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Abstract Let F be a proper rational map from the complex ball B
n into B

N with
n > 7 and 3n + 1 ≤ N ≤ 4n − 7. Then F is equivalent to a map (G, 0, . . . , 0) where
G is a proper holomorphic map from B

n into B
3n .

1 Introduction

Write B
n for the unit ball in the complex space C

n . Recall that a holomorphic map
F from B

n into B
N is called proper if for any compact subset K ⊂ B

N , F−1(K )

is also a compact subset in B
n . A holomorphic map defined over B

n is said to be
rational if it can be written as P

q with P a holomorphic polynomial map and q a
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holomorphic polynomial function. This paper continues the recent work in Hamada
[17], Huang–Ji–Xu [22], etc. Our main purpose is to prove the following gap rigidity
theorem:

Theorem 1.1 Let F be a proper rational map from B
n into B

N with n > 7 and
3n + 1 ≤ N ≤ 4n − 7. Then there is an automorphism τ ∈ Aut (BN ) such that
τ ◦ F = (G, 0′) = (G, 0, 0, . . . , 0), where G is a proper holomorphic rational map
from B

n into B
3n.

Theorem 1.1 roughly says that there is no new proper rational map added for N
in the closed interval denoted by I3 := [3n + 1, 4n − 7]. The following example
shows that Theorem 1.1 is sharp. (See Remark A in Sect. 5 for more discussions on
this example.)

Example 1.2 For n ≥ 2, λ, μ ∈ (0, 1), define the proper monomial map F from B
n

into B
3n as follows:

F = (
z1, . . . , zn−2, λzn−1, zn,

√
1 − λ2zn−1(z1, . . . , zn−1, μzn,

√
1 − μ2znz)

)
.

(1.1)

For such a map F , there is no τ ∈ Aut (B3n) such that τ ◦ F = (G, 0′). Also,
there are proper monomial maps F from B

n into B
4n−6 [24] such that for any τ ∈

Aut (B4n−6), τ ◦ F can not be of the form (G, 0′).

The rationality theorem proved in [19,23] says that any proper holomorphic map
from B

n into B
N with N ≤ n(n + 1)/2, that is three times differentiable up to the

boundary, must be rational. Hence, Theorem 1.1 can be stated in the following more
general form:

Theorem 1.3 Let F be a proper holomorphic map from B
n into B

N with n > 7 and
3n + 1 ≤ N ≤ 4n − 7. Assume that F is C3-smooth up to the boundary. Then there
is an automorphism τ ∈ Aut (BN ) such that τ ◦ F = (G, 0′), where G is a proper
rational map from B

n into B
3n.

Rigidity property is a fundamental property for holomorphic functions with sev-
eral variables. The study of various rigidity properties for proper holomorphic maps
between balls in complex Euclidean spaces goes back to the pioneer paper of Poincaré
[31]. Since then, much attention has been paid to such an investigation. When n > 1,
a result of Alexander [1] states that any proper holomorphic self-map of the unit
ball B

n in C
n with n > 1 is an automorphism. Recall that two proper holomorphic

maps f, g from B
n into B

N are said to be equivalent if there are σ ∈ Aut(Bn) and
τ ∈ Aut(BN ) such that g = τ ◦ f ◦ σ . A proper holomorphic map from B

n into
B

N is said to be linear or totally geodesic if it is equivalent to the standard big circle
embedding L(z) : z→(z, 0). Webster in [35] considered the geometric structure of
proper holomorphic maps between balls in complex spaces of different dimensions.
He showed that a proper holomorphic map from B

n into B
n+1 with n > 2, which is

three times differentiable up to the boundary, is a totally geodesic embedding. Sub-
sequently, Cima–Suffridge [6] reduced the boundary regularity in Webster’s theorem
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to the C2-regularity. Motivated by a conjecture in [6], Faran in [12] showed that any
proper holomorphic map from B

n into B
N with N < 2n − 1, that is real analytic up

to the boundary, is a totally geodesic embedding. Forstneric in [14] proved that any
proper holomorphic map from B

n into B
N is rational, if the map is C N−n+1-regular

up to the boundary, which, in particular, reduces the regularity assumption in Faran’s
linearity theorem to the C N−n+1-smoothness. In a paper of Mir [29], the theorem
of Forstneric was weakened to the case where the source manifold needs only to be
assumed to be a real analytic hyper-surface. See also a related paper by Baouendi–
Huang–Rothschild [3] and a later generalization in Meylan–Mir–Zaitsve [28]. At this
point, we mention that the discovery of inner functions can be used to show that there
is a proper holomorphic map from B

n into B
n+1, which can not be C2-smooth at any

boundary point (see [15,16,27,34], etc).
Write I1 = [n + 1, 2n − 2]. The aforementioned theorem of Faran says that there

is no new proper rational map added when the target dimension N ∈ I1. We call I1
the first gap interval for proper holomorphic mappings between balls. In [11], Faran
showed that there are four different inequivalent proper holomorphic maps from B

2

into B
3, which are C3-smooth up to the boundary. However, the only embeddings are

linear maps.
In [18] and, subsequently, [21], two questions arising from the above mentioned

work were considered. In [18], the first author proved that any proper holomorphic
map which is only C2-regular up to the boundary must be linear if N < 2n − 1, by
applying a very different method from the previous work, answering a long standing
open question in the field (see [6,15]). While it has been open for many years to
answer if the C1-boundary regularity is still enough for this super-rigidity to hold, the
result in [18] gives a first result in which the required regularity is independent of the
codimension. In [21, Theorem 1, Theorem 2.3] and [20, Corollary 2.1], it was shown
that any proper holomorphic map from B

n into B
N with N = 2n − 1, n ≥ 3, which

is C2-smooth up to the boundary, is either linear or equivalent to the Whitney map

W : z = (z1, . . . , zn) = (z′, zn)→(z1, . . . , zn−1, znz) = (z′, znz). (1.2)

Since the Whitney map is not an immersion, together with the aforementioned work
of Faran [11], this shows that any proper holomorphic embedding from B

n into B
N

with N = 2n −1, which is twice continuously differentiable up to the boundary, must
be a linear map. Earlier, D’Angelo constructed the following family Fθ of mutually
inequivalent proper quadratic monomial maps from B

n into B
2n (See [8]):

Fθ (z
′, zn) = (z′, (cos θ)zn, (sin θ)z1zn, . . . , (sin θ)zn−1zn,

(sin θ)z2
n), 0 < θ ≤ π/2. (1.3)

Notice that by adding N − 2n zero components to the D’Angelo map Fθ , we get a
proper monomial embedding from B

n into B
N for any N ≥ 2n. The combining effort

in [12,21] gives a complete description to the linearity problem for proper holomorphic
embeddings from B

n into B
N , which are C2-smooth up to the boundary. However, in

applications, one still hopes to get the linearity for mappings with a rich geometric
structure. For instance, the following difficult problem initiated from the work of Siu,
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Mok [30] and others has been open for more than thirty years: (See Cao–Mok [4] for
the work when N ≤ 2n − 1.)

Conjecture 1.4 (Siu, Mok) Let f be a proper holomorphic mapping from B
n into B

N

with 1 < n < N. Write M = F(Bn). Suppose that there is a subgroup � of Aut (BN )

such that (1). for any σ ∈ �, σ(M) = M; (2) M/� is compact. Then f is a linear
embedding.

In a recent paper of Hamada [17], based on a careful analysis on the Chern–Moser
normal form method as developed in [18,21], it was proved that all proper rational maps
from B

n into B
2n with n ≥ 4 are either equivalent to the Whitney map W in (1.2) or the

D’Angelo map Fθ . After the work of Hamada [17], the first two authors and Xu in [22]
proved that a proper holomorphic map from B

n into B
N with 4 ≤ n ≤ N ≤ 3n − 4,

that is C3-smooth up to the boundary, is equivalent to either the map (W, 0′) or (Fθ , 0′)
with θ ∈ [0, π/2). An immediate consequence of the work in [22] is that there is no
new map added when N ∈ I2 with I2 := [2n + 1, 3n − 4]. Since there are proper
monomial maps from B

n into B
N for 3n − 3 ≤ N ≤ 3n or 2n − 1 ≤ N ≤ 2n, that

are not equivalent to maps of the form (G, 0′), we call I2 the second gap interval for
proper holomorphic maps between balls.

By [24], for any N with 3n − 3 ≤ N ≤ 3n or 4n − 6 ≤ N ≤ 4n, there are
many proper monomial maps from B

n into B
N , that are not equivalent to maps of

the form (G, 0′). Theorem 1.1 in the present paper thus provides a third gap interval
I3 := [3n + 1, 4n − 7] for proper holomorphic maps between balls.

