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ON THE MAPPING PROBLEM FOR ALGEBRAIC
REAL HYPERSURFACES IN THE COMPLEX SPACES

OF DIFFERENT DIMENSIONS
by Xiaojun HUANG

0. Introduction.

In this paper, we study algebraicity for mappings between algebraic
hypersurfaces. Our main purpose is to prove the following theorem for
general codimension k, which was obtained by Webster [Wel] in the case
k = 0 (see §1.1 for relevant notation) :

MAIN THEOREM . — Let Mi C C"1 and M^ C C"14"1' be strongly
pseudoconvex real algebraic hypersurfaces with m > 1 and k >_ 0. Suppose
that f is a holomorphic mapping from a neigborhood of Mi to C"1'̂  so
that /(Mi) C Ma. Then f is algebraic.

The proof of the theorem is based on a rather careful analysis
on the Segre surfaces. The argument, after some technical modifications,
can also be used to prove the following version of the reflection principle
(Theorem 1), which, in turn, allows our main Theorem to be formulated in
the form of Theorem 2.

THEOREM 1. — Let Mi C C"1 and M^ C C"1"^ (m > 1, k ^ 0) be
strongly pseudoconvex real analytic hypersufaces. Let ^l be a domain which
contains Mi m its boundary and is pseudoconvex along Mi. Suppose that
f is a mapping from Q to C"1'̂  that is holomorphic on ^l, C^^ -smooth
up to Mi, and sends Mi into M^. Then f extends holomorphically to a
neighborhood of an open dense subset of Mi.

Key words : Algebraicity — Algebraic real hypersurfaces — Segre variety — Reflection
principles.
A.M.S. Classification : 32H02.
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THEOREM 2. — Let Mi C C1" and Ms C C"^ fm > 1, A; ^ 0^
be strongly pseudoconvex algebraic real hypersufaces. Let Q, be a domain
which contains M\ in its boundary and is pseudoconvex along M\. Suppose
that f is a mapping from 0 to C111"̂  that is holomorphic on f^, G1"1"^-
smooth up to Mi, and sends Mi into Ms. Then f is algebraic.

In the last twenty years, much related work has been done which,
in some sense, gave partial results in the direction of the Main Theorem
and Theorem 2. In the setting of our main result, when Mi and Ms are
open subsets of the sphere in C"1, the theorem was proved by Poincare [Po]
(m = 2) and Tanaka [Ta] (m > 2). For general algebraic strongly pseudo-
convex hypersurfaces of the same dimension, Webster [Wel] obtained the
analogous result with k = 0. In the form of Theorem 2, in case Mi and
Ms are open subset of spheres, the result is due to Alexander [Al], Pinchuk
[Pi] for k = 0; and due to Webster [We2], Faran [Fa], Cima-Suffridge [CS],
and Forstneric [Fri] for k > 0. In the spherical case, the map / is actually
rational, i.e, algebraic of degree 1.

Research along the lines of generalizing the classical Schwartz reflec-
tion principle to higher dimensions started with the work of Fefferman [Fe],
Lewy [Le], and Pinchuk [Pi]. Since then, considerable attention has been
paid to this subject. We mention here the work in [BBR], [BR], and [FD1],
to name a few. For extensive surveys on this and related topics, see the
papers by Bedford [Be], Forstneric [Fr3], and Bell-Narasimhan [BN]. In the
context of Theorem 1, some special cases were investigated by several au-
thors. In [We2], Webster obtained the result when / e C^UMi), m > 2,
k = 1, and Ms is the sphere. In [CKS] and [Fal], Theorem 1 was proved
when k = 1 and / is three times differentiable on the boundary. In case
j ^ C°°(^l U Mi) or if Ms is the sphere, Theorem 1 is one of the main
themes of [Fri].

Remarks. — (a) By the Lewy extension phenomenon and Hopf's
lemma, it is easy to see that Theorem 2 implies immediately the following
result, which can be viewed as a sort of the real version of Chow's Theorem :

THEOREM 2'. — Let Mi and Ms be two strongly pseudoconvex real
algebraic hypersurfaces in (possibly different) complex spaces of dimension
at least two. Then every smooth CR mapping from Mi to Ms is algebraic.

(b) The following example shows that the above mentioned results
are false when m = 1 and k > 0 :
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Example. — Let Ag = {r € C1 : |r|2 4- e2]! - er\2 < 1}. Obviously,
when e ^ 0, the domain Ag is a strongly convex domain with analytic
boundary. Let ^ be a conformal mapping from the unit disk A to Ag,
which is analytic on 9A by the classical Schwartz reflection principle. Define
/ : A -^ B^( the unit two ball) by /(r)= (<^(r),e(l - e^))). Then / is
proper and holomorphic on A, but is not algebraic.

Acknowledgement. — I am very grateful to my advisor Professor
Steven G. Krantz for his instruction and encouragement. I am pleased to
thank John D'Angelo, James Faran, and Yifei Pan for their interest and
help in this work. Last but not least, I wish to thank the referee for many
useful suggestions regarding the paper.

1. Preliminaries.

The purpose of this section is to make some necessary preparations.
In §1.1, we recall some definitions. In §1.2, we reformulate an immersion
result of Pinchuk so that it can be easily applied to our situation (especially,
to the proof of Theorem 1).

1.1. Notation and an algebraic lemma.

Let C(z) be the field of rational functions in the variable z C C".
We recall that a function \{z) on U C C" is called algebraic if there is
a non-zero polynomial P with coefficients in C(z) so that P(x) = 0^ Le-^
the field generated by adding \ to C{z) is of finite extension. A mapping
is called algebraic if each of its components is. For convenience, we collect
here some facts on algebraic functions which will be used frequently in the
later discussion :

LEMMA 1. — Let ~\ be algebraic in z € U C C". Then the following
holds :

(1) For any fixed {z^, • • • , ̂ ), the function \{z^ • • • , ̂ , ̂ p • • • , z0,)
is algebraic in (^i, • • • , Zk).

(2) Let Zj = g ( z \ , ' ' ' , fj, • • • , Zn) be a solution of \ = 0. Then
Z j = g { z - ^ , ' ' ' , Zj, • - • , Zn) is algebraic in (^i, • • • , Z j , ' ' • , Zn) C C""1.

r\

(3) ——x(^) ls o-lgebraic in (^i, • • • , Zn) for each j .
C/Zj
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(4) If g{z) is also algebraic on U C C", then so are \ ± g, ^g, ^ / g .

(5) Let Zj = gj(s) be algebraic in s e C11' for j = 1,. • . , n. Then so
isx(9i(s), - " , g n ( s ) ) .

(6) Let N^ c C"1 and N^ c C"2 be two open subsets. Suppose that
g{z^\z^) is a function on N ^ x N ^ . Let g be holomorphic and algebraic in
z^ e M (respectively, in z^ e N^) when holding z^ fixed (respectively,
when holding z^ fixed). Then g is algebraic.

(7) Let g(z\,' - ' , Zn) be a holomorphic algebraic function at 0 with
g(0) = 0 and g ( 0 , . . . , 0, Zn) ̂  0. Then the Weierstrass polynomial g " ofg,
with respect to Zn, is also algebraic.

