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1 Introduction

A primary goal in this paper is to study the question that asks when a real analytic submanifold
M of codimension two in C™*! bounds a real analytic (up to M) Levi-flat hypersurface M near
p € M such that M is foliated by a family of complex hypersurfaces moving along the normal
direction of M at p, and gives the invariant local hull of holomorphy of M near p. This question
is equivalent to the holomorphic flattening problem for M near p.
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To be more precise, we first discuss some basic holomorphic property for a real submanifold
in a complex space. For a point ¢ in a real submanifold M C C"*!, there is an immediate
holomorphic invariant, namely, the complex dimension C'Rj;(q) of the tangent space of type
(1,0) at q. C'Rys(q) is an upper semi-continuous function over M. g is called a CR point of M
if CRy(q") = CRpy(q) for all ¢'(= q) € M. Otherwise, ¢ is called a CR singular point of M.
When M near p bounds a Levi-flat hypersurface foliated by a family of complex hypersurfaces
moving along the normal direction of M at p, then the tangent space of M at p is a complex
hyperplane. In this case p must be a CR singular point unless we are in the trivial and
uninteresting situation that M is a complex hypersurface itself.

Investigations for CR manifolds and CR singular manifolds have very different nature. There
is a vast amount of work related to the study of various problems for CR manifolds, which
goes back to the work of Poincaré [Po|, Cartan [Cat] and Chern-Moser [CM]. The study of
submanifolds with CR singular points at least dates back to the fundamental paper of Bishop
[Bis] in 1965. Since then, many efforts have been paid to understand both the geometric and
analytic structures of such manifolds. Here, we mention the papers by Kenig-Webster [KW1-2],
Moser-Webster [MW], Bedford-Gaveau [BG|, Huang-Krantz [HK], Huang [Hul|, Gong [Gonl-
3], Huang-Yin [HY1-2|, Stolovitch [Sto], Dobeault-Tomassini-Zaitsev [DTZ1-2], Ahern-Gong
[AG], Coffman [Cofl1-2], Lebl [Lel-2], Burcea [Val], etc, and many references therein.

Let M C C"! be a codimension two real submanifold with CR singular points. Then a
simple linear algebra computation shows that C'Ry;(q) = n — 1 when ¢ is a CR point, and
CRu(q) = n when ¢ is a CR singular point. The general holomorphic (or, formal) flattening
problem is then to ask when M can be transformed, by a biholomorphic (formal equivalence,
respectively) mapping, to an open piece of the standard Levi-flat hyperplane (C" x R') x {0} C
C™*. A good understanding to this problem is crucial for understanding many geometric,
analytic and dynamic properties of the manifolds. For instance, by a classical theorem of
Cartan, solving the problem when M bounds a real analytic (up to M) Levi-flat hypersurface
is equivalent to solving the holomorphic flattening problem of the manifold. Here, we refer
the reader to the papers by Kenig-Webster [KW1], Moser-Webster [MW], Huang-Krantz [HK],
Gong [Gonl-3], Stolovitch [Sto], Huang-Yin [HY1], Dobeault-Tomassini-Zaitsev[DTZ1], and
many references therein, for investigations along these lines.

The major difficulty for getting the flattening property for M lies in the complicated nature
of the CR singular points. And, in general, only non-degenerate CR singular points with a
rich geometric structure could be flattened. To be more precise, we use (z1,- - , z,, w) for the
complex coordinates of C*™!. We first make the following definition. For related concepts and
many intrinsic discussions on this matter, see the work in Stolovitch [Sto], Dobeault-Tomassini-

Zaitsev [DTZ1], and Huang-Yin [HY?2]:

Definition 1.1. Let M be a codimmension two real submanifold in C**!. We say ¢ € M is
a non-degenerate CR singular point, or a non-degenerate complex tangent point, if there is a
biholomorphic change of coordinates which maps p to 0 and in the new coordinates (z,w), M



is defined near 0 by an equation of the following form:

n

w=3"(15P+ X2 +2) +oll+?) (1.1)

Jj=1

Here, 0 < Ay, -+, Ay < 00. {A1,- -+, Ay} (counting multiplicity) are called the Bishop invariants
of M at 0. We call A; an elliptic, parabolic or hyperbolic Bishop invariant of M at 0 in terms
of \; <1/2, \; =1/2, or \; > 1/2, respectively.

Notice that the set of Bishop invariants at a non-degenerate CR singular point p € M
consists of the only second order biholomorphic invariants of M at p € M. By the results in
Moser-Webster [MW] and Huang-Krantz [HK], in the case of complex dimension two (n+1 = 2),
any real analytic surface near an elliptic CR singular point can be flattened. On the other hand,
a generic real analytic surface near a parabolic or hyperbolic CR singular point can not be
flattened, though it can be formally flattened whenever the Bishop invariant is not exceptional.
See the work of Moser-Webster [MW], Gong [Gon 1-3] and a very recent paper by Ahern-Gong
[AG] on many discussions on this matter. Here, we recall that a Bishop invariant A is called
non-exceptional if the following quadratic equation in v has no roots of unity:

M2 — v+ )\ =0. (1.2)

However, the situation for n > 1 is very different. Consider the following codimension two real
analytic submanifold in C3:

Example 1.1.

2
M:={w= Z |2j|? + 2R ( Z aj1j22{12%2) +v-—1 Z b 5217, bi="bs} (1.3)
j=1

J1+j223 J122,j222

M has a non-degenerate CR singular point at 0 and all Bishop invariants of M at 0 are 0
and thus all elliptic. It was shown in Huang-Yin [HY2] ([Remark 2.7, HY2]) that (M,0) can
not even be flattened to the order m if b, 7 # 0 for some j; + jo < m. Namely, if b; 7 # 0 for
some ji + jo < m, then there is no holomorphic change of variables (preserving the origin) such
that in the new coordinates, M is defined near 0 by an equation of the form w = p with the
property that §(p) vanishes at the origin to the order at least m.

