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Abstract In this paper, we give a geometric condition for a CR map, which sends a
CR non-umbilical Levi non-degenerate hypersurface in Cn+1 into the hyperquadric
in C

n+2 with the same signature, to be CR transversal.
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1 Introduction

The study of CR transversality (or the Hopf lemma property) has found applications
in understanding the regularity and rigidity phenomena for CR mappings in the recent
development of several complex variables. Generally speaking, the CR transversality
problem asks if a CR map sending a piece of hypersurface into another one is either
totally degenerate (namely, mapping an open subset of the source space into the tar-
get hypersurface) or has a non-vanishing normal derivative (which in many situations
is equivalent to the local immersion property of the map). When the hypersurfaces
are pseudoconvex, the classical Hopf lemma is applicable. However, the situation in
the non-pseudoconvex case is much more subtle. When the hypersurfaces are sit-
ting in the same complex space, there has been much work done along these lines.
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Here, we only refer the reader to the work of Pinchuk [18], Fornaess [12], Baouendi–
Rothschild [5], Ebenfelt–Rothschild [10] for smooth CR mappings, and Huang [14]
for multiple-valued holomorphic maps (holomorphic correspondences), as well as
many references quoted in [5, 10, 14].

The study in the non-pseudoconvex case with higher codimensions started with
the work of Baouendi–Huang [3], where the CR transversality is obtained for CR
mappings sending a piece of a hyperquadric into another hyperquadric with the same
signature. In the work of Baouendi–Ebenfelt–Rothschild [2], it is proved in a very
general setting that the transversality holds at least along the complements of proper
real analytic subsets, which may be different for different maps under consideration.
(See also a recent preprint [11], which further generalizes the work of [2] in some
settings.) However, except in the case dealt with in Baouendi–Huang [3], it is an
open question to understand under what circumstances the CR transversality in the
higher co-dimensions holds everywhere along the source manifold. For instance, the
following easily stated conjecture is open.

Conjecture Let M1 ⊂ C
n+1 and M2 ⊂ C

N+1 be two (connected) Levi non-
degenerate real analytic hypersurfaces with the same signature � > 0. Let F be a
smooth CR map sending M1 into M2. Then either F is a local immersion along M1
or F sends an open neighborhood U of M1 in C

n+1 into M2.

In an earlier paper of the authors [15], we demonstrated that many mapping prop-
erties are related to the behavior of the Chern–Moser–Weyl tensors of the hypersur-
faces along the Levi cone. In this paper, we show that these CR invariants, together
with the work of Meylan–Mir–Zaitsev [17] on the convergence of (non-degenerate)
formal maps into hyperquadrics, can also be used to work on the CR transversal-
ity problem. Our method is quite different from what is used in the previous related
work.

Next, we set up some notation to state precisely our main result. Given two CR
hypersurfaces M ⊂ C

n+1, M̃ ⊂ C
N+1 and a smooth CR map F : M → M̃ , F is said

to be CR transversal at p ∈ M if

T
(1,0)
F (p) M̃ + F∗

(
T (1,0)

p C
n+1) = T

(1,0)
F (p) C

N+1,

where T
(1,0)
p C

n+1 and T
(1,0)
F (p) M̃ denote the tangent spaces of type (1,0) for C

n+1 and

M̃ at p and F(p), respectively. Note that according to the above definition, a CR map
being CR transversal at p ∈ M is equivalent to the nonvanishing of the derivative of
its normal component at p along the normal direction (see [2], for example). Notice
also that when both M and M̃ are strongly pseudoconvex, any non-constant smooth
CR map between them is always CR transversal, by an application of the classical
Hopf lemma.

Now, let M� be a Levi non-degenerate smooth hypersurface of signature � > 0.
Let p ∈ M . After a holomorphic change of coordinates, we may assume that p = 0
and M� near p = 0 is defined by an equation of the form

M� :=
{

(z,w) ∈ C
n × C : ρ = −�w −

�∑

j=1

|zj |2 +
n∑

j=�+1

|zj |2 + o(3) = 0

}

. (1)
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When the terms with degree three or higher in the defining equation for M� can be
made to be zero, we get the hyperquadric Hn+1

� with signature �. Namely, we have

Hn+1
� :=

{

(z,w) ∈ C
n × C : ρ = −�w −

�∑

j=1

|zj |2 +
n∑

j=�+1

|zj |2 = 0

}

.

We always assume that � ≤ n/2 to make � an invariant. We say 0 ∈ M� is a CR
umbilical point if the Chern–Moser–Weyl curvature tensor vanishes at p = 0 (see
[6] or [15]). Namely, if 0 is CR umbilical, then there is a holomorphic change of
coordinates such that in the new coordinates, we can make ρ = −�w−∑�

j=1 |zj |2 +
∑n

j=�+1 |zj |2 + o(4).
We now state the main theorem of this paper.

