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Abstract
In this paper, we prove rigidity results for holomorphic mappings between possibly
degenerate and indefinite hyperbolic spaces.
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1 Introduction

Write Bn = {z ∈ C
n : ‖z‖ < 1} for the n-dimensional complex unit ball, and ∂Bn

for the unit sphere in C
n . A classical rigidity result of Poincaré [22] states that a

nonconstant holomorphic map sending an open connected piece of ∂B2 into ∂B2 is
linear fractional and furthermore must extend to an automorphism of B2. This work
is the starting point of numerous far reaching rigidity type results in several complex
variables, including Tanaka [24], Chern-Moser [6], Alexander [1, 2], and so on. In
particular, Alexander [2] showed that any holomorphic proper self-map of Bn, n ≥ 2,
must be an automorphism. Since the work of Webster [25], much attention has been
paid to the mapping problem for proper holomorphic maps between complex balls
of different dimensions. In this scenario, the rigidity of a proper holomorphic map F
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from B
n to B

N fails dramatically in its full generality if N > n. However, rigidities
can still be expected when the codimension is small and a certain boundary regularity
of F is assumed. For more related research on this matter, the readers are referred
to the work in [7–11, 14–16, 23, 27], etc. In 2005, Baouendi and the first author
[3] discovered a rigidity phenomenon of different flavor for holomorphic mappings
between generalized balls. Recall the (nondegenerate) generalized complex unit ball
is defined as the following domain in Pn :

B
n
l = {[z0, . . . , zn] ∈ P

n : |z0|2 + · · · + |zl |2 > |zl+1|2 + · · · + |zn|2}.

The integer l with 0 ≤ l ≤ n − 1 is often called the signature of the generalized ball.
When l = 0, the generalized ball is reduced to the standard unit ballBn . The boundary
∂Bn

l of Bn
l is not strongly pseudoconvex when l ≥ 1, but it is still Levi-nondegenerate.

It follows from [3] that, under some natural side-preserving assumptions, every holo-
morphic map sending an open piece of ∂Bn

l to ∂BN
l must extends to a linear map

from P
n to P

N for any l ≥ 1 and N ≥ n. For further investigation on mapping
problems between generalized balls, see [5, 12, 13, 17, 18, 20, 26, 28] and references
therein. In general, the complexity of mappings between two generalized balls Bn

l
and B

N
l ′ heavily hinges on the signature difference l ′ − l. Recently, Ng-Zhu [21] and

Gao-Ng [13] considered holomorphicmappings between degenerate generalized balls,
whose boundaries are Levi-degenerate hypersurfaces. They developed a more alge-
braic approach to study holomorphic maps between generalized balls and extended a
number of well-known rigidity results to the degenerate settings (cf. Theorem 1.1 in
[13]).

Denote byN the set of positive integers, and byZ≥0 the set of non-negative integers.
Let m = r + s + t with r , s ∈ N, t ∈ Z

≥0. Write

[Z ] = [z, ξ, η] = [z1, . . . , zr , ξ1, . . . , ξs, η1, . . . , ηt ]

for the homogeneous coordinates for Pm−1. Here z, ξ and η denote the zi , ξ j , ηk

coordinates, respectively. The possibly degenerate generalized complex unit ball is
defined as the following domain in Pn :

B
r ,s,t =

⎧
⎨

⎩
[Z ] ∈ P

m−1 :
r∑

i=1

|zi |2 −
s∑

j=1

|ξ j |2 > 0

⎫
⎬

⎭
.

The generalized ball Br ,s,t possesses a canonical indefinite metric ωBr ,s,t that is
invariant under the action of its automorphism group (see Proposition 2.3 in Sect.
2.1):

ωBr ,s,t = −√−1∂∂̄ log

⎛

⎝
r∑

i=1

|zi |2 −
s∑

j=1

|ξ j |2
⎞

⎠ .
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The generalized ball equipped with themetricωBr ,s,t is called a generalized hyperbolic
space form. When r = 1, s ≥ 1 and t = 0, it is reduced to the standard hyperbolic
space form (up to a normalization). We say (Br ,s,t , ωBr ,s,t ) is an indefinite hyperbolic
space if r ≥ 2, and we say it is a degenerate hyperbolic space if t ≥ 1. In the special
case of t = 0, we will simply denote Br ,s,0 by Br ,s . The two notions of Bn

l and Br ,s,t

are related by B
n
l = B

l+1,n−l .