Example 1.1 shows that in higher dimensions, the geometry from the nearby CR points
also play a role in the flattening problem, while in the two variables case, the nearby points
are totally real and can all be locally holomorphically flattened. Thus the nearby points in
the two dimension case has no influence for the holomorphic property at a non-degenerate CR
singular point. Indeed, suppose M is already flattened and is defined by an equation of the form
u=q(z,%),v =0, where w = u+iv. Then the complex hypersurface S,, =: {w = ug+1i0} with
up € R intersects M along a CR submanifold F of CR dimension (n—1) near p, if S,, intersects



M (CR) transversally at pg. The points where S, is (CR) tangent to M are apparently CR
singular points of M. Recall a well-known terminology (see [T] and [Tu]): A point p in a
CR submanifold N is called a non-minimal point if N contains a proper CR submanifold S
containing p such that T,Sl’O)S = Tlgl’O)N . Hence, in such a terminology, we have the following
simple fact:

If M can be flattened, then all CR points in M are non-minimal CR points.

We mention that the necessary condition for the non-minimality of CR points already
appeared in the earlier work of Dobeault-Tomassini-Zaitsev [DTZ1-2] and Lebl [Lel-2] on the
study of the general complex Plateau problem, which looks for the Levi-flat varieties (even
maybe in the sense of current) bounded by the given manifolds.

Our main results, which we state below, demonstrate that, with the non-minimality as-
sumption at CR points, the existence of one Bishop invariant not being parabolic, namely, not
equal to %, is good enough for the formal flattening and the existence of just one elliptic Bishop
invariant suffices for the holomorphic flattening:

Theorem 1.2. Let M C C"*! with n > 1 be a codimension two smooth submanifold with
p € M a non-degenerate complex tangent point p € M. Suppose that one element \ from the
set of Bishop invariants of M at p is not parabolic, namely, not equal to % Also assume that all
CR points of M near p are non-minimal. Then M can be formally flattened near p. Namely,
for any positive integer m, there is a holomorphic change of coordinates which maps p to 0 and
maps M to a manifold defined by an equation of the form w = p(z,Z) with Sp vanishing at
least to the order m at the origin.

We mention that the result in Theorem 1.2 holds even if M is assumed just to be a formal
submanifold with the same type of assumptions, or we need only assume that the set of non-
minimal CR points over M forms an open subset O with p € O. (See Theorem 3.2 and Corollary
3.3.) However, as demonstrated even in the two dimensional case by Moser-Webster [MW] and
Gong [Gonl-3|, more geometric structure is needed to get the holomorphic flattening in the
above theorem. Indeed, making use of the construction of holomorphic disks in Kenig-Webster
[KW1] and Huang-Krantz [HK], we have the following convergence result for Theorem 1.2 under
the assumption of at least one ellipticity for the Bishop invariants:

Theorem 1.3. Let M C C**! with n > 1 be a codimension two real analytic CR manifold
with p € M a non-degenerate complex tangent point (namely, a non-degenerate CR singular
point). Suppose one of the Bishop invariants A of M at p is elliptic. Then M near p can be
holomorphically flattened if and only if all CR points of M near p are non-minimal.

As we mentioned above, by the classical Cartan theorem ([Cat]), Theorem 1.3 is equivalent
to the following geometric theorem:

Theorem 1.4. Let M C C"* withn > 1 be a codimension two real analytic CR manifold with
p € M a non-degenerate complex tangent point. Suppose one of the Bishop invariants A of M

4



at p is elliptic. Also_assume that all CR points of M near p are non-minimal. Then the local
hull of holomorphy M of M near p is a real analytic Levi-flat hypersurface which has M near
p as part of its real analytic boundary. Moreover M s foliated by a family of smooth complex
hypersurfaces in C**1, that moves along the transversal direction of the tangent space of M at

p.
Example 1.5. Define M C C? =: {(z1, 22, w)} by the following equation near 0:

w=q(z,%) +p(z,%) +iE(2,7%).
Here g = |21]2 4+ A\ (22 4 22) 4 |22 + Aa(22 + 22) with 0 < Ay, Ay < 00, and
p(2,2)+iE(2,%) = a1 * (21 4+ MZ) + ol 22 (22 + MaZ2) + 21 (|22 + A2 23) + piaza (|21 [+ A 23).

Here puq, 19 are two complex numbers. Then, M is non-minimal at its CR points near its non-
degenerate CR singular point 0. (See Example 7.2.) Hence, our result says that when one of
the Ay, Ay is not %, then M can be formally flattened at 0; and when one of the A\, Ay is less
than %, then M can be holomorphically flattened near 0.

In this example, M \ {0} near 0 is foliated by a family of three dimensional strongly pseu-
doconvex CR manifolds— the intersections of M with real hypersurfaces K. : ¢(z,%z) = ¢ with
¢ € R. (When both Ay, Ay are elliptic, ¢ > 0). Assume that one of the Bishop invariants { A1, A2}
is not elliptic. Then there is an orbit corresponding to ¢ = 0, that extends to the CR singular
point with it as its non-smooth point. Also none of the orbits closes up near 0.

We next say a few words about the proof of our main geometric result: To prove Theorem
1.4, we first slice M near the complex tangent point p by a family of two dimensional complex
planes along the elliptic direction. We then get a family of elliptic Bishop surfaces. Now each
one bounds a three dimensional Levi flat CR manifold and their union forms a codimension one
subset M in C"*! with M as part of its boundary. An analysis, based on Bishop disks, similar
to that in Kenig-Webster [KW1], and in particular, in Huang-Krantz [HK], shows that M is a
real analytic hypersurface with M as part of its real analytic boundary. However, all we know
from this construction is that M has only one Levi-flat direction (along the elliptic direction).
And it is not clear at all if M is flat along the parameter directions. In fact, M can not be Levi
flat without the non-minimality property from the nearby CR points. Now, the crucial issue is
that, with the assumption of the non-minimality at the nearby CR points, we can find a formal
transformation which makes M formally flattened, while any finite order truncation of this
transformation preserves M. The existence of this transformation is the content of Theorem
3.1, which is a more general but also more technical version of Theorem 1.2. (Notlce that in the
two dimensional setting, the uniqueness of M is done normally by showing that M is the local
hull of holomorphy of M and thus is invariant under biholomorphic transformation. However,
this is more or less equivalent to proving that M is Levi-flat. Hence it can not be achieved in
this way in higher dimensions.) After this is done, we see that the Levi-form of M vanishes



to any high order as we like. Since M is real analytic up to M, by the unique continuation
property for real-analytic functions, we conclude that the Levi-form of M vanishes everywhere.
Thus, M must be Levi-flat everywhere.