Proof. — The proofs of (1)-(5) are trivial. The argument for (6) can
be found, for example, in [BM] (p. 199-205). So we just say a few words
about (7) : For any z'(= (^ i , . . . , Zn-i)) ̂  0, by a standard argument (see
[Kr], for example), we obtain exactly (counting multiplicity) n' solutions
of the equation g ( z ' , Z n ) = 0 : {ai(^), • • . ,a^(^)} (with n1 fixed). The

Weierstrass polynomial ^* ofgis then expressed as g * = fj {zn-a^z')) =
j=o

n'-l

^ + E ^(^)4. where Sj = E(-lP'^i • • • %. By (6), to check that ^*

is algebraic we have only to show that the s/s are. But this follows easily
from (2), (4), and the fact that for a generic point ZQ w 0, the a^z^s are
holomorphic on z ' w ZQ. Q

Now let M C C" be a real analytic hypersurface with r{z,~z) = 0
as its defining function. We call M algebraic if the complexification of r,
i.e, r(^,o7) is algebraic in (^,cJ) for (z.cJ) w M x Conj(M), where we write
Conj(M) = {z : z e M}. Fix p e M and a small open subset ^ c C" ofp,
when ujwp then the Segre surface Q^ restricted to ̂  is a complex manifold
of dimension n - 1. Here we recall that Q^ = {z e ̂  : r{z, UJ) = 0} and the
complexification of M is defined as Me = {(z^) e ̂  x ^ : r(z^) = 0}, a
complex manifold of dimension 2n - 1.

1.2. Reformulation of a lemma of Pinchuk.

We now let Mi, M^ and / as in the main theorem (or in Theorem 1).
Without loss of generality, we also let / be non-constant. For a given point
p C Mi, after making use of a suitable polynomial holomorphic change of
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variables (see [Fe]), we can assume that p = 0,/(0) = 0, and Mi, Ms are
locally defined by pi and p2? respectively :

m-l

(1.1) Pl(z,z) =Zm+Zm+ E l^^+^o^^);

J=l

m+fe-1

(1.2) P2(W,W) =Wm+k +Wm^fc+ ^ |w^-12 + ̂ (w, w).

J=l

Here ^o(^) = 0(1^14) and h(w,w) = 0(|w|4) (when M^ is the sphere,
then h = 0).

r\ p

From a result ofPinchuk ([Pi]), it follows that ^m+fc (0) 7^ O and df :
'-'Zjf^

TO^MI -^ T^M-i is injective. We write Lj = 9P1 9 - Qj^-—— for
OZm OZj OZj OZ^

j = 1,... ,m - 1. Since /(Mi) C M^ and Lj e T^'^Mi, we see that
(1.3)

m+fe-l ___

/m+fc(^)+7.n^)+ ^ I/^+^/^.T^-O, for^£/cMi.
j=i

Applying each Lj to (1.3), we then obtain

m+fc—l m+fc Qi

(i.4)£^+fc(^+ ^ ^(^^(iy+E^^^^)-0- for^^
J=l J==l 3

Now, by letting 2; = 0 in the formula (1.4), we see that Ljfm-^-kW = 0
for each j. On the other hand, since { L i , . . . ,Lyn_i} consists of a local
basis of r^'^M near 0, we thus conclude that the rank of the matrix
(Ljfi) i<j<m-i is ?7i — 1. Let 5' be the vector space spanned by

l<T<m+A;-l

{Zi/(0),...,L^-i/(0)}

and let {Ti , . . . Tm-i} be an orthonormal basis of S. Extend it to an
orthonormal basis of C"1-̂ -1 : {Ti , . . . ,Tm+k-i} and set

(/l5 • • • 5/m+fc-l) = (^l? • • • ?^m+A;-l) (A; • • • 5/m+fc-l) •

It then follows easily that Ljfi(0) = 0 for ; = m, . . . , m + k - 1 and that
(/5/m+fe) still satisfies the equation (1.4) (up to a 4th order small term).
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Now, by choosing (I/i,... ̂ Lm-iY = (Ljfl(Q))~l(L^,...,Lm-l)t and by
making use of the identity (1.4) with z = 0, we obtain

c-5) ^"^{;: ̂ ;;
Consequently, to simplify the notation, we assume in what follows

that Mi, Ms, /, and { Z / i , . . . Lm-i} already have the properties in (1.1),
(1.2), and (1.5).

2. Proof of Main Theorem.

In this section, we present the proof of our main result. Our idea
is to show that each component of the mapping / stays in the field
generated by adding some algebraic elements (which are obtained from
suitable operations on the defining functions of the hypersurfaces) to
rational functions field. For this purpose, we start by complexifying the
identity : p^{f(z\f{z)) = \{z,~z)pt(z,'z) and differentiate it along each
Segre surface. Then we will obtain the algebraicity by a very careful case-
by-case argument according to how degenerate the map is. Since the proof
is long, we shall, for clarity, split it into 4 subsections and many small
lemmas.

2.1. In this subsection, we concentrate on two major cases which we
will study in detail in §2.3 and §2.4.

Let Mi and M^. be as in the main theorem. As we have discussed in
the above section, we may let Mi, Ma, and / have the properties (1.1),
(1.2), and (1.5) mentioned in §1.2. We first choose a small neighborhood
0 C C"1 of 0 so that / is holomorphic on this open subset and the Segre
surfaces Q^ of Mi restricted to f^ are connected for any uj w 0.

Now since /(Mi) C Ms, we have the equation p^(f(z)^f(z)) =
\{z^~z}p\{z^~z) with \{z^~z) real analytic. By the standard complexification,
we then see, for each ^ w 0, that p2(/(^),/(c<;)) = A(^,cJ)pi(^,cJ). Thus
f(Qw) C Qf{uj) for ^ ̂  0. Therefore we obtain the following identity :

7n+/c-l

(2.1) fm^k(z)+fm^)+ E /.(^?)+^(/(^.7R)=0

.7=1

for z C Qo^or, (^,cJ) G Mic,
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where, as before, Mic denotes the complexification of Mi. By (2) of Lemma
1 and the implicit function theorem, the above h can be changed to an alge-
braic function not involving the /m+fc(^) term. Therefore, we can assume
that h(f,f) = ^(/,/i(^),...,/^+fc_i(o;)), where h{w,y^... ,2/m+fc-i) is
an algebraic holomorphic function on 0^(0) x 0^(0) x ... x 0^_^_i(0).
Here and in what follows, we use the symbol 0*(**) to denote a small
neighborhood of ** in the * variable, which may be different in different
contexts.

Now we let Lj (for j = l , . . . ,m - 1) be the polarization of the
previously defined operator Lj, i.e, Lj is a linear combination of the
following operators

(9p^z^) Q _ 9p^^_9_rn-l

\ 9zm 9z, 9z, 9zm]^ '

Then for any u fixed, {Lj(z, d;)}^1 consists of a basis for the holomorphic
vector fields of Q^.

Applying each Li to (2.1), I = 1..., m - 1, we obtain

m+fc—l m+fc

^ Wz)J^)^

.7=1 J=l

m+fc—1 __ m+fc Qr
(2.2) Lif^(z)+ ̂  L,/,(^)^)+^——£,/,(2)=0, forzeQ,.

?'=! 1—1 3

Let y(^,o;) = (^(2;,a;))i<,j<^_i with Vij(z^) = LJ^. Moreover,
define

,̂0;) = V-1^,^)^!/^,,... ,L^_i/^^,

and

^ Lifm'" L-ifm-^-k-1 \

rj(z^)=V-1

\ Lm-lfm • • • Lm-lfm+k-1 )

Equation (2.2) can then be written in the following matrix form :

^z^)+Fo^)+r](z^)F^)+(i^r](z^)^(z^))Dh(z^)=0 for ^ e Q^

where Dh(z^) = ( ,̂ .., -^^ (f(z)^) = 0(\z\3 + c.|3) as

(z^) -^ (0,0), Fo = (/i,... Jr.-!̂  and F = (/^ ... J^k-i)^
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Again, by making use of the implicit function theorem and by
shrinking f2, we have, for some holomorphic vector function </, that

(2-3)
^,^)+Fo(^)+^^)^(^)+^(/(^),$(^a;),^,a;),F(^))=0 on Q^.

