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Abstract

Let Ω be a Stein space with a compact smooth strongly pseudoconvex boundary. We prove that
the boundary is spherical if its Bergman metric over Reg(Ω) is Kähler-Einstein.
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1 Introduction

For any bounded domain in D ⊂ Cn, its Bergman metric is a canonical biholomorphically

invariant Kähler metric over D. Cheng-Yau [CY80] proved that there exists a complete

Kähler-Einstein metric on a bounded pseudoconvex domain in Cn with a C2-smooth bound-

ary. A well-known open question initiated from the work of Cheng-Yau [CY80] asks when the

Bergman metric on a smoothly bounded domain coincides with its Cheng-Yau Kähler-Einstein

metric. Cheng conjectured in [C79] that the Bergman metric of a smoothly bounded strongly

pseudoconvex domain is Kähler-Einstein if and only if the domain is biholomorphic to the

ball. This conjecture was solved by Fu-Wong [FW97] and Nemirovski-Shafikov [NS06] in the

case of complex dimension two and was verified in a recent paper of Huang-Xiao [HX16] for

any dimensions. Recently, Ebenfelt-Xiao-Xu [EXX20] introduced a new characterization of
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the two-dimensional unit ball B2, more generally, two-dimensional finite ball quotients B2/Γ

in terms of algebracity of the Bergman kernel. There have been also other related studies on

versions of the Cheng’s conjecture in terms of metrics defined by other important canonical

potential functions as in the work of Li [L1, L2, L3].

On a complex space Ω with possible singularities, Kobayashi [Kob] defined the Bergman

kernel form on its smooth part Reg(Ω) which is naturally identified with the Bergman kernel

function in the domain case. The Kobayashi Bergman kernel form can be similarly used to

define a Kähler form on Reg(Ω) under certain geometric conditions on Ω, which are always the

case when Ω is a Stein space with a compact smooth strongly pseudoconvex boundary. In this

paper, we address the generalized Cheng question of understanding the geometric implication

when the Bergman metric of a Stein space with a compact strongly pseudoconvex boundary

has the Einstein property.

To state our main theorem, we first introduce a few notations. Let Ω be a Stein space of

dimension n with possibly isolated singularity and write Reg(Ω) for its regular part. Write

Λn(Reg(Ω)) for the space of the holomophic (n, 0)-forms on Reg(Ω) and define the Bergman

space of Ω as follows:

A2(Ω) := {f ∈ Λn(Reg(Ω)) : (−1)
n2

2

∫

Reg(Ω)

f ∧ f < ∞}.

Then A2(Ω) is a Hilbert sapce with the inner product:

(f, g) = (−1)
n2

2

∫

Reg(Ω)

f ∧ g, for all f, g ∈ Λn(Reg(Ω)).

We assume that A2(Ω) 6= {0}. Let {fj}N
1 be an orthonormal basis of A2(Ω) and define the

Bergman kernel to be KΩ =
∑N

j=1 fj ∧ f j. Here, N is either a natural number or ∞. In a

local holomorphic coordinate chart (U, z) on Reg(Ω), we have

KΩ = kΩ(z, z)dz1 ∧ · · · ∧ dzn ∧ dz1 ∧ · · · ∧ dzn in U.

Assume further that KΩ is nowhere zero on Reg(Ω). We define a Hermitian (1, 1)-form on

Reg(Ω) by ωB
Ω = i∂∂ log kΩ(z, z). We call ωB

Ω the Bergman metric on Ω if it indeed induces a

positive definite metric on Reg(Ω).

Notice that if Ω is a Stein space with a compact smooth strongly pseudoconvex boundary

then Ω can be compactly embedded into a closed Stein subspace of a certain complex Euclidean

space. Then A2(Ω) is of infinite dimension and it indeed defines a Bergman metric on Reg(Ω).
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Our main purpose of this paper is to generalize results obtained in [FW97] and [HX16] to

Stein spaces with possible singularities:

Theorem 1.1. Let Ω be a Stein space with a compact smooth strongly pseudoconvex boundary.

If its Bergman metric ωB
Ω on Reg(Ω) is Kähler-Einstein then ∂Ω is spherical.

2 Proof of Theorem 1.1

In this section, we start with a strongly pseudoconvex complex manifold M with a compact

strongly pseudoconvex boundary. We denote by E the exceptional set in M in the sense of

Grauert [G62], that is, there exists a blowing down map π : M → Ω from M to a Stein

space Ω with isolated singularities such that π−1(Sing(Ω)) = E and π : M \E → Ω \ Sing(Ω)

is a biholomorphic map. Here, we denote by Sing(Ω) the set of singularities in Ω and define

Reg(Ω) := Ω\Sing(Ω). Since the boundary of M is strongly pseudoconvex then by a Theorem

of Oshawa [Oh84] and Hill-Nacinovich [HN05, Theorem 3.1] there exists a larger complex

manifold M ′ ⊃ M , that contains M as its open subset.

Let Ωn,0(M) be the space of smooth (n, 0)-forms on M which are smooth up to the bound-

ary. Let Ωn,0
c (M) be the subspace of Ωn,0(M) with elements having compact support in M .

We define the L2 inner product on Ωn,0
c (M) as following

(f, g) = (−1)
n2

2

∫

M

f ∧ g for all f, g ∈ Ωn,0
c (M).

Let L2
(n,0)(M) be the completion of Ωn,0

c (M) under the above inner product. We denote by

Hs(M), s ∈ R the Sobolev space of order s on M (see [FK72, Appendix]). Write Λn(M) for

the space of the holomorphic n-forms on M and we define the Bergman space of M to be

A2(M) =

{
f ∈ Λn(M) : (−1)

n2

2

∫

M

f ∧ f < ∞
}

.