Most part of the paper is devoted to the proof Theorem 3.1 (a more general and more
technical version of Theorem 1.2). Here one sees an essential difference from arguments in the
two dimensional case. Indeed, the phenomenon is also different in this setting as there is no
need to impose the non-exceptional property for even a single Bishop invariant. Our basic idea
for the proof of Theorem 3.1 goes as follows: Suppose M in Theorem 3.1 is flattened to order
m — 1. We first normalize the m'"-order of the imaginary part of the defining function of M
to fix all possible free choices of coordinates. This will be done in Theorem 4.2. Then we
show that the non-minimality of the nearby CR points forces the vanishing of such a normal
form. In §2 and §3, we will derive three basic equations that must be satisfied for M under the
non-minimality assumption. These will be used in §4 and §5 to prove Theorem 3.1.

Theorem 1.3 is equivalent to Theorem 1.4 by a classical result of Cartan which states that
a real analytic hypersurface is Levi-flat if and only if it can be transformed locally to an open
piece of the standard Levi-flat hyperplane defined by Sw = 0. When all Bishop invariants
at p are elliptic, we mention that Theorem 1.4 can also be derived by combining the results
obtained in Dobeault-Tomassini-Zaitsev [DTZ1-2] and the work in a very recent preprint by
Burcea [Bur2] with a different approach. (The work in Dobeault-Tomassini-Zaitsev [DTZ1-2]
contains other very nice global results.) The arguments based on Dobeault-Tomassini-Zaitsev
[DTZ1-2] and Burcea [Bur2] depend strongly on all the ellipticity of Bishop invariants and
requires that the CR orbits in M near the CR singular point form a family of compact strongly
pseudoconvex manifolds shrinking down to the complex tangent such that the Harvey-Lawson
theorem applies. This is certainly not the case even when one non-elliptic Bishop invariant at
the CR singular point appears.

We also include an appendix to give a detailed proof of Theorem 3.1 in the special case
of n = 2 and m = 3. The reader may like to read the Appendix before reading §4 — §6. By
including such an appendix, we hope it will help the reader to see the basic ideas, through a
simple case, the complicated argument for the proof of Theorem 3.1 in the general setting in

§4 — §6.
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2 An immediate consequence for non-minimality near
CR points

Let (M,0) be a smooth submanifold of codimension two in C"*! with 0 € M as a CR singular
point. Assume that the CR singular point at 0 € M is non-degenerate as defined in Definition
1.1 such that after a holomorphic change of coordinates, M near 0 is defined by an equation of
the form:

w=q(z2,2) +p(2,2) +iE(z,2), (2.1)

where ¢(2,2) = Y0 (|z:]? + Mi(272 +27)) with 0 < Ay, -+, A\, < oo being the Bishop invariants
of M at 0, Ord(p), Ord(FE) > 3 and both p(z,%) and E(z,Zz) are real-valued smooth functions.
For convenience of notation, we also write

F(2,2) =p(2,2) +iE(2,Z) and G(z,%Z) = ¢(2,Z) + p(z,2). (2.2)

Then we have
w=q(z,z)+ F(2,2) = G(2,2) + iE(z,2).

In what follows, as is standard in the literature, we write x, = 86792, Xa = a% withl <a<n
for a smooth function x(z,%) in z. For 1 < j <n — 1, we define
. 0 . 0 . 9,
Lj :(Gn — ZEn)a—Zj — (G] — ZEj)a—Zn + ZZ(GnEJ — GJEn)%
(2.3)
=A 0 B 0 +C 0
- 8Zj (])8Zn (J)aw'
Then we have
Hence Ly, -+, L, 1 are complex tangent vector fields of type (1,0) along M near 0. Moreover,
for 1 < j,k <n —1, a straightforward computation shows that
— 0 0 0 —0 —0 —0
L, L)|=|A— —-B)—+Ci—,A— — Buy— —
(L, L] 5z, Pogs T gy A, ~ Bugg T Cwgg -
0 0 0 0 0 0 ‘

Ay —— - Aoy —— - Ay —— - Aoty —— = Nrmsiy —— - Aypipy ——
(1Jk)agk+ (zjk)%n+ (3]’“)8m+ (4Jk’)azj+ (5]k)6zn+ (GJk‘)aw’

where

Ajry = A+ (A); — By (A, Aujry = —A - A+ By An,

k)i + B (Ba))ns Asiry = A (B))s — Bay (B, (2.5)

<

—~

(
Aair) = A (Cy)j — By (CiyIns Asjry = —A - (Cij))x + By (Ci)m-
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Notice that
Ajr) = —Aakj)s A@ik) = —AGkj)s A@ik) = —A6kj)- (2.6)

In what follows, write w; = z; + 2);z; for 1 < j < n. Suppose that E # 0. We write in what
follows that
Ord(E) = m and H(z,%z) := E™(z,%). (2.7)

From (2.3), we get the following approximation properties:

A=w,+0(2), By =w; +0(2), Cy=2iP,, +O0(m+1). (2.8)
Here (and also in what follows), we have
®(j) = w, H; — wjHy, and we write ® = ®(y). (2.9)
For future applications, we also write
Y (ik) = Wal0n (D) )k — Wk (P () Jn + Wk - Dy, ¥ = Py, (2.10)
Substituting these approximation properties to (2.5), we obtain

Mgy =(@n + O(2)) - ((wn); + O(1)) = (W, + O(2)) - ((wn), + O(1)) = —w; + O(2),
Aaiwy = — (W, + 0(2)) - ((wp); +O1)) + (w; + O2)) - (wi) + O(1)) = =65w, + O(2),
Aajty =(@n + 0(2)) - (= 2@y + O(m + 1)), — (@W; + O(2)) - (= 2i®gy + O(m + 1)),

= — 20, (D)) + 20W; (D) + O(m + 1).

Combining these relations with (2.6), we get

Ajry = — W + O(2), Agjry = =00, + O(2),
Aujry =wi + O(2),  Ajny = djpwn + O(2),
A@jky = — 200, (D)) + 2005 ( Py + O(m + 1),

Aejk) = — 20w, (@) + 2iwi(P())m + O(m + 1).

