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Abstract
We study complex geodesics and complex Monge–Ampère equations on bounded
strongly linearly convex domains in C

n . More specifically, we prove the uniqueness
of complex geodesics with prescribed boundary value and direction in such a domain,
when its boundary is of minimal regularity. The existence of such complex geodesics
was proved by the first author in the early 1990s, but the uniqueness was left open.
Based on the existence and the uniqueness proved here, as well as other previously
obtained results,we solve a homogeneous complexMonge–Ampère equationwith pre-
scribed boundary singularity, which was first considered by Bracci et al. on smoothly
bounded strongly convex domains in Cn .

Mathematics Subject Classification 32F17 · 32F45 · 32H12 · 32U35 · 32W20 · 35J96

1 Introduction

Since the celebrated work of Bedford–Taylor [6,7] and Yau [45], complex Monge–
Ampère equations have been an important part in the study of pluripotential theory,
several complex variables and complex geometry. In this paper, we are interested
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in the theory of complex geodesics and its connections with homogeneous complex
Monge–Ampère equations with prescribed singularity. A first major breakthrough on
this subject was made by Lempert in his famous work [35]. We first prove a bound-
ary uniqueness result for complex geodesics of a bounded strongly linearly convex
domain with C3-smooth boundary. Using this result as a basic tool, we construct for
such a domain a foliation by complex geodesics initiated from a fixed boundary point.
Such a foliation is then used to construct a pluricomplex Poisson kernel which solves
a homogeneous complex Monge–Ampère equation with prescribed boundary singu-
larity. This kernel reduces to the classical Poisson kernel when the domain is the open
unit disc in the complex plane.

To start with, we recall that a domain� ⊂ C
n with n > 1 is called strongly linearly

convex if it has a C2-smooth boundary and admits a C2-defining function r : Cn → R

whose real Hessian is positive definite on the complex tangent space of ∂�, i.e.,

n∑

j, k=1

∂2r

∂z j∂zk
(p)v jvk >

∣∣∣∣∣∣

n∑

j, k=1

∂2r

∂z j∂zk
(p)v jvk

∣∣∣∣∣∣

for all p ∈ ∂� and non-zero v = (v1, . . . , vn) ∈ T 1, 0
p ∂�; see, e.g., [3,26]. Strong

linear convexity is a natural notion of convexity in several complex variables, which is
weaker than the usual strong convexity but stronger than strong pseudoconvexity. It is
also known that there are bounded strongly linearly convex domains with real analytic
boundary, which are not biholomorphic to convex ones; see [39] and also [30].

Next, we recall briefly the definitions of the Kobayashi-Royden metric and the
Kobayashi distance; see [2,30,32] and the references therein for a complete insight.
Let � ⊂ C be the open unit disc. The Kobayashi-Royden metric κ� on a domain
� ⊂ C

n is the pseudo-Finsler metric defined by

κ�(z, v) := inf
{
λ > 0 | ∃ ϕ ∈ O(�, �) : ϕ(0) = z, ϕ′(0) = λ−1v

}
,

where (z, v) ∈ �×C
n , andO(�, �) denotes the set of holomorphic mappings from

� to �. The Kobayashi distance on � is then defined by

k�(z, w) = inf
γ∈	

∫ 1

0
κ�(γ (t), γ ′(t))dt, (z, w) ∈ � × �,

where 	 is the set of piecewise C1-smooth curves γ : [0, 1] → � such that γ (0) = z
and γ (1) = w. For the open unit disc� ⊂ C, k� coincides with the classical Poincaré
distance, i.e.,

k�(ζ1, ζ2) = tanh−1
∣∣∣∣

ζ1 − ζ2

1 − ζ1ζ 2

∣∣∣∣, (ζ1, ζ2) ∈ � × �.
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A holomorphic mapping ϕ : � → � is called a complex geodesic of � in the sense
of Vesentini [44], if it is an isometry between k� and k�, i.e.,

k�(ϕ(ζ1), ϕ(ζ2)) = k�(ζ1, ζ2)

for all ζ1, ζ2 ∈ �.
The existence of complex geodesics with prescribed data is a very subtle problem.

In his two important papers [35,37], Lempert addressed this problem for strongly
(linearly) convex domains in Cn by a rather involved deformation argument; see also
[40] for a relatedwork for extremalmappings onmore general pseudoconvex domains.
Lempert proved that complex geodesics exist in great abundance on bounded strongly
linearly convex domains and enjoy certain nice properties. To be more specific, let
� ⊂ C

n (n > 1) be a bounded strongly linearly convex domain with Cm, α-smooth
boundary, where m ≥ 2 and α ∈ (0, 1). Then every complex geodesic ϕ of � is a
proper holomorphic embedding of� into�, and isCm−1, α-smooth up to the boundary.
And there exists a holomorphic mapping ϕ∗ : � → C

n , also Cm−1, α-smooth up to
the boundary, such that

ϕ∗|∂�(ζ ) = ζμ(ζ )ν ◦ ϕ(ζ ),

where 0 < μ ∈ Cm−1, α(∂�) and ν denotes the unit outward normal vector field
of ∂�. Such a mapping ϕ∗ is unique up to a positive constant multiple, and can be
normalized so that 〈ϕ′, ϕ∗〉 = 1 on �, where 〈 , 〉 denotes the standard Hermitian
inner product on C

n , i.e.,

〈z, w〉 :=
n∑

j=1

z jw j

for z = (z1, . . . , zn), w = (w1, . . . , wn) ∈ C
n . The mapping ϕ∗ with such a normal-

ization condition is usually called the dual mapping of ϕ. Lempert also proved, among
other things, that for every z ∈ � and v ∈ C

n\{0} there is a unique complex geodesic
ϕ of � such that ϕ(0) = z and ϕ′(0) = v/κ�(z, v). Similar to this interior existence
and uniqueness result, we prove the following boundary analogue, which is the first
main result of this paper:

Theorem 1.1 Let � ⊂ C
n (n > 1) be a bounded strongly linearly convex domain

with C3-smooth boundary. Let p ∈ ∂� and νp be the unit outward normal to ∂�

at p. Then for every v ∈ C
n\T 1, 0

p ∂� with 〈v, νp〉 > 0, there is a unique complex
geodesic ϕ of � (up to a parabolic automorphism of � fixing 1) such that ϕ(1) = p
and ϕ′(1) = v. Moreover, ϕ is uniquely determined by the additional (and always
realizable) condition that

d

dθ

∣∣∣∣
θ=0

|ϕ∗(eiθ )| = 0,

where ϕ∗ is the dual mapping of ϕ.
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Remark 1.2 The requirement in Theorem 1.1 that v ∈ C
n\T 1, 0

p ∂� and 〈v, νp〉 > 0
is also a necessary condition for the existence of a complex geodesic ϕ of � with
prescribed value p and derivative v at 1. The reason is the following: Since each such
ϕ is proper and belongs toC1(�), it follows that ϕ(∂�) ⊂ ∂� and thus dϕ1(T1∂�) ⊂
Tp∂�, i.e., iv ∈ Tp∂�. Note also that � is strongly pseudoconvex, we can take a C2-
defining function r for � which is strictly plurisubharmonic on some neighborhood
of �. Then the classical Hopf lemma applied to r ◦ ϕ yields that drp(ϕ

′(1)) > 0, i.e.,
Re〈v, νp〉 > 0. Therefore, we conclude that 〈v, νp〉 is a positive number, as required.

When � has a C14-smooth boundary, the first part of Theorem 1.1 was proved
by Chang–Hu–Lee [17] by generalizing Lempert’s deformation theory (see [35]) to
the boundary via the Chern–Moser–Vitushkin normal form theory. However, when
� has only a C3-smooth boundary, the situation is much more subtle. In [28], the
first author established the existence part of Theorem 1.1 for bounded strongly convex
domains with C3-smooth boundary. His proof works equally well for the strongly
linearly convex case, in view of the work of Lempert [37] and Chang–Hu–Lee [17].
In other words, the existence part of Theorem 1.1 was essentially known in [28]. This
was done by establishing a non-degeneracy property for extremal mappings (w.r.t.
the Kobayashi–Royden metric) of bounded strongly pseudoconvex domains in C

n

with C3-smooth boundary, whose proof also indicates that the uniqueness part of
Theorem 1.1 holds for complex geodesics with direction almost tangent to ∂� (under
the slightly stronger assumption that ∂� is C3, α-smooth); see [28, Lemma 3] (and its
proof) for details. The main contribution of this paper to Theorem 1.1 is to provide a
proof of the uniqueness part in full generality, which has been left open since [28].

Theorem 1.1 has important applications in solving degenerate complex Monge–
Ampère equations with prescribed boundary singularity. Indeed, it can be applied to
construct for every bounded strongly linearly convex domain with C3-smooth bound-
ary a foliation with complex geodesic discs (namely, the image of complex geodesics)
initiated from a fixed boundary point as its holomorphic leaves, or equivalently, a
so-called boundary spherical representation. Roughly speaking, for every bounded
strongly linearly convex domain � ⊂ C

n (n > 1) with C3-smooth boundary and
p ∈ ∂�, we can define a special homeomorphism between its closure � and the
closed unit ball B

n ⊂ C
n , which maps holomorphically each complex geodesic disc

of � through p to a complex geodesic disc of Bn through νp, and preserves the cor-
responding horospheres and non-tangential approach regions; see Sects. 3 and 4 for
more details. By means of such a boundary spherical representation, we can solve the
following homogeneous complex Monge–Ampère equation:

Theorem 1.3 Let � ⊂ C
n (n > 1) be a bounded strongly linearly convex domain with

C3-smooth boundary, and let p ∈ ∂�. Then the complex Monge–Ampère equation

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

u ∈ Psh(�) ∩ L∞
loc(�),

(ddcu)n = 0 on �,

u < 0 on �,

limz→x u(z) = 0 for x ∈ ∂�\{p},
u(z) ≈ −|z − p|−1 as z → p nontangentially

(1.1)
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admits a solution P�, p ∈ C(�\{p}) whose sub-level sets are horospheres of � with
center p. Here the last condition in (1.1) requires that for every β > 1, there exists a
constant Cβ > 1 such that

C−1
β < −u(z)|z − p| < Cβ

for all z ∈ 	β(p) sufficiently close to p, where

	β(p) := {
z ∈ � : |z − p| < β dist(z, ∂�)

}
. (1.2)

Here, dist( · , ∂�) denotes the Euclidean distance to the boundary ∂�, and Psh(�)

the set of plurisubharmonic functions on �. The precise definition of horospheres
in the sense of Abate will be given in Sect. 4. Incidentally, Theorem 1.3 has been
generalized by Bracci-Saracco-Trapani to bounded strongly pseudoconvex domains
in Cn (with C∞-smooth boundary); see [14] for details.

In his famous paper [35] and later work [36,38], Lempert solved the following
homogeneous complexMonge–Ampère equation on strongly linearly convex domains
� ⊂ C

n with Cm, α-smooth boundary, where m ≥ 2, α ∈ (0, 1) and w ∈ �:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

u ∈ Psh(�) ∩ L∞
loc(�\{w}),

(ddcu)n = 0 on �\{w},
limz→x u(z) = 0 for x ∈ ∂�,

u(z) − log |z − w| = O(1) as z → w.

(1.3)

By establishing a singular foliation with complex geodesic discs passing through
w ∈ � as its holomorphic leaves, Lempert obtained a solution to equation (1.3) that
is Cm−1, α−ε-smooth on �\{w} for 0 < ε << 1. Chang–Hu–Lee [17] generalized
Lempert’swork to obtain the holomorphic foliationby complexgeodesic discs initiated
from a boundary point p ∈ ∂�, when ∂� is at least C14-smooth. By means of this
foliation togetherwithmanynew ideas,Bracci–Patrizio [12]first studied equation (1.1)
when � is strongly convex with Cm, α-smooth boundary for m ≥ 14. They obtained
a solution that is Cm−4, α-smooth on �\{p}, though they only stated the result for
m = ∞. To study such a foliation based on a boundary point when the boundary of
the domain has minimal regularity, one is led to the construction of complex geodesics
introduced in [28]. However, to make the construction there workable, one first needs
to solve the uniqueness problem of complex geodesics with prescribed boundary data,
which is a main content of Theorem 1.1.

