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Abstract We study various classes of real hypersurfaces that are not embeddable into
more special hypersurfaces in higher dimension, such as spheres, real algebraic compact
strongly pseudoconvex hypersurfaces or compact pseudoconvex hypersurfaces of finite type.
We conclude by stating some open problems.

1 Introduction

This paper is motivated by the following general problem:
Given a real hypersurface M in a complex manifold X , when can it be (holomorphically)

embedded into a more special real hypersurface M ′ in a complex manifold X ′ of possibly
larger dimension? More specifically, which strongly pseudoconvex hypersurfaces can be
embedded into a sphere?

By a holomorphic map (resp. embedding) of M into M ′, we mean a holomorphic map
(resp. embedding) of an open neighborhood of M in X into X ′, sending M into M ′. In
particular, it follows that a hypersurface holomorphically embeddable into a sphere S

2N−1 :=
{∑ j |z j |2 = 1} ⊂ C

N is necessarily strongly pseudoconvex and real-analytic. However, not
every strongly pseudoconvex real-analytic hypersurface can be even locally embedded into a
sphere, as was independently shown by Faran [9] and Forstneric [10]. These results, showing
that such hypersurfaces in general position are not embeddable into spheres, were more
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658 X. Huang, D. Zaitsev

recently further extended and strengthened by Forstneric [11] showing that they also do not
admit transversal holomorphic embeddings into a hyperquadric

H
2N−1
� :=

⎧
⎨

⎩
−

∑

j≤�

|z j |2 +
∑

j>�

|z j |2 = 1

⎫
⎬

⎭
⊂ C

N

of any signature �. (By a transversal embedding F we mean one not sending the tangent
space Tp X into TF(p)H

2N−1
� for p ∈ M .)

Explicit examples of non-embeddable strongly pseudoconvex real-analytic hypersurfaces
were given by the second author [25] along with explicit invariants serving as obstructions to
embeddability. In Theorem 2.1 below we give an example of a compact strongly pseudocon-
vex real-analytic hypersurface in C

2 that does not admit any holomorphic embedding into a
sphere (and more generally any transversal holomorphic embedding into a hyperquadric).

The existence of non-embeddable real-analytic hypersurfaces suggests to consider the
embeddability problem for the more restricted class of real-algebraic hypersurfaces, i.e. ones
locally given by real polynomial equations. In this line, Webster [23] showed in 1978 that any
Levi-nondegenerate real-algebraic hypersurface does in fact admit transversal holomorphic
embeddings into hyperquadrics of suitable dimension and signature. As a consequence of the
study of the Chern–Moser–Weyl tensor, Huang and Zhang [16] obtained concrete algebraic
Levi non-degenerate hypersurfaces with positive signature which cannot be holomorphic
embedded into a hyperquadric (with the same signature) of any dimension.

During the Conference on Several Complex Variables and PDEs in Serra Negra, Brazil,
in August 2011, the authors observed that the strongly pseudoconvex (near 0) real-algebraic
hypersurface defined by

M :=
⎧
⎨

⎩
z = (z1, . . . , zn) ∈ C

n : Im zn =
n−1∑

j=1

|z j |2 − |z1|4
⎫
⎬

⎭
, n ≥ 3,

is not locally (holomorphically) embeddable into any sphere of any dimension nor into any
closed strongly pseudoconvex real-algebraic hypersurface M ′ ⊂ C

N for any N . In fact, any
such embedding would be algebraic by a result of the first author [12] and hence would
extend (as holomorphic embedding into M ′) to points of M of mixed Levi signature, which
is impossible. In Theorem 2.2 below, we state a generalization of this phenomenon leading
to many simple examples of strongly pseudoconvex real-algebraic hypersurfaces that are not
holomorphically embeddable even into any closed pseudoconvex hypersurface M ′ ⊂ C

N of
finite D’Angelo type.

One can similarly construct the following locally non-embeddable example in C
2:

M := {z ∈ C
2 : Im z2 = |z|2 − |z|4},

where the proof is based on the observation that any potential embedding would be extend-
able to “large” Levi-degenerate sets, which is impossible (see Theorem 2.4 below). Along the
same lines, we further study the property of a class of real algebraic pseudoconvex hypersur-
faces discovered by Kohn and Nirenberg [17], not to admit holomorphic supporting functions
near certain weakly pseudo-convex points (and hence not locally holomorphically convexi-
fiable near these points). We will prove a general non-embeddability result in Theorem 3.6
below, which is, in addition to the Kohn–Nirenberg property, based on a property stated
in Proposition 3.10, which roughly says that in certain situations a holomorphic extension
of a local embedding from M into M ′ even along paths outside M still sends M into M ′.
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Non-embeddable real algebraic hypersurfaces 659

Proposition 3.10 is a generalization of what is called the invariant property for holomor-
phic correspondences in the literature (see [14]). However, our proof here is more geometric
and also simpler even in the case considered in [14]. Our general non-embeddability theorem
immediately leads to many examples of compact pseudoconvex real-algebraic hypersurfaces,
strongly pseudoconvex away from a single point, that are not locally holomorphically embed-
dable into any compact strongly pseudoconvex real-algebraic hypersurface of any dimension.
We also mention recent related preprint by Ebenfelt and Son [8].

We next address the related problem for hypersurfaces of positive (mixed) Levi signa-
ture. That is, whether there exists a compact Levi nondegenerate real-algebraic hypersurface
of signature � > 0 that is not transversally embeddable into a hyperquadric H

N
� of higher

dimension but the same signature �. Note that Webster’s result [23] shows that without the sig-
nature restriction, such an embedding is always possible. However, based on a monotonicity
property of the Chern–Moser–Weyl tensor [16] and algebraicity results in [13] (see also [24]
and [5]), we give in Sect. 4 below examples of compact real-algebraic Levi-nondegenerate
hypersurfaces of positive Levi signature in the projective space that are not transversally
locally holomorphically embeddable into any hyperquadric of any dimension but the same
signature. (Note that there is no compact hypersurface in C

n with positive signature, since
any such hypersurface must have a strongly pseudoconvex point.)