(2.11)

In what follows, we further assume that M is non-minimal at its CR points. Write S for
the set of CR singular points of M near 0. Suppose that 0 is not an isolated point in S. Notice

that To(l’O)M = span{a%llo, e ,%b}. For py € S close to 0, we easily see that TISS’O)M =
span{Xy,---, X,} for certain tangent vectors of type (1,0) of the form: X; = 32|, + b; |,
J

j=1,--,n. Since X;(—w+q+ F) =0, we get z; + 2)\;z; = O(|z]*) when ¢o ~ 0. Write
zj = x; + v/—1y;. Then (1 + 2);)z; = O(|z]?), (1 — 2),)y; = O(|z|?) for j = 1,--- ,n. By the
implicit function theorem, we conclude that S is contained in a submanifold of M near 0 which
has at most real dimension n; and when none of the Bishop invariants of M at 0 is parabolic,
the only CR singular point of M near 0 is 0 itself.

8



We next claim that there is an open dense subset O; of M near 0 such that for any ¢y € O;,
at qp, it holds that

[Luzz] ¢ Span{Lj,L_j}lngn,l for 1 S 1 S n— 1. (212)

We prove the claim by contradiction. Suppose that we have at gy € O; the following:

n—1

[Li, L) = (@lLl + Blzl)

(]

=1

n—1
0 0 s—0 — 0 — 0
—Zal A(‘?zl B(za—+C(l ZB(A——B(Z)_JFC(Z)_)-

Then by considering the coefficients of -2- B and = for 1 <1< n-—1, we obtain
= Bl = 0 for [ # i, A\uiry = Adu, Aiy = —Bpydu.

Eliminating ¢&; from the above, we get A\sii) + BiyAis) = 0. Combining this with the approx-
imation properties (2.8) and (2.11), we get |w;|* + |w,|*+ O(3) = 0 at ¢ € O;. Now, write this
equation as

[wil® + (14 22,)%22 + (1 — 20,)%Y2 + ho + hazy, + hox? + O(23) = 0. (2.14)

Notice that when M is real analytic, it defines a closed proper analytic variety over M and O;
can be simply defined as its compliment. In general, suppose it defines a subset which contains
an open subset V; with 0 € V;. Differentiating (2.14) with respect to x,, we get the following
over V:

(2(1 4 2X,)% + 2ho) 2, = —hy + O(22).

Since hy = o(1), by the implicit function theorem, the above defines a proper submanifold in
M. This is contradiction.

In the following, we write O = N}~ L0;\'S, which O is an open dense subset of M near 0.
In particular, at ¢o(=~ 0) € O, we have

T:= [le ] g Spa‘n{LJaL }1<]<n 1

Hence, by the Frobenius theorem, the non-minimality at the subset O of the CR points (suffi-
ciently close to 0) is equivalent to the following property when restricted to the subset O:

[Li, L], [[Li, Lj], L) € Span{{Ln, Ly} 1<p<n—1, T} for 1 <4, 5,k <n—1. (2.15)

Recall the following notation we set up before:

9, 0 0 0 0 0

T=\ A Aain=— + A A A1) =—
(111) 7= 77, + A1) 7= 7, + (311) F + Ay 73— 07, + AGIY) 7 Bz, + (611) 5,

9



Next we give equivalent conditions for (2.15), which are much easier to apply.

First, since [L;, L] € Span{{ Ly, Ly }1<h<n_1, T} with 1 < j,k <n—1 over M \ S, we have,
over M\ S, the following

n—1
[L;, L] = Z(QZLZ + BiL;) +~T for some coefficients «y, 3,y
I=1

Namely, we have

0 0 0 0 0
Am g+ Aem gz T Aeingg FAumg - T Aeim g~ T Aem gy

n j Zn w

— 9 9 -
:Zal(Aa—Zl—B(l)a—Zn-f-C(l )-I—Zﬂl(A——B 8—271—1— (l)8w>

0 0 0 0 0 0
+y <)\(111)a—21 + )\(211)8_% + >\(311)a_w + )\(411)6— + A 511)8_,2” + /\(611)6_w)

Comparing the coefficients of {Bzh’ Bzh}1<h<” 1, 8%}, 8‘1, respectively, we get, over O, the

following;:
(I) If j # 1 and k # 1, then we have oy, 5, = 0 for [ # 1,1 # j,1 # k. Moreover, we have

z‘ﬂl‘i")/')\lll) =0, A'Oé1+7'>\(411) =0, )\(ljk :z'ﬁk, )\(4jk =A-qy,

Aty = =61 Bay — B - Bay + 7+ A1)y, Aaie) = 61 Cay + B - Ciey + 7 - A, (2.16)

Air) = —a1 - Bay — a; B(j) 7 A1y Ak = Q- C(l taj - O+ A

(I) If j = 1 but k& # 1, then we get (i) oy = 0 for I A and (ii) §, = 0 for | # 1,1 # k.
Moreover, we have

A B4y Aay =0, Aagy = A~ a1+ 7+ Ay, Aaigy = A - By,

A@ik) = =B % — B % + 7 A1), A@ = B O(l + G - O(k + 7+ i), (2.17)

Aisik) = —a1 - By + 7 A1y, Aeir) = a1 - Cay +7 - Ay

Back to (2.16), we get from its first line that

Zﬁ1 =—7-A (111) , Aag = = - A (411) Aﬁk = ljk: AO@ = )\ (4jk)-

Multiplying A and A to the second and the third lines in (2.16), respectively, and making use

of the just obtained relations, we obtain over O the following:
Z)\(2jlc) =7 Aay - Bay — Awjr) - Bay + Ay - A@11);
AdGiey = =7 Aay - Cay + A - Ck) + Ay - Ay,
ANy = 7 - A - Bay — Aujr) - By + A7 - A1y
AX@iry = =7 - Aain) - Cy + Aagny - Oy + A7 - Ay

10



After rewriting, we get

(A A@i) + B A ) —Z)\(ij) + Ak '%7
(A Mgy — A<111)) v =AXgm) = Aagwy - Cow,

(2.18)
(A Ay + B “Awa) -7 =AAs ) + Ay - Bi)s
(A~ Ay — C(l) M) -7 =A@y = Aasn - Cl)-
Thus we get from the first and the last equations in (2.18) the following relation over O:
A Najwy + B A( A-A —Cny - A
(A Azjry + By - Awjny) - (A Ao (411)) (2.19)

= (A~ Xy + Bay - M) - (A Ay — C(j) - Aajk))
After taking a limit, we see the equation in (2.19) holds over M near 0.