Then A2(M) is a closed subspace of L2
(n,0)(M).

Let P : L2
(n,0)(M) → A2(M) be the orthogonal projection which we call the Bergman

projection of M . The reproducing kernel of the Bergman projection is denoted by KM(z, w).

Let {fj}∞j=1 be an orthnormal basis of A2(M). Let pr1 : M ×M → M and pr2 : M ×M → M

be the natural projection from the product space. Then the reproducing kernel of the Bergman
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projection P is a (n, n)-form on M ×M which can be written as

KM(z, w) =
∞∑

j=1

pr∗1fj ∧ pr∗2fj =
∞∑

j=1

fj(z) ∧ fj(w),∀(z, w) ∈ M ×M.

Here, fj(z) and fj(w) are considered as a (n, 0)-forms at (z, w) for each j. Then KM(z, z)

can be considered as a 2n-form on M which is called the Bergman kernel form on M . Both

KM(z, w) and the Bergman kernel KM(z, z) are independent of the choice of the orthonormal

basis of A2(M). In a local coordinate chart (U, z) of M with z = (z1, . . . , zn) we have

KM(z, z) = kM(z, z)dz1 ∧ · · · ∧ dzn ∧ dz1 ∧ · · · ∧ dzn, (2.1)

where kM(z, z) =
∑∞

j=1 |f̂j(z)|2 with fj = f̂j(z)dz1 ∧ · · · ∧ dzn. Then ωB
M = ∂∂ log kM is a well

defined Hermitian (1, 1)-form on M where KM is nonzero. We call ωB
M the Bergman metric

over the subset where it is positive definite.

Since the Bergman metric over Reg(Ω) is well defined, thus ωB
M is a well defined Bergman

metric on M \ E. Write gM
αβ

= ∂2 log kM

∂zα∂zβ
and define GM(z) := det(gM

αβ
). Then the Ricci tensor

of the Bergman metric on M \ E is given by

RM
αβ

(z) = −∂2 log GM(z)

∂zα∂zβ

.

The Bergman metric on M \ E is called Kähler-Einstein when RM
αβ

= cgM
αβ

for some constant

c. It is well-known that the constant c is necessary negative (as we will also see later). Since

ωB
M = π∗ωB

Ω over M \ E, thus ωB
M is Kähler-Einstein over M \ E if and only if ωB

Ω is Kähler-

Einstein over Reg(Ω).

Now, an equivalent version of Theorem 1.1 is as follows:

Theorem 2.1. Let M be a complex manifold with a compact smoothly stronlgy pseudoconvex

pseudoconvex boundary. If the Bergman metric on M \ E is Kahler-Einstein, then ∂M is

spherical.

With Theorem 2.1 at our disposal and by a similar argument as in the [NS06] and [HX16],

we have the following:

Corollary 2.2. Let M be a Stein manifold with a compact smooth stronlgy pseudoconvex pseu-

doconvex boundary. If the Bergman metric on M is Kahler-Einstein, then M is biholomorphic

to the ball.
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3 Localization of Bergman kernel forms

Assume now that M is a complex manifold with a compact smooth strongly pseudo-convex

boundary. Fix w0 ∈ M . Then KM(z, w0) is a holomorphic (n, 0)-form with respect to z and

is L2-integrable.

Let w = (w1, · · · , wn) be coordinates in a neighborhood of w0. We explain the meaning of

L2-integrablity of KM(z, w0): Write dw = dw1 ∧ · · · ∧ dwn and dw = dw1 ∧ · · · dwn. Write

KM(z, w0) = k̃M(z, w0) ∧ dw|w0 .

Then k̃M(z, w0) is a (n, 0)-form on M . By saying KM(z, w0) is L2-integrable with respect to

z we meant that

(−1)
n2

2

∫

M

k̃M(z, w0) ∧ k̃M(z, w0) < ∞.

The L2-integrability of K(z, w0) does not depend on the choice of coordinates w.

For any p ∈ ∂M , there exists a coordinate chart (U, z) of M ′ centered at p. Take a smooth

strongly pseudocovnex domain D ⊂ M ∩ U such that

D ∩B(p, 2δ) = M ∩B(p, 2δ) (3.1)

where B(p, 2δ) = {q ∈ U : |z(q)| < 2δ} with |z| =
√
|z1|2 + · · ·+ |zn|2 and δ being sufficiently

small. We then have the following localization result for which there is no need to assume

that the Bergman metric of M is Kähler-Einstein.

Proposition 3.1. For p ∈ ∂M , let D ⊂ M be a strongly pseudoconvex domain satisfying

(3.1). Let kM(z, z), kD(z, z) be given as in (2.1). Then

kM(z, z) = kD(z, z) + ϕ(z), (3.2)

where ϕ(z) ∈ C∞(B(p, δ) ∩M).

Proof. We will follow the Fefferman [Fe74] localization method developed in the domain case.

For clarity, we proceed in two steps.

Step 1. Let (U,w) be a coordinate chart centered at p where w = (w1, · · · , wn) are

holomorphic coordinates. Write dw|w = dw1 ∧ · · · ∧ dwn|w,∀w ∈ U . We fix w ∈ B(p, r) ∩M

and set

fw(z) = KM(z, w)−KD(z, w)χD(z), z ∈ M,
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where χD is the characteristic function of D. Write fw(z) = f̃w(z) ∧ dw|w and g̃w(z) = ∂f̃w

where f̃w(z) is a L2-integrable (n, 0)-form on M , f̃w ⊥ A2(M) and g̃w is a (n, 1)-form in

H−1(M) with

supp g̃w ⊂ ∂D \ ∂M.