Theorem 1.1 Let M� be a smooth Levi non-degenerate hypersurface of signature �

in C
n+1, n ≥ 2. Assume that 0 ∈ M� is not CR umbilical. If F is a holomorphic map

defined in a small neighborhood U of 0 ∈ Cn+1 such that F(M� ∩ U) ⊂ H
(n+1)+1
� ,

then either F is CR transversal to M� at 0, or F(U) ⊂ H
(n+1)+1
� .

It might be interesting to notice that usually, to apply the classical Hopf lemma,
the sign condition is imposed on the degree-two terms in the defining functions of
the target manifolds, while the sign condition here is imposed on the fourth-order
degree terms (along the Levi-cone direction) for the defining functions of the source
manifolds.

The rest of the paper is organized as follows: In Sects. 2 and 3, we set up more no-
tation and give some background material. We then prove some preliminary lemmas.
In Sect. 4, we give the proof of the main Theorem 1.1.

2 Background Material

Let M� be a germ at 0 of a smooth Levi non-degenerate hypersurface in C
n+1 given

in (1). By an easy part of the Chern–Moser normal form theory, after a holomorphic
change of coordinates, M� near the origin is expressed as

M� =
{
(z,w) ∈ C

n × C : �w = |z|2� + 1

4
S(z) + o(4)

}
. (2)

Here, for any n-tuples a and b, 〈a, b̄〉� := −∑�
j=1 aj b̄j + ∑n

j=�+1 aj b̄j and |a|2� =
〈a, ā〉�, S(z) := ∑

1≤α,β,γ,δ≤n sαβ̄γ δ̄zαz̄βzγ z̄δ is a homogeneous polynomial of bi-
degree (2,2) satisfying

sαβ̄γ δ̄ = sγ β̄αδ̄ = sγ δ̄αβ̄ , sαβ̄γ δ̄ = sβᾱδγ̄ ,

−
�∑

α=1

sαᾱγ δ̄ +
n∑

α=�+1

sαᾱγ δ̄ = 0.
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S is called the Chern–Moser–Weyl curvature function of M� at 0. If S ≡ 0, then 0 is
said to be a CR umbilical point.

For a holomorphic function h(z,w), we use h(k1,k2) to denote the sum of homoge-
neous terms in its Taylor expansion at 0 whose degrees with respect to z and w are
k1 and k2, respectively. Assign 1 to be the weight of z and 2 to be that of w. On the
other hand, we denote by h(k) the sum of homogeneous terms of weighted degree k

in the Taylor expansion of h, and write owt (k) for terms of weighted degree larger
than k. To simplify our notation, we also preassign the coefficient of h with negative
degrees to be 0.

Now let M̃ be another germ at 0 of a smooth Levi-non-degenerate hypersurface in
C

N+1 given by

M̃� =
{
(z̃, w̃) ∈ C

N × C : �w̃ = |z̃|2� + 1

4
S̃(z̃) + o(4)

}
. (3)

Let F be a smooth CR map sending (M�,0) into (M̃�,0). Write

F := (f,φ,g) = (f1, . . . , fn,φ1, . . . , φN−n, g). (4)

Assume that F is CR transversal at 0. Then, as in [3, Sect. 2], we can write

z̃ = f̃ (z,w) = (
f1(z,w), . . . , fN(z,w)

) = λzU + 
aw + O
(∣∣(z,w)

∣∣2)

w̃ = g(z,w) = σλ2w + O
(∣∣(z,w)

∣∣2)
.

(5)

Here, U can be extended to an N × N matrix Ũ ∈ SU(N,�) (namely, 〈XŨ,Y Ũ 〉� =
〈X,Y 〉� for any X,Y ∈ C

N ), 
a ∈ C
N and λ > 0, σ = ±1 with σ = 1 for � < n

2 .
When σ = −1, by considering F ◦τn/2 instead of F , where τ n

2
(z1, . . . , z n

2
, z n

2 +1, . . . ,

zn,w) = (z n
2 +1, . . . , zn, z1, . . . , z n

2
,−w), we can make σ = 1. Hence, we will assume

in what follows that σ = 1.
A result of [15] states that the Chern–Moser–Weyl curvature tensor decreases in

the null space of the Levi-form by CR embeddings if n
2 > � > 0. When � = n

2 , by
choosing an appropriate contact form for the Chern–Moser–Weyl tensor, the same
phenomenon also holds. Moreover, as in [15], F can be normalized as follows.