Finally we mention some open problems in the last section.

2 Hypersurfaces not embeddable into certain real-algebraic hypersurfaces

We first recall that a smooth real hypersurface in an open subset U of C
n is called real

algebraic, if it has a real-valued polynomial defining function. A real algebraic hypersurface
in U has an extension to a real analytic variety in C

n , which may possess singularities. Of
course, all real algebraic hypersurfaces in C

n are automatically smooth and closed.

2.1 A compact strongly pseudoconvex real-analytic hypersurface not embeddable into any
strongly pseudoconvex real-algebraic hypersurface

In [24, Corollary 1.2], the second author gave an explicit example of a germ of real-analytic
strongly pseudoconvex hypersurface in C

2 that is not transversally holomorphically embed-
dable into any Levi-nondegenerate real-algebraic hypersurface. By following verbatim the
proof of [25, Corollary 1.2] one has:

Theorem 2.1 For 0 < ε � 1,

M =
⎧
⎨

⎩
(z, w) ∈ C

2 : |z| < 1, |w|2 + |z|2 + εRe
∑

k≥2

zk z̄(k+2)! = 1/2

⎫
⎬

⎭

is a compact strongly pseudoconvex hypersurface that does not admit a nontrivial holomor-
phic embedding into any Levi-nondegenerate real-algebraic hypersurface in C

N . In partic-
ular, M is not holomorphically embeddable into any strongly pseudoconvex real-algebraic
hypersurface in C

N .
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2.2 Strongly pseudoconvex real-algebraic hypersurfaces not embeddable into finite type
real-algebraic hypersurfaces

Recall that a real-analytic hypersurface is of finite D’Angelo type if and only if it does not
contain any complex curve. By a point of mixed Levi signature we mean a point of a real
hypersurface, where the Levi form (for a choice of conormal) has both positive and negative
eigenvalues. We next state the following:

Theorem 2.2 Let M ⊂ C
n+1 be a connected real-algebraic hypersurface with a point of

mixed Levi signature. Then any holomorphic map sending an open subset of M into any closed
pseudoconvex finite D’Angelo type real-algebraic hypersurface M ′ ⊂ C

N+1 is constant.

Proof Obviously, M has nonzero Levi form on a dense subset. By [24], [5] (or by [12] when
the target is strongly pseudoconvex), any holomorphic map F sending an open subset of M
into M ′ is complex-algebraic. Since M is connected and since the branching variety of F is
of complex codimension one (if F is not a single-valued), we can extend F along a path to a
neighborhood of a point p ∈ M of mixed Levi signature, still sending M into M ′. Since M ′
is pseudoconvex, F must be constant near p and hence it is constant. �	
Example 2.3 Consider the hypersurface

M := {z ∈ Cn : n ≥ 3, Im zn = |z|2 − |z1|4}. (2.1)

Then no open piece of M can be holomorphically embedded into any closed real-algebraic
hypersurface of finite D’Angelo type in C

N for any N .

2.3 Hypersurfaces with large Levi-degenerate set

Theorem 2.4 Let M ⊂C
n+1 be a connected real-algebraic hypersurface, Levi-nondegenerate

at some point, whose set of Levi-degenerate points contains a real-analytic submanifold that
is generic in C

n+1. Then any holomorphic map sending an open subset of M into any strongly
pseudoconvex real-algebraic hypersurface M ′ ⊂ C

N+1 is constant.

Proof It follows from the assumptions that the set S ⊂ M of Levi-degenerate points is a
generic real-analytic submanifold near some point p ∈ S. As in the Proof of Theorem 2.2
any holomorphic map F sending an open subset of M into M ′ extends holomorphically and
algebraically into an open neighborhood of a point p ∈ S as above, still sending M into M ′.
(Note that algebraicity here already follows from [12].) Since M ′ is strongly pseudoconvex,
the extension F must have rank less than n + 1 for all q ∈ S near p. Since S is a generic
submanifold of C

n+1, the rank of F is less than n + 1 in an open neighborhood of p. On the
other hand, F is either constant or of full rank n + 1 at any Levi-nondegenerate point of M .
Hence F must be constant. �	
Example 2.5 A simple example of M satisfying the assumptions of Theorem 2.4 is

M := {(z, w) ∈ C
2 : Im w = |z|2 − |z|4},

which is strongly pseudoconvex near 0. The Levi-degenerate set here is {(z, w) ∈ M : |z| =
1/2} and hence Theorem 2.4 applies.

Example 2.6 An example of a compact pseudoconvex M satisfying the assumptions of The-
orem 2.4 is the following boundary of a Reinhardt domain:

M := {(z, w) ∈ C
2 : (|z|2 + |w|2)4 + (|z|2 − |w|2)4 = 1}.
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Non-embeddable real algebraic hypersurfaces 661

Away from the cross zw = 0, M is locally biholomorphically equivalent to

M̃ := {(z, w) ∈ C
2 : (|z| + |w|)4 + (|z| − |w|)4 = 1},

under the finite holomorphic map (z, w) 
→ (z2, w2). The real part of M̃ is the rotated
convex curve {x4 + y4 = 1/4} whose real part is convex. Then M is pseudoconvex and is
Levi-degenerate along the generic submanifold {(z, w) ∈ M : |z| = |w|}.

3 Non-embeddable Kohn–Nirenberg type domains

Example 3.1 Given integers 0 < l < k, consider the following famous Kohn–Nirenberg
domain [17]. (In the paper of Kohn–Nirenberg [17], though only the case with l = 1, k =
4, c = 15

7 was studied, the result in their paper holds, with the same argument, for the
following more general domain which we still call the Kohn–Nirenberg domain):

� = {(z, w) ∈ C2 : ρ = −Im w + zk z̄k + cRe (zl z̄2k−l) < 0}, 2 < |c| <
k2

l(2k − l)
.