Since the algebraic function field is closed under the application of the
implicit function theorem (see (2) of Lemma 7), it follows that the function
^(w,a,6,2/) in (2.3) is also algebraic and holomorphic on

Ow(0) x Oa($(0,0)) x 0^(0,0)) x 0^(0) x ...0^_,(0),

where we identify the variables ^rj^F with a^b^Y = {y-m^' - ' ^m+fc-i);
respectively. In fact, it is easy to see that g does not depend on / and is
identically 0 when M^ is the sphere. Set

W,^)=$+<7(/,^0),
Ha{f^,'n) =rfa- + -^——(/^'^0), with |a| = 1, and

oya*
H\f^F)=g(f^'F)-(g(f^r]^)^ ̂  ^(/^o)^)

|a|=l yoi'

for (^,cJ) € Mic.

Here and also in what follows, for a multi-index a with the ^th element 1
and all other components 0, we let a* = m + j — 1, and we let r]^ denote
the j^ column of the matrix 77. Then (2.2) can be written as
(2.4) _ __
W(^),^)+Fo(^)+^ f^^HMW,^+H*(f(z)^^,F^)) =0,

|a|=l

_ oo __
for (^,Zj) C Mic. Let J:T(/, ̂ , 77, F) = ^ if^(/, <^ ̂ ^Q- We will continue

|a|=2

our discussions according to the following two possibilities :

(AA) LiQHao{zo,'zo) 1=- 0 for some ^ ^o? and (^0,^0) C Mic with
^o ^ 0.

(BB) LiHa(z,z) = 0 for all I , a, and {z,z) € Mic with ^ w 0.

2.2. We present in this subsection two lemmas which will be useful
in our later discussions.

LEMMA 2. — Let {Ha} as above. If for some open subset U C Mi
ofp, it holds that LiHa(z^~z) = 0 for all z G U and Z,a, then there is an
algebraic holomorphic function ̂  so that Fo(z) = ̂ {z^ F(z)) for z w p.
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We first observe that U x Conj(£7) C Mic is a totally real submanifold
of maximal dimension, where the notation Conj((7) is the same as that at
the end of §1.1. So U x Conj(£/) is a set of uniqueness for the holomorphic
functions on Mic. Thus, under the hypothesis of the lemma, it follows that
LiH^^z^uJ) =. 0 for all /, a and (^,cJ)(c Mic) ^ ( p ^ p ) -

Proof of Lemma 2. — Since { L i , . . . , Lm-i} is a basis for the collection
of holomorphic vector fields on Q^ and since Ha{f{z)^{z^)^ 77(^,0^)) is
holomorphic for any fixed uj, it follows, from the just mentioned observation,
that Ha(f(z)^(z,uj)^ri(z,LJ)) is constant along any Q^.

Define
(2.5) ________ ________ ________
<r(^,y)=-^o(/(^U^)- ̂  ̂ ^a(/(^U^)-^*(/,^,y),

|a|=l

for (^,c<J) € Mic and Y w 0. We then can conclude that, for any fixed

V = (ym,...,ym+k-i) € C*",

the function ^* is constant on each Q^ (uj w p). Moreover, it can be seen
that for any fixed (^, c^), ^* is algebraic in Y since H * { f ^ ' ' • , Y) is. For any
given ^(e ^2) ^ p and V w 0, we define ^(^, Y) = ̂ *(ci;, z, V) with uj € Q^.
This definition makes sense because ^* is independent of the choice of
uj € Q^. By (2.4), it obviously holds that Fo(z) = ̂ (z, F(z)) for z w 0. We
are now going to complete the proof of the lemma by showing that ^ is
algebraic in (z^Y).

First, we notice that, for any given z, ^ is algebraic in Y by the
above discussion. Thus, by (6) of Lemma 1, we have only to prove that ^
is algebraic in z when holding Y fixed.

Fix ZQ w 0 and let z € Qzo' Since ZQ is also contained in Qzi we see
by (2.5) that

^(z,V) = -Ho{f{zo)^(z^z)^(z^z))

- ̂  y^Ha(f{zo)^(z^z)^(z^z))-H-(f(zo)^(z^z)^(z^z)^Y).
H=i

Therefore it can be seen that ^(z^Y) is holomorphic and algebraic along
QZQ for any fixed V, since Ha and H* are algebraic in their separate
variables and ^ ( z Q ^ z ) ^ r ] ( z Q , z ) are holomorphically algebraic in ~z (by the
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algebraicity of Mi and A^). Now the algebraicity of ^ follows clearly from
the following :

LEMMA 3. — Let M be a piece of algebraic strongly pseudoconvex
hypersurface. If g is a function defined near p € M which is holomorphic
and algebraic on any Segre surface Qz with z w p, then g(z) is algebraic
in z.

Proof of Lemma 3. — By an algebraic change of variables, we can
assume that p = 0 and M is defined by the equation r(z,~z) = 0 with a
similar form to (1.1).

Let ej = (0 , . . . , 1, . . . , 0) with 1 in the /h position, and let r(^ 0) <E
C1 but close enough to 0. Obviously, we then have TCj € Qo and thus
0 <E Qre, for j = 1,... ,m - 1. Write Sr = ̂ Ore,. We see that 0 C Sr.

j=i J

Define the map 0 from Sr x QQ to C"1 by <^(0,0) = 0 and

^,t) = Q. n {n^Q^.+t}.

CLAIM 1. — When r(^ 0) is dose enough to 0, then Sr is a regular
algebraic curve near 0 and (f) is an algebraic biholomorphism near (0,0).

Proof of Claim 1. — Notice that Sr is defined by the equations :

Zm + rzj + 0(|r|4 + H4) =0 for j = 1 , . . . . m - 1.

From the implicit function theorem and Lemma 1, it then follows easily
that for T w 0, Sr is a regular algebraic manifold of complex dimension 1
near (0,0), parametrized by :

^ = ̂ -(^m + hj(zm,r) j = 1 , . . . ,m - 1,

where (ij(r) = -1 + 0(r) and ^(0,r) = 0.

Now, let z = (j){s,t} with s = (^i,. . . ,^) and t = (t^... ,^-i,0).
Then, by the above argument and the definition of ^, we see that

(i) ^ =aj{r)sm-}-hj(sm,r) j = l,...,m- 1;

m-l

(ii) Zm + s^ + ̂  -sizi + 0(H4 + ^|4) = 0; and
1=1
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m-1

(iii) ^+^^+^•+0(|T|4+|^|4+|^|4)=0 for .7=1, . . . ,m-1.
1=1

Applying the implicit function to (ii) and (iii), and combining the solution
with (i), we can conclude that for any fixed r w 0, when 5, t w 0 there is a
unique solution z (with respect to s and t), which takes the form :

^=x(^mJ) with ^(0,0) =0,

where \ is algebraic and holomorphic near (0,0). If we identify Sr with a
small neighborhood of 0 in C1 through (i), it holds that 0 = \. Now, to
see that \ is a biholomorphism near (0,0), it suffices for us to show that
the Jacobian determinant of \ with respect to ~s^n and t e C"1"1 does not
vanish at (0,0). In fact, substituting (i) into (ii), we have

m-l _____

(iv) Zm + ̂ m + 5^ ̂  (a^ + ̂ (Sm,T)) + 0(|^|4 + |5|4) == 0.