More generally, for any n ≥ 3, write K (n) for the largest positive integer m such

that m(m + 1)/2 < n. Then K (n) = [−1+√
1+8n

2 ] if −1+√
1+8n

2 is not an integer;

and K (n) = −1+√
1+8n

2 − 1, otherwise. For each 1 ≤ k ≤ K (n), define Ik :=
[kn + 1, (k + 1)n − k(k+1)

2 − 1]. Then Ik is a closed interval containing positive

integers if n ≥ 2 + k(k+1)
2 . Apparently, Ik ∩Ik′ = ∅ for k �= k′; and Ik for k = 1, 2, 3

are exactly the same intervals defined above. Write I = ∪K (n)
k=1 Ik . Then, for

max
N∈I

N = (K (n) + 1)n − K (n)(K (n) + 1)

2

−1 ≈ −1 + √
1 + 8n

2
n − n − 1 ≈ √

2n
3
2 − n − 1.

For any N �∈ I (which certainly is the case when N ≥ 1.42n
3
2 ), by not a complicated

construction, the authors obtained in [24] many monomial proper holomorphic maps
from B

n into B
N , that can not be equivalent to maps of the form (G, 0′). ([24, See

Theorem 2.8]). Earlier in [9], for N ≥ n2 −2n +2, D’Angelo and Lebl, by a different
method, constructed a proper monomial map from B

n into B
N , that is not equivalent

to a map of the form (G, 0′). However, we have not been able to find a map, not
equivalent to a map of the form (G, 0′), for N ∈ I. Indeed, the first, the second and
the third gap intervals mentioned above suggest the following conjecture:

Conjecture 1.5 (Huang–Ji–Yin [24]) Let n ≥ 3 be a positive integer, and let Ik

(1 ≤ k ≤ K (n)) be defined above. Then any proper holomorphic rational map F
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from B
n into B

N is equivalent to a map of the form (G, 0′) if and only if N ∈ Ik for
some 1 ≤ k ≤ K (n).

As mentioned above, the “�⇒” part follows from Theorem 2.8 of [24]; also the
conjecture holds for k = 1, 2, 3. An affirmative solution to this gap conjecture would
tells exactly for what pair (n, N ) there are no new proper rational maps added.

Next, we describe briefly the idea for the proof of Theorem 1.1. The proofs for
the first and the second gaps are immediate applications of the much more precise
classification results. When N ∈ I3, making a precise classification for all maps
seems to be hard. We need a different approach from the work in Huang–Ji [21],
Hamada [17] and Huang–Ji–Xu [22]. Consider the setting in the Heisenberg hyper-
surface case. Let F be a holomorphic map defined near 0 with F(0) = 0 into C

N .
Then the Taylor formula says that F(z) = ∑

α
Dα F
α! (0)zα. Hence the image of F

stays in the linear subspace spanned by {Dα F(0)}α . If spann{Dα F(0)}α �= C
N ,

we get a gap from F . The crucial point in our argument is to find, for our map, a
basis of spann{Dα F(0)}α . The way to achieve is to get a good normal form for F .
However, this is a highly non-linear normalization problem, for the maps need to sat-
isfy the fundamental non-linear equation. While it is easy to get linear independent
set from the first and the second jets, finding more linearly independent elements to
form a basis from the higher order jets is very involved. The basic tool at our dis-
posal for this approach is a lemma of the first author proved in [18, Lemma 3.2].
For N ∈ I3, it turns out that there is only one more linearly independent element
for the map from the higher order jets. For the study of general but very rough jet
determination problems for holomorphic maps, there has been much work done in
the past. We refer the reader to the book by Baouendi–Ebenfelt–Rothschild [2] and a
paper by Lamel–Mir [25]. However, what we need here is a very precise jet determi-
nation, which is only doable due to the extra geometric structure for the maps in our
setting.

It appears to us that a fundamental fact which dominates the gap rigidity for holo-
morphic maps between balls is [18, Lemma 3.2]. In the course of the proof our main
theorem, one finds that the assumption N ∈ I3 is exactly what is needed, in several
induction steps, for applying [18, Lemma 3.2]. We hope that the method of the present
paper may motivate the general study of Conjecture 1.5.

Our discussion above only touches the linearity and the gap rigidity part from a vast
amount of work for mappings between balls. We would like to mention that there has
been a lot of interesting work done in the past on the study of proper monomial maps
between balls by D’Angelo and his coauthors. (See the book of D’Angelo [8] for many
references therein.) Here, we mention, in particular, two papers on the degree estimates
for proper monomial maps by D’Angelo–Kos–Riehl [10] and Lebl–Peters [26]. The
study for mappings between balls is also related to the problem of decomposing a
positive Hermitian form into the sum square of holomorphic functions, for which we
refer the reader to a recent survey article by Putinar [32] as well as many references
therein. Here, we just mention a result obtained by Quillen–Catlin–D’Angelo in [5,
33], which states that for any positive bi-homogenous polynomial H(z, z), there is
a sufficiently large integer N such that |z|2N H(z, z) = ∑N ′

j=1 |h j (z)|2 with h j (z)
holomorphic polynomials. This has an immediate consequence (see [5]) that for any
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homogenous polynomial map q(z) into C
N with |q(z)| < 1 on the sphere , there

exists a vector valued polynomial p(z) with N (q)-components such that (q(z), p(z))
properly holomorphically maps B

n into B
N+N (q), where N (q) depends on q and the

value 1 − |q(z)|2 and could be very large.

2 Notations and preliminaries

In this section, we set up notation and recall a result established in Huang–Ji–Xu [22]
and a lemma from [18] which will be crucial for our proof of Theorem 1.1.

Write Hn := {(z, w) ∈ C
n−1 × C : Im(w) > |z|2} for the Siegel upper-half space.

Similarly, we can define the notion of proper rational maps from Hn into HN .
Since the Cayley transformation

ρn : Hn → B
n, ρn(z, w) =

(
2z

1 − iw
,

1 + iw

1 − iw

)
(2.1)

is a biholomorphic mapping between Hn and B
n , we can identify a proper rational

map F from B
n into B

N with ρ−1
N ◦ F ◦ ρn , which is a proper rational map from Hn

into HN . By a well-known result of Cima–Suffridge [7], F extends holomorphically
across the boundary ∂B

n .
Parameterize ∂Hn by (z, z, u) through the map (z, z, u) → (z, u + i |z|2). In what

follows, we will assign the weight of z and u to be 1 and 2, respectively. For a non-
negative integer m, a function h(z, z, u) defined over a small ball U of 0 in ∂Hn is

said to be of quantity owt (m) if h(t z,t z,t2u)
|t |m → 0 uniformly for (z, u) on any compact

subset of U as t (∈ R) → 0. We use the notation h(k) to denote a polynomial h which
has weighted degree k. Occasionally, for a holomorphic function (or map) H(z, w),
we write H(z, w) = ∑∞

k,l=0 H (k,l)(z)wl with H (k,l)(z) a polynomial of degree k in
z.

Let F = ( f, φ, g) = ( f̃ , g) = ( f1, . . . , fn−1, φ1, . . . , φN−n, g) be a non-constant
C2-smooth CR map from ∂Hn into ∂HN with F(0) = 0. For each p = (z0, w0) ∈ M
close to 0, we write σ 0

p ∈ Aut(Hn) for the map sending (z, w) to (z + z0, w + w0 +
2i〈z, z0〉) and τ F

p ∈ Aut(HN ) by defining

τ F
p (z∗, w∗) = (z∗ − f̃ (z0, w0), w

∗ − g(z0, w0) − 2i〈z∗, f̃ (z0, w0)〉).

Then F is equivalent to

Fp = τ F
p ◦ F ◦ σ 0

p = ( f p, φp, gp). (2.2)

Notice that F0 = F and Fp(0) = 0. The following is fundamentally important for
the understanding of the geometric properties of F .

Lemma 2.1 ([18, §2, Lemma 5.3]) Let F be a C2-smooth CR map from ∂Hn into
∂HN , 2 ≤ n ≤ N. For each p ∈ ∂Hn, there is an automorphism τ ∗∗

p ∈ Aut0(HN )
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such that F∗∗
p := τ ∗∗

p ◦ Fp satisfies the following normalization:

f ∗∗
p = z+ i

2
a∗∗(1)

p (z)w+owt (3), φ∗∗
p =φ∗∗

p
(2)

(z) + owt (2), g∗∗
p =w+owt (4), with

〈z, a∗∗(1)
p (z)〉|z|2 = |φ∗∗

p
(2)

(z)|2.

Definition 2.2 [19] Write A(p) = −2i(
∂2( f ∗∗

p )l

∂z j ∂w
|0)1≤ j,l≤(n−1) in the above lemma.

We call the rank of the (n − 1) × (n − 1) matrix A(p), which we denote by RkF (p),
the geometric rank of F at p.