Proposition 2.1 [15] Let M� and M̃� be defined by (2) and (3), respectively, and let
F be a smooth CR map sending M� into M̃� given by (4) and (5) with σ = 1. Then
after composing F from the left by some automorphism T ∈ Aut0(H

N+1
� ) preserving

the origin, the following holds:

F� = (
f �,φ�, g�

) := T ◦ F, with

f �(z,w) = z + i

2
a(1,0)(z)w + owt (3),

φ�(z,w) = φ(2,0)(z) + owt (2),

g�(z,w) = w + owt (4),
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and
〈
a(1,0)(z), z̄

〉
�
|z|2� = ∣∣φ(2,0)(z)

∣∣2 + 1

4

(
S(z) − λ−2 S̃

(
λ(z,0)Ũ

))
.

In particular, the automorphism T is given by

T (z̃, w̃) = (λ−1(z̃ − λ−2
aw̃)Ũ−1, λ−2w̃)

q(z̃, w̃)
,

with r0 = 1
2�{g′′

ww(0)}, q(z̃, w̃) = 1 + 2i〈z̃, λ−2
a〉� + λ−4(r0 − i|
a|2�)w̃. Moreover,
F� sends M� into M̃� := T (M̃�) given by

M̃� =
{(

z̃�, w̃�
) ∈ C

N+1 : �w̃� = ∣∣z̃�
∣∣2
�
+ 1

4
S̃ �

(
z̃�

) + R
(
z̃�, z̃�,�w̃�

)}
,

with S̃ �(z�) = λ−2 S̃(λz�Ũ) and R(z̃�, z̃�,�w̃�) = o(4).

3 Two Preliminary Lemmas

In this section, we give two lemmas, which will be used in the proof of the main
theorem.

For any polynomial h(z, z̄), denote by ‖h‖ the maximum absolute value of all
coefficients of terms in h.

Lemma 3.1 (1) Let X(z, z̄) and Y(z, z̄) be two polynomials such that X(z, z̄) =
Y(z, z̄)|z|2� . Then ‖Y‖ is bounded by a constant depending only on ‖X‖ and the
degree of X.

(2) Let h(z) be a homogeneous holomorphic polynomial of degree d in z ∈ C
n. If

|h(z)| ≤ c|z|d on {|z|2� = 0}, then ‖h‖ ≤ C for some C depending only on c and d .

Proof of Lemma 3.1 (1) Suppose not. Then there is a sequence of polynomials
{Xj ,Yj } with Xj = Yj |z|2� such that ‖Yj‖ = 1, deg(Xj ), deg(Yj ) are bounded by
a fixed constant but ‖Xj‖ → 0. By passing to a subsequence, we can assume that
Xj → 0, Yj → Y with ‖Y‖ = 1 and 0 = Y |z|2� . It then follows that Y ≡ 0. This is a
contradiction.

(2) For any point z0 ∈ C
n with |z0|2� �= 0, suppose without loss of generality that

∑�
j=1 |z0

j |2 >
∑n

j=�+1 |z0
j |2. Consider the closed subset given by P := {z ∈ C

n :
zj = z0

j ,1 ≤ j ≤ �,
∑n

j=�+1 |zj |2 ≤ ∑�
j=1 |z0

j |2}. Then ∂P ⊂ {|z|2� = 0} and z0 ∈ P .

Hence, |h(z0)| ≤ supz∈∂P |h(z)| ≤ c supz∈{{|z|2�=0}∩P } |z|d ≤ 2d/2c|z0|d by the maxi-
mum principle. Therefore, ‖h‖ ≤ C for some C depending only on c and d . �

Lemma 3.2 Let f1 and f2 be two homogeneous holomorphic polynomials of degree
d and degree 2, respectively. Assume ‖f2‖ ≥ c and

f1(z)f2(z̄) = H(z, z̄) mod
(|z|2�

)
, (6)
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for some homogeneous polynomial H of degree d +2 with ‖H‖ ≤ c′. Then ‖f1‖ ≤ C

for some C depending only on c, c′, and d .

Proof of Lemma 3.2 Without loss of generality, we assume that ‖f2‖ = 1 and thus c′
is replaced by c′/c.

First, we assume that the absolute value of the coefficient of the term z2
l in f2 is

greater than or equal to 1
16 . For simplicity of notation, assume l = 1. Complexifying

(6), we get

f1(z)f2(χ) = H(z,χ) mod
(〈z,χ〉�

)
.

Write z = (z1, z
′) ∈ C × C

n−1, χ = (χ1, χ
′) ∈ C × C

n−1, and u := 〈z,χ〉�. Letting
χ1 = 1, then we have z1 = 〈z′, χ ′〉�−1 − u, and the above equation becomes

f1
(〈
z′, χ ′〉

�−1 − u, z′)f2
(
1, χ ′) = H

(〈
z′, χ ′〉

�−1 − u, z′,1, χ ′) mod (u).