1=1

By combining (iii) with (iv) and a direct computation, we see that the
Jacobian matrix of \ at (0,0) has the following form :

^+0(|T|3) 0(|r|3) . . . 0(|r|3) 1+0(|T|3)\
0(|r|3) T+0(M3) . . . 0(|r|3) 1 + 0(|r|3)

0 ... 0 0 1 )

So, the Jacobian determinant of \ at 0 is T772"1 + Odrl771). Thus, it cannot
vanish when r(^ 0) w 0. This completes the proof of Claim 1. n

Now, by the way that (j) was constructed and by the hypotheses
of Lemma 2, we see that g o 0(5, t) is holomorphic and algebraic on s
(respectively, t) when holding t (resp., s) fixed. From (6) of Lemma 1, it
thus follows the algebraicity of g. This completes the proof of Lemma 3. n

2.3. We now suppose that (AA) occurs. Then we will obtain the
algebraicity of / when k = 1, or reduce the situation to the lower
codimensional case when k > 1.

We first fix some notation. In what follows, we use the symbol ^ to
denote the tuple obtained by deleting the element with index I from the
vector *. For example, according to this convention, Fm means the vector
function (/^+i,.... fm+k-i)\ since F = (/^,..., fm^k-iY ; and F^+i
is the vector function ( /yn+2, . . . , fm-^k-iY'
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Let us choose an integer n in the following way (the existence of such
an integer can be seen by the condition in (AA)) :

(i) If for some po w 0, jo, and IQ, it holds that L^g^^po^po) -^
0, then we let n = m. Here go(f(z)^(z,(jj),rj(z,uj),Fm{^)) = HQ +

S /Q-^cn 9i{f,^'n,Fm) == ^(i,o,-,o)? and gj for '̂ > 1 is deter-
|Q!|==I,Q!* T^m

mined by

^*(/^^^)=E^^^^F-)^J•
J=2

(ii) If (i) does not hold, we then let n be 'the smallest integer such
that for each jf , in the following expansion with respect to /y^ , . . . , fn-i :

%=E^(/^^^m,.,n-l)7^.../^r-1,
a

it holds that L i ( / ) j ^ ( z ^ ' z ) = 0 on [/' C Mi for all ^ and (n — m — 1)-
degree multi-index a. But, for the expansion of some ^0,^0 wltn respect
to jni there exist some IQ and %o so that L^(^o^o^o(2^) ^ 0 on any small
neighborhood of 0, where

^0,^0 (/^^^ ̂ m,..,n) = y^ ^O,Z,QO (/^ ̂  ̂ ^ ̂ m,...,n)f^

LEMMA 4. — Let n as above. There is an algebraic function <I>
and an open neighborhood ^2* ofp € Mi Fl f2 in C"1 such that for any
{z,uJ) € (^* x Conj(fT)) n Mic it holds that

(2.6) ^(a;)=^(/(^),/(l)(^^),^2)(^^),F,(a;)).

JIere the f^'s are certain type of derivatives off. This notation will be
explained below.

Proof of Lemma 4. — We first assume that n = m. Then for some jf'o,
^o? Po ^ 0, and the 6th element g^ of the vector function ^p, it holds that

Liog^(f(po)^(po,Po),ri{po,po),~Fm{po)) ¥- 0-

We write

/( = (Z/i/i,Z/i/2? • • • ^l/m+fc? ' • • ̂ m-l/m+fc);
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f^=(L,fW,L,fW,...,L^fW),
/(3)=(£l/(2),W(2),...,^_l/(2)),

By the way that ^ and rj were constructed, we see that they are rational
functions of f^\ Hence, it follows that Ha and H* are algebraic in
(/, f^, Fm) for each a. Define

A(/J(l\F)=^oe(/^^)+ 'EJ^H^^rj^+H^^^^F)^
H=l

where ̂  and T^*6 are the 6th elements of Ha and Jf*, respectively. By (3)
and (4) of Lemma 1, we obtain the algebraicity of L^A^/^^F^ for
simplicity, we denote it by A^\f, f^\ f^.F)) in (/, /(1), f^\F). This is
so because

A^f, fW, ̂ \F) = ̂  ̂ -L,/, + ̂  ,̂ L,(LJ,),
3 3 zj C7W^

where we identify the variable w" with Lifj in /^. Meanwhile, by (2.4)
and the definition of gj, we notice that

A(l)(/,/(l)J(2),F)=^£^y.
J

Thus, by the choice ofpo; we see that

A(l)(/(po)J(l)(po^o)J(2)(po,Po)^(po),^)^0

for^ ^7m(Po).

The proof of Lemma 4 in this case therefore follows from :

CLAIM 2. — Let p € U and let I{'z,w,w^\ • • • ,w^,y^-,%) be
holomorphically algebraic on 0 = 0^{p) x 0^(/(p)) x • • • x Oy^(fj{p)).
Suppose that {z,f(z), • • • , F j { z ) , fj{z)) is a zero point of I for every
z e fl n U and suppose that J(p, /(p), • • • ,^(p),^-) ^ 0 for ^ % /^(p).
Then there exists an open subset U' ofU so that, for {z,'uj)(w U ' ) € Mic,
it holds that

^(a;)^^,/^),^1)^,^),...,^)^,^,^^))

for some algebraic holomorphic function <I>.



446 XIAOJUN HUANG

Proof of Claim 2. — From the given hypothesis, the Weierstrass
preparation theorem, and (7) of Lemma 1, it follows that the equation
/(z.w.w^, • • - , % ) = 0 is locally equivalent to the following algebraic
equation :

n--l

(2.7) (% - yo)^ + ̂  A,(^,w,w(1),.. . ,y,)(^. - y^ = 0,
j=0

with yo = fj(p). Let Di be the variety associated with (2.7), defined by

n"-l

(2.8) n\y, - y^-1 + ̂  jA,(^,w,w(1),... ,y,)(^. - 2/o)J-l = 0.
j=i

If for 2; w p, the vector (^/(^),/ ( l )(^,^),• • • ,^(^),^)) also satisfies
(2.8), whose degree, with respect to yj, is smaller than that of (2.7), we
then pass to the study of the variety associated with Di. Otherwise, by the
implicit function theorem, (2.7) tells us, for z w p'(w p), that

(2.9) ^)=^J(^/(1),•••,^(^)),

for some algebraic, holomorphic function <I>(^, w, w^\' • • , Yj) on 0-z(p1) x
Ow{f(p')) x • • • x Oy.CFj^)) (here, we need to apply (6) of Lemma 1 to
obtain the algebraicity of <!>). Complexifying (2.9) and noting again the
maximal total reality of U ' x Conj^') in Mic, we thus obtain

^(a;)=^,/(^),/(l)(^a;),..•,F,(^)),

for (z,^)(w (;?',?')) C Mic. We now use an induction argument with
respect to n* and notice that (2.8) will eventually reduce to the equation :
n*(yj — yo) + \n*-\ = 0. We then conclude the existence of the <1> in the
claim. This completes the proof of Claim 1. n

Now let n > m. We then have, for each I and a, that

Li(/)j^{f,^rj,Fm,...,n-i) = 0 on some £/i C U,

where (f)j^ is defined as before and

00

(2.10) 0,,» = ̂ ^,a(/,^7?,F^,.,n)^.

i=0
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But for some p^ ^ 0, o;o, io Jo? and IQ, it holds that

^O^JO^O^o^S) 7^0-

Let Z^<^o == ^^(/J^^/^^/n+i^,^^"]"^)- We claim that
^,ao is algebraic in ( f . f ^ . f ^ , ' ' ' ,/^+fc-i). In fact, since 0^o ^
the Taylor coefficient of the algebraic function g^, we can thus see the
algebraicity of <t>jo,ao^ by Taylor's formula and by inductively using (3) of
Lemma 1. Again from Lemma 1, we determine the algebraicity of ^jo,ao
(see the argument for the algebraicity of A^). Now it is easy to check
that Claim 2 can be applied to the equation ^^^{w^w^^w^^yn-^-i,...,
ym+k-i^yn) = 0 for solving /^. So the proof of Lemma 4 is complete, n

An immediate consequence of Lemma 4 is that in case the codimen-
sion k = 1, then fm is algebraic. The reason for this is similar to the proof
of Lemma 2. In fact, let ZQ w U ' and z € Qzo' Since ZQ e Qz, we see by
Lemma 4 that

fm{z) = ̂  /(Zo), /^(^ ̂  /^O, ̂ )).