(3.1)

Also notice that the boundary of � is of type 2k at 0 and of bi-type (l, 2k − l). It is easily seen
that � is smooth. Since the Levi form of ∂� is positive over ∂� \ L0 with L0 := {Im w =
0, z = 0}, and is semi-definite along L0, we see that � is strongly pseudoconvex away from
L0 and is weakly pseudoconvex of finite type along L0. Kohn and Nirenberg [17] proved the
following basic feature of the boundary of � that we call here Kohn–Nirenberg property:

Definition 3.2 A real hypersurface M ⊂ C
n is said to satisfy the Kohn–Nirenberg property

at a point p ∈ M if for any holomorphic function h �≡ 0 in any neighborhood U of p in C
n

with h(p) = 0, the zero set Z of h intersects M transversally at some smooth point of Z
near p.

In particular, a hypersurface with the Kohn–Nirenberg property at a point is always mini-
mal at that point. (We mention that when M ∩ Z separates Z, it has Hausdorff codimension
one and thus must be generically smooth in Z. ) See also Example 3.5 for compact hyper-
surfaces with the Kohn–Nirenberg property. The argument in [17] is very general and can be
used to obtain further classes of hypersurfaces satisfying the Kohn–Nirenberg property. We
mention the paper by Kolar [18] for a discussion of the similar but different property of local
holomorphic convexifiability.

We shall also consider local holomorphic supporting functions:

Definition 3.3 A subset M ′ ⊂ C
N is said to admit local holomorphic supporting functions

if for each q ∈ M ′, there is a neighborhood � of q in C
N and a holomorphic function h in

� such that h(q) = 0 but Im h(z) < 0 for z ∈ M ′ ∩ �, z �= q .

Remark 3.4 In particular, when M ′ is a smooth hypersurface of finite D’Angelo type and
locally holomorphically convexifiable, it admits local holomorphic supporting functions.
This is a consequence of a result of McNeal on the equivalence of linear type and D’Angelo
type for convex domains. (See [7], for instance).

Theorem 3.6 below implies that no open piece of the boundary of the classical Kohn–
Nirenberg domain can be mapped by a non-constant holomorphic map into any connected
compact smooth algebraic hypersurface in C

n , that is locally holomorphically convexfiable.
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Example 3.5 Consider the following compactified Kohn–Nirenberg type domain:

�={(z, w) ∈ C
2 : ρ = ε(|z(w − 1)|2+|z|2k +c|z|2lRe z2k−2l)+|w|2 + |z|2k+2−1 < 0}.

(3.2)

where 0 < ε � 1 and l, k, c as in (3.1). Then � is a smoothly bounded real-algebraic
domain, which is pseudoconvex and strongly pseudoconvex away from p0 := (0, 1). Since
the principal terms in ρ at p0 are the same as those in the classical Kohn–Nirenberg domain
case, one still has the Kohn–Nirenberg property at p0 by the same argument. Again, by
Theorem 3.6 below, no open piece of ∂� can be mapped by a non-constant holomorphic map
into a smooth compact algebraic hypersurface M ′, that admits local holomorphic supporting
functions.

To get a similar higher dimensional example with the Kohn–Nirenberg property, we need
only to find one which includes the boundary of the domain in (3.2) as its CR submanifold.
For instance, the boundary of the following domain serves this purpose:

{(z, w) = (z1, z′, w) ∈ C × C
n−2 × C :

ρ = ε(|z1(w − 1)|2 + |z1|2k + c|z1|2lRe z2k−2l
1 ) + |w|2 + |z′|2 + |z1|2k+2 < 1}.

(3.3)

Theorem 3.6 Let M ⊂ C
n (n > 1) be a connected minimal real-algebraic hypersurface,

which has the Kohn–Nirenberg property at some point. Let M ′ ⊂ C
N be a compact real-

algebraic subset admitting local holomorphic supporting functions at each point. Then any
holomorphic map sending an open piece of M into M ′ is constant.

The proof is broken up in a sequence of lemmas.

Lemma 3.7 Let U ⊂ C
n be a simply connected open set and S ⊂ U a closed complex

analytic subset of codimension one. Then for p ∈ U \S, the fundamental group π1(U \S, p)

is generated by loops obtained by concatenating paths γ1, γ2, γ3, where γ1 connects p with
a point arbitrarily close to a smooth point q0 ∈ S, γ2 is a loop around S near q0 and γ3 is
γ1 reversed.

Here, by saying that γ2 goes around q0, we mean there is a closed embedded real 2-disk
D in U such that γ2 is the boundary of D and D intersects S only and transversally at p0.

Proof Replacing U by U \Sing(S) if needed, we can assume that S is smooth. Here Sing(S)

is the singular set of S, which has codimension at least two, hence U \Sing(S) is still simply-
connected. Take any loop γ ∈ π1(U \S, p). Since U is simply connected, γ can be contracted
to p inside U , i.e. γ viewed as a map from S1 := {|z| = 1} ⊂ C into U can be continuously
extended to the disk 
 := {|z| ≤ 1}. Using Thom’s transversality, the disk extension can be
approximated by a smooth immersion � : 
 → U such that �|S1 is a smooth Jordan loop
defining the same class in π1(U \S, p) as γ , and such that �(
) intersects S transversally at
finitely many smooth points. Since the fundamental group of the disk 
 minus finitely many
points is generated by loops going around single points, it is easy to see that �|S1 and hence
γ is generated by loops inside �(
) as described in the lemma. �	

Let M ⊂ U (⊂ C
n) be a closed real-analytic subset defined by a family of real-valued

real analytic functions {ρα(z, z)}. Assume that the complexification ρα(z, ξ) of ρα(z, z) is
holomorphic over U × conj(U ) with

conj(U ) := {z : z ∈ U }
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Non-embeddable real algebraic hypersurfaces 663

for each α. Then the complexification M of M is the complex-analytic subset in U ×conj(U )

defined by ρα(z, ξ) = 0 for all α. Then for w ∈ C
n , the Segre variety of M associated with

the point w is defined by Qw := {z : (z, w̄) ∈ M}. Recall the basic properties of the Segre
varieties: z ∈ Qw ⇐⇒ w ∈ Qz and z ∈ Qz ⇐⇒ z ∈ M . (See [14] for more related
notations and definitions.)