Letting u = 0 in the above expression, we get

f1
(〈
z′, χ ′〉

�−1, z
′)f2

(
1, χ ′) = H

(〈
z′, χ ′〉

�−1, z
′,1, χ ′) =: H̃ (

z′, χ ′),

for some polynomial H̃ with coefficients bounded depending only on c, c′. On the
other hand, by the assumption on f2, there exists some small number ε > 0, depend-
ing only on c and c′, such that |f2(1, χ ′)| ≥ 1

32 as |χ ′| ≤ ε. Therefore, the above
equation implies |f1(〈z′, χ ′〉�−1, z

′)| is bounded by some constant depending only
on c, c′, d when |χ ′| ≤ ε and |z′| ≤ 1. Now write h(χ ′, z′) : = f1(〈z′, χ ′〉�−1, z

′).
Applying the Cauchy estimates to h, we get ‖h‖ is bounded by some constant de-
pending only on c, c′, and d . By tracing the coefficients of f1(z1, z

′) via those of h,
we obtain the boundedness of ‖f1‖ by some constant depending only on c, c′, and d .

Next, suppose that the coefficient of z2
1 in f1 has absolute value less than

1
16 . By making a linear change of coordinates which preserves the quadric form

−∑�
j=1 |zj |2 + ∑n

j=�+1 |zj |2, we can always make the coefficient of the term z2
l

for some l in f2 to have absolute value bigger than 1
16 (after normalizing ‖f2‖ = 1)

and thus reduce the situation to what we did above.
Indeed, suppose that the absolute value of the coefficients of z2

k,1 ≤ k ≤ n are all
less than 1

16 and that of zj zl is 1 instead. Suppose that j, l ≤ � or j, l > �. Applying
coordinates change: zj = 1√

2
(z′

j + z′
l ), zl = 1√

2
(z′

l − z′
j ), and zk = z′

k for k �= j, l, we

then see that the absolute value of the coefficients of both (z′
l )

2 and (z′
j )

2 in f2 are

greater than or equal to 1
4 and ‖f2‖ ≤ 2 in the new coordinate system. Hence, when

we normalize ‖f2‖ = 1, we see the coefficient of (z′
j )

2 has absolute value at least 1
16 .

Suppose that j ≤ � and l > �. We can then define zj = √
2z′

j − z′
l , zl = z′

j − √
2z′

l ,
and zk = z′

k for k �= j, l. In the new coordinate system, ‖f2‖ ≤ 3, but the coefficient
of (z′

j )
2 has absolute value at least 1

4 . We are thus similarly done in this case, too. �

Remark 3.3 With a similar argument, one sees that Lemma 3.2 still holds when f2
has degree k ≥ 2. In this setting, C depends only on c, c′, d , and k.
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4 Proof of the Main Theorem

We give a proof of our theorem in this section, which is also partially based on the
rescaling method.

Proof of Theorem 1.1 Seeking a contradiction, suppose that F is neither CR transver-
sal to M� at 0 nor sends U into Hn+2

� . Since the set of points where the CR transver-
sality holds for F forms an open dense subset in M� by a result in [2], we can pick a
sequence {pj } ∈ M� such that {pj } approaches 0 and F is CR transversal at pj with
j ≥ 1. Write qj := F(pj ). Now at each pj , applying the normalization process to F

as mentioned in Proposition 2.1 (with N = n + 1), we have the following:

F�
pj

= (f �
pj

, φ�
pj

, g�
pj

)

= (
f1

�
pj

, . . . , fn
�
pj

, φ�
pj

, g�
pj

) := Tpj
◦ τF(pj ) ◦ F ◦ σpj

, where

f �
pj

(z,w) = z + i

2
a(1,0)
pj

(z)w + owt (3),

φ�
pj

(z,w) = φ(2,0)
pj

(z) + owt (2),

g�
pj

(z,w) = w + owt (4),

(7)

with the CR version of the Gauss–Codazzi equation

〈
a(1,0)
pj

(z), z̄
〉
�
|z|2� = ∣∣φ(2,0)

pj
(z)

∣∣2 + 1

4
Spj

(z). (8)

Here τF(pj ) is the translation of Hn+2
� sending F(pj ) to 0, σpj

is a biholomorphic
map sending 0 to pj , and σ−1

pj
(M�) is in the normal form up to the fourth order.

We can make σpj
depend smoothly on pj . Also, write Spj

for the resulting Chern–
Moser–Weyl curvature function of M� at pj . By making use of the fact that F is
not CR transversal at 0, we get that limj→∞ λpj

= 0 for λpj
defined in (5) with F

replaced by τF(pj ) ◦ F ◦ σpj
. Now at each point pj , F

�
pj

given in (7) sends σ−1
pj

(M�)

into Hn+2
� . We then have for (z, u) ≈ 0,

−�g�
pj

(
z,u + i

(|z|2� + owt (3)
)) + ∣∣f �

pj

(
z,u + i

(|z|2� + owt (3)
))∣∣2

�

+ ∣∣φ�
pj

(
z,u + i

(|z|2� + owt (3)
))∣∣2 = 0. (9)

Here, (z, u + i(|z|2� + owt (3))) is a local parameterization of σ−1
pj

(M�) near 0. Due
to the smooth dependence of σpj

with respect to pj , the error term owt (3) depends
smoothly on pj .