By the smoothing property, there is a sequence of (n, 0)-form {f̃ ε
w} on M which are smooth

up to M such that f̃ ε
w → f̃w in the L2 space. Set g̃ε

w = ∂f̃ ε
w. Since supp g̃w ⊂ ∂D \ ∂M , we

can assume that supp g̃ε
w is contained in a ε-neighborhood of ∂D \ ∂M . Moreover,

f̃ ε
w → f̃w in L2

(n,0)(M), g̃ε
w → g̃w in H−1(M). (3.3)

Fix a Hermitian metric g on M ′. For 0 ≤ q ≤ n, let L2
(n,q)(M) be the space of L2-integrable

(n, q)-forms with respect to g. When q = 0, this definition of the space L2
(n,0)(M) is the same

as defined in Section 2. We denote by N (q) the ∂-Neumann operator with respect to ¤(q). For

convenience, we denote N (q) by N when it dose not cause any confusing. Since M is strongly

pseudoconvex, then by the local regularity of N [FK72] we have

‖ξNg̃ε
w‖s+1 ≤ Cs(‖ξ1g̃

ε
w‖s + ‖g̃ε

w‖−1),∀s ≥ 0, (3.4)

with {Cs} constants independent of w. Here, ξ(z), ξ1(z) ∈ C∞
0 (B(p, 3

2
δ)) and ξ1|suppξ ≡ 1,

ξ|B(p,δ) ≡ 1. Since B(p, 2δ) ∩ ∂D \ ∂M = ∅, then ξ1g̃
ε
w ≡ 0 when ε is sufficiently small. Thus,

‖ξNg̃ε
w‖s+1 ≤ Cs‖g̃ε

w‖−1. (3.5)

By (3.3) and (3.5), {ξNg̃ε
w} is a Cauchy sequence in Hs+1(M) for any s ≥ 0. Assume that

ξNg̃ε
w → h in Hs(M) for any s ≥ 0. Then h ∈ C∞(M). On the other hand, f̃ ε

w−P f̃ ε
w = ∂

∗
Ng̃ε

w

where P : L2
(n,0)(M) → A2(M) is the Bergman projection. Then

ξ(f̃ ε
w − P f̃ ε

w) = ξ∂
∗
Ng̃ε

w = ∂
∗
(ξNg̃ε

w)− [ξ, ∂
∗
](ξ1Ng̃ε

w). (3.6)

By (3.5), we have

‖ξ(f̃ ε
w − P f̃ ε

w)‖s ≤ Cs‖g̃ε
w‖−1. (3.7)

We claim that {‖g̃w‖−1} has uniform bound with respect to w ∈ B(p, δ) ∩ M . We next

give a proof of this Claim as follows:

Choose a real function ρ ∈ C∞(M ′) such that ρ ≡ 1 in a 2σ-neighborhood of ∂D \ ∂M

denoted by Vσ in M ′. Write KD(z, w) = K̃D(z, w) ∧ dw|w for all w ∈ M ∩ B(p, δ). Since

6



supp g̃w ⊂ ∂D \ ∂M , then ∀ϕ =
∑n

j=1 ϕjdz1 ∧ · · · ∧ dzn ∧ dzj ∈ Ω
(n,1)
c (M) we have (g̃w, ϕ) =

(g̃w, ρϕ) and

(g̃w, ρϕ) = (∂f̃w, ρϕ) = (∂(K̃D(z, w)χD(z)), ρϕ)

= (K̃D(z, w)χD(z), ∂
∗
(ρϕ)) =

∫

D

K̃D(z, w) ∧ ∂
∗
(ρϕ)

=

∫

V2σ

kD(z, w)dz1 ∧ · · · ∧ dzn ∧ ∂
∗
(ρϕ),

(3.8)

where K̃D(z, w) = kD(z, w)dz1 ∧ · · · ∧ dzn. Since d(V2σ, B(p, δ)) > 0 when σ, δ are sufficinetly

small then by a result of Kerzman [Ke72, Theorem 2] we have

sup
z∈Vσ

|kD(z, w)| ≤ C,∀w ∈ M ∩B(p, δ) (3.9)

where C is a constant independent of w. Then from (3.8) and (3.9) we have

|(gw, ϕ)| ≤ C1‖ϕ‖1,∀w ∈ B(p, δ) ∩M, (3.10)

where the constant C1 does not depend on w ∈ B(p, δ) ∩M . Thus, we get the conclusion of

the Claim.

On the other hand, P f̃ ε
w → 0 in L2(M) as f̃w ⊥ A2(M). By (3.6) and the Rellich lemma,

we have ξ(f̃ ε
w−P f̃ ε

w) → hs in Hs(M) ∀s ≥ 0 for a certain hs. Then by (3.3) we have hs = ξf̃w.

Thus, from the above Claim and by taking the limit in (3.7), we have

‖ξf̃w‖s ≤ C̃s. (3.11)

Here, the constant C̃s does not depend on w ∈ B(p, r) ∩M .

Step 2. Write fw(z) = f̃w(z)dw|w and g̃w = ∂f̃w. Then Dα
wg̃w = ∂Dα

wf̃w for any multi-

index α = (α1, . . . , αn). Here, ∂ is defined with respect to the z-direction. We still have

Dα
wf̃w ⊥ A2(M) for any w ∈ M ∩B(p, δ). Then by a similar argument in Step 1, we have

‖ξDα
wf̃w‖s ≤ C̃s. (3.12)

Here, constants C̃s do not depend on w ∈ M ∩B(p, δ). Then by Sobolev embedding theorem,

we have that

|ξDα
z Dβ

wf̃w(z)| ≤ Cα,β,∀α, β,∀z ∈ M,w ∈ M ∩B(p, δ), (3.13)
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where Cα,β are constants. Since ξ|B(p,δ) ≡ 1, thus (3.13) implies that f̃w(z) is smooth up

to B(p, δ) ∩ M × B(p, δ) ∩ M . Thus, we get the conclusion of the proposition if we take

z = w ∈ B(p, δ) ∩M .