Define the geometric rank of F to be κ0(F) = max p∈∂Hn RkF (p). Define the
geometric rank of a proper holomorphic map B

n into B
N , that is C2-smooth up to the

boundary, to be the one for the map ρ−1
N ◦ F ◦ρn . By [19], κ0(F) depends only on the

equivalence class of F and when N <
n(n+1)

2 , κ0(F) ≤ n − 2. In [22], the authors
proved the following normalization theorem for maps with geometric rank bounded
by n − 2, though only part of it is needed later:

Theorem 2.3 [22] Suppose that F is a rational proper holomorphic map from Hn

into HN , which has geometric rank 1 ≤ κ0 ≤ n − 2 with F(0) = 0. Then there are
σ ∈ Aut(Hn) and τ ∈ Aut(HN ) such that τ ◦ F ◦ σ takes the following form, which
is still denoted by F = ( f, φ, g) for convenience of notation:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

fl = ∑κ0
j=1 z j f ∗

l j (z, w), l ≤ κ0,

f j = z j , κ0 + 1 ≤ j ≤ n − 1,

φlk = μlk zl zk + ∑κ0
j=1 z jφ

∗
lk j , (l, k) ∈ S0,

φlk = ∑κ0
j=1 z jφ

∗
lk j = Owt (3), (l, k) ∈ S1,

g = w,

f ∗
l j (z, w) = δ

j
l + iδ j

l μl
2 w + b(1)

l j (z)w + Owt (4), 1 ≤ l ≤ κ0, μl > 0,

φ∗
lk j (z, w) = Owt (2), (l, k) ∈ S1.

(2.3)

Here, for 1 ≤ κ0 ≤ n − 2, we write S = S0 ∪ S1, the index set for all components of
φ, where S0 = {( j, l) : 1 ≤ j ≤ κ0, 1 ≤ l ≤ n − 1, j ≤ l} and S1 = {( j, l) : j =
κ0 + 1, κ0 + 1 ≤ l ≤ N − n − (2n−κ0−1)κ0

2 }. Also, μ jl = √
μ j + μl f or j < l ≤ κ0;

and μ jl = √
μ j if j ≤ κ0 < l or if j = l ≤ κ0.

Finally, we recall the following lemma of the first author in [18], which will play a
fundamental role in our proof:

Lemma 2.4 (Huang, Lemma 3.2 [18]) Let k be a positive integer such that 1 ≤ k ≤
n − 2. Assume that a1, . . . , ak, b1, . . . , bk are germs at 0 ∈ C

n−1 of holomorphic
functions such that a j (0) = 0, b j (0) = 0 and

k∑

i=1

ai (z)bi (z) = A(z, z̄)|z|2, (2.4)
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where A(z, z̄) is a germ at 0 ∈ C
n−1 of a real analytic function. Then A(z, z̄) =∑k

i=1 ai (z)bi (z) ≡ 0.

3 Analysis on the Chern–Moser equation

Suppose now that F = ( f, φ, g) is a proper rational map from Hn into HN , and satisfies
the normalization as in Theorem 2.3 with 1 ≤ κ0 ≤ n −2. Write the codimension part
φ of the map F as φ := (�0,�1) with �0 = (φ�k)(�,k)∈S0 and �1 = (φ�k)(�,k)∈S1 .

Write

�
(1,1)
0 (z) =

κ0∑

j=1

e j z j , �
(1,1)
1 (z) =

κ0∑

j=1

ê j z j ,

with e j ∈ C
#(S0) = C

κ0n− κ0(κ0+1)

2 , ê j ∈ C
#(S1), ξ j (z) = e j · �

(2,0)
0 (z), and ξ =

(ξ1, . . . , ξκ0). We also write in the following:

φ(1,1)(z)w =
∑

e∗
j z jw, with e∗

j = (e j , ê j ),

H =
∑

(i1,...,in−1,in)

H (i1,...,in)zi1
1 · · · zin−1

n−1w
in

=
∞∑

k, j=0

H (k, j)(z)w j for H = f or φ.

Here H (k, j)(z) is a homogeneous polynomial of degree k in z.
In this section, we demonstrate our basic idea of the proof through an easier case.

We proceed with the following lemma, that will be used later:

Lemma 3.1 Let (�
[h]
j (z))1≤ j≤κ0,h=1,2 be some holomorphic functions of z. Let μ jl

and μ j be as in Theorem 2.3. Suppose that for h = 1, 2, (�
[h]
j� )( j,�)∈S0 are defined as

follows:

1. μ j��
[h]
j� (z) = 2i(z j�

[h]
� + z��

[h]
j ), j < � ≤ κ0,

2. μ j j�
[h]
j j (z) = 2i z j�

[h]
j (z), j ≤ κ0,

3. μ j��
[h]
j� = 2i z��

[h]
j (z), j ≤ κ0 < �.

Then we have

∑

( j,�)∈S0

�
[1]
j� �

[2]
j� = 4|z|2

( ∑

j≤κ0

1

μ j
�

[1]
j �

[2]
j

)

−
∑

j<�≤κ0

4

μ jμ�(μ j + μ�)

(
μ j z j�

[1]
� − μ�z��

[1]
j

)

·(μ j z j�
[2]
� − μ�z��

[2]
j

)
. (3.1)
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Proof Making use of the formulas between μ j� and μ j , μ� in Theorem 2.3, we get,
from a straightforward computation, the following:

1

4

∑

( j,�)∈S0

�
[1]
j� �

[2]
j� =

∑

1≤ j≤κ0

|z j |2
μ j

�
[1]
j �

[2]
j +

∑

j≤κ0<�

|z�|2
μ j

�
[1]
j �

[2]
j

+
∑

j<�≤κ0

1

μ j + μ�

(z j�
[1]
� + z��

[1]
j ) · (z j�

[2]
� + z��

[2]
j )

=
( ∑

j≤κ0

1

μ j
�

[1]
j �

[2]
j

)
|z|2 −

∑

�≤κ0,� �= j≤κ0

1

μ j
|z�|2�[1]

j �
[2]
j

+
∑

j<�≤κ0

1

μ j + μ�

(z j�
[1]
� + z��

[1]
j ) · (z j�

[2]
� + z��

[2]
j )).

Now the lemma follows from the following elementary identity:

μ j

μ�

|z j |2�[1]
� �

[2]
� + μ�

μ j
|z�|2�[1]

j �
[2]
j − z j�

[2]
� �

[1]
j z� − z j�

[1]
� �

[2]
j z�

= 1

μ jμ�

(
μ j z j�

[1]
� − μ�z��

[1]
j

) · (
μ j z j�

[2]
� − μ�z��

[2]
j

)
.

��
Next we derive the following formula:

Lemma 3.2

1

4
|�(3,0)

0 (z)|2 =
( ∑

j≤κ0

1

μ j
|ξ j (z)|2

)
|z|2

−
∑

j<�≤κ0

1

μ j + μ�

∣∣∣
√

μ j

μ�

z jξ� −
√

μ�

μ j
z�ξ j

∣∣∣
2
. (3.2)

Proof Since

− Im
(
g(z, w)

) + ∣
∣ f (z, w)

∣
∣2 + ∣

∣φ(z, w)
∣
∣2 = 0 over Im(w) = |z|2, (3.3)

we can consider terms of weighted degree 5 to get, over Im(w) = |z|2, the following

z f (4)(z, w) + z f (4)(z, w) + �
(2)
0 (z, w)�

(3)
0 (z, w) + �

(3)
0 (z, w)�

(2)
0 (z, w) = 0, or

z f (2,1)(z)(u+i |z|2)+z f (2,1)(z)(u + i |z|2)+�
(2)
0 (z)

(
�

(3,0)
0 (z)+(

∑
e j z j )w

)

+
(

�
(3,0)
0 (z) +

(∑
e j z j

)
w

)
�

(2)
0 (z) ≡ 0. (3.4)
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Here, we know f (4)(z, w) = f (2,1)(z)w by the above mentioned normalization. Col-
lecting terms of the form zαzβu with |α| = 1, |β| = 2, we get

z f (2,1)(z) + �
(2)
0 (z)

∑
e j z j = 0, or,

z f (2,1)(z) = −(z1, . . . , zκ0) · ξ(z). (3.5)

Collecting terms of the form zαzβ with |α| = 3 and |β| = 2, we get

i z f (2,1)(z)|z|2 + �
(2)
0 (z)�(3,0)

0 (z) + �
(2)
0 (z)

κ0∑

j=1

e j z j (i |z|2) ≡ 0. (3.6)

We thus get

�
(2)
0 (z)�(3,0)

0 (z) = 2i(z1, . . . , zκ0) · ξ(z)|z|2. (3.7)

Equivalently, we have

1. μ j�φ
(3,0)
j� (z) = 2i(z jξ�(z) + z�ξ j (z)), j < � ≤ κ0,

2. μ j jφ
(3,0)
j j (z) = 2i z jξ j (z), j ≤ κ0,

3. μ j�φ
(3,0)
j� (z) = 2i z�ξ j (z), j ≤ κ0 < �.

Now Lemma 3.2 follows from Lemma 3.1. ��
Lemma 3.3 |φ(3,0)(z)|2 = A(z, z)|z|2 with A(z, z) a real analytic polynomial in
(z, z).