We continue to introduce more notations which will be needed to formulate our
results. Denote by F(Br ,s,t ,BR,S,T ) the set of all holomorphic maps F satisfying the
following three conditions:

(a) F is a holomorphic map from an open set U ⊂ P
r+s+t−1, depending on F , into

P
R+S+T −1;

(b) U ∩ ∂Br ,s,t 
= ∅ and U ∩ B
r ,s,t is connected;

(c) F(U ∩ B
r ,s,t ) ⊆ B

R,S,T , F(U ∩ ∂Br ,s,t ) ⊆ ∂BR,S,T .
If F(Br ,s,t ,BR,S,T ) 
= ∅, then we must have R ≥ r and S ≥ s (see Remark

2.7. See also Proposition 3.9 in [13]). Let F ∈ F(Br ,s,t ,BR,S,T ). We say F is an
isometry if it preserves the (possibly indefinite and degenerate) hyperbolic metrics:
F∗(ωBr ,s,t ) = ωBR,S,T on U ∩ B

r ,s,t . We recall Theorem 1.1 in [18], which can be
formulated as follows in the above terminology.

Theorem 1 [18] Fix R, S, r , s ∈ N with R ≥ r ≥ 2 and S ≥ s ≥ 2. Assume one of
the following conditions holds:

(1) R < 2r − 1, R < r + s − 1;
(2) R < 2r − 1, S < r + s − 1;
(3) S < 2s − 1, R < r + s − 1;
(4) S < 2s − 1, S < r + s − 1.

Then every F ∈ F(Br ,s,BR,S) is isometric.

Likewise, Theorem 2 in [26] has the following formulation.

Theorem 2 [26] Let R, r , s ∈ N. Assume r + s ≥ 5 and R ≤ 2r + 2s − 3. Write
S = 2r +2s − R −2. If R 
= 2r −1 and R 
= r +s −1, then every F ∈ F(Br ,s,BR,S)

is isometric.

We are now in a position to introduce the main result of this paper.

Theorem 1.1 Let R, S, r , s ∈ N, and t, T ∈ Z
≥0. Then each F ∈ F(Br ,s,t ,BR,S,T )

is an isometry if and only if each G ∈ F(Br ,s,BR,S) is isometry.

Remark 1.2 (1) Let r , s ∈ N and r + s ≥ 3. It is well known that every F ∈
F(Br ,s,Br ,s) is isometric (cf. [3]). Then by Theorem 1.1, every G ∈ F(Br ,s,t ,Br ,s,T )

is isometric for t, T ∈ Z
≥0.

(2) We immediately obtain a consequence of Theorem 1.1 as follows. Let
R, S, r , s ∈ N, and t1, t2, T1, T2 ∈ Z

≥0. Then every F ∈ F(Br ,s,t1 ,BR,S,T1) is
isometric if and only if every G ∈ F(Br ,s,t2 ,BR,S,T2) is isometric.
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We combine Theorems 1 and 1.1 to get the following:

Proposition 1.3 Let R, S, r , s ∈ N and t, T ∈ Z
≥0. Assume R ≥ r ≥ 2 and

S ≥ s ≥ 2 and one of the conditions (1)–(4) in Theorem 1 holds. Then every
F ∈ F(Br ,s,t ,BR,S,T ) is isometric.

As in [18] (see Remark 1.5 there), the above proposition is optimal in the sense that
if none of the conditions (1)–(4) holds, then the conclusion fails. Theorems 2 and 1.1
yield the following result.

Proposition 1.4 Let R, r , s ∈ N and t, T ∈ Z
≥0. Assume r + s ≥ 5 and R ≤

2r + 2s − 3. Assume R 
= 2r − 1 and R 
= r + s − 1. Write S = 2r + 2s − R − 2.
Then every F ∈ F(Br ,s,t ,BR,S,T ) is isometric.

As elucidated in [26] (see Remark 1.2 there), Proposition 1.4 is also optimal in the
sense that if R = 2r − 1 or R = r + s − 1, the conclusion fails. As applications of
Propositions 1.3 and 1.4, we have the following corollaries. In particular, Corollary 1.5
extends Corollary 1.3 in [18]. For a holomorphic rational map F from P

r+s+t−1 to
P

R+S+T −1 with I ⊆ P
r+s+t−1 its set of indeterminacy, we say F is a rational proper

map from B
r ,s,t to BR,S,T , if F maps from B

r ,s,t \ I to BR,S,T , and maps ∂Br ,s,t \ I
to ∂BR,S,T .