Remark 3.2. It is an interesting question if we can work directly on the Stein space to get the

localization of the Bergman kernel forms. This depends on the regularity of the ∂-Neumann

operator on the Stein space. Whereas the theory of the ∂-Neumann operator is very well

developed on complex manifolds, not much is known about the situation on singular complex

spaces. Ruppenthal [Ru11] has proved that the ∂-Neumann operator Nn,1 : L2
(n,1)(Reg(Ω)) →

L2
(n,1)(Reg(Ω)) is a compact operator on the Stein space Ω with only isolated singularities and

compact strongly pseudoconvex boundary. It is still unknown if Nn,1 can gain more regularity

which is crucial in our proof.

Let BM(z) = GM(z)/kM(z, z). Then BM(z) is a globally-defined smooth function on M

although GM(z) and kM(z, z) are only locally given. The following lemma is a generalization

of a result of Diederich [Di70, Theorem 2]:

Lemma 3.3. BM(z) → (n+1)nπn

n!
as z → ∂M .

Proof. By Lemma 3.1, for any p ∈ ∂M there exists a strongly pseudocovnex domain D ⊂ M

which satisfies (3.1) such that

kM(z, z) = kD(z, z) + ϕ(z) (3.14)

where ϕ(z) ∈ C∞(B(p, δ) ∩M). Then

log kM(z, z) = log kD(z, z) + log

(
1 +

ϕ(z)

kD(z, z)

)
, z ∈ D ∩B(p, δ). (3.15)

Thus,

gM
αβ

= gD
αβ

+
∂2

∂zα∂zβ

log

(
1 +

ϕ(z)

kD(z, z)

)
. (3.16)

Since D can be seen as a strongly pseudoconvex domain in Cn with a smooth boundary, then

by Fefferman’s asymptotic expansion of Bergman kernels, we have

kD(z, z) =
Φ(z)

rn+1(z)
+ Ψ(z) log r(z), z ∈ D. (3.17)
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where r is a Fefferman defining function for D and Φ, Ψ ∈ C∞(D) and Φ(z) 6= 0 for all z ∈ ∂D.

Then

log (1 +
ϕ

kD(z, z)
) = log

(
1 +

ϕ(z)rn+1

Φ + Ψrn+1 log r

)
= log (1 + frn+1) (3.18)

where f = ϕ(z)
Φ+Ψrn+1 log r

. Since n ≥ 2 and Φ|∂D 6= 0, we have f ∈ C2(B(p, δ)∩M). By Taylor’s

expansion,

log(1 + frn+1) = frn+1 + O(f 2r2(n+1)) as r → 0. (3.19)

Thus, [log(1 + frn+1)]αβ → 0 as z → B(p, δ) ∩ ∂M for n ≥ 2. Then combining (3.18) and

(3.19), one has
∂2

∂zα∂zβ

log

(
1 +

ϕ(z)

kD(z, z)

)
→ 0.

As a consequence,
GM(z)

GD(z)
→ 1 (3.20)

as z → ∂M ∩B(p, δ). From (3.14) we have

kM(z, z)

GM(z)
=

kD(z, z)

GM(z)
+

ϕ(z)

GM(z)
. (3.21)

Combining (3.20) and (3.21) we have

∣∣∣∣
kM(z, z)

GM(z)
− kD(z, z)

GD(z)

∣∣∣∣ → 0 (3.22)

as z → ∂M ∩B(p, δ). By [Di70, Theorem 2], we have

GD(z)

kD(z, z)
→ (n + 1)nπn

n!
(3.23)

as z → ∂D. Substituting (3.23) into (3.22) we conclude the proof of the lemma.

The following proposition is a generalization of a result of Fu-Wong [FW97, Proposition

1.1] which gives a characterization when the Bergman metric on M \ E is Kähler-Einstein.

Proposition 3.4. Let M be a relatively compact strongly pseudoconvex complex manifold

with a smooth boundary. The Bergman metric on M \ E is Kahler-Einstein if and only if

BM(z) = (n+1)nπn

n!
for all z ∈ M \ E.
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Proof. If the Bergman metric on M \ E is Kähler-Einstein, then RM
ij

= cgM
ij

where c is a

constant. By Lemma 3.1 and a direct calculation one has that RM
ij

+ gM
ij

goes to zero as a

tensor with respect to ωB
M when z → ∂M . Thus, combining the Kähler-Einstein assumption

one has c = −1 and this implies that log BM(z) is a pluriharmonic function on M \ E. Now,

for any holomorphic disk φ : ∆ → M \ E with φ is holomorphic in ∆ := {t ∈ C : |t| < 1},
smooth continuous up to ∆ and φ(∂∆) ⊂ ∂M , we have log BM(φ(t)) is harmonic. Since it

takes the constant value on the boundary by Lemma 3.3, it takes a constant value log (n+1)nπn

n!

over ∆. Now, since ∂M is strongly pseudoconvex, the union of such disks fills up an open

subset of M \E. Since log BM is real analytic, we conclude that BM ≡ log (n+1)nπn

n!
over M \E.

If log BM(z) takes constant value, then the Bergman metric is obviously Kähler-Einstien.