Proof Collecting terms of weighted degree 6 in (3.3), we get

z f (5)(z, w) + z f (5)(z, w) + �
(2)
0 (z, w) · �

(4)
0 (z, w) + �

(2)
0 (z, w) · �

(4)
0 (z, w)

+|φ(3)(z, w)|2 + | f (3)(z, w)|2 = 0 over Im(w) = |z|2. (3.8)

Collecting terms of the form zαzβ with |α| = |β| = 3 and applying the normalization
for F , we easily see the proof (cf., (4.14) below). ��

Notice that |φ(3,0)(z)|2 = |�(3,0)
0 (z)|2 + |�(3,0)

1 (z)|2 and there are κ0(κ0+1)
2 − κ0

negative terms in the right hand side of (3.2). Also there are (N −(κ0 +1)n+ κ0(κ0+1)
2 )

components in �1. Applying Lemma 2.4 and [8, Proposition 3 on page 102 of], we
immediately get, after applying a unitary transformation to the �1-components, the
following:

Corollary 3.4 Suppose that κ0 ≥ 2 and (κ0 + 1)n − κ0 ≤ N ≤ (κ0 + 2)n − κ0(κ0 +
1) + κ0 − 2. Then
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�
(3,0)
1 (z) =

( 2√
μ j + μl

(√
μ j

μ�

z jξ� −
√

μ�

μ j
z�ξ j

)
, 0′)1≤ j<l≤κ0 ,

|φ(3,0)(z)|2 = 4

⎛

⎝
∑

j≤κ0

1

μ j
|ξ j (z)|2

⎞

⎠ |z|2. (3.9)

Here we notice that the condition N ≥ (κ0 + 1)n − κ0 implies that N > #(S0) + n
for κ0 > 1.

4 Partial linearity and further applications of the Chern–Moser equation

We assume in this section that the proper rational map F = ( f, φ, g) from Hn into
HN satisfies the normalization as in Theorem 2.3 with κ0 = 2. Moreover, by what
is done in the last section, we assume that �

(3,0)
1 (z) has been normalized to take the

form as in Corollary 3.4. Namely, the only possible non-zero element in �
(3,0)
1 (z) is

φ
(3,0)
33 (z).

In this section, we prove the following result, which will be crucial for our proof
of Theorem 1.1:

Theorem 4.1 Assume that F is as in Theorem 2.3 with κ0 = 2, n ≥ 7 and 3n − 2 ≤
N ≤ 4n − 6. Also, assume that �

(3,0)
1 (z) is normalized as in Corollary 3.4. Then the

following holds:

(1): �
(4,0)
1 (z) = (φ

(4,0)
33 (z), 0, . . . , 0), where

φ
(4,0)
33 (z) = 2√

μ1 + μ2

(√
μ1

μ2
z1η

∗
2 −

√
μ2

μ1
z2η

∗
1

)
,

η∗
1 = φ(3,0)(z) · e∗

1, η∗
2 = φ(3,0)(z) · e∗

2 .

(2): Dα
z �

(2,1)
1 (z) ∈ span{(1, 0, . . . , 0), ê1, ê2} for |α| = 2.

(3): Dα
z �

(1,2)
1 (z) ∈ span{ê1, ê2} for |α| = 1.

Here ê1, ê2, e∗
1, e∗

2, are defined as at the beginning of the last section, and D is the
regular differential operator.

This section is devoted to the proof of Theorem 4.1.
Notice that g = w. By the partial linearity theorem of the first author proved in

[19], we can assume that for any ε = (ε1, ε2)(∈ C
2) ≈ 0, there is a unique affine

subspace Lε of codimension two defined by equations of the form:

z1 =
n−1∑

i=3

ai (ε)zi + an(ε)w + ε1,

z2 =
n−1∑

i=3

bi (ε)zi + bn(ε)w + ε2, ai (0) = bi (0) = 0 (4.1)
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such that F is a linear map on Lε . Here a j , b j are holomorphic functions in ε near 0.
Hence we have

∂2 H

∂w2

∣∣∣
Lε

= 0 for H = f or φ.

Namely, for H(Lε) = H
( ∑n−1

i=3 ai (ε)zi + an(ε)w + ε1,
∑n−1

i=3 bi (ε)zi + bn(ε)w +
ε2, z3, . . . , zn−1, w

)
, we have

0 = ∂2 H(Lε)

∂w2

∣∣∣
(ε1,ε2)

=
(∂2 H

∂z2
1

a2
n + ∂2 H

∂z2
2

b2
n + 2

∂2 H

∂z1∂z2
anbn + 2

∂2 H

∂z1∂w
an

+2
∂2 H

∂z2∂w
bn + ∂2 H

∂w2

)∣
∣∣
(ε1,ε2,0,...,0)

. (4.2)

Let a(1)
n (ε) and b(1)

n (ε) be the linear parts in an and bn , respectively. Set H = f1, f2
and φ in (4.2), respectively. We then get

i

2
μ1a(1)

n (ε) + f (1,2)
1 (ε, 0, . . . , 0) = 0,

i

2
μ2b(1)

n (ε) + f (1,2)
2 (ε, 0, . . . , 0) = 0,

φ(1,2)(ε, 0, . . . , 0) + e∗
1a(1)

n (ε) + e∗
2b(1)

n (ε) = 0. (4.3)

Notice that by Theorem 2.3, F (1,m)(z) depends only on (z1, z2) for any m. It then
follows:

φ(1,2)(ε, 0, . . . , 0) = −e∗
1a(1)

n (ε) − e∗
2b(1)

n (ε)

= − 2i

μ1
f (1,2)
1 (ε, 0, . . . , 0)e∗

1 − 2i

μ2
f (1,2)
2 (ε, 0, . . . , 0)e∗

2 . (4.4)

This proves Theorem 4.1 (3). Moreover, we obtain

�
(1,2)
0 (z) · �

(2,0)
0 (z) = 2i

μ1
f (1,2)
1 (z)e1 · �

(2,0)
0 (z) + 2i

μ2
f (1,2)
2 (z)e2 · �

(2,0)
0 (z)

= 2i

μ1
( f (I1+2In)

1 z1 + f (I2+2In)
1 z2)ξ1

+ 2i

μ2
( f (I1+2In)

2 z1 + f (I2+2In)
2 z2)ξ2. (4.5)

Here and in what follows, write I j = (0, . . . , 0, 1, 0, . . . , 0) ∈ Z
n , where the non-zero

element 1 is in the j th-position. From (4.5), we also have
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�
(I1+2In)
0 · �

(2,0)
0 (z) = 2i

(
ξ1

μ1
f (I1+2In)
1 + ξ2

μ2
f (I1+2In)
2

)

�
(I2+2In)
0 · �

(2,0)
0 (z) = 2i

(
ξ1

μ1
f (I2+2In)
1 + ξ2

μ2
f (I2+2In)
2

)
, (4.6)

and the following:

2i

(
ξ1

μ1
�

(I1+2In)
0 · �

(2,0)
0 (z) + ξ2

μ2
�

(I2+2In)
0 · �

(2,0)
0 (z)

)

= −4ξ1

μ1
·
(

ξ1

μ1
f (I1+2In)
1 + ξ2

μ2
f (I1+2In)
2

)
+ −4ξ2

μ2

(
ξ1

μ1
f (I2+2In)
1 + ξ2

μ2
f (I2+2In)
2

)

= −4
ξ1

μ1

(
f (I1+2In)
1

ξ1

μ1
+ f (I2+2In)

1
ξ2

μ2

)
− 4

ξ2

μ2

(
f (I1+2In)
2

ξ1

μ1
+ f (I2+2In)

2
ξ2

μ2

)
.

(4.7)

Considering terms of weighted degree 6 in the basic Eq. (3.3), we get

2Re
{

z f (5)(z, w) + �
(2)
0 (z, w) · �

(4)
0 (z, w)

}

+∣∣ f (3)(z, w)
∣∣2 + ∣∣φ(3)(z, w)

∣∣2 = 0 (4.8)

over Im(w) = |z|2. Namely, we have

2Re
{

z
(

f (3,1)(z)(u + i |z|2) + f (1,2)(z)(u + i |z|2)2
)

+�
(2,0)
0 (z)

(
�

(4,0)
0 (z) + �

(2,1)
0 (z)(u + i |z|2)

)}
+ ∣∣ f (1,1)(z)(u + i |z|2)∣∣2

+∣∣φ(3,0)(z) + φ(1,1)(z)(u + i |z|2)∣∣2 = 0. (4.9)

Here we notice that the f (5,0)(z) term is not involved (cf. [22, Lemma 2.3(A)]).
Collecting terms of the form zαzβu2 with |α| = 1, |β| = 1, we get

2Re
(
z f (1,2)(z)

) + | f (1,1)(z)|2 + |φ(1,1)(z)|2 = 0. (4.10)

Collecting terms of the form zαzβu with |α| = 3, |β| = 1, we get

z f (3,1)(z) + φ(3,0)(z) · φ(1,1)(z) = 0. (4.11)

Collecting terms of the form zαzβu with |α| = 2, |β| = 2, we get

2Re
(

2i z f (1,2)(z)|z|2 + �
(2,0)
0 (z) · �

(2,1)
0 (z)

)
= 0. (4.12)

Collecting terms of the form zαzβ with |α| = 4, |β| = 2, we get

i |z|2z f (3,1)(z) + �
(2,0)
0 (z) · �

(4,0)
0 (z) − i |z|2φ(1,1)(z) · φ(3,0)(z) = 0. (4.13)
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Collecting terms of the form zαzβ with |α| = 3, |β| = 3, we get