Notice that f^(zo^z) is algebraic in ~z and ^ is algebraic in its variables.
We thus conclude the algebraicity of fm along each Q^o. From Lemma 3,
we may then conclude the global algebraicity of fm'

Now, returning to (2.4) with a = 1, we get

Fo(^) = -Ho(f(z)^{z^)^(z^)) ___________

-fm^Wf{z)^(z^^rj(z^)) - ̂ *(/(^U^7S,

where z e Q^. Notice the algebraicity of fm{^\ ^^), and r]{z,uj)
with respect to the variables uj and the algebraicity of HQ^ H^^ and
H * with respect to their own variables. From the above argument, we
therefore also see the algebraicity of Fo(z) along each Q^o (zo w U). Thus
Fo(z) = (/i(^),. . . . /yn-i(^)) is algebraic in z. By the same token, we can
prove the algebraicty of fm-{-i by using the equality (2.1) and the just
obtained results. So, we have

LEMMA 5. — When k = 1, then / is algebraic in case (AA).
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For the general codimension k{> 1), we have

LEMMA 6. — Under the assumptions in Lemma 4, there exist a small
open subset U" of Uf and an algebraic holomorphic function ̂  so that

(2.11) fn(z) = ̂  Fn{z)) for z € U " ,

where n is as in Lemma 4.

The proof of Lemma 6 follows easily from the following slightly more
general assertion :

CLAIM 3. — Let p € U C Mi and ^* an algebraic holomorphic
function on O^p) x 0^f(p)) x . . . x 0^{f^\p,p)) x 0^(F,{p)) (j >
m — 1) so that for some i >_ 1, it holds that

(2.12) Mz)=^(-zJ(z),fW(z,z),---,f^(z,z),Fj(z)), z(»p)eU.

Then there is a holomorphically algebraic function ̂ , denned on Oz(p*) x
Op ( *) withp*(wp) € U, such that

fi(z)=^F,(z)), forz^p^^U.

Proof of Claim 3. — We proceed by induction on the number of the
variables fi 's in the formula of ^*. First, if ^* involves no fi terms (I > m),
then Claim 3 follows immediately from the argument presented to prove
Lemma 5 (in this situation, the complexification of (2.12) is :

^)=^*(cj,/^),/l)(^a;),.•.,/^)(^a;)), zeQ^).

In the general case, to simplify the notation, we let j = m and expand
^* as follows :

^(^/(z),^1)^^,...,^^))^^^/^),...,/^^^))

+ ^ ^(^,/,...,/^))(^:^)-^:(p))+^(^,...,^),
|a|=l,Q;*7^yn

where

^•= ̂  ̂ (^/i,...,/^))^^)-^^))0.
|a|^2
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(1) In case Li<pa{z) = 0 for all a, I , and z(w p) € £/, we may complete
the proof of the claim by applying Lemma 2 in the following way :

Since L/(^(^ f{z}, /^(^,ci;),..., /^(^,^)) is holomorphic in {z,uJ),
by the observation which we made before the proof of Lemma 2, we know
that the given hypothesis implies that 0a(^ /{z)^ /^(^^ • • • ? Y^^^))
is constant along each Segre surface Q^. Set

^(^^y^)=^o(^/(^),/(l)(^a;),...J(fc/)(^a;))

+ ^ 0a(^/(^),... J^(z^))(y^ - f^(p)) + 0*(cj,... ,t,),
10:1 ==I,Q!* ̂ m

where z € Q^j. Thus we similarly see that ^(z^Ym) = ^(z^^z^Ym) with
^* ^ O.z is well defined. Moreover, the same argument as in Lemma 2 shows
that ^ is holomorphically algebraic in its variables. So, the proof of Claim
3 in this case is complete; for it obviously holds that fi(z) == ^(z^Fm(z)).

(2) Now, we assume that (1) does not occur. We then define a nature
number n' in a similar way as we did for n (the existence of such an n' can
also be seen from the hypotheses) :

(a) If for some p'(^ p), ao, and Zo? it holds that L^(^o(P')) T^ ^ we

then let n' = m + 1. Here

^0 = ^0 + ^ 0a (/a- (^) - fa- (?)) ,
|a|=l,Q!*7^7n,?n+l

'01 = ^(o,!^,...^)? ^d '0j f01" J > 1 are determined by

0*(^/,...,F^)=^^(^...,/^))(^^(^-^^^
J^2

(b) When (a) does not hold, we let n1 be the smallest integer such
that : for each jy in the expansion of i^j with respect to (fm-^i(^) —
/^+i(p)),...,(/n/-i(2;) - /^-i(j?)), all coefficients are annihilated by
the operators {Li}\ but at least for one coefficient of certain ^y, say
b^{~z, / , . . . , F^...^-i), there exist some ^o^ ^o with L^^z) ^ 0 on
a small neighborhood p in £7. Here

^(27,/,... ,F^...^_i) = ̂ b^i(zj,... ,F .̂..̂ )(7^) - /n/h))1.
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We now apply the argument in Lemma 4 with g^s there being
replaced by the (f)j 's here (in case (a)), or with (f)jo,ao 8Ln(^ ^jo.i^o being
replaced by bj^ and 6^, respectively (in case (b)). We then obtain an
algebraic holomorphic function ^** so that

(2.12/ 7^) =^(z, f(z), • • • , ̂ (z, z),F,{z)),
for z on a small open subset of U near p.

Substitute (2.12)' into the fn' variable in the formula of ^*. Since, the
number of // 's is now decreased by 1, we can thus conclude the proof of
Claim 3 by the induction hypothesis, n

Replace /n(^) in (2.4) by ^{z^Fn{z)) obtained in Lemma 6. Then we
have, for each i < m — 1, that

(2.13) J,{z) =^,/,/^A) on U^ C V\

where g^ is holomorphic and algebraic on 0-z(p") x 0-uj(/(j/')) x • • • x
Oy.(F^(p")) with p " being some point in U " . From Claim 3, it follows
that on some U^ C U" ^ there exist algebraic holomorphic functions
{^i, • • • , ̂ m-i} so that it holds for each i < m — 1 that

(2.14) f,(z) = ̂ ,F^)) for z C U^\

Similarly, by substituting (2.11) and (2.14) to (2.1), we obtain

(2.15) 7^,(z) = g^^f(z)^n(z)) on U^ C U^\

with g^^ holomorphic and algebraic in (/,^,Fyi). Thus it can be seen,
after shrinking U^\ that we have

(2.16) f^k(z)=^m^k(z^Fn{z)) onU^\

for some algebraic holomorphic function ^m+fc- Combining all these for-
mulas, we now come up with

LEMMA 7. — There are a small neighborhood ^* C C"1 of some
p C U^ and a nonsingular algebraic complex variety M* C C"1"̂ , which
contains /(p), so that /(H*) C M*.