Lemma 3.8 Let M ⊂ C
n be a minimal real-analytic hypersurface at a point p0 ∈ M. Then

there exist small open neighborhoods U, Ũ of p0 in C
n with U ⊂⊂ Ũ such that the following

holds:

1. For every z ∈ U, the Segre variety Qz is a nonempty closed connected smooth hypersur-
face in Ũ .

2. There is no complex hypersurface H ⊂ U such that Qz ≡ Qw , when restricted to Ũ , for
all z, w ∈ H.

Proof Let M be a real analytic hypersurface near p0 as in the lemma with a real analytic
defining function ρ near p0. (1) is a direct consequence of the implicit function theorem and
is standard in the literature.

We prove (2) by contradiction assuming there exists H as in the lemma. Suppose p0 ∈ H .
Since p0 ∈ Q p0 , and for any w ∈ H , we must have Qw ≡ Q p0 . Hence p0 ∈ Qw and
therefore w ∈ Q p0 ≡ Qw. Hence w ∈ Qw and thus H ⊂ M , contradicting nonminimality
of M .

For H general, and for z ∈ H q ∈ Qz , we have q ∈ Qw ≡ Qz for any w ∈ H . Therefore
w ∈ Qq , and thus H ⊂ Qq , which gives that H = Qq . Hence, by the property of H , we see
that Eq := ∪z∈Qq Qz = Qz0 for any z0 ∈ H and thus is a complex hypersurface.

On the other hand, assume without loss of generality that p0 = 0 and ∂ρ
∂zn

(0) �= 0 for a
real-analytic defining function of M . Then there is a holomorphic function � in its variables
such that Eq is defined, in the (ξ ′, ξn)-coordinates, near 0 by ξn = �(z′, q, ξ ′) with parameter
z′ ≈ 0. The latter notation here means that z′ is sufficiently close to 0 and we shall use it in
the sequel. Now, suppose that the statement in (2) fails no matter how we shrink U . Then we
have a sequence q → 0 such that Eq is simply defined by ξn = �(0, q, ξ ′). Passing to the
limit, we get E0 is defined by ξn = �(0, 0, ξ ′). This contradicts the minimality as argued
above. �	
Lemma 3.9 Let M ⊂ C

n be a minimal real-analytic hypersurface at a point p0 ∈ M and
S a closed proper complex analytic subset in a neighborhood of p0 with p0 ∈ S. Then there
exists a small (simply-connected) open neighborhood U of p0 in C

n, such that the following
holds.

Take p ∈ (M ∩U )\S and let γ ∈ π1(U \S, p) be obtained by concatenation of γ1, γ2, γ3

as in Lemma 3.7, where γ2 is a small loop around S near a smooth point q0 ∈ S ∩ U. Then
γ can be slightly perturbed to a homotopic loop γ̃ (t) in π1(U \S, p) such that there exists a
null-homotopic loop λ(t) in π1(U \S, p) with (λ(t), γ̃ (t)) contained in the complexification
M of M for all t . Also, for any element γ̂ ∈ π1(U \ S, p), after a small perturbation of γ̂ if

needed, we can find a null-homotopic loop λ̂ ∈ π1(U \ S, p) such that (γ̂ , λ̂) ⊂ M.

Proof Let p0 ∈ U ⊂ Ũ be satisfying the conclusion of Lemma 3.8. Shrinking U if necessary,
we may assume that there exists a real analytic (reflection) map R : U → U with R2 =
id, R|M = id and (R(z), z) ∈ M for all z ∈ U , namely, R(z) ∈ Qz . In fact, the map R can
be obtained by slicing M transversally by a family of parallel complex lines {L} near p0 and
then taking the Schwarz reflection about M ∩ L inside each L of the family. More precisely,
let L0 be a complex line through p0 intersecting M transversally at p0. Then sufficiently
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small neighborhood U of p0 is foliated by lines L parallel to L0, which still intersect M
transversally. Shrinking U suitably, we may assume that the Schwarz reflection about M ∩ L
is defined in U ∩ L and leaves the latter invariant. Then define R to be the Schwarz reflection
along each line L . (We can of course arrange U such that for any line L , the pair of the
reflecting points with respect to U ∩ L stays inside U and thus R(U ) = U.)

We now claim that we can slightly perturb q0 ∈ S and the direction of the parallel lines
(and hence R) such that R(q0) /∈ S. Indeed, by (2) of Lemma 3.8 applied to H = S, we
conclude that Qq �≡ Qq ′ for two generic q, q ′ ∈ S arbitrarily close to q0. Then either Qq0

contains points away from S arbitrarily close to q ′
0 := R(q0) or an open piece of Qq0 is

contained in S. But the latter case together with Qq �≡ Qq ′ with q, q ′(∈ S) ≈ q0 implies
that Qq cannot contain an open piece of S for a generic q ≈ q0. Then we can choose such
q and q ′ ∈ Qq \ S arbitrarily close to q0 and q ′

0 = R(q0), respectively. Considering the line
through q and q ′ and using the lines parallel to this one to redefine R, this proves the claim.

After slightly perturbing q0 and R as in the above, it follows that there exists a sufficiently
small open ball � containing q0 such that R(�) ∩ S = ∅. Then the paths γ1, γ2, γ3 can be
perturbed homotopically into γ̃1, γ̃2, γ̃3 respectively, where γ̃1 connects p with a point in
�, γ̃2 is a loop around S inside � and also sufficiently close to q0, and γ̃3 is γ̃1 reversed such
that the loop γ̃ obtained by concatenation of γ̃1, γ̃2, γ̃3 is homotopic to γ in π1(U \S, p) and
we can take λ(t) := R(γ̃ (t)). (Of course, we may need to slightly perturb γ̃1 to make sure
that λ avoids S.) Then λ is null-homotopic in π1(U \ S, p) since R(�) does not intersect S.