In the sequel, for simplicity of notation, we will drop � and write Fpj
for F

�
pj

.
We will also abuse our notation and use C1, C2, or C to denote positive constants
independent of p, and use H(·) to denote a (real analytic) polynomial function with
‖H‖ bounded by a constant independent of p. All these quantities may be different
in different contexts. We will divide our proof into several steps.



On a CR Transversality Problem Through the Approach 1787

Step 1: We prove in this step the estimate: C2 ≤ ‖φ(2,0)
pj

‖ ≤ C1.
Assume that |Spj

(z)| ≤ c1|z|4 for some positive number c1 independent of pj .
Restricting the Gauss equation (8) on the Levi-cone {|z|2� = 0}, we have

4
∣∣φ(2,0)

pj
(z)

∣∣2 = −Spj
(z). (10)

Since {Spj
}∞j=1 is uniformly bounded, this then forces φ

(2,0)
pj

to be uniformly bounded

on {|z|2� = 0} for all pj ’s. By Lemma 3.1, ‖φ(2,0)
pj

‖ ≤ C1. It also follows that

‖a(1,0)
pj

‖ ≤ C1. On the other hand, since 0 ∈ M� is not CR umbilical, S0 �≡ 0.
Since S0 is not divisible by |z|2� , we have sup{|z|2�=0}∩{|z|2=1} |S0(z)| > c for some

c > 0. By the smoothness of S in terms of pj , sup{|z|2�=0}∩{|z|2=1} |Spj
(z)| > c

2
for all pj after passing to a subsequence. It therefore follows from (10) that

sup{|z|2�=0}∩{|z|2=1} |φ(2,0)
pj

(z)| >
√

c
2 , and hence ‖φ(2,0)

pj
‖ ≥ C2.

Step 2: For each fixed k ≥ 1, we next claim that there exists some positive number
C such that

∥∥φ(k)
p (·,1)

∥∥ ≤ C, (11)
∥∥f (k+1)

p (·,1)
∥∥ ≤ C, (12)

∥∥g(k+2)
p (·,1)

∥∥ ≤ C, (13)

for any p ∈ {pj }∞j=1. Here, for a holomorphic function h(z,w), we define h(k)(z,1) :=
(h(k)(z,w))|w=1.

The easy case with k = 1 or 2 is already done in Step 1 and (7). Now assume
(11), (12), and (13) hold for k ≤ 2m − 1 and k ≤ 2m (m ≥ 1). Namely, assume that
‖g(r)

p ‖0≤r≤2m+2, ‖f (r)
p ‖0≤r≤2m+1 and ‖φ(r)

p ‖0≤r≤2m are bounded by some constant
independent of p. We need to show inductively that (11), (12), and (13) also hold for
k = 2m + 1 and k = 2m + 2.

Collect terms of weighted degree k + 2 in the Taylor expansion of (9). We have
the following:

−�g(k+2)
p

(
z,u + i|z|2�

) + 2�〈
f (k+1)

p

(
z,u + i|z|2�

)
, z̄

〉2
�

+ 2�φ(k)
p

(
z,u + i|z|2�

) · φ(2,0)
p (z)

= H
(
g(r)

p |0≤r≤k+1, f
(r)
p |0≤r≤k, φ

(r)
p |0≤r≤k−1

)
. (14)

Case 1: k = 2m + 1. Collecting terms in (14) of degree 1 in z and degree m + 1 in u,

we obtain

− 1

2i
g(1,m+1)

p (z,1)um+1 +
〈
z, f

(0,m+1)
p (z,1)

〉

�
um+1 = H(z, z̄)um+1. (15)
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Collecting terms in (14) of degree 2 in z, degree 1 in z̄ and degree m in u, we obtain

− 1

2i
(m + 1)g(1,m+1)

p (z,1)um
(
i|z|2�

)
+ (m + 1)

〈
z,f

(0,m+1)
p (z,1)i|z|2�

〉

�
um

+ 〈
f (2,m)

p (z,1)um, z̄
〉
�
+ φ(2,0)

p (z) · φ(1,m)
p (z,1)um = H(z, z̄)um. (16)

Collecting terms in (14) of degree 3 in z, degree 2 in z̄ and degree m − 1 in u, we
obtain

