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1 Introduction

In this paper, we study the ∂-equation for (0, q)-forms on a special type of non-smooth domain

Sε0
ϕ , called a lunar domain, in a complex manifold with mixed boundary conditions. The

domain we are considering here has two pieces of the boundaries M0 and M1 intersecting

highly tangentially along a smooth real-submanifold E. We assume that M0 has at least

(q + 1)-positive Levi eigenvalues or (n− q + 1)-negative Levi eigenvalues. Assume M1 has the

opposite property for the Levi eigenvalues as that for M0.

We impose the ∂-Dirichlet boundary condition on M0 and the ∂-Neumann boundary con-

dition on M1. We introduce a Hermitian metric over Sε0
ϕ such that E can be treated as

the infinity of Sε0
ϕ . We will establish an L2-estimate and derive a Hodge-type decomposition

theorem in this setting.

∂-equations over such a special type of non-smooth domains, with mixed boundary con-

ditions, are of fundamental importance in understanding many geometric problems. In the

deep papers of Catlin [Cat], Cho [Cho] and Catlin-Cho [CC], such equations played a crucial

role for studying various extension problems for CR structures, which are directly linked to

the local embedding problem of abstract CR manifolds with certain signature conditions. In

a paper of Huang-Luk-Yau [HLY], solving such a ∂-equation for (0, 2)-forms also played an

important role for the study of various deformation problems for compact strongly pseudo-

convex CR manifolds of at least five dimension. In the work of Catlin [Cat], Catlin-Cho [CC]

and Cho [Cho], the domain encountered is only assumed to be sitting in an almost complex

manifold. However, the domain is uniformly scaled such that it is sufficiently close to M0.

In this specific setting, Catlin proved that there is no cohomology obstruction for solving the

∂-equations. Other related studies for the ∂̄-Dirichlet problem can be found in the work of

Chakrabarti-Shaw [CSh].

In this paper, we will study the above mentioned ∂-equation, with the mixed boundary

conditions, without any scaling of the domain. Then one does not expect the ∂-equation is
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always solvable. However, we will show that the obstruction is of finite dimension. Though

we basically follow the approach of Catlin [Cat], one key point in our paper is that we use

the property close to the non-smooth corner near E for a different weighted metric to avoid

the difficulty which was circumvented in [Cat], [Cho] only by uniformly shrinking the lunar

domain Sε0
ϕ toward M0.

∂-equations with various boundary conditions are the basic tools to work on many geo-

metric or analytic problems in Several Complex Variables and Complex Geometry. There is

a vast amount of work done in the literature. Here, we only refer the reader to the books by

Folland-Kohn [FK], Hörmander [Ho2], Demailly [DE] and Chen-Shaw [CS], as well as, many

references therein.

2 Basic set-up and statement of the main theorem

Let M be a smooth hypersurface of real dimension 2n− 1(n ≥ 3) in a complex manifold X of

real dimension 2n. Let ϕ ∈ C∞(M) be a function such that dϕ(x) 6= 0 when ϕ(x) = 0. Write

K = {x ∈ M : ϕ(x) > 0}. Assume K ⊂⊂ M is bounded domain in M with smooth boundary

E = {x ∈ M : ϕ(x) = 0}.
For a sufficiently small ε0 > 0, define M ε0 = {x ∈ M : |ϕ(x)| < ε0}. Suppose that

there exists a tubular neighborhood Nε0 of M ε0 in X and a C∞ map Φ such that Φ : Nε0 →
M ε0×(−2, 2) is a diffeomorphism. Write Ωε0 = M ε0×(−2, 2), L = Φ∗(T 1,0Nε0), where T 1,0Nε0

is the holomorphic tangent bundle of Nε0 . Then (Ωε0 ,L) is a complex manifold biholomorphic

to (Nε0 , T
1,0Nε0). Also (M ε0 × {0},L|(Mε0 × {0}) ∩ CT (M0 × {0}) is a CR hypersurface in

(Ωε0 ,L). Identify M ε0 × {0} with M ε0 . Write S = L|Mε0 ∩ CTM ε0 which is the CR bundle

of M ε0 . In what follows, when there is no risk of causing confusion, we identify Nε0 with Ωε0

and objects defined over Nε0 with those corresponding ones over Ωε0 .

Define r(x, t) = tϕ−4(x). Assume Sε0
ϕ is a bounded domain in X with two pieces of

connected boundaries M0 := M ∩ {ϕ > 0} and M1, whose closures intersect M tangentially

along E. Moreover, Sε0
ϕ ∩ Nε0 := {(x, t) ∈ Ωε0|ϕ(x) > 0,−1 < r(x, t) < 0} and M1 ∩ Nε0 =

{(x, t)|ϕ(x) > 0, r(x, t) = −1}.
Equip X with a Hermitian metric. For any x0 ∈ M0 or x0 ∈ M1, let {Lj}n

j=1 be a smooth

orthornormal basis of the cross sections of T (1,0)(W (x0)), where W (x0) is sufficiently small
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neighborhood of x0 in the ambient space. Let {ωj}n
j=1 be its dual frame. Assume that Lj are

tangent to M or M1, when restricted to M0 or M1, for j 6= n, respectively. For a (0, q)-form

with 0 < q ≤ n

U =
∑

j1<j2<···<jq

U j1j2···jqωj1 ∧ · · · ∧ ωjq

defined in the side of W (x0) ∩M0 or of W (x0) ∩M1, which is inside Sε0
ϕ , that is smooth up

to M0 or M1. We say U satisfies the ∂-Dirichlet condition along M0 if UJ |M0 ≡ 0 whenever

J = (j1, · · · , jq) with jq 6= n. We say U satisfies the ∂-Neumann condition along M1 if

UJ |M1 ≡ 0 when jq = n. Apparently, this definition is independent of the choice of the

Hermitian metric over X. Indeed, one only needs a smooth Hermitian metric over Sε0
ϕ \ E to

define the Dirichlet or Neumann boundary conditions along M0 and M1.

Following Catlin in [Cat], we write E (0,q)
c for the collection of smooth (0, q)-forms with

compact support in Sε0
ϕ \ E. Write Bq

+(Sε0
ϕ ) for the subset of E (0,q)

c , whose elements satisfy ∂-

Dirichlet boundary condition along M0. Write Bq
−(Sε0

ϕ ) for the subset of E (0,q) whose elements

satisfy the ∂-Neumann boundary condition along M1. Now, we will use the specific Hermitian

metric over Sε0
ϕ to be defined in (3.4) of Section 3, which is smooth up to the boundary

M0∪M1 \E and blows up at a suitable rate when approaching their intersection E. We define

L2
(0,q)(S

ε0
ϕ ) to be the space of (0, q)-forms with coefficients being L2-integrable with respect to

this metric. We extend the ∂-operator to the L2-space in the following way:

We say that U ∈ L2
(0,q)(S

ε0
ϕ ) is in the domain of the operator T with TU = F if for any

V ∈ Bq+1
− (Sε0

ϕ ), we have (U, ∂
′
V ) = (F, V ), where ∂

′
is the standard formal adjoint operator

of ∂ with respect to this specific Hermitian metric. Similarly, we define S : L2
(0,q−1)(S

ε0
ϕ ) →

L2
(0,q)(S

ε0
ϕ ) and let T ∗ and S∗ be their Hilbert adjoints. We define Q(U,U) = ‖TU‖2 + ‖S∗U‖2

to be the Q-norm associated with the operators T and S∗.

In [Cat] and [Cho], to study the extension of CR structure of M , the authors obtained a

standard L2-estimate with respect to the ∂-operator with mixed boundary condition when the

thickness of Sε0
ϕ is sufficiently small. (See [Corollary 7.10, Cat]).

In this paper, We consider the L2-estimate with respect to a ∂-operator with mixed bound-

ary conditions. However, the thickness of Sε0
ϕ can be arbitrary. Define N+(K) (respectively,

N−(K)) to be the largest m ≥ 0 such that the Levi form has at least m positive (respectively,

negative) eigenvalues at each x ∈ K with respect to the domain Sε0
ϕ . Define N+(M1) (respec-
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tively, N−(M1)) has the same meaning as for N+(K) (respectively, for N−(K)) with respect

to Sε0
ϕ , too. Then our main theorem is the following:

Theorem 2.1. Assume the above notations and definitions. If either we have N+(K) ≥ q +1

and N−(M1) ≥ q + 1 or we have N−(K) ≥ n − q + 1 and N+(M1) ≥ n − q + 1. Then there

exists a neighborhood Vc,0,1 of the boundary of Sε0
ϕ in Sε0

ϕ and a constant C > 0 such that for

any U ∈ L2
(0,q)(S

ε0
ϕ ) with U ∈ Dom(T ) ∩Dom(S∗), it holds that

∫

Vc,0,1

|U |2dV ≤ C

(
Q(U,U) +

∫

F

|U |2dV

)
, (2.1)

where F is a certain compact subset of Sε0
ϕ independent of U .