Let D = {r > 0} be a strongly pseudoconvex domain given in (3.1) where r is a defining

for D. Then kD has following expansion

kD(z, z) =
Φ(z)

rn+1(z)
+ Ψ(z) log r(z), z ∈ D (3.24)

with Φ, Ψ ∈ C∞(D). Then from Proposition 3.4 we have the following

Lemma 3.5. Let M be a relatively compact strongly pseudoconvex complex manifold with

smooth boundary. Assume the Bergman metric on M \ E is Kahler-Einstein. Then

Ψ(z) = O(rk) on D ∩B(p, δ) (3.25)

for any k > 0.

Proof. By Proposition 3.4, we have the same identities as in [FW97, (1.1)]. Thus,

J(kM) = (−1)nCnk
n+2
M on D ∩B(p, δ), (3.26)

where Cn = (n+1)nπn

n!
. On the other hand,

kM = kD + ϕ(z) (3.27)

when z ∈ B(p, δ)∩D, where ϕ ∈ C∞(B(p, δ)∩D). Substituting (3.24) and (3.27) into (3.26)

and by a similar argument as in the proof of [FW97, Theorem 2.1] we get the conclusion of

the lemma.
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Let Ω ⊂ Cn be a bounded strongly pseudocovnex domain with smooth boudnary. The

following Monge-Ampere type equation on Ω was introduced by Fefferman [Fe76]

J(u) ≡ (−1)n det (
u uβ

uα uαβ

) = 1 in Ω

u = 0 at ∂Ω

(3.28)

Fefferman proved that Ω has a smooth defining function rF which satisfies

J(rF ) = 1 + O(rn+1
F ).

We call rF a Fefferman’s defining function for Ω. Let us recall Fefferman’s construction of

such defining function. The existence of such an rF can be established in the following steps:

Starting with Ω = {r > 0} and dr|∂Ω 6= 0, Fefferman defined recursively

u1 =
r

(J(r))1/n+1
,

us = us−1

(
1 +

1− J(us−1)

[n + 2− s]s

)
, 2 ≤ s ≤ n + 1.

(3.29)

Each us satisfies J(us) = 1 + O(rs) and un+1 is what we call Fefferman defining function.

Lemma 3.6. There exists a Fefferman’s defining function rF for D such that

rF =

(
πn

n!
kM

)− 1
n+1

on D ∩B(p, σ). (3.30)

for some small σ.

Proof. First, by Lemma 3.1 we have kM = kD+ϕ(z). Then from the Bergman kernel expansion

of kD we have

kM(z, z) = kD + ϕ =
Φ(z)

rn+1
+ Ψ(z) log r + ϕ

=
Φ + rn+1Ψ log r + rn+1ϕ

rn+1

(3.31)

when z ∈ D ∩B(p, δ). Since kM(z, z) > 0 one has

Φ + rn+1Ψ log r + rn+1ϕ > 0
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for all z ∈ D ∩B(p, δ). Thus,

(kM)−
1

n+1 (z) =
r

(Φ + rn+1Ψ log r + rn+1ϕ)
1

n+1

(3.32)

is well-defined on D∩B(p, δ). Moreover, from Lemma 3.5 we have that (kM)−
1

n+1 ∈ C∞(B(p, δ)∩
D). Then by partition of unity, we can choose a defining funciton r0 for D such that

r0 = (
πn

n!
kM)−

1
n+1 on D ∩B(p,

δ

2
). (3.33)

This idea has been crucially used in Huang-Xiao [HX16] to construct a Fefferman’s defining

function which satisfy the Monge-Ampere equation.

Let rF be a Fefferman defining function for D. Then rF = hr0 for some h ∈ C∞(D) and

h > 0 on D. Since

J(rF ) = hn+1J(r0) on ∂D

and J(rF ) = 1 on ∂D, thus J(r0) 6= 0 on ∂D. Thus, by continuty J(r0) 6= 0 in a neighborhood

of ∂D. So the set K = {z ∈ D : J(r0) = 0} is a compact subset of D. Choose a cut-off

function χ such that χ ≡ 1 in a neighborhood of ∂D and χ ≡ 0 in a neighborood of K. Set

u1 = χ
r0

(J(r0))
1

n+1

.

Then we still have J(u1) = 1 on ∂D. We notice that the Kahler-Einstein condition of the

Bergman metric implies that J(πn

n!
kM)−

1
n+1 = 1 for z ∈ D, so J(r0) ≡ 1 on D ∩B(p, δ

2
) by the

construction of r0 in (3.33). Then

J(u1) = 1 on D ∩B(p, σ), (3.34)

for some σ < δ
2
. Then from Fefferman’s construction of Fefferman defining function (3.29) we

see that

u1 = u2 = · · · = un+1 = r0 on D ∩B(p, σ). (3.35)

Combing with (3.34) and changing the values of un+1 in a certain compact subset of M if

needed, we get the conclusion of the lemma.

12



4 Proof of Theorem 2.1

We first recall the Moser normal [CM74] form theory and the notion of Fefferman scalar

invariants [Gr85]. Let X ⊂ Cn be a real analytic strongly pseudoconvex hypersurface with

p ∈ X. There exists a coordinates (z, w) = (z1, · · · , zn−1, w) such that in this new coordinates

p ↔ 0 and X is locally defined by an equation of the form

2u = |z|2 +
∑

|α|≥2,|β|≥2,v≥0

Al
αβ

zαzβvl (4.1)

where α = (α1, · · · , αn−1), β = (β1, · · · , βn−1) and Al
αβ

satisfying

• Al
αβ

is symmetric with respect to the permutation of indices in α and β, respectively;

• Al
αβ

= Al
βα;

• trAl
22

= 0, tr2Al
33

= 0, tr3Al
33

= 0.

Here, for p, q ≥ 2, Al
pq is the symmetric tensor [Al

αβ
]|α|=p,|β|=q on Cn−1 and the traces are the

usual tensorial traces with respect to δij. Here, (4.1) is called the normal form of X at p and

{Al
αβ
} are called the normal form coefficients. When X is merely smooth, the expansion (4.1)

is in the formal sense.