Next, we solve (2.17) by the same argument as that used to solve (2.16). In fact, we get
from the first line of (2.17) that

Zﬁl = =7 Aa1, Aoy = A(4ik) — 7 - A1), Aﬁk A(11k)-

Multiplying A and A to the second and the third lines of the equations in (2.17), respectively,
and using the just obtained relations, we have over M \ S

Z)\(21/&) =7 Aan) B(1 — Aaw) - By + Ay - A@11);

Z)\(31k) = —7- A1 - 0(1) + )\(llk) % + Ay - A@311)s

ANk = — (A — 7 - Adaiy) - Bay + Ay - A,

AXeie) = Ak — 7 - A@aan) - C(l) + Ay - Ne11)-
Rearranging the terms and replacing v by 9, we get over M \ S

(AX@in) + Aan) - Bay) -4 =A@k + Aawe - B,
(Z)\(:m) - >\(111) m) : :Z)\(Slk) - )\(llk) 'C(k)u

2> D>

(2.20)
A1) + A - Bay) -4 =AXir) + A - By,

A)\(Gll) - >\(411) : C(l)) ol :A)\(le) - )\(41k;) : C(l)-

2>

From the first and the last equations in (2.20), we see that, after taking a limit, the following
equation holds near 0:

(A- A@1k) T ?k) “Aawwy) - (A A1y — Cay - Aan)

- L (2.21)
= (A-Xawy + By - Adaiy) - (A Agiey — Croy - Aaiwy)-
Next we will examine [L;,T]. A direct computation shows that
0 0 0 0 0 0
L, T| =Ty +T¢p Faye=+Tuyz—+1 Li)5—- 2.22
LTI =To g Tlag Hlagg Tlag tlog, tlog, (2.22)
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Ly = A(Aay)1 — Bay(Aai) )n,
Loy = A(A@))1 — Bay(A@i1))n;
Ly = A(A@iy)1 — Bay(Agi))n;
Ly = AA @)1 — Baoy(Main)n — Aain At — A As — Auin)Ar — A1) Ans
L) = At = By (Asin)n + A (Bw)t + Aeiy (Bwy)w + Adary (B + Asin (B n,
L) = Aem) = Boy(Aein)n = Aay (€t = Aein (Co)a = Aa (Cay)r = Asin (Cay)a-
2.23)
Suppose that over O we have
n—1
[Ll,T] (/i(h Lh —|—(7 )Lh) + 7T
h=1
n—1 n—1
0 0 — 0 -0
= A2 — Bpy— A— - B Oy —
2 wy (Ag - = Bz —+ Oy, a ) + 2 o 055 T O )
0 0 0 0 0 0
+ T(>\(111)8—§1 + >\(211)a_§n + A@i) 5= s + A1) (9_ + A 511)8_ + A611 %)

Then combining this with (2.22), we get x4y = 0,004,y = 0 for h # 1 and
Loy = A oay+ 7 Aaiy, Lay=A-ka +7- /\(411)7
Ley=—Bu - oq)+7 ey, T'e) = C'( 1 0a) + 7 Az, (2.24)
Ly = =By £a) + 7 A1y, L'e) = Cp) - li(l) + 7 A611)-
We get from the first line in (2.24) that
ZO’(l) = F( 1) — T~ A (111) AKJ F(4) - T: )\(411).

Multiplying A and A to the second and the third lines of the equations in (2.24), respectively,
and using the just obtained relations, we have over O

AP(Q B( Ly =7 Apy) + Ar- A211),
AT = Crry - Ty = 7+ Aqun) + A7 - A,
Al = =By - (D — 7+ Adawny) + AT Ay,
Al) = Cy - (D) = 7+ Aawy) + AT - A1)
Rearranging the terms, we get over O
(ZA @11) + A@n) % :
(AXg1) — Aai - C)) -
(AA 511) + A1) - Bay) -
(AXe11) — Ay - Cy) -

(2.25)



As before, from the first two equations in (2.25), we obtain, near 0, the following:
2+ Ty - Bay) - (A Aainy — Aany - Cy)

T
(A-Te) —w —w (2.26)
=(A-T =Ty Cuy) - (A Adey + Aany - Bwy)-

At last, if both [Lj,fk] and [Ly,T] are contained in the span of {Ly, Lj}1<p<n_1 and T.
Then we have

[Lku T] - — |:L17 [L_lu Lk]] - |:L_1) [Lk7 LIH S Spa‘n{{Lh)L_h}léhSn—lu T}
Summarizing the above, we have proved the following:

Proposition 2.1. Let (M,0) be a 2n-dimensional real manifold in C"*' defined by (2.1).
Suppose M is non-minimal at the CR points near the origin. Then there is an open dense
subset O of M near 0 such that the systems (2.18), (2.20) and (2.25) are solvable over O with

unknowns v, 7, T, respectively. In particular, when M is non-minimal at the CR points near
the origin, we have (2.19), (2.21), and (2.26) near the origin.

We mention that (2.19), (2.21), and (2.26) are what we need for the proof of Theorem 1.2.

3 Derivation of three basic equations and statement of
Theorem 3.1

Let (M,0) be a (2n)-dimensional smooth real submanifold in C"™! defined by (2.1). Suppose
that M is non-minimal at its CR points near 0 and the order of F(z,%Z) is m(> 3). We first
study three basic relations for terms in E™ by making use of (2.19), (2.21) and (2.26).

By (2.8) and (2.11), we have

A Najry + By - Ajry = (wn + O0(2)) - (=Wndj + O(2)) + (wi + O(2)) - (—w; + O(2))
= —(lwal* - 85 + Wjwy) + O(3),
A Mgy — C) - Ay = (Wn + O(2)) - Ajin) — Cyy - (wi + O(2))
=W, * )\(ij) — wkC(j) + O(m + 2)
=W, - (—2iw,) - (D(j))5 + Wn - 20wk (D)) — 2wy, - Dy + O(m + 2)
= —2iV ;) + O(m +2).