− 1

2i
C2

m+1g
(1,m+1)
p (z,1)um−1(i|z|2�

)2 + C2
m+1

〈
z, f

(0,m+1)
p (z,1)

(
i|z|2�

)2
〉

�
um−1

+ m
〈
f (2,m)

p (z,1)
(
i|z|2�

)
um−1, z̄

〉
�
+ mφ(2,0)

p (z) · φ(1,m)
p (z,1)i|z|2�um−1

+ φ
(2,0)
p (z) · φ(3,m−1)

p (z,1)um−1 = H(z, z̄)um−1. (17)

Restricting (17) on {|z|2� = 0} and applying Lemma 3.2, we get

∥∥φ(3,m−1)
p (·,1)

∥∥ ≤ C. (18)

Combining (18), (15), and (17), and applying Lemma 3.1, we get

〈
f (2,m)

p (z,1)
(
i|z|2�

)
, z̄

〉
�
= −φ(2,0)

p (z) · φ(1,m)
p (z,1)i|z|2� + H(z, z̄),

or equivalently,

〈
f (2,m)

p (z,1), z̄
〉
�
= φ(2,0)

p (z) · φ(1,m)
p (z,1) + H(z, z̄). (19)

Substituting (19) into (16), we have after simplification

− 1

2i
(m + 1)g(1,m+1)

p (z,1)
(
i|z|2�

) + (m + 1)
〈
z, f

(0,m+1)
p (z,1)i|z|2�

〉

�

+ 2φ(2,0)
p (z) · φ(1,m)

p (z,1) = H(z, z̄). (20)

Restricting (20) on {|z|2� = 0} and applying Lemma 3.2 again, we get

∥∥φ(1,m)
p (·,1)

∥∥ ≤ C. (21)

Hence from (19), we get
∥∥f (2,m)

p (·,1)
∥∥ ≤ C.

Plug (21) into (20). We then have after simplification, together with Lemma 3.1,

− 1

2i
g(1,m+1)

p (z,1) −
〈
z,f

(0,m+1)
p (z,1)

〉

�
= H(z, z̄). (22)

Combining (22) and (15), we get
∥∥g(1,m+1)

p (·,1)
∥∥ ≤ C,
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∥∥f (0,m+1)
p (·,1)

∥∥ ≤ C.

Next, to estimate ‖g(2m+3−2r,r)
p (·,1)‖, ‖f (2m+4−2r,r−1)

p (·,1)‖, and

‖φ(2m+5−2r,r−2)
p (·,1)‖ (0 ≤ r ≤ m), we first collect terms in (14) of degree 2m +

3 − 2r(≥ 3) in z and degree r in u to get
∥∥g(2m+3−2r,r)

p (·,1)
∥∥ ≤ C. (23)

(Notice that by convention, the coefficients of terms with negative degrees are defined
to be 0.)

Collecting terms in (14) of degree 2m+4−2r(≥ 4) in z, degree 1 in z̄, and degree
r − 1 in u, we obtain

− 1

2i
rg(2m+3−2r,r)

p (z,1)ur−1(i|z|2�
) + 〈

f (2m+4−2r,r−1)
p (z,1)ur−1, z̄

〉
�
= H(z, z̄)ur−1.

Substituting (23) into the above, we have
∥∥f (2m+4−2r,r−1)

p (·,1)
∥∥ ≤ C.

Collecting terms in (14) of degree 2m + 5 − 2r(≥ 5) in z, degree 2 in z̄, and degree
r − 2 in u, we obtain

− 1

2i
C2

r g(2m+3−2r,r)
p (z,1)ur−2(i|z|2�

)2 + (r − 1)
〈
f (2m+4−2r,r−1)

p (z,1)(i|z|2�ur−2, z̄
〉
�

+ φ(2m+5−2r,r−2)
p (z,1)ur−2 · φ(2,0)

p (z) = H(z, z̄)ur−2.

Substituting (23) and (4) into the above, we have
∥∥φ(2m+5−2r,r−2)

p (·,1)
∥∥ ≤ C.

Case 2: k = 2m + 2. Collecting terms in (14) of degree m + 2 in u, we get

− 1

2i

(
g(0,m+2)

p (z,1) − g(0,m+2)(z,1)
)
um+2 = H(z, z̄)um+2.

We thus have
∥∥�g(0,m+2)

p (·,1)
∥∥ ≤ C. (24)

Collecting terms in (14) of degree 1 in z, degree 1 in z̄, and degree m + 1 in u, we
have

−m + 2

2i

(
g(0,m+2)

p (z,1)
(
i|z|2�

) − g(0,m+2)(z,1)
(
i|z|2�

))
um+1

+ 2�〈
f (1,m+1)

p (z,1), z̄
〉
�
um+1 = H(z, z̄)um+1.