We proceed by remarking that the C3-regularity of ∂� seems to be the optimal
regularity in the theory of complex geodesics, cf. [17–19,28,34,35,37,38]. Also com-
pared with [12,13,17], our argument in this paper uses the boundary regularity of
complex geodesics and their dual mappings in a symmetric way, so that C3-regularity
of ∂� is enough; see Sects. 2 and 3 for details. Our solution P�, p to Eq. (1.1) is the
pullback of the so-called pluricomplex Poisson kernel on the open unit ball in Cn via
the aforementioned boundary spherical representation. It is desirable to get a better
relationship between the regularity of P�, p and that of ∂�, which will be left to a

123



1830 X. Huang, X. Wang

future investigation to avoid this paper being too long. Also, it is well worth answering
the following fairly natural and interesting question concerning Theorem 1.3:

Question Is there only one solution (up to a positive constant multiple) to equation
(1.1)?

When � is a bounded strongly convex domain in C
n (n > 1) with C∞-smooth

boundary, Bracci-Patrizio-Trapani [13] proved that other solutions to equation (1.1)
must be the positive constant multiples of the one they constructed if they share some
common analytic or geometric features. However, it seems difficult to answer the
above question in full generality. In contrast, the uniqueness of solutions to Eq. (1.3)
is relatively easy and follows immediately from the well-known comparison principle
for the complex Monge–Ampère operator, proved by Bedford–Taylor [7]. A partial
answer to the above question will be observed in Sect. 4. We also refer the interested
reader to [13, Question 7.6] for a related but more general question posed for bounded
strongly convex domains in Cn with C∞-smooth boundary.

This paper is organized as follows. In Sect. 2, we first prove a quantitative version
of the Burns–Krantz rigidity theorem. We then study the boundary regularity of the
Lempert left inverse of complex geodesics. Theorem 1.1 is eventually proved by
using these results together with some technical estimates. Section 3 is devoted to the
construction and the study of a new boundary spherical representation for bounded
strongly linearly convex domains in C

n (n > 1) only with C3-smooth boundary.
Finally, Theorem 1.3 is proved in Sect. 4.

2 Uniqueness of complex geodesics with prescribed boundary data

This section is devoted to the proof of Theorem 1.1. We begin by presenting the
following version of the well-known Burns–Krantz rigidity theorem. For earlier and
very recent related work, see [5,11,16,17,29,43,46], etc.

Lemma 2.1 Let f be a holomorphic self-mapping of � such that

f (ζk) = ζk + O(|ζk − 1|3) (2.1)

as k → ∞, where {ζk}k∈N is a sequence in � converging non-tangentially to 1. Then

(i)

Re

(
f (ζ ) − ζ

(ζ − 1)2

)
≥ 0, ζ ∈ �.

(ii) f ′′′ admits a non-tangential limit at 1, denoted by f ′′′(1), which is a non-positive
real number and satisfies the following inequality:

| f (ζ ) − ζ |2 ≤ −1

3
f ′′′(1) |1 − ζ |6

1 − |ζ |2 Re
(

f (ζ ) − ζ

(ζ − 1)2

)
, ζ ∈ �.

In particular, f is the identity if and only if f ′′′(1) = 0.
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Burns–Krantz rigidity theorem was first proved and generalized in [16,29], respec-
tively. A version of the Burns–Krantz theorem with the notation ′′O ′′ in assumption
(2.1) replaced by ′′o′′ was first proved by Baracco–Zaitsev–Zampieri in [5].With more
regularity assumptions about f at 1, Lemma 2.1 (i) was obtained earlier in [43]. A
version of Lemma 2.1 (ii) was also discussed in the same paper; see [43, Corollary 7].
However, the inequality obtained there is incorrect as the following example shows:

Let f be the holomorphic self-mapping of � given by

f (ζ ) = 10ζ + (1 − ζ )2

10 + (1 − ζ )2
.

Then it is easy to see that f satisfies the assumption in [43, Corollary 7]. Note also
that the function Re

(
(ζ − f (ζ ))(1 − ζ )2

)
is negative, rather than positive as stated

there. Now if the estimate in [43, Corollary 7] would hold even after correcting the
sign, we would have the following inequality:

| f (ζ ) − ζ |2 ≤ −1

6
f ′′′(1)

Re
(
( f (ζ ) − ζ )(1 − ζ )2

)

1 − |ζ |2 , ζ ∈ �.

But evaluatingboth sides at ζ = −1/3,we see that the preceding inequality is incorrect.
We now move to the proof of Lemma 2.1, which is very short and self-contained.

Proof of Lemma 2.1 If f = Id�, then there is nothing to prove. So we next assume
that f �= Id�. Note that

lim
k→∞

1 − | f (ζk)|
1 − |ζk | = 1.

By the Julia–Wolff–Cararthéodory theorem (see, e.g., [2, Section 1.2.1], [42, Chapter
VI]), the quotient ( f (ζ )−1)/(ζ −1) tends to 1 as ζ → 1 non-tangentially. Moreover,

|1 − f (ζ )|2
1 − | f (ζ )|2 ≤ |1 − ζ |2

1 − |ζ |2 , ζ ∈ �. (2.2)

Now we consider the holomorphic function g : � → C given by

g(ζ ) := 1 + f (ζ )

1 − f (ζ )
− 1 + ζ

1 − ζ
.

Then inequality (2.2) implies that g maps � into the closed right half-plane. Since
f �= Id�, by the maximum principle applied to−Re g we have that g(�) is contained
in the right half-plane. In particular,

(1 − ζ )g(ζ ) + 2 �= 0, ζ ∈ �.
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On the other hand, since

ϕ(ζ ) := f (ζ ) − ζ

(ζ − 1)2
= g(ζ )

(1 − ζ )g(ζ ) + 2
, (2.3)

we see that

Re ϕ(ζ ) = |g(ζ )|2Re (1 − ζ ) + 2Re g(ζ )

|(1 − ζ )g(ζ ) + 2|2 > 0, ζ ∈ �.

This completes the proof of (i).
Next, set

ψ := 1 − ϕ

1 + ϕ
. (2.4)

Then ψ(�) ⊆ �, and

1 − |ψ |2 = 4Re ϕ

|1 + ϕ|2 . (2.5)

Together with (2.1) and (2.3), this implies that

lim inf
��ζ→1

1 − |ψ(ζ )|2
1 − |ζ |2 < +∞.

By applying the Julia–Wolff–Cararthéodory theorem again, we see that (ψ(ζ ) −
1)/(ζ − 1) admits a non-tangential limit at 1, denoted by ψ ′(1), which is a posi-
tive real number and satisfies that

|1 − ψ(ζ )|2
1 − |ψ(ζ )|2 ≤ ψ ′(1) |1 − ζ |2

1 − |ζ |2 , ζ ∈ �. (2.6)

Furthermore, we can conclude that

f (ζ ) − ζ

(ζ − 1)3
= ϕ(ζ )

ζ − 1
= − 1

1 + ψ(ζ )

ψ(ζ ) − 1

ζ − 1
→ −1

2
ψ ′(1)

as ζ → 1 non-tangentially. Together with a standard argument using the Cauchy
integral formula, this also implies that f ′′′ has a non-tangential limit f ′′′(1) at 1, and

f ′′′(1) = −3ψ ′(1) < 0. (2.7)

Now the desired inequality follows immediately by substituting (2.3)–(2.5) and (2.7)
into (2.6). ��

We next prove Proposition 2.2, which is crucial for our subsequent arguments.
This proposition might be known to experts. Since being unable to locate a good
reference for its proof, we will give a detailed argument for the reader’s convenience.
To this end, we need to recall some known results obtained by Lempert [35,37]. Let
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� ⊂ C
n (n > 1) be a bounded strongly linearly convex domain with Cm, α-smooth

boundary, where m ≥ 2 and α ∈ (0, 1). Let ϕ be a complex geodesic of �, and ϕ∗ be
its dual mapping. Then by [37, Theorem 2] (see also [34, Theorem 1.14]), the winding
number of the function

∂� � ζ �→ 〈z − ϕ(ζ ), ϕ∗(ζ )〉

is one for all z ∈ �. Hence for every z ∈ �, the equation

〈z − ϕ(ζ ), ϕ∗(ζ )〉 = 0

admits a unique solution ζ := �(z) ∈ �. We denote by � : � → � the function
defined in such a way, which is uniquely determined by ϕ and is holomorphic such
that � ◦ ϕ = Id�. If we set

ρ := ϕ ◦ �,

then ρ ∈ O(�, �) is a holomorphic retraction of � (i.e., ρ ◦ ρ = ρ) with image
ρ(�) = ϕ(�). In the rest of this paper, we will refer to � and ρ as the Lempert left
inverse of ϕ, and the Lempert retraction associated to ϕ, respectively.

Proposition 2.2 Let � ⊂ C
n (n > 1) be a bounded strongly linearly convex domain

with Cm-smooth boundary, where m ≥ 3. Let ϕ be a complex geodesic of � and � be
the Lempert left inverse of ϕ. Then � ∈ O(�, �)∩Cm−2, α(�) for all α ∈ (0, 1), and

�(�\ϕ(∂�)) ⊂ �. Moreover, for every multi-index ν ∈ N
n with |ν| = m − 1, ∂ |ν|�

∂zν

admits a non-tangential limit at every point p ∈ ϕ(∂�), denoted by ∂ |ν|�
∂zν (p); and for

every 0 < α < 1 and β > 1, there exists a constant C p, α, β > 0 such that

∣∣∣∣
∂ |ν|�
∂zν

(z) − ∂ |ν|�
∂zν

(p)

∣∣∣∣ ≤ C p, α, β |z − p|α, (2.8)

for all z ∈ 	β(p), which is as in (1.2).

Proof Let ϕ∗ be the dual mapping of ϕ as before. Then ϕ, ϕ∗ ∈ Cm−2, α(�) for all
α ∈ (0, 1). For every z ∈ �, ζ := �(z) ∈ � is by definition the only solution to the
equation

〈z − ϕ(ζ ), ϕ∗(ζ )〉 = 0. (2.9)

More explicitly,

�(z) = 1

2π i

∫

∂�

ζ
〈z − ϕ(ζ ), (ϕ∗)′(ζ )〉 − 1

〈z − ϕ(ζ ), ϕ∗(ζ )〉 dζ, z ∈ �. (2.10)

Obviously, � ∈ O(�, �). Note that � is initially defined on �. Now we show that �
can extend Cm−2-smoothly to �. Indeed, we first see easily that there is an open set
U ⊃ �\ϕ(∂�) such that for every z ∈ U , the winding number of the function

∂� � ζ �→ 〈z − ϕ(ζ ), ϕ∗(ζ )〉
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is one. Therefore, the right-hand side of (2.10) determines a Cm−2-smooth function
from U to �, which assigns to every z ∈ U the only solution to equation (2.9). This
means that � can extend Cm−2-smoothly to �\ϕ(∂�). To check the Cm−2-smooth
extendibility of � to ϕ(∂�), we first extend ϕ and ϕ∗ Cm−2-smoothly to C. We still
denote by ϕ and ϕ∗ their extensions, and consider the function

F(z, ζ ) := 〈z − ϕ(ζ ), ϕ∗(ζ )〉, (z, ζ ) ∈ C
n × C.

Then for every ζ0 ∈ ∂�, it holds that F(ϕ(ζ0), ζ0) = 0 and ∂ F
∂ζ

(ϕ(ζ0), ζ0) = −1. Thus
by the implicit function theorem, there exists a neighborhood Uζ0 × Vζ0 of (ϕ(ζ0), ζ0)

and a function �0 ∈ Cm−2(Uζ0 , Vζ0) such that

{
(z, ζ ) ∈ Uζ0 × Vζ0 : F(z, ζ ) = 0

} = {
(z, �0(z)) : z ∈ Uζ0

}
.

Now by uniqueness of the solution to equation (2.9), we see that � = �0 on Uζ0 ∩
(�\ϕ(∂�)) for all ζ0 ∈ ∂�. In other words, � can also extend Cm−2-smoothly to
ϕ(∂�) as desired.