Corollary 2.2. Write H(0,q)(Sε0
ϕ ) for the quotient space NT /RS with NT = {U : U ∈

L2
(0,q)(S

ε0
ϕ ), TU = 0} and RS the image of the operator S. Then H(0,q)(Sε0

ϕ ) = NT /RS is

of finite dimension.

3 Existence of the special frames on Sε0
ϕ near E

For the proof of Theorem 2.1, we follow the approach in Catlin [Cat] and Catlin-Cho [CC].

However, we need to choose a different weight of blowing up for the metric near the singular

set E of the boundary to deal with the difficulty caused by not shrinking the thickness of the

lunar domain. This also requires the modification for the choice of the special frame to study

the L2-estimates later. For the convenience of the reader, we give a detailed exposition on the

choice of the frame in this section.

Let Mt0 near E be defined by the defining equation t = t0. Define η = −1
2
(i∂t− i∂t) near

E. Then η is a real-valued 1-form and is a contact form along each Mt near E. Let X0 be a

real-valued smooth vector field tangent to M near E such that (η, X0) = 1 over M near E.

Extend X0 to a neighborhood of E in Ωε0 , independent of t, and scale X0 if needed. Then we

can get a real-valued smooth vector field X0 in a neighborhood of E in Ω such that near E

(η, X0) = 1 and X0(t) ≡ 0.

We assume, without loss of generality, that the Levi form of M0 is defined by
√−1η([X1, X2]),

X1, X2 ∈ S. Write S(x,t) for the subspace of L(x,t) that are tangent to Mt near E. Set
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Y0 = −JL(X0), so that X0 +
√−1Y0 is a section of L that is transversal to the level set

t. Let G : Ωε0 ∩O(E) → Ωε0 ∩O(E) be a diffeomorphism such that G fixes M ∩O(E) and

G∗Y0|(x,0) =
∂

∂t

∣∣∣
(x,0)

, x ∈ M ∩O(E).

Here we write O(E) for a small neighborhood of E in Ωε0 . Since dt(JL(X0)) always has the

same sign (If not, X0 +
√−1Y0 is a section that is tangent to the level set), we may assume

that dt(JL(X0)) < 0, thus dt(Y0) > 0 along M0. Hence G preserves the sides of M0. Then

Z̃ = −√−1G∗(X0 +
√−1Y0) is a global section of Sε0

ϕ near E such that along M0

Z̃ = −√−1X0 +
∂

∂t
. (3.1)

We write Z̃ = X̃ + g(x, t) ∂
∂t

, where X̃t ≡ 0. Then we set Zn = X + ∂
∂t

near E with X =

g−1(x, t)X̃.

We define another subbundle of L on Sε0
ϕ by setting

R(x,t) = {L ∈ L(x,t) : Lr = 0, r = tϕ−4(x)}. (3.2)

Clearly, the map defined by

H(L) = L− L(r)(Znr)
−1Zn, L ∈ S(x,t), (3.3)

defines an isomorphism of S := ∪(x,t)≈ES(x,t) onto R := ∪(x,t)≈ER(x,t), where

Zn(r) = ϕ(x)−4
(
1 + (−4t)ϕ(x)−1Xϕ(x)

)
.

We fix a smooth Hermitian metric <,>0 on Sε0
ϕ that is induced from the Hermitian metric

on X such that on Ωε0 we have < Zn, Zn >0= 1 near E. We define a new Hermitian metric

<,> on Sε0
ϕ \ E such that near E we have the following relations :

< H(L1), H(L2) > = ϕ−4+λ(x) < L1, L2 >0, L1, L2 ∈ S
< H(L1), Zn > = 0, L1 ∈ S

< Zn, Zn > = ϕ−8+2λ(x)

(3.4)
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where λ is a constant with 0 < λ < 1
2
. We now show that Sε0

ϕ \ E near E can be covered

by special coordinate systems such that on each chart there is an orthonormal frame of L
that satisfies good estimates. This is fundamentally important for it then helps to reduce the

non-compact situation to more or less the compact situation. Comparing with the weight in

[Cat], we add ϕλ(x) to take care of the trouble created from the corner near E.

Proposition 3.1. For any x0 ∈ M0 with 0 < ϕ(x0) ¿ 1, there exists a neighborhood W (x0) ⊂
Sε0

ϕ \ E with the following properties:

(i) On W (x0), there are smooth coordinates y1, . . . , y2n so that

W (x0) =
{
y : |y′| < σ0,−ϕλ(x0) ≤ y2n ≤ 0

}
, (3.5)

where σ0 is a constant independent of x0 to be determined later. Also y′ = (y1, . . . , y2n−1) is

independent of t and y2n = tϕ−4(x)ϕλ(x0). M0 ∩W (x0) and M1 ∩W (x0) correspond to points

in W (x0) with y2n = 0 and y2n = −ϕλ(x0), respectively. Moreover, the point x0 corresponds

to the origin.

(ii) On W (x0), there exists a smooth orthonormal frame L1, · · · , Ln for L such that if

ω1, · · · , ωn are the dual frame, and if Lk and ωk are written as
2n∑

j=1

bkj
∂

∂yj
and

2n∑
j=1

dkjdyj,

respectively, then

sup
y∈W (x0)

{|Dα
y bkj(y)|+ |Dα

y dkj(y)|} ≤ C|α|, bk2n = 0 for k 6= n. (3.6)

where C|α| is independent of x0, j, k.

(iii) If d1 ≤ d2 ≤ · · · ≤ dn−1 are the eigenvalues of the Levi form
√−1η([L1, L2]) at x0,

then at every point x ∈ W (x0), we have the following estimates, which are uniformly on x0:

ωn([Li, Lj])(y) = O(σ0), i 6= j, i, j < n,

ωn([Lj, Lj])(y) = dj + O(σ0), j < n.
(3.7)

Here we use O(σ0) to denote the terms which are bounded by Cσ0 where C is a constant

independent of x0 and σ0.

(iv) For each sufficiently small σ0, there is a countable family {W (xα)} such that it covers

a fixed neighborhood of K \E in K near E and for any point p ∈ K \E in this neighborhood,
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there are at most N0 elements from this family that contain p. Here N0 is independent of the

choice of p and σ0. Moreover, for each α, there is a function ξα ∈ C∞
0 (W (xα)∩M) such that∑

α ξ2
α ≡ 1 and the differentiation of ξα with respect to the y′-coordinates is bounded by C/σ0

with C a fixed constant independent of xα and σ0.

Proof. The proof of this proposition is similar to that in [Cat], though adding a new scale

ϕ(x0)
λ requires modifications. For convenience of the reader, we include all the details. First,

there exists a finite number of coordinate charts V ′
v , v = 1, · · · , N in M that cover K near

E in M such that on each V ′
v , there exists coordinates (x1, . . . , x2n−1) with ∂

∂x2n−1
= −X0

at all points in V ′
v . Also, V ′

v is defined by |x′| < ε1 for a certain fixed small ε1 > 0. Define

Vv := V ′
v× [0,−1] and set on Vv, x2n = t, xk(x

′, t) = xk(x
′), k < 2n for x′ ∈ V ′

v . We can assume

that there exists an orthonormal frame {Lv
i }n−1

i=1 of S with respect to the former fixed Hermitian

metric <,>0 of L in Vv. Let Lv
n = Zn. For any point x0 ∈ M with 0 < ϕ(x0) << 1, by the

Lesbeque covering lemma, we can assume that x0 ∈ Vv for a certain v with |x′(x0)| < ε2, where

0 < ε2 < ε1 is independent of x0. We can define an affine transformation Cv
x0

: R2n → R2n so

that if (x′0, 0) ∈ R2n is the coordinates of x0, then

Cv
x0

(x′, x2n) = (Px0(x
′ − x′0), x2n), (3.8)

where Px0 is a (2n − 1) × (2n − 1) constant matrix such that in the new coordinates x̃ =

(x̃1, · · · , x̃2n), we have

Lv
k|x0 =

∂

∂x̃2k−1

∣∣∣x0 −
√−1

∂

∂x̃2k

∣∣∣
x0

, (1 ≤ k ≤ n− 1),

X0

∣∣∣
x0

= − ∂

∂x̃2n−1

∣∣∣
x0

.