We thus get

i(m + 2)�g(0,m+2)
p (z,1)

(
i|z|2�

) + 2�〈
f (1,m+1)

p (z,1), z̄
〉
�
= H(z, z̄). (25)
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Collect terms in (14) of degree 2 in z, degree 2 in z̄ and degree m in u, we have

− 1

2i
C2

m+2

(
g(0,m+2)

p (z,1) − g(0,m+2)(z,1)
)(

i|z|2�
)2

um

+ 2(m + 1)�〈
f (1,m+1)

p (z,1)
(
i|z|2�

)
, z̄

〉
�
um

+ 2�
(
φ(2,m)

p (z,1)um · φ(2,0)
p (z)

)
= H(z, z̄)um,

or equivalently,

−C2
m+2�g(0,m+2)

p (z,1)
(
i|z|2�

)2 + 2(m + 1)i�〈
f (1,m+1)

p (z,1), z̄
〉
�

(
i|z|2�

)

+ 2�
(
φ(2,m)

p (z,1) · φ(2,0)
p (z)

)
= H(z, z̄). (26)

Collecting terms in (14) of degree 3 in z, degree 3 in z̄, and degree m − 1 in u, we
have

− 1

2i
C3

m+2

(
g(0,m+2)

p (z,1)
(
i|z|2�

)3 − g(0,m+2)(z,1)
(
i|z|2�

)3)
um−1

+ 2C2
m+1�

〈
f (1,m+1)

p (z,1)
(
i|z|2�

)2
, z̄

〉
�
um−1

+ 2m�
(
φ(2,m)

p (z,1)
(
i|z|2�

)
um−1 · φ(2,0)

p (z)
)

= H(z, z̄)um−1,

or equivalently,

iC3
m+2�g(0,m+2)

p (z,1)
(
i|z|2�

)2 + 2C2
m+1�

〈
f (1,m+1)

p (z,1), z̄
〉
�

(
i|z|2�

)

+ 2mi�
(
φ(2,m)

p (z,1) · φ(2,0)
p (z)

)
= H(z, z̄). (27)

Dividing (27) by m and adding it to (26), we have

φ(2,m)
p (z,1) · φ(2,0)

p (z) = H(z, z̄) mod
(|z|2�

)
.

By Lemma 3.2, we get
∥∥φ(2,m)

p (·,1)
∥∥ ≤ C. (28)

Combining (28) with (26) and (27), we have after simplification the following:

−C2
m+2�g

(0,m+2)
p (z,1)

(
i|z|2�

) + 2(m + 1)i�〈
f

(1,m+1)
p (z,1), z̄

〉
�
= H(z, z̄),

iC3
m+2�g

(0,m+2)
p (z,1)

(
i|z|2�

) + 2C2
m+1�

〈
f

(1,m+1)
p (z,1), z̄

〉
�
= H(z, z̄).

(29)

Combining (29) with (24) and (25), we get
∥∥�g(0,m+2)

p (·,1)
∥∥ ≤ C,

〈
f (1,m+1)

p (z,1), z̄
〉
�
= H(z, z̄).



On a CR Transversality Problem Through the Approach 1791

Therefore, together with (24) again, we obtain
∥∥g(0,m+2)

p (·,1)
∥∥ ≤ C,

∥∥f (1,m+1)
p (·,1)

∥∥ ≤ C.

To estimate ‖g(2,m+1)
p (·,1)‖, ‖f (3,m)

p (·,1)‖, ‖φ(0,m+1)
p (·,1)‖, and ‖φ(4,m−1)

p (·,1)‖,
we collect terms in (14) of degree 2 in z and degree m + 1 in u to obtain

− 1

2i
g(2,m+1)

p (z,1)um+1 + φ(2,0)
p (z) · φ(0,m+1)

p (z,1)um+1 = H(z, z̄)um+1. (30)

Collecting terms in (14) of degree 3 in z, degree 1 in z̄, and degree m in u, we obtain

−m + 1

2i
g(2,m+1)

p (z,1)um
(
i|z|2�

) + (m + 1)φ(2,0)
p (z) · φ(0,m+1)

p (z,1)i|z|2�um

+ 〈
f (3,m)

p (z,1)um, z̄
〉
�
= H(z, z̄)um. (31)

Collecting terms in (14) of degree 4 in z, degree 2 in z̄, and degree m − 1 in u, we
obtain

− 1

2i
C2

m+1g
(2,m+1)
p (z,1)um−1(i|z|2�

)2 + C2
m+1φ

(2,0)
p (z) · φ(0,m+1)

p (z,1)
(
i|z|2�

)2
um−1

+ m
〈
f (3,m)

p (z,1)
(
i|z|2�

)
um−1, z̄

〉
�
+ φ(4,m−1)

p (z,1)um−1 · φ(2,0)
p (z)

= H(z, z̄)um−1. (32)

Restricting (32) on {|z|2� = 0} and applying Lemma 3.2, we get

∥∥φ(4,m−1)
p (·,1)

∥∥ ≤ C. (33)

Therefore, substituting (33) into (32) and applying Lemma 3.1, we have

C2
m+1

(
i|z|2�

)
(

− 1

2i
g(2,m+1)

p (z,1) + φ(2,0)
p (z) · φ(0,m+1)

p (z,1)

)
+ m

〈
f (3,m)

p (z,1), z̄
〉
�

= H(z, z̄). (34)

Substituting (30) into (34), we get
∥
∥f (3,m)

p (·,1)
∥
∥ ≤ C.