Now we assume that m = 3. Differentiating the equality

〈z − ϕ ◦ �(z), ϕ∗ ◦ �(z)〉 = 0

on � with respect to z j , and taking into account that 〈ϕ′, ϕ∗〉 = 1, we see that

∂�

∂z j
(z)

(
1 − 〈z − ϕ ◦ �(z), (ϕ∗)′ ◦ �(z)〉

)
= 〈e j , ϕ∗ ◦ �(z)〉

for all z ∈ �. Since ϕ∗ is nowhere vanishing on�, the preceding equality implies that

inf
z∈�

∣∣1 − 〈z − ϕ ◦ �(z), (ϕ∗)′ ◦ �(z)〉∣∣ > 0, (2.11)

and thus
∂�

∂z j
(z) = 〈e j , ϕ∗ ◦ �(z)〉

1 − 〈z − ϕ ◦ �(z), (ϕ∗)′ ◦ �(z)〉 , z ∈ �. (2.12)

In particular, this implies that

ϕ∗ =
(

∂�

∂z1
◦ ϕ, . . . ,

∂�

∂zn
◦ ϕ

)
. (2.13)
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Moreover, from (2.11), (2.12) and the regularity of ϕ, ϕ∗ it follows that � ∈ C1, α(�)

for all α ∈ (0, 1). Differentiating equality (2.12) once again yields that

∂2�

∂z j∂zk
(z) =

∂�
∂zk

(z)〈e j , (ϕ∗)′ ◦ �(z)〉
1 − 〈Id − ϕ ◦ �, (ϕ∗)′ ◦ �〉(z) + 〈e j , ϕ∗ ◦ �(z)〉

(
1 − 〈Id − ϕ ◦ �, (ϕ∗)′ ◦ �〉(z))2

·
(〈

ek − ∂�

∂zk
ϕ′ ◦ �, (ϕ∗)′ ◦ �

〉
(z) + ∂�

∂zk
(z)

〈
Id − ϕ ◦ �, (ϕ∗)′′ ◦ �

〉
(z)

)

(2.14)

for all z ∈ �, and 1 ≤ j, k ≤ n. Let p ∈ ϕ(∂�), and take 0 < α < 1, β > 1. We

now need to show that ∂2�
∂z j ∂zk

admits a non-tangential limit at p and satisfies estimate

(2.8). In view of (2.11), (2.14), and the fact that ϕ, ϕ∗ ∈ C1, α(�) and � ∈ C1, α(�),
it suffices to prove that there exists a constant C p, α, β > 0 such that

∣∣〈z − ϕ ◦ �(z), (ϕ∗)′′ ◦ �(z)〉∣∣ ≤ C p, α, β |z − p|α

for all z ∈ 	β(p). To this end, it first follows from the Hopf lemma (see, e.g., [22,
Proposition 12.2]) that

1 − |�| ≥ Cdist( · , ∂�)

for some constant C > 0. Now the desired result follows immediately by applying the
classical Hardy–Littlewood theorem to (ϕ∗)′ ∈ O(�) ∩ Cα(�). This completes the
proof of the case when m = 3, and the general case follows in an analogous way. ��
Remark 2.3 From the above proof it follows immediately that for every z ∈ �, the
equation 〈z − ϕ(ζ ), ϕ∗(ζ )〉 = 0 admits a unique solution on �, which is precisely
�(z).

Now, we are ready to prove Theorem 1.1.

Proof of Theorem 1.1 As we mentioned in the Introduction, the existence part was
already known. So we need only prove the uniqueness part.

Suppose that ϕ and ϕ̃ are two complex geodesics of � such that ϕ(1) = ϕ̃(1) = p
and ϕ′(1) = ϕ̃′(1) = v. For every t ∈ R, set

σt (ζ ) := (1 − i t)ζ + i t

−i tζ + 1 + i t
∈ Aut(�). (2.15)

Then we need to prove that there exists a t0 ∈ R such that ϕ̃ = ϕ ◦ σt0 .
We denote by ϕ∗, ϕ̃∗ the dual mappings of ϕ and ϕ̃, respectively. Then ϕ, ϕ̃, ϕ∗,

ϕ̃∗ ∈ C1, α(�) for all α ∈ (0, 1). Next, we show that there exists a t0 ∈ R such that

((ϕ ◦ σt0)
∗)′(1) = (ϕ̃∗)′(1). (2.16)
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To this end, we first write

ϕ∗|∂�(ζ ) = ζμ(ζ )ν ◦ ϕ(ζ ), ϕ̃∗|∂�(ζ ) = ζ μ̃(ζ )ν ◦ ϕ̃(ζ ), (2.17)

and
(ϕ ◦ σt )

∗|∂�(ζ ) = ζμt (ζ )ν ◦ ϕ ◦ σt (ζ ), (2.18)

where μ, μt , μ̃ are C1, α-smooth positive functions on ∂�, and ν denotes the unit
outward normal vector field of ∂�. Now note that

(ϕ ◦ σt )
′(1) = ϕ′(1) = ϕ̃′(1),

and hence

d

dθ

∣∣∣∣
θ=0

ν ◦ ϕ ◦ σt (e
iθ ) = d

dθ

∣∣∣∣
θ=0

ν ◦ ϕ̃(eiθ )

for all t ∈ R. Thus in view of (2.17) and (2.18), (2.16) is equivalent to

d

dθ

∣∣∣∣
θ=0

μt0(e
iθ ) = d

dθ

∣∣∣∣
θ=0

μ̃(eiθ ). (2.19)

Now by the definition of dual mappings,

μt (e
iθ ) = e−iθ 〈(ϕ ◦ σt )

′(eiθ ), ν ◦ ϕ ◦ σt (e
iθ )

〉−1

= e−iθ

σ ′
t (eiθ )

〈
ϕ′ ◦ σt (e

iθ ), ν ◦ ϕ ◦ σt (e
iθ )

〉−1

= σt (eiθ )

eiθσ ′
t (eiθ )

μ ◦ σt (e
iθ )

for all θ ∈ R. Moreover, since σt (1) = σ ′
t (1) = 1, it follows that

d

dθ

∣∣∣∣
θ=0

μ ◦ σt (e
iθ ) = d

dθ

∣∣∣∣
θ=0

μ(eiθ ).

We then conclude by a direct calculation that

d

dθ

∣∣∣∣
θ=0

μt (e
iθ ) = 2tμ(1) + d

dθ

∣∣∣∣
θ=0

μ(eiθ ) = 2t

〈v, νp〉 + d

dθ

∣∣∣∣
θ=0

μ(eiθ ),

which implies that (2.19) (and hence (2.16)) holds provided

t0 = 1

2
〈v, νp〉 d

dθ

∣∣∣∣
θ=0

(
μ̃(eiθ ) − μ(eiθ )

)
.
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Now we come to show that ϕ̃ = ϕ ◦ σt0 . We first give a proof for the strongly
convex case as a warmup.We argue by contradiction, and suppose on the contrary that
ϕ̃ �= ϕ ◦ σt0 . Then we have

ϕ̃(�) ∩ ϕ ◦ σt0(�) = {p},

since two different closed complex geodesic discs can have at most one point in
common; see [37, pp. 362–363]. Together with the strong convexity of �, this further
implies that

Re
〈
ϕ̃(ζ ) − ϕ ◦ σt0(ζ ), ζ−1ϕ̃∗(ζ )

〉 = μ̃(ζ )Re
〈
ϕ̃(ζ ) − ϕ ◦ σt0(ζ ), ν ◦ ϕ̃(ζ )

〉
> 0

and

Re
〈
ϕ ◦ σt0(ζ ) − ϕ̃(ζ ), ζ−1(ϕ ◦ σt0)

∗(ζ )
〉
> 0

hold on ∂�\{1}. Taking summation yields that

Re
〈
ϕ̃(ζ ) − ϕ ◦ σt0(ζ ), ζ−1

(
ϕ̃∗(ζ ) − (ϕ ◦ σt0)

∗(ζ )
)〉

> 0 (2.20)

for all ζ ∈ ∂�\{1}. Note also that for every ζ ∈ ∂�\{1},

ζ

(1 − ζ )2
= 1

4

((
1 + ζ

1 − ζ

)2

− 1

)
≤ −1

4
,

we therefore deduce from (2.20) that

Re

〈
ζ
(
ϕ̃(ζ ) − ϕ ◦ σt0(ζ )

)

(1 − ζ )2
,

ϕ̃∗(ζ ) − (ϕ ◦ σt0)
∗(ζ )

(1 − ζ )2

〉
> 0 (2.21)

on ∂�\{1}. On the other hand, since ϕ̃, ϕ ◦σt0 , ϕ̃
∗, (ϕ ◦σt0)

∗ ∈ C1, α(�) for α > 1/2,
and

(ϕ ◦ σt0)
′(1) = ϕ̃′(1), ((ϕ ◦ σt0)

∗)′(1) = (ϕ̃∗)′(1),

we see that the holomorphic function

f (ζ ) := ζ

〈
ϕ̃(ζ ) − ϕ ◦ σt0(ζ )

(1 − ζ )2
,

ϕ̃∗(ζ ) − (ϕ ◦ σt0)
∗(ζ )

(1 − ζ )2

〉

belongs to the Hardy space H1(�). Together with (2.21), this implies that

0 = Re f (0) = Re

(
1

2π i

∫

∂�

f (ζ )

ζ
dζ

)
= 1

2π

∫ 2π

0
Re f (eiθ )dθ > 0.
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This is a contradiction. Therefore, we must have ϕ̃ = ϕ ◦ σt0 .
We now turn to the strongly linearly convex case. The proof of this general case is

muchmore involved than that of the strongly convex case.We argue as follows. Let� be
theLempert left inverse ofϕ. Then in viewof Proposition 2.2,� ∈ O(�, �)∩C1, α(�)

for allα ∈ (0, 1).Wenowconsider the holomorphic function�◦ϕ̃, which is inC1, α(�)

for all α ∈ (0, 1), and satisfies that

� ◦ ϕ̃(1) = � ◦ ϕ(1) = 1.

By differentiating, we obtain

(� ◦ ϕ̃)′(ζ ) =
n∑

j=1

∂�

∂z j
◦ ϕ̃(ζ )ϕ̃′

j (ζ ) = 〈ϕ̃′(ζ ), (gard �) ◦ ϕ̃(ζ )〉

for all ζ ∈ �, where

(gard �)(z) = ∂�

∂z
(z) :=

(
∂�

∂z1
(z), . . . ,

∂�

∂zn
(z)

)
.

In what follows, to simplify the notation, we assume that the number t0 in (2.16) is
zero. Then

(ϕ∗)′(1) = (ϕ̃∗)′(1). (2.22)

Moreover, since ϕ̃(1) = ϕ(1) = p, it follows from (2.13) and the definition of dual
mappings that

(gard �) ◦ ϕ̃(1) = ϕ̃∗(1) = ϕ∗(1) (2.23)

and

(� ◦ ϕ̃)′(1) = 〈ϕ̃′(1), (gard �) ◦ ϕ̃(1)〉 = 〈ϕ̃′(1), ϕ̃∗(1)〉 = 1.

Let �̃ be the Lempert left inverse of ϕ̃. We next claim that

(� ◦ ϕ̃ + �̃ ◦ ϕ)′′(ζ ) = o(|ζ − 1|) (2.24)

as ζ → 1 non-tangentially. This is the main part of the proof. First of all, we have

(� ◦ ϕ̃)′′(ζ ) =
n∑

j, k=1

∂2�

∂z j∂zk
◦ ϕ̃(ζ )ϕ̃′

j (ζ )ϕ̃′
k(ζ ) + 〈ϕ̃′′(ζ ), (gard �) ◦ ϕ̃(ζ )〉 (2.25)

for all ζ ∈ �. Now we try to estimate the second term. To this end, differentiating
both sides of the identity ϕ∗ = (gard �) ◦ ϕ (see (2.13)) yields that

(ϕ∗)′(ζ ) =
n∑

k=1

∂2�

∂z∂zk
◦ ϕ(ζ )ϕ′

k(ζ ), ζ ∈ �. (2.26)
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For every β > 1, we set

Rβ := {
ζ ∈ � : |ζ − 1| < β(1 − |ζ |)},

which is a non-tangential approach region in � with vertex 1 and aperture β, called a
Stolz region. We show that for every α ∈ (0, 1) and every β > 1,

∣∣((gard �) ◦ ϕ̃)′(ζ ) − (ϕ̃∗)′(ζ )
∣∣ ≤ Cα, β |ζ − 1|α (2.27)

as ζ ∈ Rβ . Here and in what follows, Cα (resp. Cα, β ) always denotes a positive
constant depending only on α (resp. α and β), which could be different in different
contexts. Note that � is strongly pseudoconvex, we can take a C3-defining function
r for � which is strictly plurisubharmonic on some neighborhood of �. Then the
classical Hopf lemma applied to r ◦ ϕ yields that

inf
ζ∈�

−r ◦ ϕ(ζ )

1 − |ζ | > 0.

Also, it is evident that

sup
z∈�

−r(z)

dist(z, ∂�)
< ∞.

