, 4.1 and Corollary 4.2, it follows that gq

c = w+owt(5),
ξq
c,j = Owt(2), Lk(ξq

c,j) = owt(0) for j ≤ κ0. We thus conclude from (3.4.2) the
following:

(4.10) −8T 2(gq
c ) =

n−1∑

l=1

L2
k(Λq

c,l)2izl + 4iLk(Λq
c,l) + owt(2),

where Λq
c,l =

∑n−1
j=1

4
√
−1

λ
q
c
ξq
c,jξ

q
c,l(̃f

q
c )

′
w · Lj(f̃

q
c ). In the remaining argument for this

claim, we drop the subscript c and superscript q to simplify the notation. Also, for
two functions A(Z) and B(Z) with Z = (z, z, u), we say A = B mod (terms other
than Zα1Zβ1 , · · · , ZαlZβl) if in the weighted expansions of A(Z) and B(Z) up to

order maxj{degwt(Z
αjZβj )}, the coefficients for the ZαjZβj -terms (j = 1, · · · , l) are

the same.
Recall by (3.5.1) that Lk(Λl) = II1 + II2 + II3 + II4, where

II1 =

n−1∑

j=1

−4i

λ2
Lk(λ)(f̃ ′w · Lj f̃ t)ξjξl, II2 =

n−1∑

j=1

4i

λ
(Lk(f̃ ′w) · Lj f̃ t)ξjξl,

II3 =
−8

λ
(f̃ ′w · (f̃ ′w)t)ξl, II4 =

n−1∑

j=1

4i

λ
(f̃ ′w · Lj f̃ t)Lk(ξjξl).
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Since we assumed that F is C3, it can be easily seen that Ll(ξj) and Ll(ξj) are C1

near the origin. Moreover, by (2.2.1), Lemma 3.3 (A) and Lemma 3.3 (C), we have
λ = 1+owt(1), ξj = Owt(2), Lk(ξj) = Owt(1). With these at our disposal and making
use of Lemma 3.3, one can easily verify that

II1, II3, II4 = owt(2) mod( terms other than |zk|2, u),
II2 = 4iLk((fk)′w) + owt(2) mod( terms other than |zk|2, u).

Notice that Lj(Lk((fk)′w) ∈ P + owt(1), T (Lk((fk)′w)) ∈ P + owt(0). Also applying
Lj to the fk-component of the first equation in (3.4.1), one sees that Lj(Lk((fk)′w) =
Lj(Lk(Λk))+owt(1) ∈ P+owt(1). This shows by [Lemma 5.2, Hu1] that Lk((fk)′w)) ∈
P + owt(2).

Next, write γ = ∂3fk

∂zk∂w2 (0). We thus obtain II2 = 4iγ(u − 3i|zk|2) mod( terms

other than |zk|2, u). Hence, it follows that
(4.11)
−8T 2(g) = −16(γ(u− 3i|zk|2)) + 32iγ|zk|2 + owt(2) mod( terms other than |zk|2, u).

Write c03 = 1
6

∂3g
∂w3 (0). From (4.10), we have T 2(g) ∈ P + owt(2). Hence, by a similar

argument as above, it follows that

c03(u+ i|zk|2) = 2γu− 10iγ|zk|2

which gives immediately that c03 = 0.

Notice that gq
c (0′, w) is defined over the upper-half plane for |q| >> 1. Once

we know that gq
c (0′, w) = w + o(w3), by a generalized Hopf lemma due to Burns-

Krantz [BK], we can conclude that gq
c (0′, w) = w for |q| >> 1. In fact, for |q| >> 1,

we can define the harmonic function h on the upper-half plane of C by: h(w) =

Im
(

1
w
− 1

g
q
c (0′,w)

)
. Then it is clear that h(w) = o(|w|) as w → 0 and

limw(∈H+)→x∈(R∪∞) h(w) ≥ 0. Hence 0 is the minimum value of h(w). By the classical
Hopf lemma, it follows that h(w) ≡ 0. Namely, gq

c (0′, w) ≡ w.