Let D ⊂ Cn be a bounded strongly pseudoconvex domain with C∞-smooth boundary

with p = 0 ∈ ∂D. Using a Fefferman defining function r in the asymptotic expansion of the

Bergman kernel function

kD(z, z) =
φ(z)

rn+1
+ ψ(z) log r, (4.2)

if ∂D is in its normal form at p = 0, then any Taylor coefficient at 0 of φ of order≤ n, and

that of ψ of any order is a universal polynomial in the normal coefficients {Al
αβ
}. (See Boutet-

Sjostrand [BS75] and a related argument in [Fe79].) In particular, we have the following

Proposition 4.1 ([Ch81],[Gr85]). Let D be as above and suppose that ∂D is in the Moser

normal form up to sufficiently high order. Let r be a Fefferman defining function, and let ϕ,

ψ be as in (4.2). Then φ = n!
πn + O(r2). Write P2 =

φ− n!
πn

r2 |∂Ω. If n = 2, P2 = 0. If n ≥ 3,

P2 = cn‖A0
22
‖2 for some universal constant cn 6= 0.

13



Proof of Theorem 2.1: For any p ∈ ∂M , let D and B(p, δ) be the sets as chosen in lemma

3.1. Let rF be the Fefferman defining for D function as chosen in lemma 3.6. By Fefferman’s

Bergman asymptotic expansion on D, we have

kD(z, z) =
φ

rn+1
F

+ ψ log rF , (4.3)

where φ, ψ ∈ C∞(D) and φ|∂D 6= 0. On the other hand, by lemma 3.1,

kM(z, z) = kD(z, z) + ϕ(z), z ∈ B(p, δ) ∩D

where ϕ ∈ C∞(B(p, δ) ∩D). Thus,

kMrn+1
F = φ + ψrn+1

F log rF + ϕrn+1
F on B(p, δ) ∩D. (4.4)

Substituting (3.30) to (4.4) we have

n!

πn
= φ + ψrn+1

F log rF + ϕrn+1
F on D ∩B(p, σ). (4.5)

By [FW97, Lemma 2.2], we have

φ− ϕrn+1
F − n!

πn
= O(rk

F ), ψ = O(rk
F ) on D ∩B(p, σ),∀k > 0. (4.6)

Thus,

φ− n!

πn
= O(rn+1

F ) on D ∩B(p, σ). (4.7)

When n = 2, ψ = O(rk
F ) on D ∩ B(p, σ),∀k > 0 implies that ∂D ∩ B(p, σ) is spherical by

a result of Burns-Graham [Gr85, pp.129] (also see [BdM90, pp.23]). When n ≥ 3, it follows

from (4.7) that P2 = 0 on ∂D ∩ B(p, σ). By Proposition 4.1, A0
22

= 0 at q ∈ D ∩ B(p, σ) if

∂D is in the Moser normal form up to sufficiently high order at q. By a classical result of

Chern-Moser, ∂D ∩B(p, σ) is spherical. Thus, we get the conclusion of Theorem 2.1.

Theorem 1.1 is a direct corollary of Theorem 2.1. Huang [H06] proved that a Stein space

with possible isolated normal singularities and with a compact strongly pseudoconvex and

algebraic boundary is biholomorphic to a ball quotient. Then a direct corollary of Theorem

1.1 and [H06, Theorem 3.1] is the following

Corollary 4.2. Let Ω be a Stein space with isolated normal singularities and a compact smooth

boundary ∂Ω. Assume the ∂Ω is CR equivalent to an algebraic CR manifold in a complex Eu-

clidean space. If the Bergman metric ωB
Ω on Reg(Ω) is Kahler-Einstein then Ω is biholomorphic

to a ball quotient Bn/Γ where Γ ⊂ Aut(Bn) is finite subgroup with 0 ∈ Bn the only fixed point

of any non-identity element of Γ.

14



5 Bergman metric on a ball quotient

Let Ω := Bn/Γ where Γ is a finite subgroup of Aut(Bn) with 0 as the unique fixed point for

each non-identity element. Then Ω is a Stein space with only an isolated singularity. Let

π : Bn → Bn/Γ be the standard branched covering map. Write p = π(0). Let ωB be the

Bergman metric on Ω. Let A2(Ω) be the L2-integrable holomorphic (n, 0)-forms on Reg(Ω).

Let {αj}∞j=1 be an orthnormal basis of A2(Ω). Locally, write αj = ajdw, j ≥ 1 and kΩ(w, w) =∑∞
j=1 |aj|2. Then ωB

Ω = i∂∂ log kΩ(w, w). Write π∗αj = fjdz where dz = dz1 ∧ · · · ∧ dzn and

{fj} are holomorphic functions on Bn \ {0}. By the Hartogs extension theorem, {fj} can be

holomorphically extended to Bn. Moreover, fj satisfies

fj ◦ γ(z) det γ = fj(z),∀γ ∈ Γ,∀z ∈ Bn.

Set A2
Γ(Bn) = {f ∈ A2(Bn) : f ◦ γ det γ = f,∀γ ∈ Γ}. Then A2

Γ(Bn) is a closed subspace

of A2(Bn). Let PΓ : L2(Bn) → A2
Γ(Bn) be the orthogonal projection. Let {fj}∞j=1 be an

orthnormal basis of A2
Γ(Bn). Write

KΓ(z, w) =
∞∑

j=1

fj(z)f j(w), z, w ∈ Bn.