The last statement in the lemma follows from the symmetric property of the reflection
map (Segre varieties) and what we just proved. The proof is complete. �	

We now choose R as in the above proof above, defined in a neighborhood of a point
p0 ∈ M .

Proposition 3.10 Let � ⊂ C
n, V ⊂ C

N be connected open sets, M ⊂ � a real analytic
hypersurface, M ′ ⊂ V a real-analytic subset defined by a set of real valued real analytic
functions {ρα} over V, S ⊂ � a proper closed complex analytic subset and F ⊂ (�\S)×V
a complex submanifold whose projection to � \ S is a finite sheeted covering. Suppose that:

1. M is minimal at p0 ∈ M.
2. The complexification ρα(z, ξ) for each α is holomorphic over V × conj(V).

Then there exists a neighborhood U of p0 in �, depending only on M and p0, such that if a
certain local branch F of F , defined over a subdomain D ⊂ U \ S with D ∩ M �= ∅ sends a
D ∩ M into M ′, then any other branch of F obtained by continuing F along paths in U \ S
also sends M into M ′. Equivalently, if F ′ is the connected component of F ∩ (U \ S) × V
containing the graph of F, then for any (z, w) ∈ F ′ with z ∈ M, we have w ∈ M ′. More
generally, slightly perturbing R if needed, we have F1(Qz ∩ O(R(z))) ∈ Q′

F2(z) for any
(z, F1(z)), (z, F2(z)) ∈ F ′ with z, R(z) ∈ U \ S. Here for any w ∈ V, Q′

w := {z ∈ V :
ρα(z, w) = 0 ∀α}, and O(a) denotes a small neighborhood of a in C

n.

Proof Let U be a simply connected neighborhood of p0 in �. We need only consider the
case when S is of codimension one in �, for, otherwise, U \ S is also simply connected.
Hence, the continuation of F along curves in U \ S defines a holomorphic map over U \ S
and all the properties stated in the Proposition follows easily. We also choose U ⊂ � such
that the conclusion of Lemma 3.9 is satisfied. In addition, we can choose U such that M ∩U
is connected and minimal.

Denote by F : D ⊂ U \S → V a local branch of F , where D is a domain with D∩M �= ∅,
sending D ∩ M into M ′. Let p ∈ D ∩ M . Then (F, F) : D × conj(D) → V × conj(V ) sends
an open neighborhood of (p, p̄) in the complexification M of M into M′.
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Non-embeddable real algebraic hypersurfaces 665

Let F1 : D1 ⊂ U \ S → V be a branch of F with some point p1 ∈ M ∩ D1, obtained by
continuing F along a path in U \ S, connecting p1 with p. Since M ∩ U is connected and
minimal, (M ∩U )\S is also connected. Hence there exists a path γ in (M ∩U )\S connecting
p with p1. Then by the analyticity of M ′, the branch F2 of F obtained by continuing F along
γ is sending a neighborhood of p in M into M ′.

Hence (F2, F2) := (F2(·), F2(·)) sends a neighborhood of (p1, p1) in M into M′. Now
the branch F1 is obtained from F2 by continuation along a certain loop γ in π1(U \ S, p1).
Notice that R2 = id. By Lemmas 3.7 and 3.9, slightly perturbing γ and R if needed, we
can assume that λ(t) = R(γ (t)) is a null homotopic loop in U \ S. Notice that γ = R(λ).
Applying the holomorphic continuation along the loop (γ, λ) in M for ρα(F1, F1) for each α,
one concludes by the uniqueness of analytic functions that (F1, F2) also sends a neighborhood
of (p1, p1) in M into M′. Namely, for any z near p1, we have F1(Qz ∩ O(R(z))) ⊂ Q′

F2(z),
where O(a) as before denotes a small neighborhood of a. Now, applying the holomorphic
continuation along the loop (λ, γ ) in M for ρα(F1, F2) for each α, one concludes by the
uniqueness of analytic functions that (F1, F1) sends a neighborhood of (p1, p1) in M into
M′. In particular, F1 maps a neighborhood of p1 in M into M ′. (Cf. Lemma 2.1 of [15]).
The last assertion in the proposition can be proved with a similar argument based on the
holomorphic continuation and the uniqueness property for analytic functions. �	
Lemma 3.11 For an open set U ⊂ C

n, consider the complex analytic subset

F :=
{

(z, w) ∈ U × C :
m∑

l=0

al(z)w
l = 0

}

, (3.4)

where a0(z), . . . , am(z) are holomorphic functions in U that do not simultaneously vanish
on a (possibly singular) complex hypersurface. Suppose that M ⊂ U is a real-analytic
hypersurface and C > 0 is a constant such that |F(z)| ≤ C for any branch F : � → C of
F and any z ∈ M ∩ �. Write S ′ := {z ∈ U : am(z) = 0}. Then M ∩ S ′ is contained in a
complex analytic subset of S ′ of positive codimension.

Proof Since a0(z), . . . , am(z) do not simultaneously vanish on a (possibly singular) complex
hypersurface, for each non-empty irreducible component C of S ′, there exists j < m such
that a j (z), does not vanish identically on C. Hence {a j = 0} defines a complex analytic
subset of S ′ of positive codimension.

We claim that M ∩C ⊂ {a j = 0}. Indeed, suppose on the contrary, there exists z0 ∈ M ∩C
with a j (z0) �= 0. Since M is a real hypersurface, there exists a sequence zk ∈ M \ S ′
converging to z0 as k → ∞ such that F has m branches (counted with multiplicity) around
each zk . Since all branches of F are uniformly bounded on M by our assumption, the same is

true for their symmetric functions. In particular,
a j (z)
am (z) is also bounded along zk . On the other

hand am(z0) = 0, a j (z0) �= 0 imply
a j (zk )

am (zk )
→ ∞ as k → ∞, which is a contradiction.