Corollary 1.5 Let R, S, r , s ∈ N and t, T ∈ Z
≥0. Assume R ≥ r ≥ 2 and S ≥ s ≥ 2

and one of the conditions (1)–(4) in Theorem 1 holds. Let F be a rational proper map
from B

r ,s,t to B
R,S,T . Then F extends to a linear map from P

r+s+t−1 to P
R+S+T −1.

Corollary 1.6 Let R, S, T , r , s, t be as in Proposition 1.4. Assume in addition that
r ≥ 2. Let F be a rational proper map from B

r ,s,t to B
R,S,T . Then F extends to a

linear map from P
r+s+t−1 to P

R+S+T −1.

Remark 1.7 Note if r ≥ 2, then every proper holomorphic map from B
r ,s,t to B

R,S,T

extends to a rational map from P
r+s+t−1 to P

R+S+T −1. (This fact follows from the
same proof as in Proposition 3.2 of [20]). Consequently, Corollaries 1.5 and 1.6 still
hold if we assume F to be a proper holomorphic from B

r ,s,t to BR,S,T .

We should refer the readers to [13] (cf. Theorem 1.1 there) for many related results.
The paper is organized as follows. In Sect. 2.1, we discuss the automorphism group
of possibly degenerate and indefinite hyperbolic spaces. We describe isometric maps
between degenerate and indefinite hyperbolic spaces in Sect. 2.2. Then in Sect. 2.3,
we give the proofs of Theorem 1.1 and Corollaries 1.5 and 1.6.

2 Proof of theMain Theorem and Corollaries

2.1 Automorphisms of Degenerate Hyperbolic Spaces

For r , s ∈ N and t ∈ Z
≥0 with m = r + s + t , write E(r , s, t) for the m × m diagonal

matrix, where its first r diagonal elements equal −1, the next s diagonal elements
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equal 1 and the rest equal 0. When t = 0, we will simply write E(r , s) for E(r , s, 0).
We define the generalized unitary group U (r , s, t) as follows.

U (r , s, t) = {X ∈ GL(m,C) : X E(r , s, t)X t = E(r , s, t)}.

Recall the element Y ∈ GL(m,C) naturally acts on Pm−1 by sending [Z ] ∈ P
m−1 to

[ZY]. It is clear that every element X in U (r , s, t) gives a (biholomorphic) automor-
phism of Br ,s,t . Moreover, such an automorphism preserves the metric ωBr ,s,t .

Write 0k×l for the k × l zero matrix and denote by M(n, m;C) the space of n × m
matrices with complex entries. For X ∈ GL(m,C). Then one can readily verify that
X ∈ U (r , s, t) if and only if

X =
( A B
0t×(r+s) C

)

,

whereA ∈ M(r+s, r+s;C),B ∈ M(r+s, t;C), C ∈ M(t, t;C) andAE(r , s)Aᵀ =
E(r , s), det C 
= 0.

Define an equivalence relation in U (r , s, t) by setting X ∼ Y if X = eiθY for
some θ ∈ R. Set PU (s, u, t) := U (r , s, t)/∼ be the quotient group of U (r , s, t) by
this equivalence relation. Equivalently, PU (r , s, t) is the quotient group of U (r , s, t)
by the normal subgroup {eiθ Im : θ ∈ R},where Im denotes the m ×m identity matrix.
Then PU (r , s, t) gives a subgroup of the automorphism group Aut(Br ,s,t ) of Br ,s,t .

One can also verify that PU (r , s, t) acts transitively on B
r ,s,t . When t = 0, the

group also acts transitively on ∂Br ,s,0.When t > 0, however, PU (r , s, t) does not act
transitively on ∂Br ,s,t . Indeed, in this case ∂Br ,s,t decomposes into two orbits under
the action of PU (r , s, t):

M1 = {[z, ξ, η] ∈ ∂Br ,s,t : z 
= 0};
M2 = {[z, ξ, η] ∈ ∂Br ,s,t : z = ξ = 0}.

Here in the above homogeneous coordinates, z, ξ , and η have r , s, and t components,
respectively. Note if t = 0, M2 is empty.