KΓ(z, w) is then the Schwarz kernel of PΓ. That is,

PΓf =

∫

Bn

KΓ(z, w)f(w)dv

where dv is the Lebesgue measure on Cn. Define

QΓf =

∫

Bn

1

|Γ|
∑
γ∈Γ

K(γz, w) det γf(w)dv, ∀f ∈ L2(Bn)

where K(z, w) is the Bergman kernel function of the Bn. Then K(z, w) = n!
πn

1
(1−z·w)n+1 and

z · w = z1w1 + · · ·+ znwn. Then QΓf ∈ A2
Γ(Bn) for all f ∈ L2(Bn). Moreover,

1

|Γ|
∑
γ∈Γ

K(γz, τw) det γ det τ =
1

|Γ|
∑
γ∈Γ

K(γz, w) det γ, ∀τ ∈ Γ. (5.1)
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In fact, τ t = τ−1 ∈ Γ,∀τ ∈ Γ where τ t is the transpose matrix of τ , then

1

|Γ|
∑
γ∈Γ

K(γz, τw) det γ det τ =
cn

|Γ|
∑
γ∈Γ

1

(1− ztγt · τw)n+1
det γ det τ

=
cn

|Γ|
∑
γ∈Γ

1

(1− zt(τ tγ)tw)n+1
det(τ tγ)

=
1

|Γ|
∑
γ∈Γ

K(γz, w) det γ.

Here, cn = n!
πn .

Lemma 5.1.

QΓ = PΓ on L2(Bn); KΓ(z, w) =
1

|Γ|
∑
γ∈Γ

K(γz, w) det γ. (5.2)

Proof. For all f ∈ L2(Bn), write f = f1 + f2 where f1 = PΓf and f1 ⊥ f2 and f2 ⊥ A2
Γ(Bn).

By (5.1), one has

QΓf =
1

|Γ|
∫

Bn

∑
γ∈Γ

K(γz, w) det γf1(w)dv +
1

|Γ|
∫

Bn

∑
γ∈Γ

K(γz, w) det γf2(w)dv

=
1

|Γ|
∫

Bn

∑
γ∈Γ

K(γz, w) det γf1(w)dv

=
1

|Γ|
∑
γ∈Γ

det γf1(γz) = f1(z)

= PΓf.

(5.3)

As a consequence, QΓ and PΓ have the same Schwarz kernel. Thus, we get the conclusion of

the second part of the lemma.

Write ωΓ = i∂∂ log KΓ(z, z). Then we have the following

Lemma 5.2.

π∗ωB
Ω = ωΓ. (5.4)

Moreover, ωB
Ω is Kähler-Einstein if and only if ωΓ is Kähler-Einstein on Bn \ {0}.
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Proof. Let {αj} be an orthnormal basis of A2(Ω). Write αj = ajdw and π∗αj = fjdz on

Bn \ {0}. Here w = (w1, · · · , wn) are local coordinates on Reg Ω and dw = dw1 ∧ · · · ∧ dwn.

We have aj ◦ π det π
′
= fj. Since Γ ⊂ Aut (Bn), then | det π′|2 = 1. Thus,

|aj ◦ π|2 = |fj|2,∀j. (5.5)

1

in2

∫

Bn

fjfkdz ∧ dz =
1

in2

∫

Bn

π∗αj ∧ π∗αk =
1

in2 |Γ|
∫

Ω

αj ∧ αk = |Γ|δjk. (5.6)

For any f ∈ A2
Γ(Bn), there exist an α ∈ A2(Ω) such that π∗α = f(z)dz. Thus, { 1√

|Γ|fj} is an

orthonormal basis of A2
Γ(Bn). Then combine with (5.5)

KΓ(z, z) =
1

|Γ|
∞∑

j=1

|fj(z)|2 =
1

|Γ| |aj ◦ π|2 =
1

|Γ|π
∗kΩ. (5.7)

By taking the ∂∂ log on both sides of the above equation we get the conclusion of the lemma.

Assume that ωB
Ω is Kähler-Einstein. Then ωΓ is Kahler-Einstein on Bn\{0}. The Bergman

kerenl on Bn is denoted by K(z, z). Then

K(z, z) =
n!

πn

1

(1− |z|2)n+1
.

By Lemma 5.1

KΓ(z, z) =
1

|Γ|
∑
γ∈Γ

K(γz, z) det γ =
1

|Γ|
n!

πn

∑
γ∈Γ

1

(1− γz · z)n+1
det γ

=
n!

πn

1

|Γ|
[

1

(1− |z|2)n+1
+ Ψ(z)

]
,

(5.8)

where Ψ =
∑

γ 6=id
1

(1−γz·z)n+1 det γ. Since 1− γz · z 6= 0,∀z ∈ ∂Bn when γ 6= id, it follows that

Ψ(z) ∈ C∞(Bn). Then

ωΓ = i∂∂ log KΓ = i∂∂ log
1

(1− |z|2)n+1
+ i∂∂ log (1 + Ψ̃) (5.9)

where Ψ̃ = Ψ(z)(1− |z|2)n+1. Write ωΓ = i
∑n

i,j=1 gijdzi ∧ dzj. By direct calculation,

gij = (n + 1)

{
δij

1− |z|2 +
zizj

(1− |z|2)2

}
+ O((1− |z|2)n−1). (5.10)
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Here, O(f) indicates that there exist a constant C > 0 such that the term can be bounded by

C|f | near ∂Bn. Then

det gij = (n + 1)n 1

(1− |z|2)n+1
+ O((1− |z|2)−n+1)

= (n + 1)n 1

(1− |z|2)n+1
[1 + O((1− |z|2)2)].