(3.9)

Also the domain where x̃′ is defined contains a fixed ball centered at the origin for any choice

of x0. Notice that the second equality in (3.9) implies that X0|(x′,0) = − ∂
∂x̃2n−1

|(x′,0) at all

points of M ∩ Vv. Hence, along M ∩ Vv,

Lv
n |(x′,0)=

√−1
∂

∂x̃2n−1

∣∣∣
(x′,0)

+
∂

∂x̃2n

∣∣∣
(x′,0)

. (3.10)

We now define a new coordinates y = (y1, · · · , y2n) by means of a dilation map Dx0 : R2n →
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R2n. Set

y = Dx0(x̃)

=
(
ϕ−2+λ

2 (x0)x̃1, · · · , ϕ−2+λ
2 (x0)x̃2n−2, ϕ

−4+λ(x0)x̃2n−1, ϕ
λ(x0)ϕ

−4(x)x̃2n

)
.

(3.11)

In terms of the y-coordinates, we define an open set W (x0) by

W (x0) =
{
x ∈ Vv ∩ Sε0

ϕ : |yk(x)| < σ0, k = 1, . . . , 2n− 1,−ϕλ(x0) ≤ y2n ≤ 0
}

. (3.12)

When 0 < ϕ(x0) << 1, one can apparently find a fixed small number σ′0 > 0 such that every

W (x0) is contained in some Vv whenever σ0 < σ′0. Notice that in W (x0), the set where y2n = 0

and y2n = −ϕλ(x0) coincides with the set where r(x, t) = 0 and r(x, t) = −1, respectively,

which represents the two boundaries of Sε0
ϕ .

Define a frame L1, · · · , Ln on W (x0) by setting

Lk = ϕ2−λ
2 (x) (Lv

k − rk(x)Lv
n) = ϕ2−λ

2 (x)H(Lv
k), k < n,

Ln = ϕ4−λ(x)Lv
n,

(3.13)

where

rk = (Lv
kr)(L

v
nr)

−1. (3.14)

Then {Lk}n
k=1 forms an orthonormal frame on W (x0) with respect to the scaled Hermitian

metric, and {Lk}n−1
k=1 forms an orthonormal basis for R.

If we write Lv
k in terms of the x̃-coordinates corresponding to x0 as

Lv
k =

2n−1∑

l=1

ekl(x̃)
∂

∂x̃l

, k < n,

Lv
n =

∂

∂x̃2n

+
2n−1∑

l=1

enl(x̃)
∂

∂x̃l

,

(3.15)

and if we set

Ekl = ekl ◦D−1
x0

(y), Rk = rk ◦D−1
x0

(y), ϕl =
∂ϕ

∂x̃l

Φ = ϕ ◦D−1
x0

(y), Φl = ϕl ◦D−1
x0

(y),

(3.16)
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then a calculation shows that

Lv
k − rkL

v
n =

2n−1∑

l=1

(ekl(x̃)− rk(x̃)enl(x̃))
∂

∂x̃l

− rk(x̃)
∂

∂x̃2n

(3.17)

and that the Jacobian matrix Jac(Dx0) of Dx0 is



ϕ−2+λ
2 (x0) 0 · · · 0 0
...

. . .
...

...
...

...
... ϕ−2+λ

2 (x0) 0 0

0 · · · 0 ϕ−4+λ(x0) 0

−4ϕ1ϕ
−5ϕλ(x0)x̃2n · · · −4ϕ2n−2ϕ

−5ϕλ(x0)x̃2n −4ϕ2n−1ϕ
−5ϕλ(x0)x̃2n ϕλ(x0)ϕ

−4




(3.18)

We conclude that in the y-coordinates of W (x0) when 1 ≤ k ≤ n− 1,

Lk =
2n−2∑

l=1

Φ2−λ
2 (y)

ϕ2−λ
2 (x0)

(Ekl(y)−RkEnl(y))
∂

∂yl

+
Φ2−λ

2 (y)

ϕ4−λ(x0)
(Ek,2n−1(y)−RkEn,2n−1(y))

∂

∂y2n−1

,

Ln =
2n−2∑

l=1

Φ4−λ(y)

ϕ2−λ
2 (x0)

Enl(y)
∂

∂yl

+
Φ4−λ(y)

ϕ4−λ(x0)
En,2n−1(y)

∂

∂y2n−1

+

(
ϕλ(x0)

Φλ(y)
− 4

2n−1∑

l=1

Φ3−λΦly2nEnl(y)

)
∂

∂y2n

.

(3.19)

Here

Rk =

2n−1∑
l=1

(−4)Ekl(y) Φ3

ϕλ(x0)
Φl(y)y2n

1 +
2n−1∑
l=1

(−4)Enl(y) Φ3

ϕλ(x0)
Φl(y)y2n

. (3.20)

Observe that the diameter in the x̃-coordinates of W (x0) is of the quantity: O(ϕ2−λ
2 (x0)) ¿

ϕ(x0) when 0 < ϕ(x0) ¿ 1.

Let f ∈ C∞(W (x0)), we define

|f |m,W (x0) = sup
y∈W (x0)

{|Dα
y f(y)| : |α| ≤ m} (3.21)
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and we can extend this norm to vector fields and 1-forms by using coefficients of ∂
∂yj

or dyj.

It can be easily verified that

lim
x0→E

|Ekl − bkl|m,W (x0) = 0, (3.22)

where (bkl)n×2n is a constant matrix given by

bk,2k−1 = 1, bk,2k = −√−1, k = 1, . . . , n− 1,

bn,2n−1 =
√−1, bn,2n = 1,

(3.23)

and bkl = 0 in all other cases. Since [∂x̃k

∂yl
]2n×2n = ϕ2−λ

2 (x0)[O(1)] on W (x0) when x0 near E,

Φ2−λ
2 (y) = ϕ2−λ

2 (x0) + (2− λ

2
)Φ1−λ

2

2n∑

k,l=1

Dx̃k
ϕ(θ)

∂x̃k

∂yl

yl

= ϕ2−λ
2 (x0) + ϕ2−λ

2 (x0)o(1)

= ϕ2−λ
2 (x0)(1 + o(1))

= ϕ2−λ
2 (x0)O(1).

(3.24)

where θ ∈ W (x0) and Φ2−λ
2 (y) uniformly approximate the same quantity of ϕ2−λ

2 (x0). More-

over,

Dyl

(
Φ2−λ

2 (y)

ϕ2−λ
2 (x0)

)
= (2− λ

2
)

Φ1−λ
2 (y)

ϕ2−λ
2 (x0)

2n∑

k=1

(Dx̃k
ϕ)

(
∂x̃k

∂yl

)
= ϕ1−λ

2 (x0)O(1),

Dyl

(
ϕλ(x0)

Φλ(y)

)
= (−λ)ϕλ(x0)Φ

−λ−1(y)
2n∑

k=1

(Dx̃k
ϕ)

(
∂x̃k

∂yl

)
= ϕ1−λ

2 (x0)O(1).

(3.25)

Since ek,2n−1(x0) = 0 when k < n, we have

Ek,2n−1(y)

ϕ2−λ
2 (x0)

=
ek,2n−1(x̃)− ek,2n−1(0)

ϕ2−λ
2 (x0)

= O(1). (3.26)

Thus we can write ek,2n−1(x̃) = l′k(x̃) + O(|x̃|2), where l′k is a linear function of x̃. It follows

that

lim
x0→E

∣∣∣ϕ−2+λ
2 (x0)Ek,2n−1 − l′k(y1, . . . , y2n−2, 0, 0)

∣∣∣
m,W (x0)

= 0. (3.27)
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Similarly, by a direct calculation,
Rk(y)

ϕ2−λ
2 (x0)

→ 0 (3.28)

when x0 → E, k = 1, . . . , n− 1.