When t = 0, Aut(Br ,s,0) equals to PU (r , s, 0) (cf. [3]). Now assume t ≥ 1.
If in addition r ≥ 2, Aut(Br ,s,t ) also equals to PU (r , s, t). (See Proposition 2.4.)
However, if t ≥ 1 and r = 1, then the automorphism of B1,s,t might not be linear or
even rational, as elucidated by the following examples. In any case, the automorphism
of Br ,s,t always preserves the metric ωBr ,s,t . See Proposition 2.3.

Example 2.1 Let s ≥ 1, t ≥ 1.Write [Z ] = [z, ξ, η] for the homogeneous coordinates
of Ps+t , where z is a scalar, ξ = (ξ1, . . . , ξs) has s components and η = (η1, . . . , ηt )

has t components. Let � be the following rational map from P
s+t to Ps+t .

� : [Z ] → [z2, zξ1, . . . , zξs, zη1 − ξ21 , zη2, . . . , zηt ].

One can readily verify that � is an automorphism of B1,s,t .
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Example 2.2 Note B1,s,t can be naturally identified with B
s × C

t . Write ξ and η for
the coordinates of Cs and C

t , respectively. Let f (ξ) be any holomorphic map from
C

s to Ct . Then the map � : (ξ, η) → (ξ, η − f (ξ)) is an automorphism of Bs × C
t .

The following propositions will not be used to prove the other results in the paper.
We include them anyway to describe the automorphisms of Br ,s,t .

Proposition 2.3 Let r , s ∈ N, t ∈ Z
≥0. Then every automorphism of Br ,s,t must

preserve the metric ωBr ,s,t .

Proof First assume r = 1. Note B
1,s,t can be naturally identified with B

s × C
t .

Fix an automorphism � of Bs × C
t . Write z and ξ for the coordinates of Cs and C

t ,
respectively.Write� = (G, H), where G has s components and H has t components.
By Liouville’s theorem, G only depends on z. Then by considering the inverse of �,
one can readily verify that G is an automorphism of Bs . Consequently, � preserves
the metric ωB1,s,t .

Next let r ≥ 2, and thus r + s ≥ 3. By the extension theorem of Ivashkovich [19],
every automorphism of Br ,s,t can be regarded as an element inF(Br ,s,t ,Br ,s,t ). Then
the conclusion follows from Remark 1.2. ��
Proposition 2.4 Let r ≥ 2, s ≥ 1 and t ≥ 0. Then every automorphism of Br ,s,t is
linear, and can be further identified with an element in PU (r , s, t). Consequently,
Aut(Br ,s,t ) = PU (r , s, t).

Proof Let � be an automorphism of Br ,s,t . First by Proposition 2.3, � is isometric
with respect to the metric ωBr ,s,t . Secondly by the same proof of Proposition 3.2 in
[20], every automorphism of Br ,s,t must be rational. Then the linearity of � follows
from Lemma 2.11 (see Sect. 2.3). Write �([Z ]) = [ZY] for some m × m matrix Y .

Since � is a biholomorphism of Br ,s,t , one can readily verify that Y ∈ GL(m,C).
Finally, since � maps B

r ,s,t to B
r ,s,t , and maps ∂Br ,s,t to ∂Br ,s,t , we must have

YE(r , s, t)Y t = λE(r , s, t) for some λ ∈ R
+. By scaling Y, we can assume λ = 1.

Hence � can be identified with an element in PU (r , s, t). ��

2.2 Description of Isometric Maps

In this subsection, we give a description of isometric maps between two generalized
hyperbolic spaces which are possibly degenerate and indefinite. The result will be
used in the proofs of Corollaries 1.5 and 1.6.

Theorem 2.5 Let r , s, R, S ∈ N and t, T ∈ Z
≥0. Let F be a holomorphic map from

an open connected subset 
 of Br ,s,t to B
R,S,T . Assume 
 is contained in the affine

cell U0 = {[z0, . . . zr+s+t−1] ∈ P
r+s+t−1 : z0 
= 0} and F(
) is contained in the

affine cell V0 = {[w0, . . . , wR+S+T −1] ∈ P
R+S+T −1 : w0 
= 0}. Then the following

are equivalent:
(a) F is isometric with respect to ωBr ,s,t to ωBR,S,T .
(b) After composing with appropriate elements in PU (r , s, t) and PU (R, S, T )

from the right and the left, respectively, F locally (shrinking 
 if needed) equals to
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the following map in the standard affine coordinates on U0 and V0:

ζ = (ζ1, . . . , ζr+s+t−1) → (ζ1, . . . , ζr−1, φ, ζr , . . . , ζr+s−1, ψ, h).