This proves the claim and therefore, M ∩ C is contained in the set {a j = 0} of positive
codimension. Since C is an arbitrary irreducible component of S ′, the proof is complete. �	
Corollary 3.12 In addition to the assumptions of Lemma 3.11, suppose that M satisfies the
Kohn–Nirenberg property at p ∈ M (see Definition 3.2). Then am(p) �= 0.

Proof Indeed, otherwise by the Kohn–Nirenberg property, the zero set S ′ of am(z) must
intersect M transversally at some smooth point. The latter implies that M ∩ S ′ is a real
hypersurface in S ′ at such point, which contradicts the conclusion of Lemma 3.11. �	
Proof of Theorem 3.6 Assume the hypotheses in Theorem 3.6. Suppose that there is a non-
constant holomorphic map F sending an open piece M into M ′. By a result of Diederich
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and Fornaess [6], M ′ does not contain non-trivial holomorphic curves. Since M is minimal,
by [24] and [5], F is complex algebraic. In particular, F extends holomorphically along
any path away from a proper complex algebraic subset S ⊂ C

n . We need only prove the
theorem assuming that S is a codimension one complex analytic variety near p0 ∈ M with
the Kohn–Nirenberg property.

Since M is minimal and connected, M \ S is also connected. Then F has holomorphic
extensions to points of M \ S arbitrarily close to a point p0 ∈ M with the Kohn–Nirenberg
property, sending M into M ′. Now Proposition 3.10 implies that there exists a neighborhood
U of p0 in C

n and an extension F̃ of F to a point in M ∩U such that any extension of F̃ along
a path in U \S sends M into M ′. Consider the (n-dimensional) Zariski closure F̃ ⊂ C

n ×C
N

of the graph of F̃ and denote by F̂ the analytic irreducible component of F̃ ∩ (U × C
N )

containing the graph of F̃ . In particular, F̂ \(S ×C
N ) is connected and therefore each branch

of F̂ away from S sends M into M ′.
Since M ′ is compact, it follows that all branches of F̂ are uniformly bounded on M . Then

Corollary 3.12 implies that, after possible shrinking U around p0, F̂ becomes bounded.
Furthermore, by further shrinking U , we may assume that F̂ ∩ ({p0} × C

N ) = {(p0, p′
0)}

for some p′
0 ∈ M ′.

Since M ′ has local holomorphic supporting functions, there exists a holomorphic function
h in a neighborhood of p′

0 in C
N such that h(p′

0) = 0 and Im h < 0 on M ′ away from p′
0.

Let F1, . . . , Fm be local branches of F̂ at z ∈ U \ S, counted with multiplicity. Define
h∗ := ∑m

j=1 h ◦ Fj . Then h∗ is well-defined away from S and extends holomorphically
to p0 with h∗(p0) = 0. Furthermore, since all branches of F̂ send M into M ′, we have
Im h∗(z) < 0 for generic z ∈ M unless F̂ ∩ ({z} × C

N ) = {(z, p′
0)}. Since F is assumed

to be non-constant, so is F̃ . Hence there exist points z ∈ M arbitrarily close to p0 with
Im h∗(z) < 0. In particular, h∗ �≡ 0 and hence, by the Kohn–Nirenberg property, the zero set
Z := {h∗ = 0} intersects M transversally at some smooth points of Z arbitrarily close to p0.

Since M is minimal, one-sided neighborhood D of p0 is filled by small analytic disks in
U attached to M by a result of Trépreau [21] (see also [22]). Therefore we have Im h∗ ≤ 0
in D by the maximum principle. Since Z intersects M transversally at some points close to
p0, it also intersects D. That is, Im h∗(z) = 0 for some z ∈ D. Now it follows from the
maximum principle that h∗ ≡ 0 in D and therefore in M . But then, as mentioned before,
we must have F̂ ∩ ({z} × C

N ) = {(z, p′
0)} for all z ∈ M , implying that F̃ and hence F are

constant. This completes the proof. �	
Remark 3.13 (a) Assume that there exists ε > 0, such that for any p ∈ M ′ and z in the ball
Bε(p), it holds that M ′ ∩ Q′

z ∩ Bε(p) = {z}, for instance, if M ′ is a strongly pseudoconvex
hypersurface. Then if F1(z) and F2(z) in Proposition 3.10, are sufficiently close for some
z ∈ M \ S, it follows that F1 ≡ F2. In particular, F cannot be extended as correspondence
with a non-empty (non-blowing-up) branch locus intersecting M .

(b) We also mention a paper by Shafikov in [19] where more detailed studies in the
equidimensional case (N = n) were addressed.

4 Hypersurfaces of positive Levi signature

Fix two integers n, � with 1 < � ≤ n/2. For any ε, define

Mε :=
⎧
⎨

⎩
[z0, . . . , zn+1] ∈ CPn+1 : |z|2

⎛

⎝−
�∑

j=0

|z j |2 +
n+1∑

j=�+1

|z j |2
⎞

⎠ + ε
(|z1|4 − |zn+1|4

) = 0

⎫
⎬

⎭
.
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Here |z|2 = ∑n+1
j=0 |z j |2 as usual. For ε = 0, Mε reduces to the generalized sphere with

signature �, which is the boundary of the generalized ball

Bn+1
� :=

⎧
⎨

⎩
{[z0, . . . , zn+1] ∈ CPn+1 : −

�∑

j=0

|z j |2 +
n+1∑

j=�+1

|z j |2 < 0

⎫
⎬

⎭
.

The boundary ∂Bn+1
� is locally holomorphically equivalent to the hyperquadric Hn+1

� ⊂ Cn+1

of signature � defined by Im zn+1 = −∑�
j=1 |z j |2 + ∑n+1

j=�+1 |z j |2, where (z1, . . . , zn+1)

is the coordinates of Cn+1.
For 0 < ε � 1, Mε is a compact smooth real-algebraic hypersurface with Levi form

nondegenerate of the same signature �. We now state our next theorem:

Theorem 4.1 There is an ε0 > 0 such that for 0 < ε < ε0, the following holds: Mε is a
smooth real-algebraic hypersurface in CPn+1 with nondegenerate Levi form of signature � at
every point. Moreover for any point p ∈ Mε and a holomorphic map F from a neighborhood
U of p in Cn+1 into CN+1 sending Mε into higher dimensional hyperquadric HN+1

� of the

same signature, it follows that F must be totally degenerate in the sense that F(U ) ⊂ Hn+1
� .