We then see that there exists a constant C > 0 such that

dist(ϕ(ζ ), ∂�) ≥ C(1 − |ζ |)

for all ζ ∈ �. Consequently, we conclude that ϕ maps every non-tangential approach
region in � with vertex 1 to a non-tangential approach region in � with vertex p, and
the same holds true for ϕ̃. Note also that ϕ̃′(1) = ϕ′(1), we then deduce from (2.8)
and (2.26) (as well as the fact that ϕ′, ϕ̃′ ∈ Cα(�)) that

∣∣((gard �) ◦ ϕ̃ − ϕ∗)′
(ζ )

∣∣ ≤ Cα, β

(
|ϕ(ζ ) − p|α + |ϕ̃(ζ ) − p|α + |(ϕ − ϕ̃)′(ζ )|

)

≤ Cα, β |ζ − 1|α

for all ζ ∈ Rβ . Now (2.27) follows immediately, since (ϕ∗)′(1) = (ϕ̃∗)′(1) (see
(2.22)) and (ϕ∗)′, (ϕ̃∗)′ ∈ Cα(�). Then in view of (2.23) and (2.27), we see that

∣∣(gard �) ◦ ϕ̃(ζ ) − ϕ̃∗(ζ )
∣∣ ≤ |ζ − 1|

∫ 1

0

∣∣((gard �) ◦ ϕ̃ − ϕ̃∗)′(tζ + (1 − t))
∣∣dt

≤ Cα, β |ζ − 1|α+1

(2.28)
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for all ζ ∈ Rβ . Similarly, we also have

max
{
|�◦ ϕ̃(ζ )−ζ |, ∣∣ϕ̃(ζ )−ϕ ◦�◦ ϕ̃(ζ )

∣∣,
∣∣ϕ̃∗(ζ )−ϕ∗ ◦�◦ ϕ̃(ζ )

∣∣
}

≤ Cα|ζ −1|α+1

(2.29)
for all ζ ∈ �. Now recall that ϕ̃′ ∈ O(�) ∩ Cα(�), the classical Hardy–Littlewood
theorem implies that

sup
ζ∈�

(1 − |ζ |)1−α|ϕ̃′′(ζ )| < ∞.

Combining this with (2.28), we then deduce that for every α ∈ (0, 1) and every β > 1,

∣∣〈ϕ̃′′(ζ ), (gard �) ◦ ϕ̃(ζ )〉 − 〈ϕ̃′′(ζ ), ϕ̃∗(ζ )〉∣∣ ≤ Cα, β |ζ − 1|2α (2.30)

as ζ ∈ Rβ . Now we deal with the first term in equality (2.25). A straightforward
calculation using (2.14) shows that for every ζ ∈ �,

n∑

j, k=1

∂2�

∂z j∂zk
◦ ϕ̃(ζ )ϕ̃′

j (ζ )ϕ̃′
k(ζ ) = 〈ϕ̃′, (ϕ∗)′ ◦ � ◦ ϕ̃〉〈ϕ̃′, (gard �) ◦ ϕ̃〉

1 − 〈
ϕ̃ − ϕ ◦ � ◦ ϕ̃, (ϕ∗)′ ◦ � ◦ ϕ̃

〉 (ζ )

+ 〈ϕ̃′, ϕ∗ ◦ � ◦ ϕ̃〉
(
1 − 〈

ϕ̃ − ϕ ◦ � ◦ ϕ̃, (ϕ∗)′ ◦ � ◦ ϕ̃
〉)2 (ζ )

(
〈ϕ̃′, (gard �) ◦ ϕ̃〉〈ϕ̃−

ϕ ◦ � ◦ ϕ̃, (ϕ∗)′′ ◦ � ◦ ϕ̃
〉 +

〈
ϕ̃′ − 〈ϕ̃′, (gard �) ◦ ϕ̃〉ϕ′ ◦ � ◦ ϕ̃,

(ϕ∗)′ ◦ � ◦ ϕ̃
〉)

(ζ ) =: I (ζ ) + I I (ζ ).

Now in view of (2.11), (2.28) and (2.29), and also noticing the arbitrariness of α ∈
(0, 1), it holds that

∣∣I (ζ ) − 〈ϕ̃′(ζ ), (ϕ∗)′(ζ )〉∣∣ ≤ C
(∣∣ϕ̃(ζ ) − ϕ ◦ � ◦ ϕ̃(ζ )

∣∣ + ∣∣(gard �) ◦ ϕ̃(ζ ) − ϕ̃∗(ζ )
∣∣

+ ∣∣(ϕ∗)′ ◦ � ◦ ϕ̃(ζ ) − (ϕ∗)′(ζ )
∣∣
)

≤ Cα, β

(
|ζ − 1|α+1 + |� ◦ ϕ̃(ζ ) − ζ | 2α

α+1

)

≤ Cα, β |ζ − 1|2α

(2.31)

for all ζ ∈ Rβ . We next estimate the function I I . Indeed, a simple manipulation using
(2.11), (2.28) and (2.29) again yields that
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∣∣I I (ζ ) − 〈ϕ̃′(ζ ) − ϕ′ ◦ � ◦ ϕ̃(ζ ), (ϕ∗)′ ◦ � ◦ ϕ̃(ζ )〉∣∣
≤ C

(∣∣ϕ̃(ζ ) − ϕ ◦ � ◦ ϕ̃(ζ )
∣∣|(ϕ∗)′′ ◦ � ◦ ϕ̃(ζ )| + ∣∣(gard �) ◦ ϕ̃(ζ ) − ϕ̃∗(ζ )

∣∣
)

+ C
∣∣〈ϕ̃′(ζ ), ϕ∗ ◦ � ◦ ϕ̃(ζ )〉 − (

1 − 〈ϕ̃(ζ ) − ϕ ◦ � ◦ ϕ̃(ζ ), (ϕ∗)′ ◦ � ◦ ϕ̃(ζ )〉)2∣∣
≤ C

(∣∣ϕ̃(ζ ) − ϕ ◦ � ◦ ϕ̃(ζ )
∣∣|(ϕ∗)′′ ◦ � ◦ ϕ̃(ζ )| + ∣∣(gard �) ◦ ϕ̃(ζ ) − ϕ̃∗(ζ )

∣∣
)

+ C
(∣∣ϕ∗ ◦ � ◦ ϕ̃(ζ ) − ϕ̃∗(ζ )

∣∣ + ∣∣ϕ̃(ζ ) − ϕ ◦ � ◦ ϕ̃(ζ )
∣∣
)

≤ Cα, β

(|ζ − 1|α+1(1 − |� ◦ ϕ̃(ζ )|)α−1 + |ζ − 1|α+1)

≤ Cα, β |ζ − 1|2α
(2.32)

for all ζ ∈ Rβ . Here the penultimate inequality follows by applying the classical
Hardy–Littlewood theorem to (ϕ∗)′ ∈ O(�) ∩ Cα(�), and the last one follows by
noting that

lim
Rβ�ζ→1

1 − |� ◦ ϕ̃(ζ )|
1 − |ζ | = (� ◦ ϕ̃)′(1) = 1,

in view of the Julia–Wolff–Cararthéodory theorem. For every α ∈ (0, 1), we also have

∣∣〈ϕ̃′(ζ ) − ϕ′(ζ ), (ϕ∗)′(ζ )〉 − 〈ϕ̃′(ζ ) − ϕ′ ◦ � ◦ ϕ̃(ζ ), (ϕ∗)′ ◦ � ◦ ϕ̃(ζ )〉∣∣
≤ ∣∣〈ϕ̃′(ζ ) − ϕ′(ζ ), (ϕ∗)′(ζ ) − (ϕ∗)′ ◦ � ◦ ϕ̃(ζ )〉∣∣

+ ∣∣〈ϕ′ ◦ � ◦ ϕ̃(ζ ) − ϕ′(ζ ), (ϕ∗)′ ◦ � ◦ ϕ̃(ζ )〉∣∣
≤ Cα|� ◦ ϕ̃(ζ ) − ζ | 2α

α+1

≤ Cα|ζ − 1|2α

for all ζ ∈ �. Now combining this with (2.32) yields that

∣∣I I (ζ ) − 〈ϕ̃′(ζ ) − ϕ′(ζ ), (ϕ∗)′(ζ )〉∣∣ ≤ Cα, β |ζ − 1|2α (2.33)

for all ζ ∈ Rβ . On the other hand, taking into account that

〈ϕ̃′, (ϕ̃∗)′〉 + 〈ϕ̃′′, ϕ̃∗〉 = 〈ϕ̃′, ϕ̃∗〉′ = 0

on �, we can rephrase (2.30) as

∣∣〈ϕ̃′′(ζ ), (gard �) ◦ ϕ̃(ζ )〉 + 〈ϕ̃′(ζ ), (ϕ̃∗)′(ζ )〉∣∣ ≤ Cα, β |ζ − 1|2α (2.34)

for all ζ ∈ Rβ . Putting (2.25), (2.31), (2.33), and (2.34) together, we then conclude
that for every α ∈ (0, 1) and every β > 1,

∣∣(� ◦ ϕ̃)′′(ζ ) − 〈ϕ̃′ − ϕ′, (ϕ∗)′〉(ζ ) − 〈ϕ̃′, (ϕ∗)′ − (ϕ̃∗)′〉(ζ )
∣∣ ≤ Cα, β |ζ − 1|2α

123



1842 X. Huang, X. Wang

as ζ ∈ Rβ . By symmetry, we also have for every α ∈ (0, 1) and every β > 1,

∣∣(̃� ◦ ϕ)′′(ζ ) − 〈ϕ′ − ϕ̃′, (ϕ̃∗)′〉(ζ ) − 〈ϕ′, (ϕ̃∗)′ − (ϕ∗)′〉(ζ )
∣∣ ≤ Cα, β |ζ − 1|2α

as ζ ∈ Rβ . Now adding the preceding two inequalities together yields that

∣∣(�◦ϕ̃+�̃◦ϕ)′′(ζ )+2〈ϕ′(ζ )−ϕ̃′(ζ ), (ϕ∗)′(ζ ) − (ϕ̃∗)′(ζ )〉∣∣ ≤ Cα, β |ζ −1|2α (2.35)

for all ζ ∈ Rβ . Also, it is evident that

∣∣〈ϕ′(ζ ) − ϕ̃′(ζ ), (ϕ∗)′(ζ ) − (ϕ̃∗)′(ζ )〉∣∣ ≤ Cα|ζ − 1|2α

for all ζ ∈ � and α ∈ (0, 1). Together with (2.35), this further implies that for every
α ∈ (0, 1) and every β > 1,

|(� ◦ ϕ̃ + �̃ ◦ ϕ)′′(ζ )| ≤ Cα, β |ζ − 1|2α

as ζ ∈ Rβ . Now the desired claim (2.24) follows immediately.
By using the Cauchy integral formula, we can conclude from (2.24) that

(� ◦ ϕ̃ + �̃ ◦ ϕ)′′′(ζ ) → 0

as ζ → 1 non-tangentially. Then by Theorem 2.1, we have

1

2
(� ◦ ϕ̃ + �̃ ◦ ϕ) = Id�. (2.36)

We now prove that ϕ̃ = ϕ. Recall that (ϕ̃∗)′(1) = (ϕ∗)′(1) (see (2.22)), an argument
completely analogous to the one at the beginning of the proof indicates that it is
sufficient to show that ϕ̃(�) = ϕ(�). As usual, we argue by contradiction. If this
were not the case, it would follow that

ϕ̃(�) ∩ ϕ(�) = {p}. (2.37)

On the other hand, it follows from Proposition 2.2 that �(�\ϕ(∂�)) ⊂ � and
�̃(�\ϕ̃(∂�)) ⊂ �. Now combining this with (2.37), we see that

1

2
(� ◦ ϕ̃ + �̃ ◦ ϕ)(�\{1}) ⊂ �,

which contradicts (2.36). This completes the proof of the first statement part of the the-
orem. The second one follows easily from a similar argument as in the very beginning
of the proof. ��
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Remark 2.4 Although the existence part of Theorem 1.1 requires ∂� to be at least C3-
smooth as indicated by [28], the preceding argument implies that for the uniqueness
part: when � is strongly convex, the C2, α-regularity of ∂� is enough whenever α ∈
(1/2, 1); when � is only strongly linearly convex, the C2, α-regularity for ∂� is also
enough whenever α ∈ ((

√
5− 1)/2, 1). In the latter case, a slight modification of the

preceding argument is necessary.