Combining all the facts above, we conclude that if k < n

lim
x0→E

∣∣∣∣Lk −
(

∂

∂y2k−1

−√−1
∂

∂y2k

+ lk
∂

∂y2n−1

)∣∣∣∣
m,W (x0)

= 0, (3.29)

where lk = l′k(y1, . . . , y2n−2, 0, 0), and that

lim
x0→E

∣∣∣∣Ln −
(√−1

∂

∂y2n−1

+
∂

∂y2n

)∣∣∣∣
m,W (x0)

= 0. (3.30)

Write D = [dij]n×2n, B = [bij]n×2n. Here dij and bij are as defined in (ii) of the proposition. De-

fine D̃ =

[
D

D

]

2n×2n

, B̃ = [ Bt B
t

]. Then D̃·B̃ = I2n×2n. In order to prove {dij}1≤i≤n,1≤j≤2n

and the derivative of {dij}1≤i≤n,1≤j≤2n are uniformly bounded, we only need to prove that

the absolute value |detB̃| of determinant of matrix B̃ has a uniform lower bound. Let A =

[aij]2n×2n. Here, a2i−1,i = 1, a2i,i = −√−1, 1 ≤ i ≤ n−1, a2n−1,n =
√−1, a2n,n = 1, ak,n+l = ak,l

and in other cases aij = 0. Let C = [1]2n×2n, E = [ekl]2n×2n, e2n−1,k = 1, e2n−1,k+n = 1 and

ekl = 0 in other cases. Then from (3.29) and (3.30), B̃ = A + O(ϕ2−λ
2 (x0))C + O(σ0)E. Thus

det(B̃) = detA · det(I + O(ϕ2−λ
2 (x0))A

−1C + O(σ0)A
−1E). Since |detA| = 2n 6= 0, |detB̃| has

a uniform lower bound with respect to y ∈ W (x0), when ϕ(x0) and σ0 are sufficiently small.

This proves (ii).

Since {Li}n
i=1 is an orthornormal basis with respect to the scaled Hermitian metric we have

defined on W (x0) near E, and from (3.29), (3.30) we see that the metric tensor and any order

of its covariant differentiation on W (x0) ∩M induced from the Hermitian metric on Sε0
ϕ \ E

near E must have uniform bounds. It is easy to see that there is a constant 0 < k0 << 1

such that any ball in the induced metric over M0 \ E of radius k0σ
′
0 is contained in some

W (x0)∩M . From (3.29), (3.30) or by what we argued above, the volume form in W (x0)∩M

in terms of the y′-coordinates is uniformly bounded from above and from below by a positive

constant independent of x0. We thus see that the volume of the ball Bµσ′0 in M with radius

µσ′0 and µ ≤ k0 has the estimate: C1(µσ′0)
2n−1 ≤ Vol(Bµσ′0) ≤ C2(µσ′0)

2n−1 with C1 and C2

two positive constants.
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Write W ′(x0) := {y′ : (y′, 0) ∈ W (x0), |y′| < σ0/2}. When σ0 is smaller than a certain

fixed number, we can assume that W (x0) ∩ M is contained in Bµ′σ′0 and W ′(x0) contains

Bµ
′′

σ′0
, where 0 < µ

′′
< µ′ < k0 are constants depending only on σ0, but not x0. We can

choose a family of {W (xα)} near E such that (1). {W ′(xα)} covers M0 \ E near E, (2). The

distance between any two centers in the induced metric over M0 \ E is at least µ′′σ′0. (The

existence of such a family follows from a simple construction based on the Zorn lemma). By

the just mentioned volume estimates, one conclude that such a cover is a Besicovitch covering.

Namely, there is a constant N0, independent of σ0, such that any point is contained in at most

N0-charts. Let ξ̃α ∈ C∞
0 (W (xα)∩M) be such that ξ̃a ≡ 1 over W ′(xα) and the differentiation

in the y′-coordinates is bounded by 4/σ0. Define ξα = ξ̃a√∑
α ξ̃2

a

. Then ξα ∈ C∞
0 (W (xα) ∩M),

∑
α ξ2

a ≡ 1 and |Dy′ξa| = O(σ−1
0 ). This proves (iv).

Finally, we note that if Lv
j , j = 1, . . . , n− 1, are replaced by

Xv
j =

n−1∑

k=1

UjkL
v
k,

where [Ujk] is a suitably chosen unitary matrix such that

∂∂t(Xv
i , Xv

j )|x0 = dij, 1 ≤ i, j ≤ n− 1, (3.31)

where dij = 0, i 6= j; djj = dj, j < n.

Since rk =
Xv

k (r)

Xn(r)
= t

Xv
kϕ−4(x)

Xv
n(r)

, we have rk = 0 along M ∩ W (x0). This shows that along

M ∩W (x0),

Lj = ϕ2−λ
2 Xv

j , j < n; ωn =
1

2
ϕ−4+λ(x)(dt +

√−1η) (3.32)

Then

ωn([Lk, Ln])(x0) = −dωn(Lk, Ln)(x0)

= ϕ6− 3
2
λ(x0)(−dωn)(Xv

i , Zn)(x0)

= −ϕ6− 3
2
λ(x0)

{
Xv

i (ωn(Zn))− Znω
n(Xv

i )− ωn([Xv
i , Zn])

}
(x0)

= O(ϕ1−λ
2 (x0))

(3.33)
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and

ωn([Li, Lj])(x0) = −dωn(Li, Lj)(x0)

= −dωn
(
ϕ2−λ

2 (x0)X
v
i (x0), ϕ

2−λ
2 (x0)Xv

j (x0)
)

= ϕ4−λ(x0)ω
n([Xv

i , Xv
j ])(x0)

=
1

2
(dt +

√−1η)([Xv
i , Xv

j ])(x0)

= ∂t([Xv
i , Xv

j ])(x0)

= ∂∂t(Xv
i , Xv

j )(x0).

(3.34)

It follows that

ωn([Li, Lj])(x0) = dij, 1 ≤ i, j ≤ n− 1, (3.35)

and thus

ωn([Li, Lj])(y) = O(σ0), i 6= j, 1 ≤ i, j ≤ n− 1;

ωn([Lj, Lj])(y) = dj + O(σ0), j < n
(3.36)

in W (x0). Thus we obtain (iii). The proof of the Proposition 3.1 is complete.

Let dV denote the volume form associated with the Hermitian metric defined before. In

the coordinates (y1, . . . , y2n) over W (x0), write dV = V (y)dy, where dy = dy1 · · · dy2n. Then

we have, as mentioned before, that V (y) satisfies the following:

|V (y)|1,W (x0) ≤ a1, inf
y∈W (x0)

V (y) > a2 > 0, (3.37)

where a1, a2 are constants independent of x0.

We will define inner product for two functions g, h ∈ C∞
c (Sε0

ϕ \ E) by

(g, h) =

∫
ghdV.

Let N be a submanifold of dimension 2n − 1 in W (x0) and let ds be the volume form of N

that comes from Euclidean metric in (y1, . . . , y2n)-variables. The following is the divergence

theorem:
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Theorem 3.2. (Divergence theorem) Let D ⊂⊂ RN be a smoothly bounded domain, g, h, v ∈
C∞(D), V 6= 0 on D, dV = V dx, dS = V ds. If L =

n∑
j=1

bj
∂

∂xj
is a smooth vector field,then

∫

D

(Lg)hdV = −
∫

D

gLhdV −
∫

D

eghdV +

∫

∂D

gh < L,n > dS, (3.38)

where e = LV
V

+
N∑

j=1

∂bj

∂xj
, n is the unit outward normal vector at the boundary points, and <,>

is the Euclidean inner product in RN .

Applying the above divergence theorem to the our situation as in [Cat], one obtains the

following: (See [Lemma 5.7, Cat])

Lemma 3.3. Let L1, . . . , Ln be the frame constructed in W (x0), then there exists functions

ej ∈ C∞(W (x0)) and a function P ∈ C∞(W (x0)) such that for all g, h ∈ C∞
c (W (x0))

(Ljg, h) = −(g, Ljh)− (ejg, h), j = 1, . . . , n− 1.

(Lng, h) = −(g, Lnh)− (eng, h) +

∫

M0

PghdS −
∫

M1

PghdS,
(3.39)

where dS = V ds, M0 = {z : r(z) = 0},M1 = {z : r(z) = −1}. The real part and imaginary

part of the function P satisfy: 0 < c < Re(P (y)) < C, |Im(P (y))| ¿ 1 for y ∈ W (x0) with

0 < ϕ(x0) ¿ 1. Here c and C are constants independent of x0. Moreover, |ej|m,W (x0) ≤ Cm

for 0 < ϕ(x0) ¿ 1. Here Cm is a constant independent of x0.