2Re
(

− z f (1,2)(z)|z|4 + i |z|2�(2,0)
0 (z) · �

(2,1)
0 (z)

)

+|z|4 · | f (1,1)(z)|2 + |φ(3,0)(z)|2 + |z|4 · |φ(1,1)(z)|2 = 0. (4.14)

Combining (4.11) with (4.13), we get

�
(2,0)
0 (z) · �

(4,0)
0 (z) = 2i |z|2φ(1,1)(z) · φ(3,0)(z). (4.15)

Substituting (4.10) into (4.14), we get

2Re
(

− 2z f (1,2)(z)|z|2 + i�(2,0)
0 (z) · �

(2,1)
0 (z)

)
|z|2 + |φ(3,0)(z)|2 = 0. (4.16)

Combining (4.12) with (4.16), we get

2
(

− 2z f (1,2)(z)|z|2 + i�(2,0)
0 (z) · �

(2,1)
0 (z)

)
|z|2 + |φ(3,0)(z)|2 = 0. (4.17)

Recall that in Corollary 3.4, we have obtained

|φ(3,0)(z)|2 = 4|z|2
( |ξ1|2

μ1
+ |ξ2|2

μ2

)
. (4.18)

Hence we have

2
(

− 2z f (1,2)(z)|z|2 + i�(2,0)
0 (z) · �

(2,1)
0 (z)

)
+ 4

( |ξ1|2
μ1

+ |ξ2|2
μ2

)
= 0. (4.19)

Notice that |ξi |2 = ξiξi = ξi ei · �
(2,0)
0 (z). Set

φ̃(2,1)(z) = φ(2,1)(z) − 2i
2∑

j=1

ξ j

μ j
e∗

j , �̃
(2,1)
0 (z) = �

(2,1)
0 (z) − 2i

2∑

j=1

ξ j

μ j
e j . (4.20)

Then we have

�
(2,0)
0 (z) · �̃

(2,1)
0 (z) = −2i |z|2z · f (1,2)(z). (4.21)

Recall f j = z j for 3 ≤ j ≤ n −1 so that z · f (1,2)(z) = (z1, z2) ·( f (1,2)
1 (z), f (1,2)

2 (z))
and thus we get
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�̃
(2,1)
11 (z)= −2i√

μ1
z1 f (1,2)

1 (z), �̃
(2,1)
12 (z)= −2i√

μ1 + μ2

(
z1 f (1,2)

2 (z) + z2 f (1,2)
1 (z)

)
,

�̃
(2,1)
22 (z)= −2i√

μ2
z2 f (1,2)

2 (z),

�̃
(2,1)
1 j (z)= −2i√

μ1
z j f (1,2)

1 (z), �̃
(2,1)
2 j (z)= −2i√

μ2
z j f (1,2)

2 (z) with j ≥ 3.

(4.22)

Making use of Lemma 3.1, we get

|�̃(2,1)
0 (z)|2 = 4|z|2

2∑

j=1

1

μ j
| f (1,2)

j (z)|2

− 4

μ1μ2(μ1 + μ2)

∣
∣μ1z1 f (1,2)

2 (z) − μ2z2 f (1,2)
1 (z)

∣
∣2

, (4.23)

and

�̃
(2,1)
0 (z)�(3,0)

0 (z) = −4|z|2
2∑

j=1

1

μ j
f (1,2)

j (z)ξ j

+ 4

μ1μ2(μ1 + μ2)

(
μ1z1 f (1,2)

2 (z) − μ2z2 f (1,2)
1 (z)

)

·
(
μ1z1ξ2 − μ2z2ξ1

)
. (4.24)

Notice that if we replace z1, z2 by ξ1
μ1

,
ξ2
μ2

, respectively, in (4.10), we get

2Re
{ ξ1

μ1

(
f (I1+2In)
1

ξ1

μ1
+ f (I2+2In)

1
ξ2

μ2

)
+ ξ2

μ2

(
f (I1+2In)
2

ξ1

μ1
+ f (I2+2In)

2
ξ2

μ2

)}

+1

4
(|ξ1|2 + |ξ2|2) + | ξ1

μ1
e∗

1 + ξ2

μ2
e∗

2 |2 = 0. (4.25)

Here we have used f (1,1)
j (z) = i

2μ j z j for j = 1, 2. Combining this with (4.7), we
get

−2Re
{

2i
( ξ1

μ1
�

(I1+2In)
0 + ξ2

μ2
�

(I2+2In)
0

)
· �

(2,0)
0 (z)

}

+(|ξ1|2 + |ξ2|2) + 4
∣∣ ξ1

μ1
e∗

1 + ξ2

μ2
e∗

2

∣∣2 = 0. (4.26)

Considering terms of weighted degree 7 in the basic Eq. (3.3), we get

2Re
{

z f (6)(z, w) + f (3)(z, w) f (4)(z, w) + �
(2)
0 (z, w)�

(5)
0 (z, w)

+φ(3)(z, w)φ(4)(z, w)
}

= 0 (4.27)
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over Im(w) = |z|2. Namely, we have

2Re
{

z
(

f (4,1)(z)(u + i |z|2) + f (2,2)(z)(u + i |z|2)2
)

+ f (1,1)(z)(u + i |z|2) · f (2,1)(z)

·(u + i |z|2) + �
(2,0)
0 (z)

(
�

(5,0)
0 (z) + �

(3,1)
0 (z)(u + i |z|2) + �

(1,2)
0 (z)(u + i |z|2)2

)

+(
φ(3,0)(z) + φ(1,1)(z)(u + i |z|2)) · (

φ(4,0)(z) + φ(2,1)(z)(u + i |z|2))
}

= 0. (4.28)

Here we notice that the f (6,0)(z) term is not involved (cf. [22, Lemma 2.3(A)]).
Collecting terms of the form zαzβu2 with |α| = 2, |β| = 1, we get

z f (2,2)(z) + f (1,1)(z) · f (2,1)(z)

+�
(1,2)
0 (z) · �

(2,0)
0 (z) + φ(1,1)(z) · φ(2,1)(z) = 0. (4.29)

Collecting terms of the form zαzβu with |α| = 3, |β| = 2, we get

2i z|z|2 f (2,2)(z) + �
(2,0)
0 (z) · �

(3,1)
0 (z) − 2i |z|2�(1,2)

0 (z) ·
�

(2,0)
0 (z) + φ(2,1)(z) · φ(3,0)(z) = 0. (4.30)

Collecting terms of the form zαzβ with |α| = 4, |β| = 3, we get

−z f (2,2)(z)|z|4 + f (1,1)(z) · f (2,1)(z)|z|4 + i |z|2�(2,0)
0 (z) · �

(3,1)
0 (z) − |z|4

�
(1,2)
0 (z) · �

(2,0)
0 (z) + φ(3,0)(z) · φ(4,0)(z) − i |z|2φ(2,1)(z) · φ(3,0)(z)

+|z|4φ(1,1)(z) · φ(2,1)(z) = 0. (4.31)

By calculating (4.31)−|z|4·(4.29), we get

−2z f (2,2)(z)|z|4 + i |z|2�(2,0)
0 (z)�(3,1)

0 (z) − 2|z|4�(1,2)
0 (z) · �

(2,0)
0 (z)

+φ(3,0)(z) · φ(4,0)(z) − i |z|2φ(2,1)(z) · φ(3,0)(z) = 0. (4.32)

By calculating (4.32)−i |z|2(4.30), we get

φ(3,0)(z) · φ(4,0)(z) = 4|z|4�(1,2)
0 (z) · �

(2,0)
0 (z) + 2i |z|2φ(2,1)(z) · φ(3,0)(z). (4.33)

Combining this with (4.30), we get

φ(3,0)(z) · φ(4,0)(z) = −2i |z|2
(

2i |z|2z f (2,2)(z) + �
(2,0)
0 (z) · �

(3,1)
0 (z)

)
. (4.34)
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By (4.15), we have

μ11 · �
(4,0)
11 (z) = 2i z1φ

(3,0)(z) · e∗
1,

μ12 · �
(4,0)
12 (z) = 2i z1φ

(3,0)(z) · e∗
2 + 2i z2φ

(3,0)(z) · e∗
1,

μ22 · �
(4,0)
22 (z) = 2i z2φ

(3,0)(z) · e∗
2,

μ1 j · �
(4,0)
1 j (z) = 2i z jφ

(3,0)(z) · e∗
1, j ≥ 3,

μ2 j · �
(4,0)
2 j (z) = 2i z jφ

(3,0)(z) · e∗
2, j ≥ 3. (4.35)

Write

η∗
1 = φ(3,0)(z) · e∗

1, η∗
2 = φ(3,0)(z) · e∗

2; η1 = �
(3,0)
0 (z) · e1, η2 = �

(3,0)
0 (z) · e2.