Proof of Lemma 7. — Let ^ and n as in Lemma 6. Consider
the equation Wn = ^(^,w^), where w = (w^,w*,Wyn+fc) with w^c =
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(wi , . . . , Wm-i) and w* = (wm,.. • , Wm^-k-i)' Set ^1(2:, w) = Wn-^, w^).
If ^i does not involve any z terms, we then define M* C C"1"̂  by the
equation Wn = ^(p, w^). Obviously, M* is a regular algebraic manifold near
/(p) and /(^(5)) C M2, where U^ C ̂  C U" is a small neighborhood of
p in Mi (see Lemma 6). Since [/(5) is a set of uniqueness for the holomorphic
function /, it follows that /(^*) C M* for certain small neighborhood of
U^ in C111. So, without loss of generality, we assume that the Taylor
expansion of ^ at (p, Fn{p)) does have z terms. After a rotation around p
in C"1 (if necessary), we may assume --^(p) 7^ 0 for some j ^ 1. Notice

^i
that ^i(p, /(p)) = 0. By the Weierstrass preparation theorem, the equation
^i = 0 is therefore equivalent to

n*-l

(2.17) (^i-pT* + E^*^-'-^)^-^)'-0

j=o

with n* > 1, where p = (p1, • • • .p171) and a/s are algebraic. Arguing as in
Claim 2, we can conclude that z\ = xK^ • • • ? ^m? ̂ (^)) tor ^(e £/^5^) w p*
(here we may have to shrink U^). Now substituting this into (2.14), we
obtain, for i < m :

(2.17)' f,(z) = ̂ \z^"^z^F{z)) for z €= U^\

where ^(1) = ^,(^(^2, • • • ,^,w*),^, • • • ,^,w*^). Consider especially
the equation :

X2^2,. . .^m,w) =Wi -^^(^.-•-.^.W*) =0.

By the same token, if the above equation is independent of ( 2 ^ 2 , . . . ,^m);
the M* in the lemma can be defined by wi = ^\p^ • • • ,p^,w*),
where (p^"',P^) is a fixed point in U^\ Otherwise, after a rotation
at (p2? " • )Pm) wltn respect to the variables (2^, • • • , Zm\ we can also

Q3^^assume that j (p*) 7^ 0 for some j ^ 1. Then it follows similarly
oz^

that there exists an algebraic holomorphic function ^(^3, • • • ,2;yn,wi,w*)
with 2:2 = X^s? • • • ^m, /i(^)5 ̂ (^)) for 2; in a small open subset of U^\
Now, substitute this again into (2.17)' and consider the equation :

(2.17)" W2 - ̂ \z^... ,^,wi,w*) = 0,

where ̂ w = ̂  (x^(^3, • - • , ^yn, wi, zc*), 2:3, • • • , w*). Repeating what we
just did, we see that either we complete the proof of the lemma, or we
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can solve from (2.17)" that ^3 = \^{z^ • " ,2^,wi,W2,w*) with fs(z) =
^(^4, • • • ,^7n,/i(2;),/2(^)^(^)) for z in a small subset of U^\ Arguing
inductively in this way, we then either come up with the proof of Lemma 7,
or we obtain algebraic holomorphic functions

^(^•+ i , - - - , ^ ,wi ,W2, - ' - ,w^- i ,w*) {j = l , . . . ,m)

so that Zj = ^(^+1, • • • , fi(z), • • • , /j-i(^), F(z)) for z on a small open
subset of U^ . Here we understand Wo and Zm+i as 0. In the latter
case, we can easily obtain an algrebraic vector function ^(w^,w*) with
z = ^(Fo(z)^F(z)) for z in a small open subset of U^. Meanwhile,
combining this equality with (2.16), we also see that the algebraic manifold
M*, defined by the equation Wm-^-k = ̂ m+fc^^'^*)?'1^)? does our job
in the lemma, n

LEMMA 8. — Let M* be as in Lemma 7. Then M* DMs is an algebraic
strongly pseudoconvex hypersurface of M^.

Proof of Lemma 8. — Through a linear change of variables, we may
assume that p = 0 and that the complex tangent space of Ms is defined
by Wm-^-k = 0- Since /(fT) C M* and since /(^*) is transversal to
T^M^ (see §1.2), it follows that T^M* ^ {wm^-k = 0}. Thus, by
the implicit function theorem, we see that M* can be locally expressed
by the equation : wi = (j){wi) for some I -^ m + k. Now it is easy to see
that p^ = p2(^i? • • • 10(^)5 • • •) ls a non degenerate real algebraic defining
function of M* H Mi, which is obviously strongly plurisubharmonic at 0. n

2.4. We now are in a position to study the main theorem in case (BB).
We will either reduce to the situation (AA) or obtain the algebraicity of /.

By Lemma 2, we have an algebraic function <I> so that

(2.18) Fo=^F)

for z w 0. Substituting this to (2.1) (here we assume that the h in (2.1)
does not contain fm-\-k{<^) term), we obtain

m+fc-l

(2.19)/^^)+/^(o;)+ ̂  /,(^)^)+/i*(cJ,/(^),F(^)=0
j=i

for z € Q^ or (<z,cJ) € Mic
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with h^u),f(z),F(uj)) = h(f(z),^,F(uj)),F(u))). We now repeat what
we did at the beginning of this section. Then we obtain also the equation
with a form similar to (2.2) :

(2.20) ^Fo+r{F+g(^,f^^,F)=0, for (^) e M^

where g ( u J , /, $, 77, F) = (id, rj, fi)Dh*. Define similarly the new Ha functions
in terms of (2.20). We also consider the conditions (AA) and (BB),
respectively. By §2.3, in case (AA) occurs, then either we obtain the
algebraicity (k = 1) or we can transform the problem to the case of
codimension k — 1. Assume that we are still in case (BB). So the new
H^s are also constant along each Segre surface. We note that

(2.21) ^o=$+(id,r7,0^*|y=o

and

(2.22) H^ = rj^ + (id,^)9-^*!^ for |a| = 1.
oy^

From (2.21) and the definition of r] and $, it follows, for any I , that

An-l \
Li ^ H^z^}f, = Li(f^+k) + Lih",

V=1 7

where HQ = (H^ • • - , H^-^. Thus if we set

m-l

(2.23) Eo = J^ H^z^)f, - f^+k - Lih\
3=1

then Eo(z,u}) is constant on Q^ for every u w 0. Similarly, (2.22) tells that

m—\ Q, ^
(2.24) E, = ̂  ̂ ..^^^,.^(^,a;)A - /, - ——,

z=l ^

is also constant along Q^ for j = m, • • • , m + k — 1. Notice ^(0,0) == 0.
Applying the implicit function theorem to (2.18), (2.23), and (2.24), we
then obtain

f{z)=G(z^E,H^)^ (^)eMic,

where E = (EQ, Em-,' • • 5 ^m+fc-i) and |a| < 1. From Lemma 1, it follows
that G is also algebraic in its variables. By Lemma 3, to show that / is
algebraic in ^, it suffices for us to prove that f(z) is algebraic along any
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Q^. However, this follows immediately from the fact that E and H are
constant along each Segre surface.

2.5. Summarizing all the above discussions, we can conclude the
algebraicity when k == 1. In case k > 1, we either obtain the algebraicity
of / (see §2.4) or we may reduce to a problem with smaller codimension
(see §2.3 and §2.4). Thus, by a simple induction argument, the proof of our
main theorem follows.

Remark. — From the proof, it is easy to see that when / is a priori
assumed to be an immersion from Mi to Ms, then Mi and Ms in the main
theorem can be relaxed to the non-degenerate real algebraic hypersurfaces.
However, the main theorem is obviously false if Mi and Ms are allowed to
be Levi flat.