Next, we also have f̃q
c (0, w) ≡ 0 by the boundary equation Im(gq

c ) = |f̃q
c |2. Let q

vary. We conclude that F maps an open subset of S0∩Hn into S′
0∩HN . By a theorem

of Alexander [Alx], it follows that F must be linear fractional when restricted to S0 ∩
Sn ∩ Ω. Considering F ∗∗∗

p in (3.6.0) instead of F , we conclude that for each p(≈ 0) ∈
Hn, there is a unique affine subspace Sp of dimension n−κ0 such that F |Sp∩Ω is a linear
fractional map. (The uniqueness follows from Lemma 2.2(D) or Theorem 3.5). Also,
by Proposition 3.6 (III), Sp −p, as an element in the complex Grassmannian manifold
Gn,n−κ0(C) of (n − κ0)-dimensional linear spaces in Cn, depends continuously on p
(or Cl−2−smoothly on p, if F is assumed to be Cl). (If we just need the dependence
in a neighborhood of a certain point p∗ ≈ p, we then do not need Proposition 3.6.

Indeed, we can obtain it directly from the construction of σ̃0
p (for instance, see (3.7.2))

with a notice of the fact that Sp = σ̃0
p(S0).)

Returning to the proof of Theorem 2.3, we can apparently assume that 0 ∈ M
and F satisfies the normalization in (3.2). Hence, from Proposition 3.6 and the just
mentioned argument, the proof of Theorem 2.3 follows.

5. Proof of Theorem 1.1. In this section, we present the proof of Theorem
1.2 and the proof of Theorem 1.1.
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Let F be a proper holomorphic map from Bn into BN , that is C2-smooth up
to the boundary. Assume that N < n + P (n, κ). For each p ∈ ∂Bn. We can find
Φp and Ψp, biholomorphic linear fractional map from Bn to Sn and BN to SN ,
respectively, such that Φp(p) = 0 and Ψp(F (p)) = 0. Then we define the geometric
rank RkF (p) of F at p to be the geometric rank of the map Ψp ◦ F ◦ Φ−1

p at 0. By
Lemma 2.2 (B), RkF (p) is a well-defined lower semi-continuous function over ∂Bn.
Let κ0 = maxp∈∂Bn RkF (p). Then E := {p : p ∈ ∂Bn, RkF (p) = κ0} is an open
subset of ∂Bn and κ0 < κ by Lemma 2.2 (B). Now, when F is further assumed to
be C3, for p0 ∈ E, applying Theorem 2.3 to Ψp ◦ F ◦ Φ−1

p , we conclude that for each
p ∈ ∂Bn close to p0, there is a unique affine complex space Sp, which transversally
passes through ∂Bn at p and is of complex dimension n−κ0 such that the restriction
of F to Sp ∩Bn is linear. By Theorem 2.3, the collection of all these Sp must fill in an
open subset Up0 close to p0 in Bn. Apparently, shrinking the size of Up0 if necessary,
we see that for each Z = (z1, · · · , zn) ∈ Up0 , there is an affine complex space SZ of
dimension n − κ0 passing through Z such that the restriction of F to SZ is a linear
fractional map. Since all affine complex subspaces through Z much intersect βBn

near p, it follows from Lemma 2.2 (D) that F can not be linear when restricted to any
affine subspace through Z of dimension larger than n− κ0.

Now, to complete the proof of Theorem 1.1, we need only to prove the following:

Lemma 5.1. Let F be a proper holomorphic map from Bn into BN with n ≥ 2.
Assume that there is a point Z0 ∈ Bn such that for each Z ≈ Z0, there is an affine
complex subspace SZ of complex dimension n − κ0 > 0 such that F

∣∣
SZ

is linear

fractional. Then F is (n− κ0)- linear over Bn.

Proof of Lemma 5.1. Define

P := {(Z, S) ∈ Bn ×Gn,n−κ0(C), F is linear fractional when restricted to Z + S}.

We claim that P is a complex analytic variety. For this purpose, we need to verify
that (i) P is closed; (ii) P is locally defined by holomorphic functions. To prove P
is closed, let {(Zj , Sj)} ∈ P be such that Zj → Z ∈ Bn and Sj → S ∈ Gn,n−κ0(C).
After applying an automorphism of Bn if necessary, we can assume, without loss of
generality, that Z = 0 and S = Span{e1, · · · , en−κ0}. Here ej is the vector in Cn,
whose component at the lth-position is δl

j . Let Sj = Span{ej
1, · · · , ej

n−κ0
} be such that

ej
l → el as j → ∞. Since F is linear fractional when restricted to Sj , we can write

F (Zj +
∑n−κ0

j=1 tje
j
l ) =

F (Zj)+
∑

aj(Zj ,Sj)tj

1+
∑

j
bj(Zj ,Sj)tj

. Apparently, aj , bj depend continuously

on Zj and Sj . Hence, letting j → ∞, we see that F (
∑

j tjej) is linear fractional
on t = (t1, · · · , tn−κ0). We remark that by a result of Alexander, F must be also a
biholomorphic map from S into its image which is also an affine space of the same
dimension.