Remark 2.5 The uniqueness result for complex geodesics of bounded strongly convex
domains in� ⊂ C

n (n > 1)with C3-smooth boundary was also stated in [23, Lemma
2.7]. However, the proof given there seems to us to be incorrect. In fact, by carefully
checking that proof, one can see that what the authors of [23] claimed is essentially
the following (with notation fixed there): Let � be a bounded strongly convex domain
with C3-smooth boundary and let p ∈ ∂�. Let φ be a complex geodesic of � with
φ(1) = p and ψ be a holomorphic mapping from � into � such that ψ(1) = p
and ψ ′(1) = φ′(1). Then ψ = φ, which is obviously not true. Even in the complex
geodesic case for both mappings, as we proved in this paper, they are only the same
after composing an automorphism. It seems to us that they overlooked the fact that the
constant C (in the proof of [23, Lemma 2.7]) goes to zero, instead of being uniformly
bounded below by a positive constant, as the parameter η ∈ � tends to 1. Indeed, just
simply taking � = �, one can compute directly this constant and find out it goes to
zero as η → 1.

3 A new boundary spherical representation

Let � ⊂ C
n (n > 1) be a bounded strongly linearly convex domain with C3-smooth

boundary. Let p ∈ ∂� and νp be the unit outward normal to ∂� at p. Set

L p := {
v ∈ C

n : |v| = 1, 〈v, νp〉 > 0
}

and let v ∈ L p. Then by Theorem 1.1, we see that there exists a unique complex
geodesic ϕv of � such that ϕv(1) = p, ϕ′

v(1) = 〈v, νp〉v and

d

dθ

∣∣∣∣
θ=0

|ϕ∗
v (eiθ )| = 0.

Here as before, ϕ∗
v is the dual mapping of ϕv . In what follows, we will refer to such a

ϕv as the preferred complex geodesic of � associated to v.
Up to a unitary transformation on C

n , which does not change the strong linear
convexity of �, we may assume that νp = e1 = (1, 0, . . . , 0) and thus L p is given by

L p = {
v ∈ C

n : |v| = 1, 〈v, e1〉 > 0
}
.

Now it is easy to verify that for every v ∈ L p, the mapping

ηv : � � ζ �→ e1 + (ζ − 1)〈v, e1〉v
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is the preferred complex geodesic of the open unit ball Bn ⊂ C
n associated to v, since

a straightforward calculation shows that

η∗
v(ζ ) = ζe1 + (1 − ζ )〈v, e1〉v̄

〈v, e1〉2

and thus |η∗
v | = 1/〈v, e1〉2 on ∂�. Also for every z ∈ �\{p}, there exists a unique

complex geodesic disc in � whose closure contains z and p; see [17, Theorem 1]. We
can then appropriately parameterize this complex geodesic disc such that it is given by
the image of the preferred complex geodesic ϕvz of � associated to a unique vz ∈ L p,
in view of the proof of Theorem 1.1 and Remark 1.2. This leads us to consider the
mapping �p : � → B

n
defined by setting �p(p) = e1, and

�p(z) = e1 + (ζz − 1)〈vz, e1〉vz, z ∈ �\{p},

where ζz := ϕ−1
vz

(z). Clearly, �p is a bijection with inverse �−1
p given by �−1

p (e1) =
p, and

�−1
p (w) = ϕvw(ζw), w ∈ B

n\{e1},

where (vw, ζw) ∈ L p ×� is the unique data such that ηvw(ζw) = w; more explicitly,

vw = − 1 − 〈e1, w〉
|1 − 〈e1, w〉|

w − e1
|w − e1| , ζw = 1 − |w − e1|2

|1 − 〈e1, w〉|2 (1 − 〈w, e1〉).

Moreover, we can prove the following

Theorem 3.1 Let � ⊂ C
n (n > 1) be a bounded strongly linearly convex domain with

C3-smooth boundary and let p ∈ ∂�. Then

(i) For every α ∈ (0, 1/2), the mapping

L p � v �→ ϕv ∈ C1, α(�)

is continuous, and so is

L p � v �→ ϕ∗
v ∈ C1, α(�).

(ii) Both �p and �−1
p are continuous so that they are homeomorphisms.

For the proof of the above theorem, we need the following

Lemma 3.2 Let � ⊂ C
n (n > 1) be a bounded strongly linearly convex domain with

C3-smooth boundary, and F ⊂ O(�, �) a family of complex geodesics of � such
that

{ϕ(0) : ϕ ∈ F} ⊂⊂ �.
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Then

sup
ϕ∈F

(‖ϕ‖C1, 1/2(�) + ‖ϕ∗‖C1, 1/2(�)

)
< ∞,

where for every ϕ, ϕ∗ denotes its dual mapping as before.

Proof First of all, by [27, Lemma 4] (which is also valid for bounded strongly linearly
convex domains in Cn , in view of [34,37]), we obtain that

sup
ϕ∈F

‖ϕ‖C1, 1/2(�) < ∞. (3.1)

So we are left to show that

sup
ϕ∈F

‖ϕ∗‖C1, 1/2(�) < ∞.

To this end, note that the standard proof of theHardy–Littlewood theorem (see, e.g., [2,
Theorem 2.6.26]) implies that the norms ‖ ‖C1, 1/2(�) and ‖ ‖C1, 1/2(∂�) are equivalent

on O(�) ∩ C1, 1/2(�) (and even on harm(�) ∩ C1, 1/2(�)), we therefore need only
show that

sup
ϕ∈F

‖ϕ∗‖C1, 1/2(∂�) < ∞.

Furthermore, since ϕ∗|∂�(ζ ) = ζ |ϕ∗(ζ )|ν ◦ ϕ(ζ ), (3.1) can reduce the problem to

sup
ϕ∈F

‖|ϕ∗|‖C1, 1/2(∂�) < ∞. (3.2)

We follow an idea of Lempert [35]. For every ζ0 ∈ ∂� and every ϕ ∈ F , we can
first choose an integer 1 ≤ kϕ, ζ0 ≤ n such that

|〈ekϕ, ζ0
, ν ◦ ϕ(ζ0)〉| ≥ 1

√
n,

and then by the equicontinuity of F (which follows easily from (3.1)) a small neigh-
borhood Vζ0 ⊂ C (independent of ϕ ∈ F) of ζ0 such that

|〈ekϕ, ζ0
, ν ◦ ϕ(ζ )〉| ≥ 1/2

√
n

for all ζ ∈ ∂� ∩ Vζ0 and ϕ ∈ F . We can further take for every ϕ ∈ F a function
χϕ, ζ0 ∈ C1, 1/2(∂�) such that

exp ◦χϕ, ζ0 = 〈ekϕ, ζ0
, ν ◦ ϕ〉

on ∂� ∩ Vζ0 , and

‖χϕ, ζ0‖C1, 1/2(∂�) ≤ Cn, ζ0‖ν ◦ ϕ‖C1, 1/2(∂�), (3.3)
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where Cn, ζ0 > 0 is a constant depending only on n and ζ0. Also, we can extend
−Im χϕ, ζ0 to a harmonic function in harm(�)∩C1, 1/2(�), still denoted by−Im χϕ, ζ0 ,
and let ρϕ, ζ0 : � → R be its conjugate function such that ρϕ, ζ0(ζ0) = 0. Then by the
classical Privalov theorem (see, e.g., [4, Proposition 6.2.10]), there exists a constant
C > 0 such that

‖ρϕ, ζ0‖C1, 1/2(�) ≤ C‖χϕ, ζ0‖C1, 1/2(∂�) (3.4)

for all ϕ ∈ F . Now note that for every ζ ∈ ∂� ∩ Vζ0 ,

|ϕ∗(ζ )|〈ekϕ, ζ0
, ν ◦ ϕ(ζ )〉 = ζ−1〈ekϕ, ζ0

, ϕ∗(ζ )〉,

and

〈ekϕ, ζ0
, ν ◦ ϕ(ζ )〉 exp ◦(ρϕ, ζ0 − Re χϕ, ζ0)(ζ ) = exp ◦(ρϕ, ζ0 + iIm χϕ, ζ0)(ζ ).

This means that they can extend to holomorphic functions on � ∩ Vζ0 , then so does
their quotient |ϕ∗| exp ◦(Re χϕ, ζ0 − ρϕ, ζ0), which takes real values on ∂� ∩ Vζ0 , and
hence can extend holomorphically across ∂�. We denote by fϕ, ζ0 its holomorphic
extension. Now taking into account that

sup
ϕ∈F

‖ϕ∗‖C(�) < ∞

(see [34,37]) and ρϕ, ζ0(ζ0) = 0, we can assume that { fϕ, ζ0}ϕ∈F is uniformly bounded
by shrinking Vζ0 uniformly, in view of (3.1), (3.3) and (3.4). Moreover, by shrinking
Vζ0 again, the classical Cauchy estimate allows us to conclude that

sup
ϕ∈F

‖ fϕ, ζ0‖C1, 1/2(∂�∩Vζ0 ) < ∞.

Together with (3.1), (3.3) and (3.4), this further implies that

sup
ϕ∈F

‖|ϕ∗|‖C1, 1/2(∂�∩Vζ0 ) < ∞,

since

|ϕ∗| = fϕ, ζ0 exp ◦(ρϕ, ζ0 − Re χϕ, ζ0)

on ∂�∩Vζ0 . Now covering ∂� by finitelymany open sets inC (like Vζ0 ), the Lebesgue
number lemma gives (3.2). This completes the proof. ��

We now can prove Theorem 3.1.

Proof of Theorem 3.1 Up to a unitary transformation onCn , we may assume that νp =
e1.

(i) Fix α ∈ (0, 1/2). Let v0 ∈ L p and {vk}k∈N ⊂ L p be a sequence converging to
v0. It suffices to show that {ϕvk }k∈N converges to ϕv0 in the topology of C1, α(�), and
{ϕ∗

vk
}k∈N converges to ϕ∗

v0
in the same topology.
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First of all, since

|〈ϕ′
vk

(1), e1〉|/|ϕ′
vk

(1)| = 〈vk, e1〉 → 〈v0, e1〉 > 0

as k → ∞, it follows from [28, Theorem 2] that

inf
k∈N diam ϕvk (�) > 0, (3.5)

where diam ϕvk (�) denotes the Euclidean diameter of ϕvk (�).

Claim : {ϕvk (0) : k ∈ N} ⊂⊂ �.

Seeking a contradiction, suppose not. Thenbypassing to a subsequence if necessary,
we may assume that

ϕvk (0) → ∂� as k → ∞. (3.6)

For k ∈ N, let ζk ∈ � be such that ϕvk ◦ σk is a normalized complex geodesic of �,
i.e.,

dist(ϕvk ◦ σk(0), ∂�) = max
ζ∈�

dist(ϕvk ◦ σk(ζ ), ∂�),

where dist( · , ∂�) denotes the Euclidean distance to the boundary ∂�, and

σk(ζ ) := 1 − ζ k

1 − ζk

ζ − ζk

1 − ζ kζ
∈ Aut(�). (3.7)

Then by [17, Proposition 4],

inf
k∈N dist(ϕvk ◦ σk(0), ∂�) > 0.

Thus by Lemma 3.2, we conclude that both {ϕvk ◦σk}k∈N and {(ϕvk ◦σk)
∗}k∈N satisfy

a uniform C1, 1/2-estimate. Now in light of the classical Ascoli-Arzelà theorem, we
may assume, without loss of generality, that these two sequences converge to ϕ∞,
ϕ̃∞ ∈ O(�) ∩ C1, 1/2(�), respectively, in the topology of C1, α(�). Note that � is
strongly pseudoconvex and

diam ϕ∞(�) ≥ inf
k∈N diam ϕvk (�) > 0

by (3.5), we see that ϕ∞(�) ⊂ � and then by the continuity of the Kobayashi distance,
ϕ∞ is a complex geodesic of �. Clearly, ϕ∞(1) = p and

ϕ′∞(1) = lim
k→∞(ϕvk ◦ σk)

′(1) = lim
k→∞ σ ′

k(1)〈vk, e1〉vk .