(5.11)

Then the Ricci curvature with respect to ωΓ is given by

ΘΓ = i∂∂ log det gij = −(n + 1)i∂∂ log (1− |z|2) + ∂∂[O((1− |z|2)2)]

= −(n + 1)i∂∂ log (1− |z|2) + O(1).
(5.12)

Since ωΓ is Kahler-Einstein on Bn \ {0}, then ΘΓ = c0ωΓ where c0 is a constant. From (5.9)

and (5.12) we have

−(n + 1)∂∂ log (1− |z|2) + O(1) = c0[−(n + 1)∂∂ log (1− |z|2) + ∂∂ log (1 + Ψ̃)]. (5.13)

Letting z → ∂Bn, we have c0 = −1.

Theorem 5.3. Set u = log KΓ. Then the Bergman metric on Reg(Ω) is Kähler-Einstein with

n ≥ 2 if u satisfies the following complex Monge-Ampere equation

det(uij) = ceu on Bn \ {0}, u|∂Bn = ∞. (5.14)

where c = (n+1)nπn|Γ|
n!

. Conversely, if u satisfies (5.14), then the Bergman metric on Reg(Ω) is

Kähler-Einstein.

Proof. We only need to prove the necessary part. The proof is similar to that for BM = const.

From ΘΓ = −ωΓ, we have that log(det uij)− u is a pluriharmonic function on Bn \ {0}. Write

v = log(det uij)−u. Since n ≥ 2, then v can be smoothly extended to Bn which is still denoted

by v. Then v is a pluriharmonic function on Bn. Thus, u = log KΓ satisfies the following

det uij = eveu. (5.15)

Substituting (5.11) to (5.15) we have

(n + 1)n

(1− |z|2)n+1
[1 + O((1− |z|2)2)] = ev n!

πn

1

|Γ|
[

1

(1− |z|2)n+1
+ Ψ(z)

]
. (5.16)
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Letting z → ∂Bn, we have

ev → (n + 1)nπn|Γ|
n!

.

Since v is pluriharmonic on Bn, then

ev ≡ (n + 1)nπn|Γ|
n!

,∀z ∈ Bn.

Thus, u = log KΓ satisfies the following Monge-Ampere equation

det uij = ceu, (5.17)

where c = (n+1)nπn|Γ|
n!

.

We notice that if u = log KΓ satisfies (5.17) with KΓ(0, 0) 6= 0, then by continuity ωΓ

is a well-defined complete Kaḧler-Einstein metric over Bn. Hence, by the uniqueness of the

Cheng-Yau metric [CY80], ωΓ is a hyperbolic metric and thus by the uniformization theorem,

we see that Γ = {id} and thus Ω is biholomorphic to the ball. Namely, we have the following:

Corollary 5.4. Let Γ ⊂ Aut0(Bn) with n ≥ 2 be a non-trivial finite subgroup with 0 as the

only fixed point for each non-identity element of Γ. Let KΓ be the function defined in (5.1).

If KΓ(0, 0) 6= 0, then the Bergman metric of Reg(Bn/Γ) is not Kähler-Einstein.

Example 5.5. Suppose Ω = B3/Γ, where Γ = {γ1, γ2} and γ1 = id, γ2 = diag(−1,−1,−1).

KΓ =
3

π3

[
1

(1− |z|2)4
− 1

(1 + |z|2)4

]
=

4!

π3

|z|2(1 + |z|4)
(1− |z|4)4

. (5.18)

Thus,

KΓ(0, 0) = 0.

Set u = log KΓ. Then

u = log
4!

π3
+ log |z|2 + log (1 + |z|4)− log (1− |z|4)4

= log
4!

π3
+ log |z|2 + 5|z|4 + O(|z|8).

(5.19)

By direct calculation,

u11 =
|z2|2
|z|4 + 10|z|2 + 10|z1|2 + O(|z|6), u12 = − 1

|z|4 z1z2 + 10z1z2 + O(|z|6)

u21 = − 1

|z|4 z1z2 + 10z1z2 + O(|z|6), u22 =
|z1|2
|z|4 + 10|z|2 + 10|z2|2 + O(|z|6).

(5.20)
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Then det uij(0) = 20, but KΓ(0, 0) = 0. Thus, it follows that u = log KΓ does not satisfy the

Monge-Ampere equation (5.14). Hence, the Bergman metric on Ω is not Kähler-Einstein.

When n = 1 and for any finite subgroup Γ ⊂ Aut(B1), assume |Γ| = r, 1 ≤ r < ∞. It is

well known that Γ = {1, e2πi 1
r , · · · , e2πi r−1

r }. Thus, on B1

KΓ(z, z) =
1

π|Γ|
∑
γ∈Γ

1

(1− γz · z)2
det γ =

1

πr

r∑
j=1

1

[1− e2πi j
r |z|2]2

e2πi j
r . (5.21)

By Taylor’s expansion,

KΓ =
1

π

r∑
j=1

∞∑

k=0

(k + 1)e2πi j
r
(k+1)|z|2k =

r

π

∞∑

k=1

k|z|2(kr−1) =
r

π

|z|2(r−1)

(1− |z|2r)2
. (5.22)

Set u = log KΓ. Then u11 = 2r2 |z|2(r−1)

(1−|z|2r)2
. Since c = 2πr, then one sees immediately that

u11 = ceu on B1 \ {0}. (5.23)

Notice that the sufficient part of Theorem 5.3 holds even for n = 1. We have the following:

Proposition 5.6. For any finite subgroup Γ ⊂ Aut0(B1), its Bergman metric on Reg(B1/Γ)

is Kähler-Einstein.

We finish off this paper by recalling the following generalized Cheng conjecture formulated

in [HX20]:

Conjecture 5.7. Let Ω be a normal Stein space with a compact spherical boundary of com-

plex dimension n ≥ 2. If the Bergman metric over Reg(Ω) is Kähler-Einstein, then Ω is

biholomorphic to Bn.
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