Substituting these relations to (2.19), we get

(lwnl* - 66 + wWjwi) - (—Pay) + O(m +2)) + O(m + 4)
= (Jwn]® + |[w1]?) - (= ¥k + O(m +2)) + O(m + 4).




Hence we obtain
(hwal® - 60 + Wjwr) - Uary = (Jwnl® + [wi]?) - W .- (3.2)

Notice that (2.21) is the same as (2.19) except that j is replaced by 1. By the same method
as that used to handle (2.19), we get the following equation which is the same as (3.2) except
that j is replaced by 1.

(Jwn]* - 1 + Wrwe) - Wiy = (wal® + [wr]*) - Wap). (3-3)
We next derive an equation from (2.26). From (2.8), (2.11) and (2.23), we obtain
Ly =@, +0(2)) - (=2X + O(1)) — (w1 + O(2)) - O(1) = =2\ 7w, + O(2),
Ly =W, +0(2)) - O(1) — (w1 + O(2)) - (=2\, + O(1)) =2\, w1 + O(2),
%I‘@ =(wWn 4+ 0(2)) - (= W, @1 + WPy + O(m + 1)), (3.4)
— (@1 + 0(2)) - (= W, @1 + w1 P, + O(m + 1))
= — W, (0,1 — W1 P,) | + Wi (W, @1 — W P,), + O(m + 1).
Hence we have
AT o) + By = (wn 4+ O(2)) - (A1 + O(2)) + (w1 + O(2)) - (—2\w, + O(2))

3.5
From (2.8), (2.10) and (3.4), we obtain
1 — —
5 Al —TCu)
=(wn + 0(2)) - { — Wy, (W Py — W1 Pn) | + Wi (W, Py — w1 Pr) 4+ O(m + 1)}
—(=2MW, +O0(2)) - (-2 +O(m + 1)) »
— w1 (0,1 — w1 ®y) — 20 W, ® + O(m + 2)
=~ 0, (¥~ wi®), +wi (¥ — Wi ®), — Wi (0, @1 — W P,) — 2\ W, P + O(m + 2)
= —w, ¥y + ¥, + O(m + 2).
By (2.8) and (2.11), we get
1 — —
—(—w +0(Q2) - {-2+0(m+1)}
= — w0, P + w1 P, — W1 P + O(m + 2) (3.7)

=—U+0(m+2),
ANy + By Aan =(wn +0(2)) - (=0, + 0(2)) + (w1 + O0(2)) - (w1 + O(2))
= — (Jwal® + [wi[*) + O(3).
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Substituting (3.5)-(3.7) into (2.26), we obtain

— (Jwal® + P + 0@)) - { =@ ¥y + Wi, + O(m +2)}
= (2)\nwn@1 — 2\ wi W, + 0(3)) . { — U+ O0(m+ 2)}

Hence we get

(Jwal® + Jwr]?) - (W01 — W10,) + (2A w01 — 22w W,,) - ¥ = 0. (3.8)

Now, for convenience of the reader, we put together, in the following, the equations in (3.2),
(3.3) and (3.8), that will be all we need to use to prove Theorem 1.2:

(Jwa|* - 61 + W1wy) - Cany = (Jwal® + [wi]?) - Tagy, 1<k <n

(Jwa|? - 651 + Wjwe) - Yany = (Jwa | + [wi1) - Yiny, 1, jik<n

(Jwn]® + [w1]?) - (W01 — W1V, + (2Aw, W1 — 2AwiW,,) - ¥ =0 with (3.9)
Yik) = waln (P )k — wnTk(P(j) Jn + Wy - D), W= Wiy, where

Oy = wol; — wiHz, ® =&y, H=E", w=2z+2\7 for 1 <I<n.

Notice that when n = 2, the first two equations in (3.9) disappear and we only have the
third one to use.

We will use (3.9) to prove the following theorem, which includes Theorem 1.2 as its special
case:

Theorem 3.1. Let (M,0) be a (2n)-dimensional smooth real submanifold in C"* defined by
(2.1). Suppose that there exists an i € [1,n] such that \; # 1/2. We further suppose that
M is non-minimal at its CR points near 0. Then for any positive integer N, there exists a
holomorphic transform of the special form (z,w) — (2 = z, W' = w + o(|z]*,w)) such that in
the new coordinates, M is defined by an equation of the form: w' = p(Z',Z') with Sp vanishing
at least to the order N.

Remark 3.1. Let M be a formal (2n)-manifold in C"*! near 0 defined by a formal equation
of the form w = ¢(z,%) + O(|z|*). Here, as before, q(z,2z) = >.© (|z:]* + Xi(22 + Z7)) with
0 <A, -, <oo. Then we can similarly define the formal vector fields {Ly,--- , L,_1,T}.
We call that M is formally non-minimal if (2.19), (2.21), and (2.26) hold in the formal sense.
Then the exact proof for Theorem 3.1 can be used to prove the following:

Theorem 3.2. Let (M,0) be a (2n)-dimensional formal submanifold in C"™' defined by (2.1).
Suppose that there exists an i € [1,n] such that \; # 1/2. Further assume that M is formally
non-minimal. Then for any positive integer N, there exists a holomorphic transform of the
special form (z,w) — (2 = z, w' = w + o(|z]*,w)) such that in the new coordinates, M is
defined by an equation of the form: w' = p(2',Z") with Sp vanishing at least to the order N.
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As a corollary, when M is smooth near the non-degenerate CR singular point p = 0, defined
by (2.1), and when the set O of non-minimal CR points has p = 0 in its closure, then one sees
that (2.19), (2.21), and (2.26) hold in an open subset of C™ that has 0 in its boundary. We see
that they must hold for all z in a neighborhood of 0 € C" in the formal sense. Hence, we see
that M is formally non-minimal as just defined. Thus we have the following:

Corollary 3.3. Let (M,0) be a (2n)-dimensional smooth submanifold in C" defined by (2.1)
near 0. Suppose that there exists an i € [1,n] such that \; # 1/2. Further assume that the
set of non-minimal CR points of M forms an open subset with 0 in its closure . Then for any
positive integer N, there exists a holomorphic transform of the special form (z,w) — (2 =
z, w' = w+o(|z|?,w)) such that in the new coordinates, M is defined by an equation of the

form: w' = p(2',Z') with Sp vanishing at least to the order N.