Making use of Lemma 3.1, we get

�
(3,0)
0 (z)�(4,0)

0 (z) = 4|z|2
(ξ1η

∗
1

μ1
+ ξ2η

∗
2

μ2

)
− 4

μ1 + μ2

(√
μ2

μ1
z2ξ1 −

√
μ1

μ2
z1ξ2

)

·
(√

μ2

μ1
z2η

∗
1 −

√
μ1

μ2
z1η

∗
2

)
. (4.36)

Combining (4.34) with (4.36) and making use of Lemma 2.4, we get

�
(3,0)
1 (z)�(4,0)

1 (z) = 4

μ1 + μ2

(√
μ2

μ1
z2ξ1 −

√
μ1

μ2
z1ξ2

)
·
(√

μ2

μ1
z2η

∗
1 −

√
μ1

μ2
z1η

∗
2

)
.

Now, by Corollary 3.4, we have

φ
(4,0)
33 (z) = 2√

μ1 + μ2

(√
μ1

μ2
z1η

∗
2 −

√
μ2

μ1
z2η

∗
1

)
. (4.37)

Moreover

2i

(
ξ1η

∗
1

μ1
+ ξ2η

∗
2

μ2

)
= 2i |z|2z f (2,2)(z) + �

(2,0)
0 (z) · �

(3,1)
0 (z). (4.38)

Write

φ̃(3,1)(z) = φ(3,1)(z) − 2i

(
η∗

1

μ1
e∗

1 + η∗
2

μ2
e∗

2

)
,

�̃
(3,1)
0 (z) = �

(3,1)
0 (z) − 2i

(
η∗

1

μ1
e1 + η∗

2

μ2
e2

)
.

(4.39)

Then we have

�
(2,0)
0 (z)�̃0

(3,1)
(z) = −2i |z|2z f (2,2)(z).
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Hence, we get

μ11 · �̃
(3,1)
11 (z) = −2i z1 f (2,2)

1 (z),

μ12 · �̃
(3,1)
12 (z) = −2i

(
z1 f (2,2)

2 (z) + z2 f (2,2)
1 (z)

)
,

μ22 · �̃
(3,1)
22 (z) = −2i z2 f (2,2)

2 (z),

μ1 j · �̃
(3,1)
1 j (z) = −2i z j f (2,2)

1 (z), j ≥ 3,

μ2 j · �̃
(3,1)
2 j (z) = −2i z j f (2,2)

2 (z), j ≥ 3.

(4.40)

By Lemma 3.1, we have

�
(3,0)
0 (z)�̃(3,1)

0 (z) = −4|z|2
( ξ1

μ1
f (2,2)
1 (z) + ξ2

μ2
f (2,2)
2 (z)

)

+ 4

μ1 + μ2

(√
μ1

μ2
z1ξ2 −

√
μ2

μ1
z2ξ1

)

·
(√

μ1

μ2
z1 f (2,2)

2 (z) −
√

μ2

μ1
z2 f (2,2)

1 (z)
)
. (4.41)

Notice that

�
(3,0)
0 (z) · 2i

(
η∗

1

μ1
e1 + η∗

2

μ2
e2

)
= 2i

(
η∗

1

μ1
η1 + η∗

2

μ2
η2

)
. (4.42)

Hence

�
(3,0)
0 (z)�(3,1)

0 (z)

= 2i
( η∗

1

μ1
η1 + η∗

2

μ2
η2

)
− 4|z|2

( ξ1

μ1
f (2,2)
1 (z) + ξ2

μ2
f (2,2)
2 (z)

)

+ 4

μ1 + μ2

(√
μ1

μ2
z1ξ2 −

√
μ2

μ1
z2ξ1

)

·
(√

μ1

μ2
z1 f (2,2)

2 (z) −
√

μ2

μ1
z2 f (2,2)

1 (z)
)
. (4.43)

Combining (4.33) with (4.36) and making use of Lemma 2.4 and Corollary 3.4
again, we get

4|z|2�(1,2)
0 (z) · �

(2,0)
0 (z)+2iφ(2,1)(z) · φ(3,0)(z)=4

(
1

μ1
ξ1η

∗
1 + 1

μ2
ξ2η

∗
2

)
. (4.44)

Namely, we have

|z|2 A(z, z) + 2i φ̃(2,1)(z) · φ(3,0)(z) = 0. (4.45)
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Here, as before, we write A(z, z) for a real analytic function which may be different
in different contexts.

Combining (4.24) with (4.45) and making use of Lemma 2.4 and Corollary 3.4, we
get

φ̃
(2,1)
33 (z) = −2√

μ1 + μ2

(√
μ1

μ2
z1 f (1,2)

2 (z) −
√

μ2

μ1
z2 f (1,2)

1 (z)
)
. (4.46)

Next we will prove that φ
(4,0)
3 j (z) = 0, φ̃

(2,1)
3 j (z) = 0 for j = 4, . . . , K with K =

N − n − (n − 1) − (n − 2).
Considering terms of weighted degree 8 in the basic Eq. (3.3), we get

2Re
{

z f (7)(z, w) + f (3)(z, w) f (5)(z, w) + �
(2)
0 (z, w)�

(6)
0 (z, w)

+φ(3)(z, w)φ(5)(z, w)
}

+ ∣
∣ f (4)(z, w)

∣
∣2 + ∣

∣φ(4)(z, w)
∣
∣2 = 0 (4.47)

over Im(w) = |z|2. Namely, we have

2Re
{

z
(

f (5,1)(z)(u + i |z|2) + f (3,2)(z)(u + i |z|2)2 + f (1,3)(z)(u + i |z|2)3
)

+ f (1,1)(z)(u + i |z|2) ·
(

f (3,1)(z)(u + i |z|2) + f (1,2)(z)(u + i |z|2)2
)

+�
(2,0)
0 (z) ·

(
�

(6,0)
0 (z) + �

(4,1)
0 (z)(u + i |z|2) + �

(2,2)
0 (z)(u + i |z|2)2

)

+
(
φ(3,0)(z) + φ(1,1)(z)(u + i |z|2)

)

·
(
φ(5,0)(z) + φ(3,1)(z)(u + i |z|2) + φ(1,2)(z)(u + i |z|2)2

)}

+
∣∣∣ f (2,1)(z)(u + i |z|2)

∣∣∣
2 +

∣∣∣φ(4,0)(z) + φ(2,1)(z)(u + i |z|2)
∣∣∣
2 = 0. (4.48)

Here we notice that the f (7,0)(z) term is not involved (cf. [22, Lemma 2.3(A)]).
Collecting terms of the form zαzβ with |α| = 4, |β| = 4, we get

2Re
{

− i z f (1,3)(z)|z|6 − f (1,1)(z)(−i |z|2) f (1,2)(z)|z|4 + �
(2,0)
0 (z)�(2,2)

0 (z)(−|z|4)
+φ(3,0)(z)φ(3,1)(z)i |z|2 + φ(1,1)(z)(−i |z|2)φ(1,2)(z)(−|z|4)

}

+∣
∣φ(4,0)(z)

∣
∣2 + (∣∣ f (2,1)(z)

∣
∣2 + ∣

∣φ(2,1)(z)
∣
∣2)|z|4 = 0. (4.49)

Collecting terms of the form zαzβu2 with |α| = 2, |β| = 2, we get

2Re
{

z f (1,3)(z)3i |z|2 + f (1,1)(z) f (1,2)(z)i |z|2 + �
(2,0)
0 (z)�(2,2)

0 (z)

+ φ(1,1)(z)φ(1,2)(z)i |z|2
}

+ (∣∣ f (2,1)(z)
∣∣2 + ∣∣φ(2,1)(z)

∣∣2) = 0. (4.50)
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Collecting terms of the form zαzβu with |α| = 3, |β| = 3, we get

2Re
{

z f (1,3)(z)3(−|z|4) + f (1,1)(z) f (1,2)(z)|z|4 + �
(2,0)
0 (z)�(2,2)

0 (z)2i |z|2

+φ(3,0)(z)φ(3,1)(z) + φ(1,1)(z)φ(1,2)(z)|z|4
}

= 0. (4.51)

By (4.49) and (4.50), we get

|z|2 · 2Re
{

− 4i z f (1,3)(z)|z|4 − 2�
(2,0)
0 (z)�(2,2)

0 (z)(|z|2)
+iφ(3,0)(z)φ(3,1)(z)

}
+ ∣∣φ(4,0)(z)

∣∣2 = 0. (4.52)

Combining this with (4.51), we get

|z|6 A(z, z) + 2|z|2 · ( − 2�
(2,0)
0 (z)�(2,2)

0 (z)(|z|2) + iφ(3,0)(z)φ(3,1)(z)
)

+∣∣φ(4,0)(z)
∣∣2 = 0. (4.53)

By (4.35) and Lemma 3.1, we get

1

4

∣∣�(4,0)
0 (z)

∣∣2 = |z|2
(

1

μ1
|η∗

1|2 + 1

μ2
|η∗

2|2
)

− 1

μ1 + μ2

∣∣
√

μ2

μ1
z2η

∗
1 −

√
μ1

μ2
z1η

∗
2

∣∣2
. (4.54)