Proof. Applying the divergence theorem above, one can see the above mentioned expressions

hold with

ej =
2n∑

k=1

∂bjk

∂yk

+
2n∑

k=1

bjk
∂V (y)

∂yk

1

V (y)
, (3.40)

and

P = Ln(y2n) =
ϕλ(x0)

Φλ(y)
− 4

2n−1∑

l=1

y2nΦ3−λΦlEnl.

Since ϕλ(x0)
Φλ(y)

approaches uniformly to 1 and
∑2n−1

l=1 y2nΦ3−λΦlEnl approaches uniformly to zero

as x0 approaches to E, we conclude the proof of the lemma.
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Now, suppose that when 0 < ϕ(x0) < ε1 << 1, we have constructed the special coordinates

and special frame on W (x0) as in Proposition 3.1. Notice that the subset

Kε1 := Sε0
ϕ \

({
x|ϕ(x) <

ε1

2

}
× [−1, 0]

)

is compact in Sε0
ϕ . Here, as we mentioned in §2, we identify Nε0 with Ωε0 . We can then cover

Kε1 with finitely many coordinate charts.

Write E0,q(Sε0
ϕ ) for the set of smooth (0, q)-forms over Sε0

ϕ . And write E0,q
c (Sε0

ϕ ) for the set

of smooth (0, q)-forms U over Sε0
ϕ with compact support in Sε0

ϕ \ E. Let E0,q
0 (Sε0

ϕ ) denote the

set of smooth sections of Γ(0,q)(Sε0
ϕ ) with compact support in the interior of Sε0

ϕ . We define

the space L2
(0,q)(S

ε0
ϕ ) of L2-integral (0, q)-forms by using the scaled Hermitian metric.

Suppose U ∈ E (0,q)
c (Sε0

ϕ ), U =
∑
|J |=q

UJωJ . Then

∂U =
n∑

j=1

∑

|J |=q

(LjU
J)ωj ∧ ωJ + · · · ,

∂
′
U = −

n∑
j=1

∑

|K|=q−1

LjU
jKωK + · · · ,

(3.41)

where ∂
′
is the formal adjoint operator of ∂ and dots indicate terms where no derivatives of

UJ occur. We extend ∂ and ∂
′
to the L2-space as in the introduction. Then as in [Cat], define

Bq for a subspace of E (0,q)
c (Sε0

ϕ ), whose elements satisfy the ∂-Dirichlet condition defined in §2
along M0 and the ∂-Neumann condition along M1. Then Dom(T )∩Dom(S∗)∩E (0,q)

c (Sε0
ϕ ) = Bq.

Moreover, as in the [Cat] ( Lemma 6.4 of [Cat]), the Hörmander-Friderichs smooth lemma also

holds in this setting:

Let U ∈ Dom(S∗) ∩Dom(T ). Then there exists Uµ ∈ Bq such that

lim
µ→∞

‖Uµ − U‖+ ‖S∗Uµ − S∗U‖+ ‖TUµ − TU‖ = 0. (3.42)

Hence, in what follows, we need only to prove the estimate in our main theorem for U ∈ Bq.

4 The L2-estimate for the operator T near the corner E

In this section, we establish the estimate near E for forms in Bq. We follow the known pro-

cedure to compute the the Q norms as in [Ho1], [FK] and [Cat]. In particular, we follow the
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computation in [Cat] and make the needed modification to fit our situation here.

We first suppose U ∈ Bq with supp U a compact subset of W (x0) for some x0 ∈ M0 with

0 < ϕ(x0) ¿ 1. Then

TU = ∂U =
∑

|J |=q

n∑
j=1

(LjU
J)ωjJ + · · · ,

S∗U = −
∑

|K|=q−1

n∑
j=1

LjU
jKωK + · · · .

(4.1)

Define

Q(U,U) = ‖TU‖2 + ‖S∗U‖2

and let

AU =
∑

|J |=q

n∑
j=1

(LjU
J)ωjJ ,

BU = −
∑

|K|=q−1

n∑
j=1

LjU
jKωK .

(4.2)

Immediately, we have

2‖S∗U‖2 + 2‖TU‖2 + C0‖U‖2 ≥ ‖AU‖2 + ‖BU‖2, (4.3)

where C0 is a constant only depend on the coefficients of Lj and ωj and independent of x0

and U .

Notice that

‖AU‖2 =
n∑

(j,J) 6=(n,Kn)

‖LjU
J‖2 −

∑

|K|=q−1

∑

(j,k) 6=(n,n)

(LjU
kK , LkU

jK)

where the property that (j, J) 6= (n,Kn) means that we exclude those terms where j = n or

n ∈ J .

We also notice that

‖BU‖2 =
n∑

j,k=1

(LjU
jK , LkU

kK). (4.4)
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To compute ‖AU‖2 + ‖BU‖2, we follow the computation of Catlin in [pp504-506, Cat] as

follows: First we calculate ‖BU‖2 by several steps. Notice that if (j, k) 6= (n, n), |K| = q − 1,

then

(LkU
kK , LjU

jK) = (LjU
kK , LkU

jK) + (ejLkU
kK , U jK)

− (ekLjU
kK , U jK) + ([Lk, Lj]U

kK , U jK).
(4.5)

Define

L(U) =
∑

|K|=q−1

‖LnU
nK‖2 +

∑

|J |=q,n 6∈J

‖LnU
J‖2 +

n−1∑
j=1

∑

|J |=q

(‖LjU
J‖2 + ‖LjU

J‖2). (4.6)

From (3.6) and by the standard big-small constant argument, it follows that

∣∣(ejLkU
kK , U jK)

∣∣ ≤ C1

K0

L(U) + C1K0‖U‖2. (4.7)

Since

∣∣(ekLjU
kK , U jK)

∣∣ = |(ejekU
kK , U jK)− (ekU

kK , LjU
jK)− (Lj(ek)U

kK , U jK)|,

we have ∣∣(ekLjU
kK , U jK)

∣∣ ≤ C1

K0

L(U) + C1K0‖U‖2. (4.8)

Here K0, Cjs are constant independent of the choices of x0 and U , which may be different in

different contexts. K0 is supposed to be sufficiently large. Notice that

([Lk, Lj]U
kK , U jK) =

n∑
i=1

(Ci
kjLiU

kK , U jK) +
n∑

i=1

(di
kjLiU

kK , U jK), (4.9)

where

Ci
kj = ωi([Lk, Lj]), di

kj = ωi([Lk, Lj]). (4.10)

(a) If i < n, then

|(Ci
kjLiU

kK , U jK)|+ |(di
kjLiU

kK , U jK)| ≤ C1

K0

L(U) + C1K0‖U‖2. (4.11)

(b) If i = n, k = n, and j 6= n

|(Cn
njLnU

nK , U jK)| ≤ C1

K0

L(U) + C1K0‖U‖2, (4.12)
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Hence, the remaining terms to be estimated include the following

|(dn
njLnU

nK , U jK)|. (4.13)

(c) If i = n, j = n, and k 6= n, we have

|(dn
knLnU

kK , UnK)| ≤ C1

K0

L(U) + C1K0‖U‖2. (4.14)

Thus it suffices to estimate:

|(Cn
knLnU

kK , UnK)|. (4.15)

As in [Cat], we use the following result on the standard uniform sub-elliptic estimate to handle

it: (See [CS], for instance.)

Lemma 4.1. Let Ω be a bounded open neighborhood of the origin in Rn. Let Xi, 1 ≤ i ≤
k, k ≤ n be vector fields with smooth real coefficients up to Ω. Denote L1 to be collection of the

Xs
i , 1 ≤ i ≤ k and L2 to be collection of L1 and the vectors of the form [X,Y ] with X,Y ∈ L1.

If L2 span the tangent space of Ω, then there exists C > 0 such that

‖u‖2
1
2
≤ C

(
k∑

i=1

‖Xiu‖2 + ‖u‖2

)
, u ∈ C∞

0 (Ω). (4.16)

Here C only depends on the coefficients of the vector fields.