Here φ,ψ and h are holomorphic maps in ζ with R − r , S − s and T components,
respectively, and satisfy ‖φ‖ ≡ ‖ψ‖.

In the above, ‖ · ‖ denotes the usual Euclidean norm, and the standard affine coor-
dinates on U0 are given by ζ j = z j

z0
, 1 ≤ j ≤ r + s − 1, and likewise for the standard

affine coordinates on V0. We remark that if a map F as in (a) exists, then we must
have R ≥ r and S ≥ s. The proof of Theorem 2.5 is analogous to that of Theorem 2.1
in [17]. For the self-containedness, we sketch a proof here.

Proof of Theorem 2.5 It is easy to see (b) implies (a). It remains to show (a) implies
(b). Let F : 
 → B

R,S,T be as (a). Write p0 = [1, 0, . . . , 0] ∈ U0. By composing
F with elements in PU (r , s, t) and PU (R, S, T ), and shrinking 
 if necessary, we
can assume that p0 ∈ 
, F(p0) = [1, 0, . . . , 0] ∈ V0, and F(
) ⊂ V0. To keep
notions simple, we still denote the map by F(ζ ) = (F1(ζ ), . . . , FR+S+T −1(ζ )) in the
standard affine coordinates of U0 and V0. By the isometry assumption, we have

∂∂̄ log

(

1 +
R−1∑

i=1

|Fi |2 −
R+S−1∑

i=R

|Fi |2
)

= ∂∂̄ log

(

1 +
r−1∑

i=1

|ζi |2 −
r+s−1∑

i=r

|ζi |2
)

.

Since now F(0) = 0, by a standard reduction, we get

R−1∑

i=1

|Fi |2 −
R+S−1∑

i=R

|Fi |2 =
r−1∑

i=1

|ζi |2 −
r+s−1∑

i=r

|ζi |2.

By Proposition 2.2 in [17], R ≥ r and S ≥ s. Moreover, there exists a matrix A ∈
GL(R + S −1;C) and two holomorphic maps φ,ψ with R −r and S −s components,
respectively, such that

(1): AE(R − 1, S)Aᵀ = E(R − 1, S);
(2): (F1, . . . , FR+S−1)A = (ζ1, . . . , ζr−1, φ, ζr . . . , ζr+s−1, ψ);
(3): ‖φ‖ ≡ ‖ψ‖.
Write IT for the T ×T identitymatrix. SetX to be the (R+S+T )×(R+S+T )block

diagonal matrix diag (1,A, IT ) . ThenX E(R, S, T )Xᵀ = E(R, S, T ). Therefore, X
can be identified with an element in PU (R, S, T ). The composition of F with X has
the desired form in (b) under standard affine coordinates. This finished the proof of
Theorem 2.5. ��

2.3 Proof of Theorem 1.1 and Corollaries

In this subsection, we prove Theorem 1.1, and Corollaries 1.5 and 1.6. We start with
the proof of Theorem 1.1.

Proof of Theorem 1.1 We first observe the following fact.
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Proposition 2.6 Let R, S, r , s ∈ N and t, T ∈ Z
≥0. Then every H ∈ F(Br ,s,t ,BR,S)

is isometric if and only if every F ∈ F(Br ,s,t ,BR,S,T ) is isometric.

Proof Fix H ∈ F(Br ,s,t ,BR,S). By shrinking the domain U of H if necessary, we
assume U is contained in some affine cell of Pr+s+t−1 and H is given by

H(w) = [H1(w), . . . , HR+S(w)] on U .

Here w is some affine coordinates of Pr+s+t−1 on U , and the right-hand side of
the above equation is in the homogeneous coordinates of PR+S−1. Define a map
H̃ : U → P

R+S+T −1 by

H̃(w) = [H1(w), . . . , HR+S(w), 0, . . . , 0] on U ,

where the right-hand side is in the homogeneous coordinates of PR+S+T −1. Since
H ∈ F(Br ,s,t ,BR,S), it is clear that H̃ ∈ F(Br ,s,t ,BR,S,T ). Furthermore, H is
isometric if and only if H̃ is so.

Conversely, fix F ∈ F(Br ,s,t ,BR,S,T ). By shrinking the domain V of F , we assume
V is contained in some affine cell of Pr+s+t−1 and F is given by

F(w) = [F1(w), . . . , FR+S+T (w)] on V .