Combining this with (4.53) and making use of Lemma 2.4, we get

|z|4 A(z, z) − 4|z|2�(2,0)
0 (z)�(2,2)

0 (z) + 2iφ(3,0)(z)φ(3,1)(z)

+ 4

μ1
|η∗

1|2 + 4

μ2
|η∗

2|2 = 0, (4.55)

and

1

4
|�(4,0)

1 (z)|2 = 1
μ1+μ2

∣∣
√

μ2
μ1

z2η
∗
1 −

√
μ1
μ2

z1η
∗
2

∣∣2
. (4.56)

By (4.37) and (4.56), we get

φ
(4,0)
33 (z) = 2√

μ1 + μ2

(√
μ1

μ2
z1η

∗
2 −

√
μ2

μ1
z2η

∗
1

)
,

φ
(4,0)
3 j (z) = 0 for j > 3. (4.57)

This proves Theorem 4.1 (1).
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Substituting (4.43) into (4.55), we get

|z|4 A(z, z) − 4|z|2�(2,0)
0 (z)�(2,2)

0 (z) + 2i�(3,0)
1 (z)�(3,1)

1 (z)

−8i |z|2
(

ξ1

μ1
f (2,2)
1 (z) + ξ2

μ2
f (2,2)
2 (z)

)
+ 8i

μ1+μ2

(√
μ1

μ2
z1ξ2−

√
μ2

μ1
z2ξ1

)

·
(√

μ1

μ2
z1 f (2,2)

2 (z)−
√

μ2

μ1
z2 f (2,2)

1 (z)

)
+ 4

μ1
η∗

1(η∗
1 − η1)+ 4

μ2
η∗

2(η∗
2 − η2)=0.

(4.58)

Notice that �
(3,0)
1 (z) = (φ

(3,0)
33 (z), 0, . . . , 0) and n ≥ 7. Making use of Lemma 2.4,

we get

�
(2,0)
0 (z)�(2,2)

0 (z) = −2i
( ξ1

μ1
f (2,2)
1 (z) + ξ2

μ2
f (2,2)
2 (z)

) + |z|2 A(z, z). (4.59)

By (4.29), we have

f (2,2)
1 (z) = i

2
μ1 f (2,1)

1 (z) − �
(I1+2In)
0 �

(2,0)
0 (z) − e∗

1φ(2,1)(z),

f (2,2)
2 (z) = i

2
μ2 f (2,1)

2 (z) − �
(I2+2In)
0 �

(2,0)
0 (z) − e∗

2φ(2,1)(z).
(4.60)

Thus we get

2Re
{

− 2i
( ξ1

μ1
f (2,2)
1 (z) + ξ2

μ2
f (2,2)
2 (z)

)} = I + I I + I I I. (4.61)

Here

I = 2Re
{

− 2i
( ξ1

μ1

i

2
μ1(−ξ1) + ξ2

μ2

i

2
μ2(−ξ2)

)}
= −2(|ξ1|2 + |ξ2|2).

I I = 2Re
(

2i
ξ1

μ1
�

(I1+2In)
0 �

(2,0)
0 (z) + 2i

ξ2

μ2
�

(I2+2In)
0 �

(2,0)
0 (z)

)

= (|ξ1|2 + |ξ2|2) + 4
∣∣ ξ1

μ1
e∗

1 + ξ2

μ2
e∗

2

∣∣2
.

I I I = 2Re
(

2i
ξ1

μ1
e∗

1φ(2,1)(z) + 2i
ξ2

μ2
e∗

2φ(2,1)(z)
)
.

(4.62)

The equality for I follows from (3.5) and I I follows from (4.26). By (4.50), we get

|z|2 A(z, z)+2Re
(
�

(2,0)
0 (z)�(2,2)

0 (z)
)+(∣∣ f (2,1)(z)

∣∣2+∣∣φ(2,1)(z)
∣∣2)=0. (4.63)
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Substituting (3.5), (4.59), (4.61) and (4.62) into (4.63), we get

|z|2 A(z, z) − 2(|ξ1|2 + |ξ2|2) + (|ξ1|2 + |ξ2|2) + 4
∣∣ ξ1

μ1
e∗

1 + ξ2

μ2
e∗

2

∣∣2

+2Re
(

2i
ξ1

μ1
e∗

1φ(2,1)(z) + 2i
ξ2

μ2
e∗

2φ(2,1)(z)
)

+(|ξ1|2 + |ξ2|2) + ∣∣φ(2,1)(z)
∣∣2 = 0. (4.64)

Hence we get

|z|2 A(z, z) +
∣∣∣φ(2,1)(z) − 2i

(
ξ1

μ1
e∗

1 + ξ2

μ2
e∗

2

) ∣∣∣
2 = 0. (4.65)

Substituting (4.23) into (4.65), we get

|z|2 A(z, z) +
∣∣∣�̃(2,1)

1 (z)
∣∣∣
2 − 4

μ1 + μ2

∣∣∣
√

μ1

μ2
z1 f (1,2)

2 (z)

−
√

μ2

μ1
z2 f (1,2)

1 (z)
∣∣∣
2 = 0. (4.66)

Making use of (4.46) and Lemma 2.4, we get

φ̃
(2,1)
33 (z) = −2√

μ1 + μ2

(√
μ1

μ2
z1 f (1,2)

2 (z) −
√

μ2

μ1
z2 f (1,2)

1 (z)
)
,

φ̃
(2,1)
3 j (z) = 0 for j > 3. (4.67)

By (4.20), the proof of Theorem 4.1 (2) is also complete.

5 Proof of Theorem 1.1

Step (I): An application of a normal form in [22] for maps with geometric rank 1: We
first consider F ∈ Rat (Bn, B

N ) with geometric rank 1. Then by Theorem 1.2 of [22],
F is equivalent to a map of the form � = (z1, . . . , zn−1, zn H(z)) := (φ1, . . . , φN )

with H ∈ Rat (Bn, B
N−n+1) also of geometric rank one. We first have the following:

Lemma 5.1 If H(Bn) is contained in an affine subspace of dimension m in C
N−n+1,

then F(Bn) is contained in an affine subspace of dimension m + n in C
N .

Proof Indeed, we first notice that linear fractional transformations map affine linear
subspaces to affine linear subspaces. Also, F(Bn) is contained in an affine subspace of
dimension m, if and only if F is equivalent to a map of the form (G, 0) with G having
m-components. Now suppose the image of H = (h1, . . . , hN−n+1) is contained in
an affine subspace of dimension m ≤ N − n, then there are (N − n − m + 1)

linearly independent vectors μ j = (a j1, . . . , a jk) with k = N − n + 1 such that
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∑k
l=1 a jlhl(z) ≡ c j for certain c j ∈ C. If c j = 0 for all j , then

∑k
l=1 a jlφn−1+l(z) ≡

0. Hence �(Bn) is contained in an affine linear subspace of dimension m + n − 1.
Otherwise, assume without loss of generality that c1 = 1. Then we have

∑k
l=1(a jl −

c j a1l)φn−1+l(z) ≡ 0. Notice that {μ2 − c2μ1, . . . , μN−n−m+1 − cN−n−m+1μ1} is
also linearly independent, we see that �(Bn) is contained in an affine subspace of
dimension m + n. This proves Lemma 5.1. ��

Applying the gap rigidity in [22] to H and Lemma 5.1, we see that when 3n + 1 ≤
N ≤ 4n − 5 and n ≥ 6, F(Bn) is contained in an affine linear subspace of dimension
3n. This proves Theorem 1.1 in case the map F has geometric rank one.

Indeed, by an induction argument, we see that when N < (k +1)n− k(k+1)
2 , F(Bn)

is contained in a linear affine subspace of dimension kn, if (k + 1)n − k(k+1)
2 > 0.

Step (II): Completion of the Proofs of Theorems 1.1: By Lemma 3.2 in [19], when
N ≤ 4n − 7, any F ∈ Rat (Bn, B

N ) can only have geometric rank κ0 = 0, 1, or 2.

When κ0 = 0, F is linear and thus Theorem 1.1 follows trivially. When κ0 = 1, the
proof of Theorem 1.1 is already done in Step (I). The case of Theorem 1.1 for maps
with geometric rank two is obviously a special case of the following Theorem 5.2.

Theorem 5.2 Let F be a proper rational map from Hn into HN with geometric rank
κ0 = 2. Assume that n ≥ 7 and 3n ≤ N ≤ 4n − 6. Then F is equivalent to a map of
the form (G, 0′) where G is a proper rational map from Hn into HN ′ with N ′ = 3n.

Since F is rational, by a result of Cima–Suffridge, the above F extends holomor-
phically across ∂Hn .

Let N be such that N ≤ 4n − 6. Let F be a proper rational holomorphic map from
Hn into HN with geometric rank κ0 = 2 and F(0) = 0. As mentioned in §2, we can
assume, without loss of generality, that F satisfies the normalization in Theorem 2.3.

Write L j = ∂
∂z j

− 2i z j
∂

∂w
for j = 1, . . . , n − 1, which form a basis of tangent

vector fields of type (1, 0) along ∂Hn . Let Lα be defined in the standard way. Notice

that for any smooth function h near 0, Lαh|0 = ∂ |α|
∂zα h|0 := Dα

z h|0.