For any f ∈ C∞
c (W (x0)), we define the tangential Fourier transform for f in W (x0) by

f̂(ξ, y2n) =

∫

R2n−1

e−i<y′,ξ>f(y′, y2n)dy1 · · · dy2n−1, (4.17)

where ξ = (ξ1, · · · , ξ2n−1) and < y′, ξ >= y1ξ1 + · · · + y2n−1ξ2n−1. We define the tangential

Sobolev norm |||f |||s by

|||f |||2s =

∫ 0

−ϕλ(x0)

∫

R2n−1

|f̂(ξ, y2n)|2(1 + |ξ|2)sdξ1 · · · dξ2n−1dy2n, s ∈ R. (4.18)

For more discussions of the tangential Fourier transform and tangential Sobolev norms, we

refer the reader to [FK] and [CS] . From Lemma 4.1 and the uniform estimate of the coefficients
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of the vector fields {Li}n
i=1 , there exists a constant C2, which does not depend on x0 such

that for all f ∈ C∞
c (W (x0)),

|||f |||21
2
≤ C2

n−1∑

k=1

(‖Lkf‖2 + ‖Lkf‖2
)

+ C ′
2‖f‖2. (4.19)

Lemma 4.2. Suppose U ∈ Bq(Sε0
ϕ ) and supp U ⊂⊂ W (x0) with 0 < ϕ(x0) ¿ 1. Then

|(Cn
knLnU

kK , UnK)| ≤ C3

K0

L(U) + C3K0‖U‖2, k 6= n, (4.20)

|(dn
njLnU

nK , U jK)| ≤ C3

K0

L(U) + C3K0‖U‖2, j 6= n. (4.21)

Proof. We follow the proof of [Lemma 7.8, Cat]. In [Cat], a useful fact is that the domain can

be uniformly shrunk toward M , that helps to get such types of estimates. In our situation,

the domain is fixed. However we go close and close to E such that the quantity

|Cn
kn|W (x0) = O(ϕ1−λ

2 (x0) + σ0) (4.22)

is sufficiently small when 0 < ϕ(x0) ¿ 1, σ0 ¿ 1 to get the desired estimates. Write Ln =

(Lny2n)(Lny2n)Ln + L̃n, then L̃n(y2n) = 0 and

L̃n =
2n−1∑
j=1

{
Ln(yj)−

(
Lny2n

Lny2n

)
Ln(yj)

}
∂

∂yj

, (4.23)

Lny2n

Lny2n

=
1− 4

∑2n−1
l=1

Φ3

ϕλ(x0)
y2nEnl(y)

1− 4
∑2n−1

l=1
Φ3

ϕλ(x0)
y2nEnl(y)

. (4.24)

Let L̃n =
∑2n−1

j=1 aj(y) ∂
∂yj

. Then (3.19), (3.33), (4.23), (4.24) give that

|aj(y)|n+1,W (x0) = O(ϕ2−λ
2 (x0)), j < 2n− 1

|a2n−1(y)|n+1,W (x0) = O(1), |Cn
kn|W (x0) = O(ϕ1−λ

2 (x0) + σ0).
(4.25)

Then

(Cn
knLnU

kK , UnK) =

(
Cn

kn

Ln(y2n)

Ln(y2n)
LnU

kK , UnK

)
+ (Cn

knL̃nU
kK , UnK). (4.26)
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Now

(Cn
knL̃nU

kK , UnK) ≤ |Cn
kn|W (x0) · |||

2n−1∑
j=1

aj(y)
∂UkK

∂yj

|||− 1
2
· |||U ||| 1

2

≤ C3|Cn
kn|W (x0) · |||U |||21

2
,

(4.27)

On the other hand, since ‖LnU
kK‖ ≤ L(U) then

(
Cn

kn

Ln(y2n)

Ln(y2n)
LnU

kK , UnK

)
≤ C3

K0

L(U) + C3K0‖U‖2, k < n.

Notice that we can make |Cn
kn|W (x0) sufficiently small by letting x0 close to E. Combining

(4.19), (4.27) and the just obtained estimate, we conclude the estimate in (4.20). The proof

for (4.21) is similar.

(d) If i = n, and 1 ≤ j, k ≤ n− 1, we need to control the following terms:

(Cn
kjLnU

kK , U jK), (dn
kjLnU

kK , U jK).

For n ∈ K, it holds that

|Cn
kjLnU

kK , U jK)| ≤ C2

K0

L(U) + C2K0‖U‖2. (4.28)

When n 6∈ K, we have

|(dn
kjLnU

kK , U jK)| ≤ C2

K0

L(U) + C2K0‖U‖2. (4.29)

The only remaining two cases are (i): For n 6∈ K, we need to control

(Cn
kjLnU

kK , U jK)

and (ii): For n ∈ K, we need to control

(dn
kjLnU

kK , U jK).

Since Cn
kj(y) = ωn([Lk, Lj])(y) = dkj(x0) + O(σ0), d

n
kj(y) = −dkj(x0) + O(σ0), thus

(Cn
kjLnU

kK , U jK) = dkj(x0)(LnU
kK , U jK) + (O(σ0)LnU

kK , U jK). (4.30)
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Define

E(x0, U,K0) =
1

K0

L(U) + K0‖U‖2 + σ0

∫

M0

|U |2dS + σ0

∫

M1

|U |2dS.

When n 6∈ K, integrating by part, we have from (4.30)

(Cn
jjLnU

jK , U jK) = −dj(x0)

∫

M1

P |U jK |2dS + O(E(x0, U,K0)),

(Cn
kjLnU

kK , U jK) = O(E(x0, U,K0)).

(4.31)

When n ∈ K, integrating by part, we have from (4.30)

(dn
jjLnU

jK , U jK) = −dj(x0)

∫

M0

P |U jK |2dS + O(E(x0, U,K0)),

(dn
kjLnU

kK , U jK) = O(E(x0, U,K0)).

(4.32)

Then

‖AU‖2 + ‖BU‖2 =
∑

|J |=q,n 6∈J

‖LnU
J‖2 +

∑

|K|=q−1

‖LnU
nK‖2 +

n−1∑
j=1

∑

|J |=q

‖LjU
J‖2

−
∑

|J |=q

∑
j∈J

(
dj(x0)

∫

M0

P |UJ |2dS + dj(x0)

∫

M1

P |UJ |2dS

)

+ O(E(x0, U,K0))

=
∑

|J |=q,n 6∈J

‖LnU
J‖2 +

∑

|K|=q−1

‖LnU
nK‖2 +

n−1∑
j=1

∑

|J |=q

‖LjU
J‖2

−
∑

|J |=q

∑
j∈J

(
dj(x0)

∫

M0

Re(P )|UJ |2dS + dj(x0)

∫

M1

Re(P )|UJ |2dS

)

+ O(E(x0, U,K0)).

(4.33)

Making use of the sign condition on the Levi forms and by a standard argument (see [pp 62,

FK] and [CS], for instance), we obtain from the above

‖AU‖2 + ‖BU‖2 ≥ c

(
L(U) +

∫

M0

|U |2dS +

∫

M1

|U |2dS

)
+ O(K0‖U‖2). (4.34)

Hence, there exist positive constants c and C both indpendent of the choices of x0 and U such

that

‖AU‖2 + ‖BU‖2 ≥ cL(U)− C‖U‖2. (4.35)
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The following Lemma from [Cat] is a fundamental fact, by which the mixed boundary

conditions enters the estimate. It is Lemma 7.7 of [Cat] with σ3 being replaced by ϕλ(x0).

Lemma 4.3. Suppose f ∈ C∞
c (W (x0)) with ϕ(x0) ¿ 1, and f vanishes either on M0 or M1.