Here w is some affine coordinates of Pr+s+t−1 on V , and the right-hand side is in the
homogeneous coordinates of PR+S+T −1. By shrinking V if necessary and dropping
the last T components in the above, we obtain a new (well-defined) map F̃ from V to
P

R+S−1. It is clear that F̃ ∈ F(Br ,s,t ,BR,S). Furthermore, F is isometric if and only
if F̃ is so.

The conclusion in the proposition then follows from the above observations. ��
Remark 2.7 We remark that if F(Br ,s,t ,BR,S,T ) 
= ∅, then we must have R ≥ r
and S ≥ s. Indeed, assume F ∈ F(Br ,s,t ,BR,S,T ). Then as in the proof of Proposi-
tion 2.6, we can construct amap F̃ ∈ F(Br ,s,t ,BR,S). Furthermore, we can find a local
holomorphic embedding I : Pr+s−1 → P

r+s+t−1 sending an open piece of ∂Br ,s to
∂Br ,s,t , such that the composition F̂ = F̃ ◦ I ∈ F(Br ,s,BR,S). By the existence of
such a map F̂, we apply Theorem 1.1 of [4] (or Lemma 4.1 in [3]) and a standard CR
geometric argument (cf. Lemma 2.1 in [3]) to obtain R ≥ r and S ≥ s.

To establish Theorem 1.1, by Proposition 2.6, it suffices to prove that, for
R, S, r , s, t ∈ N, every F ∈ F(Br ,s,t ,BR,S) is isometric if and only if every
G ∈ F(Br ,s,BR,S) is isometric. We note that the forward direction is easy:

Proposition 2.8 Let R, S, r , s, t ∈ N. If every H ∈ F(Br ,s,t ,BR,S) is isometric, then
every G ∈ F(Br ,s,BR,S) is isometric.

Proof Write [W ] = [W1, . . . , Wr+s] for the homogeneous coordinates of Pr+s−1.
Write U0 for the affine cell {[W ] ∈ P

r+s−1 : W1 
= 0}. Fix G ∈ F(Br ,s,BR,S). By
shrinking the domain V ⊆ P

r+s−1 of G if necessary, we assume that V ⊆ U0, and
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that we still have V ∩ ∂Br ,s 
= ∅ and V ∩ B
r ,s is connected. Therefore, every point

[W ] in V can be written in the form [1, w] with w the affine coordinates of Pr+s−1 on
U0. Assume

G([1, w]) = [G1(w), . . . , G R+S(w)] on V ,

where the right-hand side is in the homogeneous coordinates of PR+S−1. We define
an open subset Ṽ of Pr+s+t−1 to be

Ṽ = {[1, w, η] ∈ P
r+s+t−1 : [1, w] ∈ V , η ∈ C

t }.

By the assumption on V , we have Ṽ ∩∂Br ,s,t 
= ∅ and Ṽ ∩B
r ,s,t is connected. Define

a map G̃ from Ṽ to PR+S−1 by

G̃([1, w, η]) = [G1(w), . . . , G R+S(w)].

It is clear that G̃ ∈ F(Br ,s,t ,BR,S). By assumption, G̃ is isometric. But since the
functions G ′

j s only depend on w, this implies G is also isometric. This finishes the
proof. ��

It remains to show the converse of Proposition 2.8.

Proposition 2.9 Let R, S, r , s, t ∈ N. If every G ∈ F(Br ,s,BR,S) is isometric, then
every H ∈ F(Br ,s,t ,BR,S) is isometric.

Proof of Proposition 2.9 Write [W ] = [W1, . . . , Wr+s+t ] for the homogeneous coor-
dinates of Pr+s+t−1. Write U0 for the affine cell {[W ] : W1 
= 0} of Pr+s+t−1. Write
p0 = [1, 0r−1, 1, 0s+t−1] ∈ ∂Br ,s,t ∩ U0, where 0k denotes the k-dimensional zero
row vector. Similarly, write V0 for the affine cell of Pr+s−1 consisting of points whose
first component in homogeneous coordinates is nonzero.

Fix H ∈ F(Br ,s,t ,BR,S). By shrinking the domain 
 ⊆ P
r+s+t−1 of H and

composing H with an appropriate element in PU (r , s, t),we can assume p0 ∈ 
 and

 ⊆ U0. Denote by w = (z, ξ, η) ∈ C

r−1 × C
s × C

t the standard affine coordinates
on U0 ≈ C

r+s+t−1. That is, w is identified with the point [1, w] ∈ U0. In the affine
coordinates, p0 = (0r−1, 1, 0s+t−1).