Next, we let (Z0, S0) ∈ P and we want to show that P near (Z0, S0) is defined
by holomorphic equations. As above, we can also assume that Z0 = 0 and S0 =
span{e1, · · · , en−κ0}. We will use the standard local coordinates for the Grassmannian
Gn,n−κ0(C) near S0. Namely, for any S near S0 we associate it uniquely with the
coordinates (ξjl) where j runs from 1 to n−κ0 and l runs from n+1−κ0 to n such that
S = span{e1(S), · · · , en−κ0(S)}. Here ej(S) = (0, · · · , 1, · · · , 0, ξj(n+1−κ0) · · · , ξjn).
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Notice that (Z, S)(≈ (0, S0)) ∈ P if and only if

(5.1) F (Z +
∑

j

tjej(S)) =
F (Z) +

∑
Aj(Z, S)tj

1 +
∑

j bj(Z, S)tj

for certain N -tuples A′
js and scalar b′js, which depend on (Z, S). Write

F (Z +
∑

j

tjej(S)) =
∑

α

Cα(Z, ξjl)tα.

Then Cα depends holomorphically on (Z, ξjl). Multiplying (1+
∑

j bj(Z, S)tj) of both
sides of (5.1) and then considering the Taylor expansion in t at the origin, we see that
(5.1) holds if and only if:

(5.2) Cα +

n−κ0∑

j=1

bjCα−e′

j
≡ 0 for |α| ≥ 1,

C0 = F (Z), Ce′

j
= DtjF (z +

∑
j tjej(S))|t=0 and Aj = F (Z)bj + Ce′

j
. Here e′j is the

vector in Cn−κ0 defined as for ej . As we mentioned before, since F |S must be a linear
embedding, we see that {Ce′

j
}n−κ0

j=1 are linearly independent vectors. Hence, we can

holomorphically solve b′js in (5.2) in terms of Cα with |α| = 1, 2. Hence (5.2) can be
completely written as a system of holomorphic equations in (Z, ξjl). Together with the
closeness of P, we conclude that P is a complex analytic variety in Bn ×Gn,n−κ0(C).
Let π be the natural projection from P into Bn. Then π is clearly proper and thus
π(P) is a subvariety of Bn. Since π(P) contains an open subset of the ball, we
conclude that π(P) = Bn. Hence, we showed that for each point Z in the ball, there
is a complex subspace S of dimension (n−κ0) such that the restriction of F to S+Z
is linear. Since a linear fractional map sends affine lines to affine lines we conclude
the proof of Lemma 5.1.

Proofs of Theorem 1.1 and Theorem 1.2. Let κ be as in Theorem 1.1 and κ0 be
the geometric rank of the map F . By Lemma 3.2, n − κ0 ≥ n − κ + 1. Combining
Theorem 2.3 with Lemma 5.1, we thus complete the proof of Theorem 1.1.

Meanwhile, by the classical result of Alexander, for any Z ∈ Bn and any affine
subspace Sa

Z through Z such that F is linear fractional when restricted to Sa
Z , F must

be biholomorphic from Sa
Z ∩ Bn to its image: A ∩ BN , where A is a certain affine

subspace of dimension dim(Sa
Z). Theorem 1.2 follows clearly.

The argument presented above, together with Lemma 5.3, can be clearly used to
give the following local result of Theorem 1.1:

Corollary 5.2. Let M be a connected open subset of Hn and let F be a C3

CR map from M into HN with N ≥ n > 1. Assume that F extends holomorphically
to a sub-domain Ω of Sn which has M as part of its smooth boundary. Let κ0 =
maxp∈M RkF (p). Then {p ∈ M : RkF (p) = κ0} is an open dense subset of M .
When κ0 < n − 1, F is (n − κ0)-linear over Ω. Furthermore, assume that F has
constant geometric rank κ0 in a connected open subset M ′ of M . Then there is a
sufficiently small subdomain Ω′ of Ω with M ′ as part of its smooth boundary satisfying
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the following property: For each Z ∈ Ω′ \E with E a certain proper complex analytic
variety in Ω, there is a unique complex subspace SZ of dimension n−κ0 such that the
restriction of F to SZ + Z is linear fractional. Also SZ , as elements in Gn,n−κ0(C),
depends holomorphically on Z ∈ Ω \ E. Moreover, SZ extends holomorphically to Ω′