Then there exists a constant Ĉ1 independent of x0 and U , so that

ϕ−λ(x0)‖f‖2 ≤ Ĉ1

(
‖Lnf‖2 +

n−1∑

k=1

(‖Lkf‖2 + ‖Lkf‖2
)
)

ϕ−λ(x0)‖f‖2 ≤ Ĉ1

(
‖Lnf‖2 +

n−1∑

k=1

(‖Lkf‖2 + ‖Lkf‖2
)
) (4.36)

Combining this Lemma 4.3 with (4.35), we proved Part (1) of the following theorem:

Theorem 4.4. (1). There exists a constant 0 < ε2 ¿ 1 independent of x0 and a constant C̃

independent of x0 and ε2 such that if 0 < ϕλ(x0) ≤ ε2 and U ∈ Bq with supp U ⊂⊂ W (x0),

then

ϕ−λ(x0)‖U‖2 ≤ C̃
(‖TU‖2 + ‖S∗U‖2

)
. (4.37)

(2). There exists a small neighborhood Vc of E in Sε0
ϕ such that for any U ∈ Bq it holds that

∫

Vc

|U |2dV ≤ ‖TU‖2 + ‖S∗U‖2 +

∫

S
ε0
ϕ \Vc

|U |2dV. (4.38)

Proof. Let Vc = {(x, t) ∈ Nε0 ∩ Sε0
ϕ : 0 < ϕλ(x) ≤ ε3}, ε3 < ε2. Let {W (xα)}, {ξα} be as in

Proposition 3.1 (iv), where {W (xα)} is a Besicotvich cover of Vc for ε3 sufficiently small.
∫

Vc

|U |2dV =
∑

α

∫

Vc

|ξαU |2dV ≤
∑

α

∫

W (xα)

|ξαU |2 ≤ C̃
∑

α

ϕλ(xα)(‖TξαU‖2 + ‖S∗ξαU‖2)

≤ C̃
∑

α

ϕλ(xα)(‖ξαTU‖2 + ‖ξαS∗U‖2) + C̃
c2

σ2
0

∑
α

ϕλ(xα)

∫

W (xα)

|U |2dV

≤ C̃ε3

(‖TU‖2 + ‖S∗U‖2
)

+ C̃ε3
c2

σ2
0

N0

∫

S
ε0
ϕ

|U |2dV.

(4.39)

Here the N0 is as in Proposition 3.1 (iv). When ε3 is sufficiently small such that

max

{
C̃ε3, C̃ε3

c2

σ2
0

N0

}
≤ 1

2
,
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then we get ∫

Vc

|U |2dV ≤ ‖TU‖2 + ‖S∗U‖2 +

∫

S
ε0
ϕ \Vc

|U |2dV. (4.40)

5 Proof of Theorem 2.1

We now give a proof of Theorem 2.1. We use the notations set up above. By the Hörmander-

Friderichs approximation theorem mentioned in the end of §3, we need only work on forms in

Bq.

Let Vc1 = {(x, t) ∈ Nε0 ∩ Sε0
ϕ : ϕλ(x) < ε4} with ε4 < ε3 be a smaller neighborhood of the

corner E in Sε0
ϕ with Vc1 ⊂⊂ Vc. Let

Mc,0 = M0 \ Vc,Mc1,0 = M0 \ Vc1 .

Suppose that there exists a tubular neighborhood Nc1 of Mc1,0 in X and a C∞ map Φc1 such

that Φc1 : Nc1 → Mc1,0 × (−2, 2) is a diffemorphism. Let Lc1 = Φc1∗(T
1,0Nc1), where T 1,0Nc1

is the holomorphic tangent bundle of Nc1 . Write Ωc1 = Mc1 × (−2, 2), then (Ωc1 ,Lc1) is a

complex manifold biholomorphic to (Nc1 , T
1,0Nc1). Also Mc1,0 is a hypersurface in (Ωc1 ,Lc1).

In what follows, as before, when there is no risk of causing confusion, we identify Nc1 with

Ωc1 and objects defined over Nc1 with those corresponding to Ωc1 . We define two subdomains

of Nc1 as follows:

S̃c,ε = Mc,0 × [−ε3, 0], S̃c1,ε = Mc1,0 × [−ε3, 0],

Mc,ε := Mc,0 × {−ε3},Mc1,ε := Mc1,0 × {−ε3}.
(5.1)

We can assume that S̃c1,ε is contained in Nc1 ∩ Sε0
ϕ by making ε sufficiently small. First, we

choose a finite cover {Vv}m
v=1 of Mc1,0. With the same argument as in Proposition 3.1 (iv) we

can assume that for any x0 ∈ Mc,0, there is a coordinate neighborhood

V (x0) = {(x′, x2n) ∈ Mc1,0 × [−ε3, 0] : |x1| < ε, · · · , |x2n−1| < ε,−ε3 ≤ x2n ≤ 0} (5.2)

with V (x0) contained in a certain Vv when ε is sufficiently small, where x0 corresponds to the

origin and (x1, · · · , x2n−1) is the coordinates of V (x0)∩Mc1,0. There exist a special orthnormal
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frame {Li}n
i=1 and its dual frame {ωi}n

i=1 satisfying the type of estimates as in Proposition 3.1

(iii).

Let U ∈ E (0,q)
c (Sε0

ϕ ) with compact support in one of the above constructed coordinate

neighborhoods V (x0) such that it satisfies the ∂-Dirichlet condition on Mc1,0 and vanishes

near Mc1,ε. Then we have the following estimate

Lemma 5.1. There exists a constant C̃1 independent of x0 and U such that

ε−3‖U‖2 ≤ C̃1Q(U,U) (5.3)

for ε sufficiently small.

In order to prove Lemma 5.1, we first recall the definition of condition Z(q) from [FK] and

[CS].

Definition 5.2. Let D be a relatively compact subset with C∞ boundary in a complex Hermi-

tian manifold of complex dimension n ≥ 2. We say the boundary ∂D satisfies condition Z(q)

if for 1 ≤ q ≤ n− 1, the Levi form associated with D has at least n− q positive eigenvalues or

at least q + 1 negative eigenvalues at every boundary point.

Proof of Lemma 5.1: We will use the property that U vanishes near Mc1,ε to obtain the

estimate in (5.3). We define the Hodge star operator ? with respect to the scaled metric as

follows: For any U1, U2 ∈ Ep,q
c (Sε0

ϕ ), we have

(U1, U2) =

∫

S
ε0
ϕ

U1 ∧ ?U2dV. (5.4)

Since U ∈ E (0,q)
c (Sε0

ϕ ) with suppU ⊂⊂ V (x0) and U satisfies the ∂-Dirichlet condition on Mc1,0,

vanishes near Mc1,ε, ?U will be a (n, n− q)-form which satisfies the ∂-Neumann condition on

Mc1,0 and vanishes near Mc1,ε. Let V = ?U . We then have V =
∑

|J |=n−q

V Jω1 ∧ · · · ∧ ωn ∧ ωJ .

Then

‖∂V ‖2 + ‖∂∗V ‖2 =
∑

j,|J |=n−q

‖LjV
J‖2 +

∑

j,k,L

∫

M0∩V (x0)

Cn
jkPV jLV kLdS

+ O(l(V ) · ‖V ‖) + O(‖V ‖2)

(5.5)
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where l(V ) =
∑
j,J

‖LjV
J‖ and Cn

jk = wn([Lj, Lk]). It follows that there exist constant a1, a2

which are independent of x0 and V (x0) such that

‖∂V ‖2 + ‖∂∗V ‖2 ≥ a1l(V )− a2‖V ‖2 +
∑

|J |=n−q

∑
j∈J

∫

∂Mc1,0

dj(x0)P |V J |2dS

+ O(ε)
∑

|J |=n−q

∑
j∈J

∫

∂Mc1,0

dj(x0)P |V J |2dS,

(5.6)

where {dj(x0)}n−1
j=1 are the eigenvalues of the Levi-form on M0. By the assumption of M0, we

know that M0 satisfies Condition Z(n − q). Proceeding in the standard way as in [FK] and

[CS], we see that there exist constant a3, a4 such that

‖∂V ‖2 + ‖∂∗V ‖2 ≥ a3

(∑
j,J

‖LjV
J‖2 +

∑
j,J

‖LjV
J‖2

)
− a4‖V ‖2. (5.7)

Since V vanish near Mc1,ε, from Lemma 4.3 we have

∑
j,J

‖LjV
J‖2 +

∑
j,J

‖LjV
J‖2 ≥ ε−3‖V ‖2. (5.8)

Combing (5.7) and (5.8) and when ε is sufficiently small, we have

‖∂V ‖2 + ‖∂∗V ‖2 ≥ a5ε
−3‖V ‖2 (5.9)

when ε is sufficiently small. Substituting V = ?U to (5.9), we have

‖∂ ? U‖2 + ‖∂∗ ? U‖2 ≥ a5ε
−3‖ ? U‖2 (5.10)

and since the Hodge star operator ? is an isometry operator in L2-space, we have

‖ ? ∂ ? U‖2 + ‖ ? ∂
∗
? U‖2 ≥ a5ε

−3‖ ? U‖2 (5.11)

Substituting the identity ∂
∗

= − ? ∂? and ∂ = ?∂
∗
? to (5.11), we complete the proof of the

Lemma 5.1. (For detailed discussions of the Hodge star operator in the L2-space, we also refer

the reader to [CSh].)