3. Proof of Theorem 1.

The purpose of this section is to prove Theorem 1 by modifying
the previous argument. We still start with the equation p'z(f(z),f(z)) =
\{z,~z)pi(z,~z). Since we do not know the existence of the complexification
in the present setting, we will differentiate the equation along Mi. Then
we will come up with a new equation similar to (2.3), which also enables
us to divide the discussions according to how degenerate the map / is : in
a sort of the totally degenerate case (analogous to (BB)), we will reduce
the analytic extendibility to the hyper-ellipticity of a differential equation
by making use of the CR-extension results. In the other situations, we will
similarly obtain the analyticity of / (in case k=l) or get a reduction with
respect to the codimension.

For the sake of brevity, we retain most of the notation in §2.

3.1. We now let Mi, Ms, and Li as in §1.2. To prove Theorem 1, we
proceed by seeking a point q C ?7, where U is an arbitrarily fixed small
neighborhood of 0 in Mi, so that / has an analytic extension at q.

By the properness of / (i.e., the fact : /(Mi) C Ms), we see that
(3.1)

m+fc-l

f^k{z) + fm-^k(z) + ^ \f,(z)\2+h(f(z)^J(z))=0 forzeUcM,.
.7=1
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As did in §2.1, by using the implicit function theorem, we can
assume that h(fj) = h{f,~f[,.. .fm^k-i), where / i(w,z/i , . . . ,^+fe-i) is
a holomorphic function on 0^(0) x 0^(0) x . . . x 0^_^_i(0).

Applying L[ to (3.1) for each Z, we obtain

m+fc—l m+fc rvi

(3.2)L^+^)+ ^ LJ,(^)^)+^^L^(^)=0, forget/.
j=i j=i ^

Let V,$, and 77 as denned in §2.1, except replacing uj by ~z. Equation (3.2)
can then be written as

^(z) + Fo(z) + r]{z)F{z) + (id, rj(z)^(z))Dh(z) =0 for ^ C (7,

where Dh{z) = (|^,..., g^)' (^) = 0(|^|3) a^ ^ -. 0, Fo =
(A, • . . , /m-i)*, and F = (fm,..., /m+fc-i)*.

Again, by making use of the implicit function theorem and by
shrinking £/, we have that

(3.3) ^+Fo+77F+^(/ ,^ ,F)=0 on U.

Here g is holomorphic in its variables and if

g{f^^,F)=^gM^^)F^,
a

then
9ga 9gg
9^ Qrj ->u

as z(e U) -^ 0 for |a| < 1 (by (1.2) and (1.3)).

We now expand g with respect to fm '-
00 ___

^E^/^^n)/^
J=0

where ^(w,^,^+i, • • • ,^+/c_i) is holomorphic on Oi == Ow(0) x
0^(0) x 0^(0) x • • • x Oy^^_^ (0) and there exists a number R » 1 so that
\Qj(w, ̂  77, • • - ̂ +fc-i)| < R3 for eachj and for every (w, ̂ , 77, • • • , 2/^+^-1) €
Oi.

Set

^0 =^fnrnFm•+•go{f,^r^,'Fm),
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HI =^m+^l(/,^,^m),

and

Hj=gj(f,^rf,Fm) for j=2,. . . .

Here, as we defined before, we write rj = ( r jm , ' . . ,77m+fc-i) and rfm =
(77^4.1,..., rjm+k-i)' Now (3.3) reads as

CO ___

(3.4) HQ+FO +7^1+^/^=0 onUoCU,
J=2

where £/o is a small neighborhood of 0 € Mi.

3.2. In this subsection, we study a situation similar to (BB) in §2.
We will obtain the analyticity by using CR-extension and PDE results.

From (3.4), we now define Ind(l) = 0 if, for each k and j, Li{Hj) = 0
on a small neighborhood U^ C U of 0. Otherwise, we define Ind(l) = 1. In
case Ind(l) = 0, we then let, for each jo,

00

(3.5) H^(Z) = ̂ ^oj(/^^^m,m+l)7^1.
J=0

Applying Li to (3.5) for each I , we see that

(3.6) ^^(^oj(/^^^m,m+i))7^+i = 0, on £/i.

Define Ind(2) = 0 if Li{(/)^j) = 0 for all I Jo, and j on a small
neighborhood U^C Uz) of 0; otherwise let Ind(2) = 1.

If it still happens that Ind(2) = 0, we expand 0jo,ji? ^OT every JQ
and ji, with respect to fm-}-2' Then we can similarly define the value of
Ind(3) • • •. Arguing inductively, if it always happens that Ind(j') = 0 for
j = 1, • • • , k, we then easily see, for any index z, that

Hi{f^~F^)= ̂  h^^rj)F^
H=o

for z G Uk (a small neighborhood of 0),

where Lihi^(f^,rf) = 0 for all indices % , Z , Q , and hi^{w,a,b) is holomor-
phic on 02 = Ow(0) x Oa x Ob(0) with |fa^(w,a,6)| < R\^ for each
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(fc-l)-multi-index a and for some R » 1. Returning to (3.4), we then
obtain the expansion :

00

(3.7) ^+ E ̂ Fa=^
|a|=0

with LiH^ = 0, for all I and ^-multi-index a, on U ' (a neighborhood of 0).
By the unique power series expansion property of a holomorphic function
and by combining the upper bound (Cauchy) estimates of hi^ with those
of gj, it therefore follows that

(3.7)' \H^^ri)\<R^

for some R » 1 and that

^-^^oOf^O),

^flA...^) ^rn+^/^^O),

and

(3.8) ^=^+_^(^^0)
oy^

where the notation a* is the same as before.

LEMMA 9. — Under the above circumstances, we have, for each a, a
holomorphic extension Aa{z) of H^ on fT (a small neigborhood ofU' in
C"1 .̂ Moreover, it holds that max \A^(z)\ < R^.

Proof of Lemma 9. — First, we note that H^{z) is a CR-function on
Uk for each a, since Li(H^)(z) = 0 for all I . Consequently, by the Lewy
extension theorem, we have, for each H^ a holomorphic extension A^{z)
defined on some open subset f^(c ^2) whose size depends only on U 1 ' . Since
the analytic discs with their boundaries attached on Uk sweep out an open
subset of ^, so after shrinking ^/, the maximal principle then implies that
m^ax|A^| = max|^| < Ra (by (3.7/).

Now, let (f): V C C1 -^ C111 be an embedding such that (f){V H A) c
Q', <^(1) ^ 0, 0(<9(A H V)) C Mi, and (f)^ U V) C C"1 - ̂ / (where
A denotes the unit disk in C1). Since Mi is real analytic, we can extend
/ o (^(r), ^ o <^(r), and rj o 0(r) holomorphically into Any' (where V C V
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is a small neighborhood of <9A H V and symmetric with respect the unit
circle). For r e Ac D V, we define

^M = ̂ (/ 0 0(1/TU ° 0(1/^), ̂  0 0(1M).

Then A^ is holomorphic on A^V and A^(r) = A^(r) for r e 9Any'. It
thus follows from the Hartogs theorem that A^ has a holomorphic extension
Ac,, on an open subset Q* near 0, which does not depend on a. By the
construction of A^ and (3.7)', it obviously holds that max^. |AJ < R^
(we may have to shrink ^* here). This completes the proof of Lemma 1. n

Now by (3.7), we have that

(3-9) Fo(z)+^A^z)Fa(z)=0.