Then (31) gives

− 1

2i
g(2,m+1)

p (z,1) − φ(2,0)
p (z) · φ(0,m+1)

p (z,1) = H(z, z̄). (35)

(35) and (30) together give
∥∥g(2,m+1)

p (·,1)
∥∥ ≤ C,

∥∥φ(0,m+1)
p (·,1)

∥∥ ≤ C.
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For general ‖g(2m+4−2r,r)
p (·,1)‖, ‖f (2m+5−2r,r−1)

p (·,1)‖, ‖φ(2m+6−2r,r−2)
p (·,1)‖ (0 ≤

r ≤ m), we collect terms in (14) of degree 2m + 4 − 2r(≥ 4) in z and degree r in u

and get
∥∥g(2m+4−2r,r)

p (·,1)
∥∥ ≤ C. (36)

Collecting terms in (14) of degree 2m + 5 − 2r(≥ 5) in z, degree 1 in z̄, and degree
r − 1 in u, then we obtain

− 1

2i
rg(2m+4−2r,r)

p (z,1)ur−1(i|z|2�
) + 〈

f (2m+5−2r,r−1)
p (z,1)ur−1, z̄

〉
�
= H(z, z̄).

Substituting (36) into the above, we have
∥∥f (2m+5−2r,r−1)

p (·,1)
∥∥ ≤ C. (37)

Collecting terms in (14) of degree 2m + 6 − 2r in z, degree 2 in z̄, and degree r − 2
in u, we obtain

− 1

2i
C2

r g(2m+4−2r,r)
p (z,1)ur−2(i|z|2�

)2 + (r − 1)
〈
f (2m+5−2r,r−1)

p (z,1)(i|z|2�ur−2, z̄
〉
�

+ φ(2m+6−2r,r−2)
p (z,1)ur−2 · φ(2,0)

p (z) = H(z, z̄).

Substituting (36) and (37) into the above, we have
∥∥φ(2m+6−2r,r−2)

p (·,1)
∥∥ ≤ C.

This completes the induction.

Step 3: We have now shown that for each fixed k, {‖F (k)
pj

‖}∞j=1 is bounded by some

constant independent of j . In particular, since {‖F (2)
pj

‖}∞j=1 is bounded, we can find

a subsequence {p(2)
j }∞j=1 of {pj }∞j=1 such that {F (2)

p
(2)
j

}∞j=1 converges on compacta as

j → ∞. Similarly, we find inductively sequences {p(k)
j }∞j=1 ⊂ {p(k−1)

j }∞j=1 such that

{F (k)

pj
(k)}∞j=1 converges. Pick the diagonal subsequence {p(j)

j }∞j=1 and denote it still as

{pj }∞j=1. Then for each k, {F (k)
pj

}∞j=1 converges as j → ∞, say, to F ∗(k). Write the

nontrivial formal map F ∗(= (f ∗, φ∗, g∗)) := ∑
k F ∗(k). By the way these maps were

constructed, it is clear that F ∗ satisfies the following normalization:

f ∗(z,w) = z + terms with weighted degree higher than 2,

φ∗(z,w) = terms with degree higher than 1,
(
φ∗)(2,0) �= 0,

g∗(z,w) = w + terms with weighted degree higher than 4.

Now F ∗ is a formal map sending M� into Hn+2
� . According to a result of Meylan–

Mir–Zaitsev [17], the formal map F ∗ is indeed convergent. Hence, F ∗ is a holomor-
phic map over M�. Therefore, F ∗ gives a CR immersion from M� into Hn+2

� . On the
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other hand, since any two CR transversal maps between a Levi-non-degenerate hy-
persurface and a hyperquadric of the same signature differ only by an automorphism
of the hyperquadric (see [8]), provided the codimension is less than n

2 , we have a

certain automorphism T of Hn+2
� such that near pj ≈ 0, and hence at all points in

M� near the origin, it holds that

F = T ◦ F ∗.

Since T extends to an automorphism of the projective space P
n+1 and T (0) = 0, F

must be CR transversal at 0. This is a contradiction. Our proof is complete. �
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