Moreover, we can choose a set I such that {V (xi)}i∈I is a covering of S̃c,ε. Moreover,

V (xi) ⊂⊂ S̃c1,ε and there exists an integer N̂ , independent of ε, such that no point of S̃c,ε lies
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in more than N̂ of such V (xi)’s. We choose functions ρi ∈ C∞
c (V (xi)) such that

∑
i∈I ρ2

i = 1

in a neighborhood of S̃c,ε and |ρi|1,V (xi) ≤ c̃1ε
−1, where c̃ is a constant independent of xi. Then

for all U ∈ E (0,q)
c (Sε0

ϕ ) which satisfies the ∂-Dirichlet condition on Mc1,0 and vanishes near

Mc1,ε, we have

ε−3

∫

S̃c,ε

|U |2dV ≤ ε−3
∑
i∈I

∫

V (xi)

|ρiU |2dV ≤ C̃1

∑
i∈I

Q(ρiU, ρiU)

≤ C̃1Q(U,U) +
C̃2c̃

2
1N̂

ε2

∫

S̃c1,ε

|U |2dV

(5.12)

Thus ∫

S̃c,ε

|U |2dV ≤ C̃1ε
3Q(U,U) + C̃2c̃

2
1N̂ε

∫

S̃c1,ε

|U |2dV (5.13)

and

(1− C̃2c̃
2
1N̂ε)

∫

S̃c,ε

|U |2dV ≤ C̃1ε
3Q(U,U) + C̃2c̃

2
1N̂ε

∫

S̃c1,ε\S̃c,ε

|U |2dV (5.14)

First, we choose ε such that 1− C̃2c̃
2
1N̂ε ≥ 1

2
, then

∫

S̃c,ε

|U |2dV ≤ 2C̃1ε
3Q(U,U) + 2C̃2c̃

2
1N̂ε

∫

S̃c1,ε\S̃c,ε

|U |2dV

≤ 2C̃1ε
3Q(U,U) + 2C̃2c̃

2
1N̂ε

∫

Vc

|U |2dV

(5.15)

Next, let

Mc,1 = M1 ∩ (Sε0
ϕ \ Vc),Mc1,1 = M1 ∩ (Sε0

ϕ \ Vc1).

By the same construction as above we can find a small neighborhood Tc1,ε of Mc1,1 in Sε0
ϕ which

is biholomorphic to Mc1,1 × [0, ε3]. We similarly write

Tc,ε = Mc,1 × [0, ε3], Tc1,ε = Mc1,1 × [0, ε3]

M̂c,0 = Mc,1 × {0}, M̂c,ε = Mc,1 × {ε3}
M̂c1,0 = Mc1,1 × {0}, M̂c1,ε = Mc1,1 × {ε3}

(5.16)

For all x0 ∈ M̂c,0 we choose a coordinate neighborhood V (x0) = {(x′, x2n) ∈ Mc1,0 × [0, ε3] :

x′ = (x1, · · · , x2n−1), |x1| < ε, · · · , |x2n−1| < ε, 0 ≤ x2n ≤ ε3}, where x0 corresponds to the
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origin and (x1, · · · , x2n−1) is the coordinates of V (x0) ∩ M̂c,0. There exist a special frame

{Li}n
i=1 and their dual frame {ωi}n

i=1, that satisfy good estimates as in Proposition 3.1 with

Ln(x2n) = −1 on V (x0) ∩M1. Moreover,

ωn([Li, Lj])(x) = dij(x0) + O(ε), 1 ≤, i, j ≤ n− 1, (5.17)

where dij(x0) = 0 when i 6= j, dij(x0) = dj(x0) when i = j and {dj(x0)}n−1
j=1 are the Levi

eigenvalues of the Levi form on M1 with respect to the domain. Notice that we now have

P = −Ln(x2n) = 1 on V (x0) ∩M1.

By assumption of M1, we have that M1 satisfies Z(q) condition. Let U ∈ E0,q
c (Sε0

ϕ ) satisfy

the ∂-Neumann condition on M̂c1,0 and vanish near M̂c1,1. Assume that U has a compact

support in some V (x0). Then by a similar argument as in Lemma 5.1 and when ε is sufficiently

small we have the following L2-estimate

ε−3‖U‖2 ≤ C̃3Q(U,U). (5.18)

Here the constant C̃3 is independent of U and x0. Then choosing a covering {V (xλ)}λ∈Λ of

Tc,ε with the same property as the covering {V (xi)}i∈I in the proof of Lemma 5.1 and also

using a partition of unity with the same property with respect to such covering, we have

∫

Tc,ε

|U |2dV ≤ 2C̃3ε
3Q(U,U)+2C̃4c̃

2
2N̂ε

∫

Tc1,ε\Tc,ε

|U |2dV ≤ 2C̃3ε
3Q(U,U)+2C̃4c̃

2
2N̂ε

∫

Vc

|U |2dV

(5.19)

for some constants C̃3, C̃4, c̃2 which do not depend on U .

We choose a cut-off function χε such that χε ≡ 1 in a small neighborhood Oε of Mc1,0 ∪
Mc1,1 ∪ Vc1 and χε equals to zero near Mc,ε and M̂c,ε. Then there is a neighborhood Vc,0,ε of

Mc,0 in S̃c,ε such that when χε restricted to Vc,0,ε equals to 1. Then

∫

Vc,0,ε

|U |2dV ≤
∫

S̃c,ε

|χεU |2 ≤ 2C̃1ε
3Q(χεU, χεU) + 2C̃2c̃

2
1N̂ε

∫

Vc

|χεU |2dV

≤ 2C̃1ε
3Q(U,U) + C(ε)

∫

Kε

|U |2dV + 2C̃2c̃
2
1N̂ε

∫

Vc

|U |2dV,

(5.20)

where C(ε) is a constant depending on ε and Kε is the compliment of Oε in the domain, which

is a compact subset of Sε0
ϕ .
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Similarly, there is a neighborhood Vc,1,ε of Mc,1 in Tc,ε such that χε is identically one when

restricted to Vc,1,ε. Then
∫

Vc,1,ε

|U |2dV ≤
∫

Tc,ε

|χεU |2 ≤ 2C̃3ε
3Q(χεU, χεU) + 2C̃4c̃

2
2N̂ε

∫

Vc

|χεU |2dV

≤ 2C̃3ε
3Q(U,U) + C(ε)

∫

Kε

|U |2dV + 2C̃4c̃
2
2N̂ε

∫

Vc

|U |2dV.

(5.21)

Thus ∫

Vc

|U |2dV +

∫

Vc,0,ε

|U |2dV +

∫

Vc,1,ε

|U |2dV

≤ (1 + 4C̃1ε
3 + 4C̃3ε

3)Q(U,U) + 4C(ε)

∫

Kε

|U |2dV

+

∫

K∗
ε

|U |2dV + (4C̃2c̃
2
1 + 4C̃4c̃

2
2)N̂ε

∫

Vc

|U |2dV,

(5.22)

where K∗
ε = Sε0

ϕ \ {Vc ∪ Vc,0,ε ∪ Vc,1,ε} which is a compact subset of Sε0
ϕ . We choose ε such that

(4C̃2c̃
2
1 + 4C̃4c̃

2
2)N̂ε ≤ 1

2
. Then

∫

Vc

|U |2dV +

∫

Vc,0,ε

|U |2dV +

∫

Vc,1,ε

|U |2dV

≤ (2 + 8C̃1ε
3 + 8C̃3ε

3)Q(U,U) + 4C(ε)

∫

Kε

|U |2dV + 2

∫

K∗
ε

|U |2dV.

(5.23)

Let Vc,0,1 = Vc ∪ Vc,0,ε ∪ Vc,1,ε, F = Kε ∪ K∗
ε . Applying the approximation theorem by the

smooth forms as mentioned at the end of §3, we thus complete the proof of Theorem 2.1. The

proof of Corollary 2.2 follows from Theorem 2.1 by the standard argument as in Hörmander

[Ho1].

Remark 5.3. From the proof of the main theorem, we actually obtained the following stronger

estimate containing the boundary term for U ∈ E0,q
c ∩Dom(T ) ∩DomS∗:

∫

∂S
ε0
ϕ

|U |2dV +

∫

Vc,0,1

|U2dV ≤ C

(
Q(U,U) +

∫

F

|U |2dV

)
, (5.24)

where F is a certain fixed compact subset of Sε0
ϕ . Other related sub-elliptic estimates will be

discussed in [Li].
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