and continuously up to M ′

Lemma 5.3. Let M be a connected open subset of Hn. Let F be a C2 CR
map from M into HN with N ≥ n > 1 and with constant geometric rank κ0 < n− 1.
Assume that F extends holomorphically to a sub-domain Ω of Sn, which hasM as part
of its smooth boundary. Assume that F is (n−κ0)-linear over Ω. Let p0 ∈M . Then for
Z(∈ Ω \ E) ≈ p0 with E a certain complex analytic variety of positive codimension,
there is a unique complex subspace SZ of dimension (n − κ0) such that F , when
restricted to SZ + Z, is linear fractional. Moreover SZ , as elements in Gn,n−κ0(C),
depends holomorphically on Z(≈ p0) ∈ Ω \ E and extends holomorphically across E.

Proof of Lemma 5.3. Without loss of generality, we assume that p0 = 0. For
each p ∈ M , write Sa

p for the unique affine subspace through p of dimension n − κ0,
along which F is approximately linear as in Theorem 3.5. (To be consistent with the
notation SZ we use here, we add the superscript a to emphasize Sa

p is affine.) We can
also assume that Sa

0 is the subspace defined by z1 = · · · = zκ0 = 0. Since for any
Z(∈ Ω) ≈ 0, SZ +Z must cut M near the origin, by Theorem 3.5 (B) and Proposition
3.6 (III), SZ as an element in Gn,n−κ0(C) must be also very close to Sa

0 . Let Pr be
as defined in (5.0) with Bn being replaced by Ω ∩ {|z| < r} for r << 1. Still write
π for the projection from Pr to Ωr = Ω ∩ {|z| < r}. Then by the assumption, π is a
surjective proper map. Since when r << 1, for each Z ∈ Ω∩ {|z| < r}, π−1(Z), being
close to S0, can be embedded into Cκ0(n−κ0), π−1(Z) must be a finite set. Present
SZ(≈ Sa

0 ) by its coordinates (ξjl)1≤j≤n−κ0,n+1−κ0≤l≤n as in the last part of the proof
of Lemma 5.1. Let V be an irreducible component of dimension n of Pr. For each
Z ∈ Ωr, write π−1(Z) ∩ V = {S(j)(Z)}j=1,···,m with m fixed for a generic choice of
Z. Let σm,k be the standard symmetric function in m variables of degree k. Then for
each fixed (j, l), σm,k(ξjl(S(1)(Z)), · · · , ξjl(S(m)(Z))) is a holomorphic function with
boundary value at p ∈ M : σm,k(ξjl(Sa

p − p), · · · , ξjl(Sa
p − p)). Hence, it follows easily

that there is only one irreducible component of maximum dimension in P, which must
also be single-sheeted and thus is biholomorpic to Ωr through the projection map π
away from a proper subvariety. Notice that the other irreducible components of Pr

must have projection in Ωr of positive codimension. By Proposition 3.6 (III) and the
Riemann removable singularity theorem, we see the proof of Lemma 5.3.

It would be an interesting open problem to understand how much initial regularity
is needed for Theorem 1.1 to hold. This problem, involving the regularity problem of
CR mappings with positive codimenions and with minimum initial regularity to start,
is known to be much more subtle than the related problems in the equi-dimensional
case. (See [Hu2-3] for the references). In passing, the author would like to use this
opportunity to give a remark concerning an early paper [Hu3] of the author for the
regularity of CR maps in C2.

Remark 5.4. There was a misleading sentence on [pp 111, Michigan J. of Math.
(51), 2003] by Diederich-Pinchuk claiming that the proof of the main result in [Hu3]
was based on ideas of a preliminary version of [Diederich-Pinchuk, Indiana Uinv.
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Math. J. 44 (1995), 1089-1126]. The fact, however, is the opposite—– Indeed, a
fundamental part of the paper [Diederich-Pinchuk, Indiana Uinv. Math. J. 44 (1995),
1089-1126], (namely, §3 − §7, pp 1094-1110), was fundamentally based on the new
methods and tools that we had first developed and made public in the earlier circulated
preprint [Hu4] for solving the regularity problem for proper and CR correspondences.
(The interested reader is referred to [pp392-393, Hu2] for more discussions on the
historical facts of [Hu3].)
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