We notice that under the hypothesis in Corollary 3.3, when M is real analytic, it is easy to
see that M must be non-minimal at any CR point near p = 0. Hence, Corollary 3.3 does not
give any new result in the real analytic category.

4 Formal flattening near a CR singular point: Proof of
Theorem 3.1—Part I

Before reading §4-§6, the reader is suggested to read the Appendix in §8 for the proof in the
special case when n = 2, m = 3, to see basic ideas behind all these complicated computations.
We use the notations and definitions set up so far for the proof of Theorem 3.1. Due to
the complicated nature of the argument, we divided our proof into two parts. In this part, we
give an initial normalization by using biholomorphic change of coordinates without involving
the non-minimality at CR points.
Throughout this and the next sections, we also set up the following convention:

E(,7) = 0 if one of the indices in I or J is negative. (4.1)
For quantities a, by, - - - , b;, we write
a = F{by,--- b} or a=F{(bj)i<j<i}

if a = Z;Zl(cjbj + d;b;). Here, when bs are complex numbers, we require that c;, d; are
complex numbers. When a, b; are polynomials in (z,%), we require ¢;,d; are polynomials in
(2,%), too.

For §4 — §6, we make the range of indices j,k € [2,n — 1] if n > 3. For any homogeneous

polynomial x(z,%) of degree k > 1, write

X = Z Hap)2%25.
020,020,]al+|8|=k
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Set

622)\71’ 77:2)\17 6:1_627
H[tsrh} = H(ten-l—sel,ren—l—hq) for t +s+r+h= m,

(4.2)
q)[tsrh] = (I)(ten+sel,ren+hel) fort+s+r+h= m,
\Ij[tsrh] = \I[(ten-l—sel,ren—i-hel) fort+s+r+h=m+1
Here e, is the n-tuple with its j™ element 1 and zero for the others. By (2.9), we have
Pipsr) =E(h + 1) Hits(r—1)(nt1)) + (A + 1) Hig—1)sr(h+1)) (4.3)

— (r+ 1) Hps—1)or+00) — 01 + 1) Hpgrg 1) (h—1)] -
From (2.10), we obtain

Tpisrn) =(5 + D{EPp(snr—2n) + (14 E)Ppe—1)(s+1)r—1)0] + ERLe—2)(s+1)rh] |
— &t + 1D)Pragn)ser—1)(h-1)] — tPpsrin—1y] — EN(t + 1) Pp141)(s—1)(r—1)1] (4.4)
— MPpy(s—1)rn] + Piror(h—1)) + NPt(s—1)rh)-
Notice that ., are Wiy g,y are understood as 0 if one of their indices is negative.
Collecting the coefficients of zflzf_lz”?’z_lh fort>0,s>1,r>-3andh=m+1—1t—
s—7r>0in (3.8), we get
${EW o) + (267 + 1)V g1ysrinyn + (€7 4 28) W g—2ysrapn) + EV —3)s(r+3)h] }
+ s{ Wiesrszyn-2) + E¥ - vsrrnyn-2) |+ (14 17)(s = D{Ppts-1ye+2)0-1)
+ ¥+ -1} + (5 = 21{ W2 r+2m) + EV 1) s-2)(r+301 |
—{(t+ DV 11+ HL+E) -1 + (= DEV[E-1e-1r430-1) )
= {(t + D&Y 1) (s-2)rvm + 1L+ E)Vpgs—2yirrzm + (¢ = DEP o1y s—2) 30 |
— (t+ D{Y e nerse-s) + 20+ D@ e-2) 0 0-2)
+ (77 + 20) V1) (s-3)(r43) (h-1)] + 17 [(t1)(s—4) (r-3)8] }
+ {1 12 (h-1)] F+ Y[=1) =1 +3) (h=1)] } + EN{EV j(s—2) 2] + Pl(t—1)(s—2)(r+3)h] }
— {1V -1y 42y (h—1)) T ENY[-1) (s— 1) r3) (h-1)] + C(s—2)r+2)h) T EV (- 1)s—2)(r+3)] } = O.

(4.5)
Notice that (4.5) takes the following form:
${EWsrny + (28% + 1)V ysrinyn) + (€2 4 28) W g_2)s(rr2n)
+ 52\1’[(t73)s(r+3)h}} + F{(Ywsmn) s+ <sth—2,s<shi<h f = 0.
Thus for s > 1, by keeping use this property, we can inductively get
Uirorn] = FL(Vvsin]) s/ +h'<s+h—2,5'<s,h/<h } - (4.6)
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Substituting (4.4) into (4.6), we get, for s > 1, the following

(s + D{EPp(ss1yr—2pm) + (1 + E) Pty (st r—1)n] + EP(t—2)(s41)rn) |

= F{(Pstrn) s h/<sth—1,5'<st1,1/<h }-
Hence for s > 2, we can inductively obtain

Drisrn) = FU P sirh))si+h' <s+h—2,5'<s,h'<h } - (4.7)
Substituting (4.3) into (4.7), we get, for s > 2 and h > 0, the following
E(h + 1) Hysr-nynrr) + (A D Hie-ysrinn)) = FUHpstmom)) s <oth—1,5 <o, <ho1 }-
Hence for s > 2 and h > 1, we inductively get that
Hitstm—t—s—nyn] = F{(Hiprs (m—t'—s'—h' 1] ) '+t <s+h—2,5' <s 0/ <h | -

Notice that Hisn = Hprnes)- Keeping applying the above until the assumption that s > 2 and
h > 1 do not hold anymore, we can inductively get the following crucial formula:

H[ts(m—t—s h)h JT{ t'1(m—t'— 2)1})1§t’§m—2;(H[t/O(m—t/—i)i])igmax(s,h),ogt’gm—i}~ (48)
Substituting (2.9) and (2.10) into (3.3), we get the following equation:

@ﬂuk . (|wn|2Hﬂ — wnmlHnT — wlwnHm + |w1|2Hnﬁ)