Write �(0, ε) for the open disk in C centered at 0 with radius ε > 0. Write
�k(0, ε) = �(0, ε) × · · · × �(0, ε) for the polydisk in C

k . To make the argument
simpler, we further shrink 
 to be a polydisk centered at p0 of the form {w ∈ U0 :
w − p0 ∈ �r+s+t−1(0, ε)} for some small ε > 0 (one can easily verify that 
∩B

r ,s,t

is still connected).
Recall (z, ξ, η) denotes the standard affine coordinates on U0. Fix a point

p = (̃z, ξ̃ , η̃) ∈ 
 ∩ B
r ,s,t ⊆ U0. Write z = (z1, . . . , zr−1) and correspond-

ingly z̃ = (̃z1, . . . , z̃r−1). Similar notations apply to ξ, ξ̃ as well as η, η̃. Next we
fix row vectors λ1, . . . , λr−1, μ1, . . . , μs ∈ C

t and denote by (z, ξ) the standard
affine coordinates on V0. We define a canonical embedding L (depending on p and
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λ1, . . . , λr−1, μ1, . . . , μs) from V0 ≈ C
r+s−1 to U0 ≈ C

r+s+t−1 as follows:

L(z, ξ) =
⎛

⎝z, ξ, η̃ +
r−1∑

i=1

(zi − z̃i )λi +
s∑

j=1

(ξ j − ξ̃ j )μ j

⎞

⎠ . (2.1)

It is clear that L(V0 ∩ B
r ,s) ⊆ B

r ,s,t and L(V0 ∩ ∂Br ,s) ⊆ ∂Br ,s,t . Moreover, L
preserves the metric: L∗(ωBr ,s,t ) = ωBr ,s on V0 ∩ B

r ,s .

We truncate p to get q ∈ V0 : q = (̃z, ξ̃ ). It is clear that q ∈ B
r ,s and L(q) = p.

Similarly we truncate p0 to get q0 = (0r−1, 1, 0s−1) ∈ V0 ∩ ∂Br ,s . Set N to be the
projection of 
 :

N :=
{
(z, ξ) ∈ V0 : (z, ξ) − q0 ∈ �r+s−1(0, ε)

}
.

One can readily verify that q ∈ N ∩B
r ,s andN ∩B

r ,s are connected. Furthermore, if
we choose vectors λ1, . . . , λr−1, μ1, . . . , μs ∈ C

t with sufficiently small norm, then
we have L(N ) ⊂ 
. Consequently, H ◦ L is well defined on N and thus gives an
element in F(Br ,s,BR,S). By the assumption of Proposition 2.9, H ◦ L is isometric.
This yields (H ◦ L)∗(ωBR,S ) = ωBr ,s = L∗(ωBr ,s,t ) onN ∩B

r ,s . This further implies

L∗ (
H∗(ωBR,S ) − ωBr ,s,t

) = 0 on N ∩ B
r ,s . (2.2)

We pause to prove the following lemma.

Lemma 2.10 The Hermitian (1, 1)-form ω := H∗(ωBR,S ) − ωBr ,s,t equals 0 at p.

Proof of Lemma 2.10 To make notations simple, we also write the coordinates w =
(z, ξ, η) as (w1, . . . , wr+s+t−1).That is, we identifywi with z j , ξk and ηl accordingly.
Write n = r+s−1, m = r+s+t−1 andwriteω = √−1

∑
1≤i, j≤m gi j (w)dwi ∧dw j

in 
 ∩ B
r ,s,t with G(w) := (gi j (w))1≤i, j≤m a Hermitian matrix-valued real analytic

function. By (2.2), in particular L∗(ω) = 0 at q. Recall L(q) = p. A standard
calculation of the pull-back form L∗(ω) at q yields:

LG(p)Lᵀ = 0. (2.3)

Here L is the complex Jacobian matrix of L , which by (2.1) has the following expres-
sion.

L = (In,A) , where the n × t matrix A =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

λ1
. . .

λr−1
μ1
. . .