123



1848 X. Huang, X. Wang

Note also that 〈vk, e1〉vk → 〈v0, e1〉v0 ∈ C
n\{0}, we deduce that limk→∞ σ ′

k(1)
exists. Moreover, since σ ′

k(1) > 0, it follows from the Hopf lemma (see, e.g., Remark
1.2) that

lim
k→∞ σ ′

k(1) = |ϕ′∞(1)|/〈v0, e1〉 ∈ (0,∞). (3.8)

We now proceed to show that there exists an ε ∈ (0, 1) such that

{
ζ k : k ∈ N

} ⊂
{
ζ ∈ � : ε <

|ζ − 1|2
1 − |ζ |2 <

1

ε
, |ζ − 1| > ε

}
. (3.9)

In particular, this implies that the sequence {σk}k∈N is relatively compact in Aut(�)

with respect to the compact-open topology so that we may assume that it converges
to some σ∞ ∈ Aut(�). Consequently, we see that

ϕvk (0) = ϕvk ◦ σk ◦ σ−1
k (0) → ϕ∞ ◦ σ−1∞ (0) ∈ �

as k → ∞. This contradicts (3.6), and thus the preceding claim follows.
To show the existence of ε ∈ (0, 1) satisfying (3.9), we make use of the fact that

all ϕvk ’s are preferred. By the definition of dual mappings, we have

σ ′
k(ϕvk ◦ σk)

∗ = ϕ∗
vk

◦ σk

on �. It then follows that

|σ ′
k(1)|

d

dθ

∣∣∣∣
θ=0

|(ϕvk ◦σk)
∗(eiθ )|+|ϕ∗

vk
(1)|

|σ ′
k(1)|

d

dθ

∣∣∣∣
θ=0

|σ ′
k(e

iθ )| = d

dθ

∣∣∣∣
θ=0

|ϕ∗
vk

◦σk(e
iθ )|.

Note that |ϕ∗
vk

(1)| = 1/〈vk, e1〉2,

d

dθ

∣∣∣∣
θ=0

|ϕ∗
vk

◦ σk(e
iθ )| = |σ ′

k(1)|
d

dθ

∣∣∣∣
θ=0

|ϕ∗
vk

(eiθ )| = 0,

and recall also that {(ϕvk ◦ σk)
∗}k∈N converges to ϕ̃∞ in C1(�) as k → ∞. We then

conclude that

d

dθ

∣∣∣∣
θ=0

|σ ′
k(e

iθ )| = −〈vk, e1〉2|σ ′
k(1)|2

d

dθ

∣∣∣∣
θ=0

|(ϕvk ◦ σk)
∗(eiθ )|

→ −|ϕ′∞(1)|2 d

dθ

∣∣∣∣
θ=0

|ϕ̃∞(eiθ )|.
(3.10)

Now in view of (3.8), (3.10), and using the explicit formula (3.7), we can easily find
an ε ∈ (0, 1) such that (3.9) holds.

Now we are ready to check the desired continuity. This part is very similar to
the proof of the preceding claim. Indeed, it follows first from Lemma 3.2 that both
{ϕvk }k∈N and {ϕ∗

vk
}k∈N satisfy a uniform C1, 1/2-estimate so that the set of limit points

123



Complex geodesics and complex Monge–Ampère equations... 1849

of {ϕvk }k∈N in the topology of C1, α(�) is non-empty, and the same is true for the
sequence {ϕ∗

vk
}k∈N. Therefore, we need only show that (ϕv0 , ϕ∗

v0
) is the only limit

point of {(ϕvk , ϕ∗
vk

)}k∈N inC1, α(�)×C1, α(�).Without loss of generality, we assume
that the sequence {(ϕvk , ϕ∗

vk
)}k∈N itself converges to (ϕ∞, ϕ̃∞). Then as before, we

see that ϕ∞ is a complex geodesic of � and ϕ̃∞ = ϕ∗∞. Moreover, ϕ∞(1) = p,
ϕ′∞(1) = 〈v0, e1〉v0, and

d

dθ

∣∣∣∣
θ=0

|ϕ∗∞(eiθ )| = d

dθ

∣∣∣∣
θ=0

|ϕ̃∞(eiθ )| = lim
k→∞

d

dθ

∣∣∣∣
θ=0

|ϕ∗
vk

(eiθ )| = 0.

Now by uniqueness (see Theorem 1.1), we see that ϕ∞ = ϕv0 and then ϕ̃∞ = ϕ∗∞ =
ϕ∗

v0
as desired.
(ii) We only check the continuity of�p, since the continuity of�−1

p can be verified
in an analogousway, or alternatively follows immediately by using thewell-known fact
that an injective continuous mapping from a compact topological space to a Hausdorff
space is necessarily an embedding and noting that �p : � → B

n
is such a mapping.

Let z0 ∈ � and {zk}k∈N be a sequence in �\{p} converging to z0. For every k ∈ N,
let (vzk , ζzk ) ∈ L p × (�\{1}) be the unique data such that ϕvzk

(ζzk ) = zk , where ϕvzk
is the preferred complex geodesic of � associated to vzk . We then need to consider
the following two cases:

Case 1: z0 = p.

It suffices to show that

lim
k→∞ |(ζzk − 1)〈vzk , e1〉| = 0.

Suppose on the contrary that this is not the case. Then by passing to a subsequence,
we may assume that

(vzk , ζzk ) → (v∞, ζ∞) ∈ L p × (�\{1})

as k → ∞. Then by (i), we have ϕv∞(ζ∞) = p. Thus by the injectivity of ϕv∞ on �,
we see that ζ∞ = 1, giving a contradiction.

Case 2: z0 ∈ � \ {p}.
By definition, it suffices to show that

lim
k→∞(vzk , ζzk ) = (vz0 , ζz0),

where (vz0 , ζz0) ∈ L p × � is the unique data such that ϕvz0
(ζz0) = z0, where ϕvz0

is the preferred complex geodesic of � associated to vz0 . In other words, (vz0 , ζz0) is
the only limit point of the sequence {(vzk , ζzk )}k∈N.

By the compactness of ∂Bn × �, we see that the set of limit points of
{(vzk , ζzk )}k∈N is non-empty. Therefore, without loss of generality, we may assume
that {(vzk , ζzk )}k∈N itself converges to some (v∞, ζ∞) ∈ ∂Bn ×�. Then it remains to
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show that v∞ = vz0 and ζ∞ = ζv0 . To this end, note first that diam ϕvzk
(�) ≥ |zk − p|

and zk → z0 ∈ �\{p}, we see that

inf
k∈N diam ϕvzk

(�) > 0. (3.11)

Now we claim that v∞ ∈ L p. Indeed, if this were not the case, it would hold that
〈v∞, e1〉 = 0, i.e., v∞ ∈ T 1, 0

p ∂�. Therefore,

|〈ϕ′
vzk

(1), e1〉|/|ϕ′
vzk

(1)| = 〈vzk , e1〉 → 0

as k → ∞. Thus by a preservation principle for extremal mappings (see Theorem 1
or Corollary 1 in [27]), it follows that diam ϕvzk

(�) → 0 as k → ∞. This contradicts
inequality (3.11).

Now by (i) again, we see that ϕv∞(ζ∞) = z0 = ϕvz0
(ζz0) and ϕv∞(1) = p =

ϕvz0
(1). Then by uniqueness (see [37, pp. 362–363]), there exists a σ ∈ Aut(�) such

that ϕv∞ = ϕvz0
◦σ . Moreover, by the injectivity of ϕvz0

on�, it follows that σ(ζ∞) =
ζz0 and σ(1) = 1 (and hence σ ′(1) > 0). Note also that ϕ′

v∞(1) = σ ′(1)ϕ′
vz0

(1) and

|v∞| = |vz0 | = 1, we deduce that σ ′(1) = 1 and v∞ = vz0 . Consequently, σ is the
identity by uniqueness (see Theorem 1.1) and thus ζ∞ = ζv0 as desired.

Now the proof is complete. ��
Let � ⊂ C

n (n > 1) be as described in Theorem 3.1. To indicate the definition of
�p depends on the base point p ∈ ∂�, we rewrite �p(p) = νp, and

�p(z) = νp + (ζz, p − 1)〈vz, p, νp〉vz, p, z ∈ �\{p},

where ζz, p := ϕ−1
vz, p

(z), and vz, p ∈ L p is the unique data such that the associated
preferred complex geodesicϕvz, p (with base point p, i.e.,ϕvz, p (1) = p) passes through
z, i.e., z ∈ ϕvz, p (�). Then we can prove the following

Theorem 3.3 Let � ⊂ C
n (n > 1) be a bounded strongly linearly convex domain with

C3-smooth boundary. Then

(i) The mapping

∂� � p �→ �p ∈ C(�)

is continuous.
(ii) The mapping � : � × ∂� → B

n
given by

�(z, p) = �p(z)

is continuous.

Proof The proof is essentially the same as that of Theorem 3.1.
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(i) Suppose that this is not the case. Then we can find a sequence {(zk, pk)}k∈N
converging to some point (z0, p0) ∈ � × ∂� such that

inf
k∈N |�pk (zk) − �p0(zk)| > 0.

By the continuity of �p0 , we can find a k0 ∈ N such that

inf
k≥k0

|�pk (zk) − �p0(z0)| > 0. (3.12)

For every k ∈ N, let (vzk , pk , ζzk , pk ) ∈ L pk × � be the unique data such that

ϕvzk , pk
(ζzk , pk ) = zk,

where ϕvzk , pk
is the preferred complex geodesic of � associated to vzk , pk (with base

point pk). The remaining argument is divided into the following two cases:

Case 1: z0 = p0.
Since νpk → νp0 , with k0 replaced by a larger integer, we may assume that

inf
k≥k0

|(ζzk , pk − 1)〈vzk , pk , νpk 〉| > 0.

Then by passing to a subsequence, we may assume that

(vzk , pk , ζzk , pk ) → (v∞, ζ∞) ∈ L p0 × (�\{1})

as k → ∞. Thus it follows that

|〈ϕ′
vzk , pk

(1), νpk 〉|/|ϕ′
vzk , pk

(1)| = 〈vzk , pk , νpk 〉 → 〈v∞, νp0〉 > 0

as k → ∞. Together with [28, Theorem 2], this further implies that

inf
k∈N diam ϕvzk , pk

(�) > 0.

Then a same argument as in the proof of Theorem 3.1 (i) shows that

{ϕvzk , pk
(0) : k ∈ N} ⊂⊂ �,

and consequently, it follows that {ϕvzk , pk
}k∈N satisfies a uniform C1/2-estimate; see

[37, Proposition 8] and also [29, Proposition 1.6]. Therefore, we may further assume
that {ϕvzk , pk

}k∈N itself converges uniformly on � to a complex geodesic ϕ∞ of �.
Clearly, ϕ∞(1) = p0. On the other hand, taking into account that ϕvzk , pk

(ζzk , pk ) = zk

and letting k → ∞ yield that ϕ∞(ζ∞) = p0. Then by the injectivity of ϕ∞ on �, we
see that ζ∞ = 1, giving a contradiction.
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Case 2: z0 ∈ � \ {p0}.
Obviously, we can assume that zk �= pk for all k ∈ N. Also, we may assume that

{(vzk , pk , ζzk , pk )}k∈N itself converges to some (v∞, ζ∞) ∈ ∂Bn × �. We shall show
that v∞ = vz0, p0 and ζ∞ = ζz0, p0 , where (vz0, p0 , ζz0, p0) ∈ L p0 × � is the unique
data such that ϕvz0, p0

(ζz0, p0) = z0, where ϕvz0, p0
is the preferred complex geodesic

of � associated to vz0, p0 (with base point p0). Clearly, it will follow that the sequence
{�pk (zk)}k∈N converges to �p0(z0). This will contradict inequality (3.12).

Arguing as in Case 2 in the proof of Theorem 3.1 (ii), we see that

inf
k∈N diam ϕvzk , pk

(�) > 0,

and thus v∞ ∈ L p0 . Then, we can argue again as in the proof of Theorem 3.1 (i) to
conclude that

{ϕvzk , pk
(0) : k ∈ N} ⊂⊂ �.

This in turn implies that both {ϕvzk , pk
}k∈N and {ϕ∗

vzk , pk
}k∈N satisfy a uniform C1, 1/2-

estimate. Consequently, we may assume that {(ϕvzk , pk
, ϕ∗

vzk , pk
)}k∈N converges in

C1(�) × C1(�) to (ϕ∞, ϕ∗∞), where ϕ∞ is a complex geodesic of � with ϕ∗∞ as
its dual mapping. Clearly, ϕ∞(1) = p0, ϕ∞(ζ∞) = z0 and ϕ′∞(1) = 〈v∞, νp0〉v∞,
as well as

d

dθ

∣∣∣∣
θ=0

|ϕ∗∞(eiθ )| = 0.

Then by uniqueness, ϕ∞ = ϕvz0, p0
and v∞ = vz0, p0 , ζ∞ = ζz0, p0 as desired.