In particular, there does not exist any holomorphic embedding from any open piece of Mε

into HN+1
� .

There are two main ingredients in our proof: the Chern–Moser–Weyl tensor and an alge-
braicity theorem of the first author in [13]. We first recall the related concept for the Chern–
Moser–Weyl tensor. For a more detailed account on this matter, the reader is referred to [3]
and [16].

We use (z, w) ∈ C
n × C for the coordinates of C

n+1. We always assume that n ≥ 2.
Let M be a smooth real hypersurface. M is said to be Levi non-degenerate at p ∈ M with
signature � ≤ n/2 if there is a local holomorphic change of coordinates, that maps p to the
origin, such that in the new coordinates, M is defined near 0 by an equation of the form:

r = v − |z|2� + o(|z|2 + |u|) = 0. (4.1)

Here, we write u = Re w, v = Im w and

〈a, b̄〉� = −
�∑

j=0

a j b̄ j +
n∑

j=�+1

a j b̄ j , |z|2� = 〈z, z̄〉�.

When � = 0, we regard
∑

j≤� a j = 0.
Assume that M is Levi non-degenerate with the same signature � at any point with � ≤ n/2.

A contact form θ over M is said to be appropriate if the Levi form Lθ |p associated with θ

at any point p ∈ M has � negative eigenvalues and n − � positive eigenvalues. Let θ be an
appropriate contact form over M . Then from the Chern–Moser Theory, there is a unique 4th
order curvature tensor Sθ associated with θ [3], which we call the Chern–Moser–Weyl tensor
with respect to the contact form θ along M . Sθ can be regarded as a section in

T ∗(1,0)M ⊗ T ∗(0,1)M ⊗ T ∗(1,0)M ⊗ T ∗(0,1)M.

We write σ Sθ |p for the restriction of σ Sθ at p ∈ M . For another appropriate contact for θ̃ ,
we have θ̃ = kθ with k �= 0. Notice that k > 0 when � �= n/2. Then σ Sθ̃ = kσ Sθ , i.e. the
Chern–Moser–Weyl tensor at a point p ∈ M can be invariantly seen as multilinear map

S : T (1,0)
p M × T (0,1)Mp × T (1,0)Mp × T (0,1)

p M → C ⊗ Tp M/(T (1,0)
p M + T (0,1)

p M).
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The Chern–Moser–Weyl tensor has particularly simple expression in the normal coor-
dinates, which we give as follows: By the Chern–Moser normal form theory [3], there is a
holomorphic coordinates system in which M is defined near 0 by an equation of the following
form (see [3, (6.25), (6.30)]):

r = v − |z|2� + 1

4
s(z, z̄) + o(|z|4) = v − |z|2� + 1

4

∑
sαβ̄γ δ̄zα z̄β zγ z̄δ + o(|z|4) = 0,(4.2)

where s satisfies the trace condition

��s(z, z̄) ≡ 0,

with �� := −∑
j≤�

∂2

∂z j ∂ z̄ j
+ ∑n

j=�+1
∂2

∂z j ∂ z̄ j
. Here s(z, z) = ∑

sαβ̄γ δ̄zα z̄β zγ z̄δ, θ =
i∂r, sαβ̄γ δ̄ = sγ β̄αδ̄ = sγ δ̄αβ̄ , sαβ̄γ δ̄ = sβᾱδγ̄ and the trace condition is equivalent to
∑n

α,β=1 sαβ̄γ δ̄gβ̄α = 0 where gβ̄α = 0 for β �= α, gβ̄β = 1 for β > �, gβ̄β = −1 for
β ≤ �. Then

sαβ̄γ δ̄ = σ Sθ |0
(

∂

∂zα

∣
∣
∣
∣
0
,

∂

∂ z̄β

∣
∣
∣
∣
0
,

∂

∂zγ

∣
∣
∣
∣
0
,

∂

∂ z̄δ

∣
∣
∣
∣
0

)

.

We also write sθ |0(z, z̄) for s(z, z). Consider the Levi null-cone

C� = {z ∈ C
n : |z|� = 0}.

Then C� is a real-algebraic variety of real codimension 1 in C
n for � > 0 with the only

singularity at 0. For each p ∈ M , write

C�T (1,0)
p M = {vp ∈ T (1,0)

p M : 〈dθp, vp ∧ v̄p〉 = 0}.
Cl T

(1,0)
p M is independent of the choice of θ . Let F be a CR diffeomorphism from M to M ′.

We also have F∗(C�T (1,0)
p M) = C�T (1,0)

F(p) M ′. Write C�T (1,0)M = ∐
p∈M C�T (1,0)

p M with

the natural projection π to M . We say that X is a smooth section of σC�T (1,0)M if X is a
smooth vector field of type (1, 0) along M such that X |p ∈ σC�T (1,0)

p M for each p ∈ M .
We say that the Chern–Moser–Weyl curvature tensor σ Sθ is pseudo positive semi-

definite (resp. pseudo negative semi-definite) at p ∈ M if σ Sθ |p (X, X , X, X) ≥ 0 (resp.

σ Sθ |p (X, X , X, X) ≤ 0) for all X ∈ σC�T (1,0)
p M). We say that σ Sθ is pseudo posi-

tive definite (resp. pseudo negative definite) at p ∈ M if σ Sθ |p (X, X , X, X) > 0 (resp.