Assume the normalization in Corollary 3.4 for F . Also assume that ϕ
(3,0)
33 (z) �≡ 0.

Then

span
|β|≤3

{Lβ F |0} = span{(0, . . . , 0, 1 j th, 0, . . . , 0),

1 ≤ j ≤ n + �S0 = n + (n − 1) + (n − 2) = 3n − 3}. (5.1)

Applying Theorem 4.1 (1), we see that

span
|β|≤4

{Lβ F |0} = span{(0, . . . , 0, 1 j th, 0, . . . , 0), 1 ≤ j ≤ n + �S0}. (5.2)

Hence

span
|β|≤4

{Lβ F |0} = span
|β|≤3

{Lβ F |0}. (5.3)
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Now, we proceed in a similar way as in [18], though the situation in [18] is harder
for the maps there are only assumed to be twice differentiable. Notice that we have
assumed that φ

(3,0)
33 (z) �≡ 0.

For any p ∈ Hn(≈ 0), there exist τp ∈ Aut0(HN ), σp ∈ Aut0(Hn) such that
G p = τp ◦ Fp ◦ σp satisfies the normalization condition in Theorem 2.3. Moreover,

we can also have the �
(3,0)
1 (z) coming from G p not identically zero, for we can

choose τp, σp to depend smoothly on p. Hence, after applying Up, a unitary matrix
transformation, to normalize the �1-part, we get the normalization as in Corollary 3.4
for the new map with the corresponding φ

(3,0)
33 (z) �≡ 0. Notice that for the new G p,

we have

span
|β|≤4

{LβG p|0} = span
|β|≤3

{LβG p|0}, or span
|β|≤4

{Dβ
z G p|0} = span

|β|≤3
{Dβ

z G p|0}. (5.4)

Also the dimension of the above space is n + �S0 for any p ≈ 0.
Still write τp for Up ◦ τp. Then Fp = τ−1

p ◦ G p ◦ σ−1
p . Now, for any |α| = 4, we

claim that

Dα
z (τ−1

p ◦ G p ◦ σ−1
p )|0 ∈ span

|β|≤3
{Dβ

z (τ−1
p ◦ G p ◦ σ−1

p )|0},

or Lα Fp|0 ∈ span
|β|≤3

{Lβ Fp|0}. (5.5)

Here, as defined before, Dα
z is the regular differentiation, with respect to z, of order

|α|.
Indeed, write

σ−1
p =

(
μ

z − aw

q(z, w)
A, μ2 w

q(z, w)

)
, τ−1

p =
(
μ̃

z̃ − ãw̃

q̃ (̃z, w̃)
Ã, μ̃2 w̃

q̃ (̃z, w̃)

)

with μ, μ̃ �= 0, A, Ã unitary matrices, q(0), q̃(0) = 1.
Write G p = (h(z, w),w). Then

Fp(z, 0) =
(

μ̃

q∗(z)
h(

μz

q(z, 0)
A, 0) Ã, 0

)
, (5.6)

for a certain holomorphic function q∗(z) with q∗(0) = 1. Now to show that for any
|α| = 4, Dα

z Fp(z, 0)|0 ∈ span|β|≤3{Dβ
z Fp(z, 0)|0}, it suffices to show that

Dα
z h

( μz

q(z, 0)
A, 0

)∣∣
0 ∈ span

|β|≤3

{
Dβ

z h
( μz

q(z, 0)
A, 0

)∣∣
0

}
.

Notice that

span
|α|≤k

{
Dα

z h
( μz

q(z, 0)
A, 0

)∣∣
0

} = span
|α|≤k

{
Dα

z h(z, 0)
∣∣
0

}
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and notice that [by (5.4)]

span
|α|≤4

{Dα
z h(z, 0)|0} = span

|α|≤3
{Dα

z h(z, 0)|0}.

We conclude that

span
|α|≤4

{Dα
z Fp(z, 0)|0} = span

|α|≤3
{Dα

z Fp(z, 0)|0}.

We thus arrive at a proof for the claim. Moreover, we also conclude from (5.6) that

dim
(

span
|α|≤3

{Dα
z Fp(z, 0)|0}

)
= dim

(
span
|α|≤3

{Dα
z G p(z, 0)|0}

)
= n + #S0.

Since Lα(Fp)|0 = Lα(F)(p), we get that for |α| = 4, Lα F(p) ∈ span|β|≤3
{Lβ F(p)}. Since span|β|≤3{Lβ F(p)} has a fixed dimension n + #S0 for p ≈ 0, we
can write, for any α, Lα F(p) as a smooth linear combination of a fixed (smoothly
varied) basis from span|β|≤3{Lβ F(p)}. Successively applying L j , Lk as in the proof
of [18, Lemma 4.3] to the so obtained expressions and using the bracket property for
such vector fields, we can obtain as in [18] that Dα F(0) ∈ span|β|≤3{Dβ F(0)} for
any multiple index α. Here Dα is the regular total differentiation (not just along the z-
directions) of order |α|. Thus F(z, w) ∈ span|β|≤3{Dβ F(0)} by the Taylor expansion
for (z, w) ≈ 0. Now, write as before, φ(1,1)(z)w = (e∗

1z1 + e∗
2z2)w. By Theorem 4.1

(2) (3), we see that span|β|≤3{Dβ F(0)} stays in the span of the following vectors:

{
(0, . . . , 0, 1 j th, 0, . . . , 0), (0, .., 0, 1), (0, 0, . . . , 0, ê1, 0),

(0, . . . , 0, . . . , 0, ê2, 0)
}
,

where 1 ≤ j ≤ (
(n − 1) + (n − 1) + (n − 2)

) + 1. Hence F(Hn) is contained in
a linear subspace with dimension equal to 3n − 3 + 2 + 1 = 3n. Hence, we see the
proof of Theorem 1.1 in this setting.

Now, if, for a certain p0 ≈ 0, the φ
(3,0)
33 (z) associated with Fp0 is not a zero

polynomial, then we can consider Fp0 instead of F and apply the above argument to
conclude the proof of Theorem 5.2. Finally, if after the normalization of Fp to the form

as in Corollary 3.4 for any p ≈ 0, we have �
(3,0)
1 (z) ≡ 0, then a similar method as

above shows that Lα F(p) ∈ span|β|≤2{Lβ F(p)} with dim
(

span|β|≤2{Lβ F(p)}
)

≡
n + #S0 − 1. Hence, F(Bn) is contained in a complex linear subspace of dimension

n + (n − 1) + (n − 2) + 2 = 3n − 1,
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spanned by

{
(0, . . . , 0, 1 j th, 0, . . . , 0), (0, .., 0, 1), (0, 0, . . . , 0, ê1, 0),

(0, . . . , 0, . . . , 0, ê2, 0)

}
,

where 1 ≤ j ≤ (n − 1) + (n − 1) + (n − 2). The proof of Theorem 1.1 is complete
now.

Remark A Consider the map defined in (1.1):
F = (

z1, . . . , zn−2, λzn−1, zn,
√

1 − λ2zn−1(z1, . . . , zn−1, μzn,
√

1 − μ2znz)
)
,

λ, μ ∈ (0, 1).

The map is apparently a proper monomial map from B
n into B

3n . Write F =
( f1, . . . , f3n). We claim that F is not equivalent to a map of the form (G, 0). Otherwise,
there are complex numbers {a j }3n

j=1, not all zeros, such that
∑3n

j=1 a j f j ≡ 0, which is
obviously impossible just by comparing the coefficients of degree 3, 2, 1, respectively.

The map F is of degree three. It has geometric rank two just by observing that the
largest dimension of the affine subspaces where F is linear is of codimension two.
(By a result in [19], this codimension is the same as the geometric rank of the map.)

As we discussed above, the span of the first and the second jets has dimension
3n − 1. That means we have one more independent element from the third jet.

Hence φ
(3,0)
33 �≡ 0 for such a map (after transforming to the Heisenberg hypersurface

and after the normalization) in a generic position.

Remark B We mention that even for N ≥ 3n − 2, there are many rational proper
holomorphic map from B

n into B
N that are not equivalent to any polynomial maps

as shown in a paper by Faran–Huang–Ji–Zhang [13]. The following is one of the
examples provided in [13]:

Let F(z′, zn) =
(

z′, znz′, z2
n(

√
1−|a|2z′
1−azn

, zn−a
1−azn

)

)
with |a| < 1, which is a proper

rational holomorphic map from B
n into B

3n−2. Then F has geometric rank 1 and is
linear along each hyperplane defined by zn = constant . F is equivalent to a proper
polynomial map from B

n into B
3n−2 if and only if a = 0.

This example gives an indication that it is unpractical to achieve a precise classifi-
cation for proper rational proper maps from B

n into B
N with N ∈ I3 to get the gap

rigidity.

Remark C This paper is a simplified version of the authors’ early preprint. Theorem
1.1 was first announced in [24] (Theorem 2.9 in [24]).
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