(ii) Follows immediately from (i) together with Theorem 3.1 (ii). ��

4 Properties of the new boundary spherical representation

In this section we prove our second main result (Theorem 1.3). To this end, we further
investigate the properties of the boundary spherical representation that we constructed
in the preceding section.

4.1 Preservation of horospheres and non-tangential approach regions

Let � ⊂ C
n (n > 1) be a bounded strongly linearly convex domain with C3-smooth

boundary, and let p ∈ ∂�. Recall first that according to Abate [1], a horosphere
E�(p, z0, R) of center p ∈ ∂�, pole z0 ∈ � and radius R > 0 is defined as

E�(p, z0, R) :=
{

z ∈ � : lim
w→p

(
k�(z, w) − k�(z0, w)

)
<

1

2
log R

}
,

where k� denotes the Kobayashi distance on �. When � is strongly convex, the
existence of the limit in the definition of horospheres is well-known; see, e.g., [2,
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Theorem 2.6.47]. It is also the case when � is only strongly linearly convex, since
it follows from the work of Lempert [37,38], Guan [24], and Blocki [8,9] that the
pluricomplex Green function1

g�( · , w) = log tanh k�( · , w) ∈ C1, 1(�\{w}) (4.1)

for all w ∈ �, so that the proof of [2, Theorem 2.6.47] can be easily modified and
thus applies. When � = B

n , the open unit ball in C
n , an easy calculation using the

explicit formula for kBn shows that

EBn (p, 0, R) =
{

z ∈ B
n : |1 − 〈z, p〉|2

1 − |z|2 < R

}
; (4.2)

see, e.g., [2, Section 2.2.2]. Geometrically, it is an ellipsoid of the Euclidean center
c := p/(1+R), its intersectionwith the complex planeCp is a Euclidean disc of radius
r := R/(1+ R), and its intersection with the affine subspace through c orthogonal to
Cp is a Euclidean ball of the larger radius

√
r .

For our later purpose, we also need the following

Proposition 4.1 Let � ⊂ C
n (n > 1) be a bounded strongly linearly convex domain

with C3-smooth boundary. Let ϕ be a complex geodesic of �, and ρ ∈ O(�, �) the
Lempert retract associated with ϕ. Then

(i) For every (ζ, v) ∈ ∂� × C
n, one has

d(ϕ−1 ◦ ρ)ϕ(ζ )(v) = 〈v, ν ◦ ϕ(ζ )〉
〈ϕ′(ζ ), ν ◦ ϕ(ζ )〉 ,

where ν denotes the unit outward normal vector field of ∂�.
(ii) For every p ∈ ϕ(�)∩∂� and every non-tangential continuous curve γ : [0, 1) →

� terminating at p, one has

lim
t→1− k�(γ (t), ρ ◦ γ (t)) = 0.

Proof (i) Set � := ϕ−1 ◦ ρ. Then � is the so-called Lempert left inverse of ϕ (see
the paragraph proceeding Proposition 2.2), and � ∈ O(�, �) ∩ C1(�). Moreover,
equality (2.13) gives

ϕ∗ = (gard �) ◦ ϕ = ∂�

∂z
◦ ϕ

on �. Note also that

ϕ∗|∂�(ζ ) = ν ◦ ϕ(ζ )

〈ϕ′(ζ ), ν ◦ ϕ(ζ )〉 ,

1 That g�( · , w) ∈ C1(�\{w}) is enough for our purpose here.
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the desired result follows immediately.
(ii) First of all, we can argue as in the proof of [2, Lemma 2.7.12 (iii)] to conclude

that

lim
t→1−

|γ (t) − ρ ◦ γ (t)|2
dist(ρ ◦ γ (t), ∂�)

= 0.

The remaining argument is the same as the proof of the second part of [2, Proposition
2.7.11], and we leave the details to the interested reader. ��

Now we prove the following result. The proof of the first part is analogous to that
of [12, Proposition 6.1]. We provide a detailed proof by modifying the argument given
there, with the help of Proposition 4.1. The proof of the second part relies heavily on
[28, Theorem 2] and Theorem 3.1.

Proposition 4.2 Let � ⊂ C
n (n > 1) be a bounded strongly linearly convex domain

with C3-smooth boundary. Let p ∈ ∂� and �p : � → B
n

be the boundary spherical
representation given in Sect. 3. Then

(i) For every z0 ∈ � and every R > 0, one has

�p(E�(p, z0, R)) = EBn (νp, �p(z0), R).

(ii) For every β > 1, there exists a constant Cβ > 1 such that

�p(	β(p)) ⊂ {
w ∈ B

n : |w − νp| < Cβ(1 − |w|)},

where 	β(p) is as in (1.2).

Proof Without loss of generality, we may assume that νp = e1. Then by Theorem 3.1,
we know that �p : � → B

n
is a homeomorphism with �p(p) = e1.

(i) According to the definition of horospheres, it suffices to prove that

lim
��w→p

(
k�(z, w) − k�(z0, w)

) = lim
Bn�w→e1

(
kBn (�p(z), w) − kBn (�p(z0), w)

)

(4.3)
for all z, z0 ∈ �.

We use the notation introduced in Sect. 3, and first show that for every complex
geodesics ϕ of � with ϕ(1) = p, �p ◦ ϕ is a complex geodesic of Bn and

〈(�p ◦ ϕ)′(1), e1〉 = 〈ϕ′(1), e1〉. (4.4)

Indeed, for every such ϕ, we can rewrite it as the composition ϕ = ϕv ◦σ , where ϕv is
the preferred complex geodesic of � associated to v := ϕ′(1)/|ϕ′(1)| ∈ L p, and σ is
a suitable element of Aut(�) with σ(1) = 1. Now by the definition of �p, it follows
that �p ◦ ϕv = ηv . We then see that

�p ◦ ϕ = ηv ◦ σ ∈ O(�)
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is a complex geodesic of Bn and particularly (�p ◦ ϕ)′(1) makes sense. Moreover,

〈(�p ◦ ϕ)′(1), e1〉 = σ ′(1)〈v, e1〉2 = 〈ϕ′(1), e1〉

as desired.
Now fix a pair of distinct points z, z0 ∈ �, and we come to prove equality (4.3).

Let ϕ be the unique complex geodesic of � such that ϕ(0) = z0 and ϕ(1) = p. Then
from what we have proved it follows that the left-hand side of equality (4.3) is equal
to

lim
R�t→1−

(
k�(z, ϕ(t)) − k�(z0, ϕ(t))

) = lim
R�t→1−

(
k�(z, ϕ(t)) − k�(0, t)

)

= lim
R�t→1−

(
kBn (�p(z), �p ◦ ϕ(t)) − kBn (�p ◦ ϕ(0), �p ◦ ϕ(t))

)

+ lim
R�t→1−

(
k�(z, ϕ(t)) − kBn (�p(z), �p ◦ ϕ(t))

)

= lim
Bn�w→e1

(
kBn (�p(z), w) − kBn (�p(z0), w)

)

+ lim
R�t→1−

(
k�(z, ϕ(t)) − kBn (�p(z), �p ◦ ϕ(t))

)
.

(4.5)

The proof will be complete by showing that

lim
R�t→1−

(
k�(z, ϕ(t)) − kBn (�p(z), �p ◦ ϕ(t))

) = 0. (4.6)

Let ψ be the unique complex geodesic of � such that ψ(0) = z and ψ(1) = p.
Let ρ ∈ O(�, �) and � ∈ O(Bn, Bn) be the Lempert projections associated to ψ

and �p ◦ ψ , respectively. Note that in view of the Hopf lemma, the continuous curve
[0, 1) � t �→ ϕ(t) is non-tangential, it follows from Proposition 4.1 (ii) that

|k�(z, ϕ(t)) − k�(z, ρ ◦ ϕ(t))| ≤ k�(ϕ(t), ρ ◦ ϕ(t)) → 0

as t → 1−. Similarly,

∣∣kBn (�p(z), �p ◦ ϕ(t)) − kBn (�p(z), � ◦ �p ◦ ϕ(t))
∣∣

≤ kBn (�p ◦ ϕ(t), � ◦ �p ◦ ϕ(t)) → 0

as t → 1−. As a result, we see that equality (4.6) is equivalent to

lim
R�t→1−

(
k�(z, ρ ◦ ϕ(t)) − kBn (�p(z), � ◦ �p ◦ ϕ(t))

) = 0. (4.7)
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Now using the explicit formula for k� and Proposition 4.1 (i), we deduce that

lim
R�t→1−

(
k�(z, ρ ◦ ϕ(t)) − kBn (�p(z), � ◦ �p ◦ ϕ(t))

)

= lim
R�t→1−

(
k�(0, ψ−1 ◦ ρ ◦ ϕ(t)) − k�(0, (�p ◦ ψ)−1 ◦ � ◦ �p ◦ ϕ(t))

)

= 1

2
lim

R�t→1− log

(
1 − |(�p ◦ ψ)−1 ◦ � ◦ �p ◦ ϕ(t)|

1 − t
· 1 − t

1 − |ψ−1 ◦ ρ ◦ ϕ(t)|
)

= 1

2
log

d((�p ◦ ψ)−1 ◦ �)e1((�p ◦ ϕ)′(1))
d(ψ−1 ◦ ρ)p(ϕ′(1))

= 1

2
log

( 〈(�p ◦ ϕ)′(1), e1〉
〈(�p ◦ ψ)′(1), e1〉 · 〈ψ ′(1), e1〉

〈ϕ′(1), e1〉
)

,

which is equal to zero in view of equality (4.4). The penultimate equality follows from
a simple geometrical consideration together with the Hopf lemma, or alternatively
from the classical Julia–Wolff–Cararthéodory theorem (see, e.g., [2, Section 1.2.1],
[42, Chapter VI]).

Now equality (4.7) (and hence (4.6)) follows. The proof of (i) is complete.
(ii) For every β > 1, we set

Vβ := {
v ∈ L p : ϕv(�) ∩ 	β(p) �= ∅}

. (4.8)

Then by using the continuity of �−1
p and [28, Theorem 2], we can argue as in the

proof of [13, Lemma 3.4] to conclude that for every β > 1, Vβ is relatively compact
in L p. Therefore,

{ηv(0) : v ∈ Vβ} ⊂⊂ B
n (4.9)

and
{ϕv(0) : v ∈ Vβ} = �−1

p ({ηv(0) : v ∈ Vβ}) ⊂⊂ �. (4.10)

Together with the following simple estimate (see, e.g., [2, Theorem 2.3.51]):

sup
(z, w)∈�×K

k�(z, w) + 1

2
log dist(z, ∂�) < ∞

for all compact sets K ⊂ �, it follows that

sup
(v, ζ )∈Vβ×�

dist(ϕv(ζ ), ∂�)

1 − |ζ | < ∞. (4.11)

On the other hand, in light of Theorem 3.1 (i) we see that the function

ϕv(ζ ) − p

ζ − 1
=

∫ 1

0
ϕ′

v(tζ + (1 − t))dt
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is continuous on L p × �, and nowhere vanishing there by the injectivity of ϕv on �.
Thus

inf
(v, ζ )∈Vβ×�

∣∣∣∣
ϕv(ζ ) − p

ζ − 1

∣∣∣∣ > 0,

which, combined with (4.8) and (4.11), implies that

⋃

v∈Vβ

ϕ−1
v (	β(p)) ⊂ {

ζ ∈ � : |ζ − 1| < C̃β(1 − |ζ |)}

for some sufficiently large C̃β > 1. Now to complete the proof, it suffices to simply
take Cβ := 2C̃β/ infv∈Vβ

〈v, e1〉. ��

4.2 Complex Monge–Ampère equations with boundary singularity

Let � be a domain in C
n (n > 1) and denote by Psh(�) the real cone of plurisub-

harmonic functions on �. Then according to Bedford–Taylor [7], the complex
Monge–Ampère operator (ddc)n (here dc = i(∂̄ − ∂)) can be defined for all
u ∈ Psh(�) ∩ L∞

loc(�); see alternatively [10,20,21,25,31,33] for details. A very deep
theorem of Bedford–Taylor [6,7], which is in many ways central to pluripotential the-
ory, states that a function u ∈ Psh(�) ∩ L∞

loc(�) solves the homogeneous complex
Monge–Ampère equation (ddcu)n = 0 on � if and only if it is maximal on �, in
the sense of Sadullaev; namely, for every open set G ⊂⊂ � and every v ∈ Psh(G)

satisfying that

lim sup
G�z→x

v(z) ≤ u(x)

for all x ∈ ∂G, it follows that v ≤ u on G.
We are now in a position to prove Theorem 1.3.