Let J(^,w*) = - ^ A^(z)w^. For (z,w*) e ̂  x 0^(0), since
H=o

m^\A^z)\<Ra

for some R » l.we see that J ( z , w*) is holomorphic on ^* x0^* (0) (where
we may have to shrink the domains). On the other hand, by making use of
the formulas in (3.8) and the implicit function theorem, we have that

^=^o*+Go(/,^o*^)

and

7^=^+G,(/,^*^).' l a - - ii^ -T^aU^O^ ^a)

Here Go and Go, (\a\ = 1)) are holomorphic in their variables and have no
linear terms. Applying L = (Li, • • . , Lm-i) to (3.9), we obtain

y^L.J+Vx^+Gi.^+GJx^,
dw

where |a| < 1 and L^J is the partial differential operator L applied to J
while holding w* fixed. So it follows easily that

^^(^(id-^+Gi.^+G.^-^G^^/),

where G^.w) is real analytic on 0^(0) x 0^(0) for H^ and H^ are real
analytic on Uj, by Lemma 9. Combining this with the formulas for ^ and
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77, we therefore conclude that Lifj -= G^{z^ f) with G^ real analytic in z
and / (when z w 0).

_ _ __ o^r**__
Let T = [Li.Li]. Then Tf, = W,f,) = L^G^) + E ̂ ^

which is also real analytic on z and / for j = 1, • • • , m + k. Since {L, L, T}
consists of a local analytic basis ofTMi, we can conclude that / 6 C°°(Uk)'
Now, from Lemma 10 (or [Fri]), we thus have the real analyticity of / on
Uk.

LEMMA 10. — Let f C C°°(Bn, R^) be such that /(O) = 0 and

g =G(.,/).
Here Bn stands for the ball in R" and G(x, f) is real analytic in x and f.
Then f is real analytic at 0.

Proof of Lemma 10. — Omitted.

3.3. This subsection is very similar to §2.3. We will directly show the
analyticity of / in case k = 1 and obtain a reduction in case k > 1.

By the argument in the above subsection, to complete the proof of
Theorem 1 it now suffices for us to assume that there is an n > m so that
Ind(j') = 0 for j< n — m, but Ind(n — m + 1) = 1. This similarly implies
the following :

LEMMA 11. — There exist an open subset U ' C U and a holomorphic
function ̂  so that it holds that Jn{z) = ̂ (f{z), /(1)^), /^(^.F^)) for
z e U ' .

Proof of Lemma 11. — We first assume that n = m. Then for some
Jo i ^o» ?S w PQi anc^ ^ne eth element H^ of the vector function ff^, it
holds that

^^(/,^,77,F^)(p5)^0.

Then it is easy to see that for each jf , LiH^ = ^-(^/^^/^^/m+i; • • • ?
fm+k-i) f01' some '0j that is holomorphic in its variables and satisfies the
corresponding Cauchy estimates.

Define

h{w, ̂ (1), W^\ l/m+l, • • • , 2/m+fc-l, U)

= ̂  ̂ -(w, w^, w^, 2/^+1, • • • , ym^k-\}{u - uoY
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with UQ = /m(p$)- Obviously, by (3.4), I\ is holomorphic on

Ow(JW) x Owd)^!)^)) • • • x On(0).

We note that {f(z)J^\z\f^\z\f^(z)^....... ,^^i(^,^(^) +
no) satisfies the equation Ji = 0 and ^(/(p^)^ • - ,fm-{-k-i(p'o)^) ^ 0
for n ^ 0. The proof in this case thus follows from Claim 2 of §2.

Now let n > m. We then have, for each I and a, that

^0Q(/^^^m,...,n-i) = 0 on some Ui C U,

where a is a (n-l)-multi-index, (f)a is defined as in §3.2, and
00 ___

(3.10) (f)a == ̂ ^,j(/^,^^m,...,n)^.
J=0

But for some p^ ^ 0, ao, ^o? and Zo? lt holds that

^o^WohS)^

Let Li^, = ̂ ao,j(/, /^V^, • • - , /m+fc-i) and define

J2(^, ̂ (1), W^, 2/^+1, - - • , 2/yn+fc-l,^)

= ̂  ̂ n,aoj(^^ ̂ ^ • ' ' ^ ym+k-\)(u - Uo}3

with UQ = fn(po)- Then it is easy to see that Claim 2 can be applied to the
equation 1^ = 0 for solving f^. So the proof of Lemma 11 is complete, n

When the codimension k = 1, Lemma 11 tells that fm admits a
holomorphic extension on U ' ; for the formula of <I> involves no conjugate
holomorphic terms (see the proof of Lemma 9 or [Pi] for details on this
matter). Returning to (3.3) with k = 1, we see that

W = A{z^{z)^rj{z)J(z)) for z^ po) € U\

where

A(^, ̂  r], /)=-$- 7]fm(z) - g(f, ̂  r ] , fm(z})'

We claim that this also implies the analyticity of^o(^) = (/i(^)? • • • ? /m(^))
near PQ. In fact, from the analyticity of fm(z\ it follows that A is
holomorphic in {z^i^if)' So, let (f) and V as constructed in Lemma
9, then A(<^(T),$(0(r)), 77(0(7-)),/(0(r))) admits a (uniform) holomorphic
extension to A near 1 C <9A (see the proof of Lemma 9 for more
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details concerning this matter). Notice that Fo((f)(r)) allows a uniform
holomorphic extension to the outside of A near 1 and coincides with
A((t){r)^((t){r)),r]((t)(r)),f((l)(r))) on part of the circle <9A near 1. So, by
using the Hartogs theorem, we can conclude the claim (see the proof
of Lemma 9). By the same token, with these results at our disposal
and returning to (3.1), we see the analyticity of /rn+i- For the general
codimension, we have

LEMMA 12. — Under the assumptions in Lemma 11, there exist a
small open subset U" of V and a holomorphic function ̂  so that

(3.11) fn{z) = ̂  W) for z C U " ,

where n is as in Lemma 11.

Proof of Lemma 12. — Make use of the assumption that / is of class
C^1 and copy the proof for Lemma 6 (Claim 3). a

3.4. Now we replace fn in (3.4) by ^(z,Fn). Then we have, for each
i < m — 1, that

(3.12) J , = ̂ *(z, /, /^.Fn) on U^ C U^

where ^* is holomorphic on C^(p") x 0^{f{p")) x • • • x Oy^F^p"))
with p " being some point in U " . By a slight modification of Lemma 12,
it follows that on some U^ C U^ there exist holomorphic functions
{^i, • • • , ̂ m-i} so that it holds for each i that

(3.13) fi{z) = ̂ Fn(z)) for z € U^.

Similarly, by substituting (3.12) and (3.13) to (3.1), we obtain

(3.14) ~f^ = ̂ (:z, /,F,) on U^ C U^\

with 5^1^ holomorphic in ( f ^ z ^ F n ) . Thus it can be seen, after shrinking
U^\ that we have

(3.15) f^k=^m^Fn) OH U^\

for some holomorphic function ^rn-\-k' Combining all these formulas, we
similarly have
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LEMMA 13. — There are a small neighborhood ^2* C C"1 of some
p e U^ and a nonsingular complex variety M* C C"1" ,̂ which contains
f(p), so that /(«*) C M*.

Proof of Lemma 13. — Copy that for Lemma 7. n

LEMMA 14. — / admits a holomorphic extension on some point near p.

Proof of Lemma 14. — First, summarizing the argument in §3.2
and the argument following Lemma 11, we note that Lemma 14 is true
in case k = 1. For k > 1, we also see that either / has a holomorphic
extension at some point on U^ or / has no analytic extension at any
point on U^ but Lemma 13 holds. In the latter case, similar to Lemma 8,
it implies that there is a complex manifold M* of dimension m + k — 1 so
that /(f^) C M* and f(U^) is contained in some strongly pseudoconvex
real analytic hypersurface of M* (here we may have to shrink U^). By
making use a local coordinates chart of M*, we then see that Theorem 1
is false in the case of codimension k — 1. Inductively, this would result in a
contradiction with the situation of k = 1. n
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