μs

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

. (2.4)

By the discussion preceding to Lemma 2.10, (2.3) holds for L as in (2.4) if we choose
vectors λ1, . . . , λr−1, μ1, . . . , μs ∈ C

t with sufficiently small norm.We then see (2.3)
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holds for any choices of vectors λ1, . . . , λr−1, μ1, . . . , μs ∈ C
t by the analyticity of

the left-hand side of (2.3).
Recall M(n, m;C) denotes the space of n ×m matrices with complex entries. Now

for a generic elementY ∈ M(n, m;C) ≈ C
nm, there exists someZ ∈ GL(n,C) such

that Y = ZL for some matrix L ∈ M(n, m;C) in the form of (2.4). Consequently,

YG(p)Yᵀ = ZLG(p)LᵀZᵀ = 0.

It then follows again from the analyticity that YG(p)Yᵀ = 0 for every Y ∈
M(n, m;C). This yields G(p) = 0 and therefore ω = 0 at p. This proves the lemma.

��
By Lemma 2.10, since p can be any point in 
 ∩ B

r ,s,t , we obtain ω = 0 in

 ∩ B

r ,s,t . This proves H is isometric and we thus establish Proposition 2.9. ��
Theorem 1.1 now follows from Propositions 2.6, 2.8 and 2.9. ��
Wefinally proveCorollaries 1.5 and 1.6. For that, we establish the following lemma.

Lemma 2.11 Let R, S, r , s ∈ N, and t, T ∈ Z
≥0. Let F be a rational proper map

from P
r+s+t−1 to P

R+S+T −1 with I its set of indeterminacy. If r ≥ 2 and F is an
isometric map from (Br ,s,t \ I , ωBr ,s,t ) to (BR,S,T , ωBR,S,T ), then F is a linear map
from P

r+s+t−1 to P
R+S+T −1.

Proof of Lemma 2.11 The proof is very similar to that of Lemma 2.5 in [18]. For con-
venience of the readers, we sketch a proof here. Recall [Z ] = [z, ξ, η] denotes the
homogeneous coordinates onPr+s+t−1,where z, ξ, η have r , s, t components, respec-
tively.

By Theorem 2.5, we conclude, by composing elements in PU (r , s, t) and
PU (R, S, T ), F equals to the map: [Z ] = [z, ξ, η] → [z, φ, ξ, ψ, h], where φ,ψ ,
and h are holomorphic maps in Z with R − r , S − s, and T components, respectively,
and satisfy ‖φ‖ = ‖ϕ‖ at points where they are defined. Moreover, by the rationality
assumption, φ,ψ , and h are rational maps in Z = (z, ξ, η).

Thus we can write φ = p1
q , ψ = p2

q , h = p3
q . Here p1, p2, ad p3 are polynomial

maps in Z , such that their nonzero components are all homogeneous polynomials
with the same degree. And q 
= 0 is also a homogeneous polynomial maps in Z . They
satisfy the following conditions:

(A) ‖p1(Z)‖ = ‖p2(Z)‖, ∀Z ∈ C
r+s+t ;

(B) p1, p2, p3 and q have only trivial common factors;
(C) For each 1 ≤ i ≤ 3, deg q = deg pi − 1 if pi is not identically zero.
Write z = (z1, . . . , zr ) and ξ = (ξ1, . . . , ξs), and rewrite F as

F([Z ]) = [z1q, . . . , zr q, p1, ξ1q, . . . , ξsq, p2, p3]. (2.5)

Note the set of indeterminacy I of F satisfies

I ⊆ {[Z ] ∈ P
r+s+t−1 : p1(Z) = p2(Z) = p3(Z) = q(Z) = 0} ∪ {[Z ] ∈ P

r+s+t−1

: z = 0, ξ = 0}.
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Note I is of codimension at least 2 in P
r+s+t−1. We claim q is a constant function.

Otherwise, since r ≥ 2, we can find a point [Z∗] = [z∗
0, z∗

1, 0, . . . , 0] ∈ B
r ,s,t such

that q(Z∗) = 0. Since I is of codimension at least 2, we can find a point [Z̃ ] ∈ B
r ,s,t

close to [Z∗] such that q(Z̃) = 0, and [Z̃ ] /∈ I . By Eq. (2.5), F([Z̃ ]) ∈ ∂BR,S,T .

This contradicts the definition of rational proper maps from B
r ,s,t to BR,S,T . Hence q

must be constant. Consequently, either deg pi = 1, or pi is identically zero for each
1 ≤ i ≤ 3. Therefore, F is linear. ��

Proof of Corollaries 1.5 and 1.6 Corollary 1.5 follows from Proposition 1.3 and
Lemma 2.11. Similarly, Corollary 1.6 follows from Proposition 1.4 and
Lemma 2.11. ��
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