Proof of Theorem 1.3 We first consider the special case when � = B
n . Set

PBn , p(z) := − 1 − |z|2
|1 − 〈z, p〉|2 .

Then PBn , p ∈ C∞(B
n\{p}). To prove that PBn , p is a solution to equation (1.1), we

need only verify that PBn , p is plurisubharmonic on B
n and (ddc PBn , p)

n vanishes
identically there. Indeed, an easy calculation yields that

∂2PBn , p

∂z j∂zk
(z) = δ jk

|1 − 〈z, p〉|2 + (1 − 〈z, p〉)z j pk + (1 − 〈z, p〉)p j zk − (1 − |z|2)p j pk

|1 − 〈z, p〉|4

for all j, k = 1, . . . , n, where δ jk is the Kronecker delta. Note also that

2Re(1 − 〈z, p〉) − (1 − |z|2) = |z − p|2,
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we then conclude that for every z ∈ B
n and v ∈ C

n ,

n∑

j, k=1

∂2PBn , p

∂z j∂zk
(z)v jvk = |(1 − 〈z, p〉)v + 〈v, p〉(z − p)|2

|1 − 〈z, p〉|4 ,

which is obviously nonnegative and equal to 0 if and only if v = λ(z − p)with λ ∈ C.
This means that PBn , p ∈ Psh(Bn) and (ddc PBn , p)

n = 0 on Bn , as desired. Moreover,
by equality (4.2), it holds that

EBn (p, 0, R) = {
z ∈ B

n : PBn , p(z) < −1/R
}

(4.12)

for all R > 0. In other words, the sub-level sets of PBn , p are precisely horospheres of
B

n with center p.
We now consider the general case and assume without loss of generality that νp =

e1. Let �p : � → B
n
be the boundary spherical representation given in Sect. 3, and

set

P�, p := PBn , e1 ◦ �p.

Then Theorem 3.3 implies that P�, p ∈ C(�\{p}) and P�, p = 0 on ∂�\{p}. Also
by Proposition 4.2 (i) and equality (4.12), we see that the sub-level sets of P�, p

are precisely horospheres of � with center p. Moreover, in light of the proof of
[13, Theorem 5.1] (with a slight modification) one has the following generalized
Phragmén–Lindelöf property for P�, p:

P�, p = sup
{

u ∈ Psh(�) : lim sup
z→x

u(z) ≤ 0 for all x ∈ ∂�\{p},

lim inf
t→1− |u(γ (t))(1 − t)| ≥ 2Re 〈γ ′(1), e1〉−1 for all γ ∈ 	p

}
,

where 	p is the set of non-tangential C∞-curves γ : [0, 1] → � ∪ {p} terminating at
p and with γ ([0, 1)) ⊂ �. Combining this with the (upper semi-) continuity of P�, p

on �, we then see that P�, p ∈ Psh(�).
To show that (ddc P�, p)

n = 0 on �, we proceed as follows. For every z ∈ �,
we can find a v ∈ L p such that the associated preferred complex geodesic ϕv passes
through z, i.e., z ∈ ϕv(�). Then we see that

P�, p ◦ ϕv = PBn , e1 ◦ �p ◦ ϕv = PBn , e1 ◦ ηv = −P/〈v, e1〉2, (4.13)

where

P(ζ ) := 1 − |ζ |2
|1 − ζ |2 (4.14)

is the classical Poisson kernel on �, which is obviously harmonic there. This leads
us to conclude that P�, p is maximal on � by [15, Proposition 5.1.4], and hence
(ddc P�, p)

n = 0 on �, in view of Bedford–Taylor [6,7].
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Now it remains to show that P�, p(z) ≈ −|z − p|−1 as z → p non-tangentially.
First of all, by Proposition 4.2 (ii) we can find for every β > 1 a constant Cβ > 1
such that

�p(	β(p)) ⊂ {
w ∈ B

n : |w − e1| < Cβ(1 − |w|)}, (4.15)

where 	β(p) is as in (1.2). Next, we write

P�, p(z)|z − p| = PBn , e1 ◦ �p(z)|�p(z) − e1| · |z − p|
|�p(z) − e1|

and

PBn , e1 ◦ �p(z)|�p(z) − e1| = − 1 − |�p(z)|2
|1 − 〈�p(z), e1〉|

|�p(z) − e1|
|1 − 〈�p(z), e1〉| .

In view of (4.15), we see that for every z ∈ 	β(p),

1

Cβ

≤ 1 − |�p(z)|
|�p(z) − e1| ≤ 1 − |�p(z)|2

|1 − 〈�p(z), e1〉| = (1 + |�p(z)|) 1 − |�p(z)|
|1 − 〈�p(z), e1〉| ≤ 2

and

1 ≤ |�p(z) − e1|
|1 − 〈�p(z), e1〉| ≤ Cβ

1 − |�p(z)|
|1 − 〈�p(z), e1〉| ≤ Cβ.

We are left to examine the behavior of the quotient |z−p|
|�p(z)−e1| as z in 	β(p). We

follow an argument in [12]. First of all, it follows from the definition of 	β(p) and
(4.15) that

|z − p| ≈ dist(z, ∂�), |�p(z) − e1| ≈ dist(�p(z), ∂B
n)

for all z ∈ 	β(p). Here the implicit constants depend only on β. On the other hand, by
the well-known boundary estimates of the Kobayashi distance on bounded strongly
pseudoconvex domains withC2-boundary (see, e.g., [2, Theorems 2.3.51 and 2.3.52]),
we know that

sup
z∈�

∣∣k�(z, �−1
p (0)) + 1

2
log dist(z, ∂�)

∣∣ < ∞,

and the same is true for Bn . Therefore, passing to the logarithm, it remains to show
that for every β > 1,

sup
z∈	β(p)

∣∣kBn (�p(z), 0) − k�(z, �−1
p (0))

∣∣ < ∞. (4.16)
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To this end, we first conclude from (4.9) and (4.10) that

C ′
β := sup

v∈Vβ

kBn (ηv(0), 0) < ∞,

and

C ′′
β := sup

v∈Vβ

k�(ϕv(0),�
−1
p (0)) < ∞,

where Vβ is as in (4.8). Now for every z ∈ 	β(p), let v ∈ Vβ be such that z ∈ ϕv(�).
Then

∣∣k�(z, �−1
p (0)) − k�(ϕ−1

v (z), 0)
∣∣ = ∣∣k�(z, �−1

p (0)) − k�(z, ϕv(0))
∣∣

≤ k�(ϕv(0),�
−1
p (0)) ≤ C ′′

β,

and
∣∣kBn (�p(z), 0) − k�(ϕ−1

v (z), 0)
∣∣ = ∣∣kBn (�p(z), 0) − k�(η−1

v ◦ �p(z), 0)
∣∣

= ∣∣kBn (�p(z), 0) − kBn (�p(z), ηv(0))
∣∣

≤ kBn (ηv(0), 0) ≤ C ′
β.

Combining these two estimates leads to

sup
z∈	β(p)

∣∣kBn (�p(z), 0) − k�(z, �−1
p (0))

∣∣ ≤ C ′
β + C ′′

β < ∞,

and (4.16) follows.
The proof is now complete. ��
Let �, p and P�, p be as described in the above proof. Then the function P� :

(� × ∂�)\diag ∂� → (−∞, 0] given by

P�(z, p) = P�, p(z)

is continuous, where

diag ∂� := {
(z, z) ∈ C

2n : z ∈ ∂�
}
.

This follows immediately from Theorem 3.3 together with the fact that

P�(z, p) = − 1 − |�p(z)|2
|1 − 〈�p(z), νp〉|2 . (4.17)

The following result concerns the uniqueness of solutions to Eq. (1.1), which is a
slight refinement of [13, Theorem 7.1].
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Proposition 4.3 Let � ⊂ C
n (n > 1) be a bounded strongly linearly convex domain

with C3-smooth boundary. Let p ∈ ∂� and νp be the unit outward normal to ∂� at
p. Then P�, p is the unique solution to Eq. (1.1) with the additional property that

lim
t→1− u ◦ γ (t)(1 − t) = −Re

2

〈γ ′(1), νp〉 (4.18)

for all γ ∈ 	p, the set of non-tangential C∞-curves γ : [0, 1] → �∪{p} terminating
at p and with γ ([0, 1)) ⊂ �.

Proof Arguing exactly as in the proof of [13, Theorem 5.1], we can see that P�, p is
indeed a solution to equation (1.1) with the descried property as in (4.18). To show
the uniqueness, suppose that u is another such solution. Then by combining [37,
Proposition 11] with the proof of [13, Proposition 7.4], we conclude that for every
v ∈ L p, u ◦ ϕv is a negative harmonic function on � with

lim
ζ→ξ

u ◦ ϕv(ζ ) = 0

for all ξ ∈ ∂�\{1}, where ϕv denotes the preferred complex geodesic of � associated
to v (with base point p). Thus from the classical Herglotz representation theorem it
follows that u ◦ ϕv = cv P for some constant cv < 0. Here as usual, P is the classical
Poisson kernel on �. By (4.18), we see that

cv = −Re
1

〈ϕ′
v(1), νp〉 = − 1

〈v, νp〉2 .

Now combining this with (4.13) (with e1 replaced by νp) yields that u = P�, p. This
concludes the proof. ��

We now conclude this paper by the following

Remark 4.4 Let � ⊂ C
n (n > 1) be a bounded strongly linearly convex domain with

C3-smooth boundary.

(i) If further � is strongly convex and ∂� is C∞-smooth, then for every p ∈ ∂�

our solution P�, p to equation (1.1) constructed as above coincides with P̃�, p,
the one by Bracci–Patrizio in [12] (using the boundary spherical representation
of Chang–Hu–Lee [17], which is generally different from ours). To see this, one
may use Proposition 4.3 and [13, Corollary 5.3]. Another more direct way goes as
follows: By (4.13),

P�, p ◦ ϕv = −P/〈v, νp〉2

for all v ∈ L p, where ϕv is the preferred complex geodesic of � associated to v

and P is as in (4.14). Also, we have

P̃�, p ◦ ϕ̃v = −P/〈v, νp〉2
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(see, e.g., [13, equality (1.2)]), where ϕ̃v is the unique complex geodesic of� such
that ϕ̃v(1) = p, ϕ̃′

v(1) = 〈v, νp〉v and Im〈ϕ̃′′
v (1), νp〉 = 0. Now once noticing

that by Theorem 1.1 each ϕ̃v coincides with ϕv after composing a parabolic auto-
morphism of � fixing 1, under which P is invariant, the desired result follows
immediately.

(ii) Analogous to [13, Theorem 6.1], we also have

P�(z, p) = −∂g�

∂νp
(z, p), (z, p) ∈ � × ∂�,

where g� is the pluricomplex Green function of � (see (4.1)). This follows easily
from two different ways of expressing the Busemann function of � at p ∈ ∂�:

B�, p(z, z0) := lim
w→p

(
k�(z, w) − k�(z0, w)

)
, (z, z0) ∈ � × �.

Indeed, by [2, Theorem 2.6.47] (which is also valid for the strongly linearly convex
case, as we explained at the very beginning of Sect. 4.1) we have

B�, p(z, z0) = 1

2
log

(
∂g�

∂νp
(z0, p)

/∂g�

∂νp
(z, p)

)
.

On the other hand, combining (4.3) with (4.17) yields that

B�, p(z, z0) = BBn , νp

(
�p(z),�p(z0)

) = 1

2
log

(
P�(z0, p)

P�(z, p)

)
.

We then conclude that there exists a constant C > 0, depending only on p ∈ ∂�,
such that

P�(z, p) = −C
∂g�

∂νp
(z, p), (z, p) ∈ � × ∂�.

Now evaluating both sides at z = ϕνp (0) gives C = 1, as desired.
(iii) Very recently, Poletsky [41] introduced a sort of pluripotential compactification for

a class of so-called locally uniformly pluri-Greenien complex manifolds, which
includes bounded domains in C

n . He also proved using results in [13] that the
boundary of the pluripotential compactification of a bounded strongly convex
domain � in C

n (n > 1) with C∞-smooth boundary is homeomorphic to the
Euclidean boundary ∂�; see [41, Example 7.3] for details. We remark here that a
similar argument using results in this paper shows that the same result is also true
when � is only strongly linearly convex with C3-smooth boundary.
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