σ Sθ |p (X, X , X, X) < 0) for all X ∈ σC�T (1,0)
p M \ 0). We use the terminology pseudo

semi-definite to mean either pseudo positive semi-definite or pseudo negative semi-definite.
The following will be used later:

Theorem 4.2 ([16], Corollary 3.3) Let M ⊂ C
n+1 be a Levi non-degenerate real hypersur-

face of signature �. Suppose that F is a holomorphic mapping defined in a (connected)
open neighborhood U of M in Cn+1 that sends M into HN+1

� ⊂ C
N+1. Assume that

F(U ) �⊂ HN+1
� . Then when � < n

2 , the Chern–Moser–Weyl curvature tensor with respect
to any appropriate contact form θ is pseudo negative semi-definite. When � = n

2 , along any
contact form θ, σ Sθ is pseudo semi-definite.

We next state the following algebraicity theorem:

Theorem 4.3 ([13], Corollary in §2.3.5) Let M1 ⊂ Cn and M2 ⊂ CN with N ≥ n ≥ 2
be two Levi non-degenerate real-algebraic hypersurfaces. Let p ∈ M1 and Up be a small
connected open neighborhood of p in Cn and F be a holomorphic map from Up into CN
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Non-embeddable real algebraic hypersurfaces 669

such that F(Up ∩ M1) ⊂ M2 and F(Up) �⊂ M2. Suppose that M1 and M2 have the same
signature � at p and F(p), respectively. Then F is algebraic in the sense that each component
of F satisfies a nontrivial holomorphic polynomial equation.

It was first proved in [12] when � = 0, namely, the strongly pseudo-convex case. The
case with � > 0 was done in the first author’s thesis [13, §2.3.5]. It also follows from a more
general algebraicity theorem of the second author in [24, Corollary 1.6].

The proof of the above theorem follows from the same proof as in the signature zero
case [12], except in the � > 0 case, we have now the Hopf lemma property as part of the
assumption and that the proof of [12, Lemma 2.8] (or [13, Lemma 2.8]) needs to be replaced
by the following simple linear algebra lemma:

Lemma 4.4 (Lemma 2.8′, [13]) Assume that V is a smooth complex-analytic hypersurface
in a neighborhood of 0 in Cn+1. Assume that M ′ is a Levi non-degenerate hypersurface of
signature � > 0 at 0 and T (1,0)

0 M ′ �= T (1,0)
0 V . Assume that M ′ ∩ V contains a Levi non-

degenerate CR submanifold of hypersurface type with signature � through 0. Then M ′ ∩ V
is a Levi non-degenerate hypersurface of signature � in V near 0.

Proof of Theorem 4.1 We first note that for small ε, Mε is a small perturbation of the compact
quadric M0 of signature �. Hence there exists a positive 0 < ε0 such that whenever 0 < ε <

ε0, Mε is everywhere Levi non-degenerate with the same signature �.
Now, we compute the Chern–Moser–Weyl tensor of Mε at the point

P0 := [ξ0
0 , . . . , ξ0

n+1], ξ0
j = 0 for j �= 0, � + 1, ξ0

0 = 1, ξ0
�+1 = 1,

and consider the coordinates

ξ0 = 1, ξ j = η j

1 + σ
, j = 1, . . . , �, ξ�+1 = 1 − σ

1 + σ
, ξ j+1 = η j

1 + σ
, j = � + 1, . . . , n.

Then in the (η, σ )-coordinates, P0 becomes the origin and Mε is defined near the origin by
an equation in the form:

ρ = −4Re σ −
�∑

j=1

|η j |2 +
n∑

j=�+1

|η j |2 + a(|η1|4 − |ηn |4) + o(|η|4) = 0, (4.3)

for some a > 0. Now, let Q(η, η) = −a(|η1|4 − |ηn |4) and make a standard �-harmonic
decomposition [SW]:

Q(η, η) = N (2,2)(η, η) + A(1,1)(η, η)|η|2�. (4.4)

Here N (2,2)(η, η) is a (2, 2)-homogeneous polynomial in (η, η) such that 
�N (2,2)(η, η) = 0
with 
� as before. Now N (2,2) is the Chern–Moser–Weyl tensor of Mε at 0 (with respect to
an obvious contact form) with N (2,2)(η, η) = Q(η, η) for any η ∈ CT (1,0)

0 Me. Now the value
of the Chern–Moser–Weyl tension has negative and positive value at X1 = ∂

∂η1
+ ∂

∂η�+1
|0 and

X2 = ∂
∂η2

+ ∂
∂ηn

|0, respectively. If � > 1, then both X1 and X2 are in CT (1,0)
0 Me. We see that

the Chern–Moser–Weyl tensor can not be semi-definite near the origin in such a coordinate
system.

Next, suppose an open piece U of Mε can be holomorphically and transversally embedded
into the HN+1

� for N > n by F . Then by the algebraicity result in Theorem 4.3, F is algebraic.
Since the branching points of F and the points where F is not defined (poles or points of
indeterminancy of F) are contained in a complex-algebraic variety of codimension at most
one, F extends holomorphically along a smooth curve γ starting from some point in U and
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ending up at some point p∗(≈ 0) ∈ Mε in the (η, σ )-space where the Chern–Moser–Weyl
tensor of Mε is not pseudo-semi-definite. By the uniqueness of real-analytic functions, the
extension of F must also map an open piece of p∗ into HN+1

� . The extension is not totally
degenerate. By Theorem 4.2, we get a contradiction. �	

5 Open problems

We mention here the following questions that still seem to be open.
Question 1 Is there any example of a compact strongly pseudoconvex real-algebraic

hypersurface in C
n that is not holomorphically embeddable into a sphere of any dimension?

In fact, all known examples of hypersurfaces that are not embeddable into spheres are
also not embeddable into strongly pseudoconvex real-algebraic hypersurfaces. It remains
unknown whether these two classes are different, more precisely.

Question 2 Is there any example of a (not necessarily compact) strongly pseudocon-
vex real-algebraic hypersurface in C

n that is holomorphically embeddable into a compact
strongly pseudoconvex real-algebraic hypersurface but is not holomorphically embeddable
into a sphere of any dimension?
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