_ _ _ (4.9)
= (Jwal® + [w1]?) - (|wnl*Hyp, — wawi H, 3, — w0, Hizy + w01 Hy).
Notice that it takes the form
oM g g gl gl Pln
4 i _
—|w,|*H,z + zz’“z"z 17 Ik dn —————H =0,
[l H M;Q Lok ! 62{” 82/2’“ Oz 9zh Ozt Ozt
where i1 + i + i + J1 + Jk + Jn — (h1 + b + by + 1 + I + 1) = 2. Hence we get
H(ten+e1+f,ren+ek+J) = f({H(t’en-l—I’,r’en—&-J’)}t’+7">t+fr)- (410)

Similarly, substituting (2.9) and (2.10) into (3.2) and setting j = k(# 1), we get the following
equation:

(|wn|2 + |wk|2) : (|wn|2H1T - wnlenT - wlwnHlﬁ + |w1|2Hnﬁ)

4.11
— (wa + [usl) - (nl*Hy — w0, Hy — w10, Hi + P H). O

Similar to (4.10), for any fixed s, h > 1, we get
ShH(ten+sek,ren+hek) - H(ten+(s—1)ek+el,ren+(h—1)ek+el) (412)

+ f{(H(t/en+177’/€n+J))t’+7">t+r} =0.

Next we prove the following lemma, which is only needed for n > 3.
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Lemma 4.1. Suppose that n > 3. For any given j with j > 1 and any given I = (i1, -+ ,ip)
with iy = iy = i, = 0, suppose that He, +se; renthei+1+('—2)ex) = 0 for all t,s,r,h >0, j' < j
andt+s+r+h=m+2—|I|—j. Then

H(ten+sel,ren+he1+l+jek) - -7:{(H(t’en,r’en+h’el+l+jek))T’Zt’})

4.13
wheret+s+r+h:t’+r’+h/:m_|[‘_j_ ( )

Proof of Lemma 4.1. Set

PY = {homogeneous polynomials of degree [} and

P((Qun = {homogeneous polynomials of degree [ in (z1, 2,21, Zn) }-

In (4.9), the coefficients of terms other than (|w,|* + |w1]?)(|w,|*Hz — w,w1H,3), when

FI+(j—1)ex p(m+3=|1|=j)
(Inln)
of Hpre, 571 renthrer+I+(j'—2)ex) With 77 < j, which are 0 by our assumption. Here and in what

projected to the space of polynomials of the form: z , is a linear combination
follows we equip the space of polynomials in (z,%) with {2*28} as an ortho-normal basis. Hence

by considering terms projected to the space Z/+U—1ex P((IZIF?’) =) (4.9), we get

e m+3—|I|—j)y e
[w, |2 (|wn)? + w1 |*)H g — wai0r(|w,]? + |wi|*)H,z = 0 mod <{ZI+] 1) kpln;rn) =y )

Here for a subspace A of the space of polynomials, we write A¢ for its compliment. Namely, we
have

(Zn + 20mz0) Hyp — (21 + 20\ 21)H, 7 = 0 mod ({zfH Dex plm=l] ﬂ}c) . (4.14)

(Inlm)

Considering the coefficients of z;~1z/+U—Nexghz thr+l and 81t ZIHG—Derzhz 41 respectively,
with r =m —t—s—|[|—j—h,t20, hZO,leln (4.14),Weget

SH(sel ((t+r)en+her+I+jex)

H(en+(s Der,(t+r+1)en+(h—1)e1+I+jer) +2>\1H(en+(s 2)e1,(t+r+1)en+her+I+jer)s and

(4.15)

S(H(t6n+sel,ren+h61+1+jek) + 2)\nH((t71)en+sel,(r+1)en+h61+l+jek))

:(t + 1) (H((t+1)en+(sfl)el,(T+1)en+(h*1)€1+l+]’€k) + 2)\1H((t+1)en+(372)61,(T+1)en+h61+l+jek))-
Hence for s > 1, we obtain
H(ten+sel,ren+he1+1+jek) = -,F{(H(t’en+(s—1)e1,r’en+(h—1)el+l+jek))r/ft’zrfta (4 16)
(H(t/€n+(872)€1,T‘/€n+h€1+1+j€k))rl_tlzr_t}'
Next we prove by induction that

H(ten+se1,ren+hel+l+jek) = F{(H(t/en,r’en+h/el+l+jek))r’—t’Zr—t}- (417>
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In fact, the claim holds automatically for s = 0. If s = 1, (4.17) follows from (4.16). Now
we suppose that (4.17) holds for s < sy, we can get by (4.16) that

H(ten+soel,ren+h61+l+jek) = *F{(H(t/en+(8071)61,T’6n+(h71)61+1+j6k))T/—t/>7”—t7
(H(trep+(s0-2)e1,r"enther+I+jex) Jr—tr>r—t } (4.18)

- JT{ (H(t/en,r’en+h’61+1+jek))r’—t’Zr—t}~

The last equality follows from our assumption. Hence (4.17) also holds for sq. This finishes the
proof of (4.17).
By interchanging the role of z; and z, in (4.17), we can get

H(ten+5€177’en+h€1+l+jek) - f{(H(S’e1,r’en+h’el+l+jek))h’—S’Zh—s}‘ (4'19>

As a special case of (4.19) or (4.17), we obtain the following:

He, rienther+i+jer) = :F{(H(S“el,T”en+h//e1+l+j€k))h”—S"Zh’}'

(4.20)
H(s”el,r”en+h’/e1+1+jek) = f{(H(t”’en,r’/’en+h”’el+1+jek))r’”—t”’ZT”}-
Now we conclude from (4.17) and (4.20) that
H(ten+sel,ren+hel+l+jek) = F{(H(t”’en,r/”en+h”/el+I+jek))r”’—t”’ZO}-
This completes the proof of Lemma 4.1. O]

For the rest of this section, for simplicity of notation, we assume that A, is the smallest
non-parabolic Bishop invariant, namely, the smallest one that is not equal to % Then we have
the following normalization for E(z,%Z). We notice that the following result holds in general
even without assuming the non-minimality condition at CR points. Also, in this result, there
is no need to assume that \, # %

Theorem 4.2. For any given | > 3, there exists a holomorphic transformation near the orign
(z,w) — (' = z,w = w + o(|z|?,w)) such that in the new coordinates, the E(z,Z) defined in
(2.1) satisfies

E(I,O) = E(ten+=]75€n) =0 fOT’t 2 S, ‘J| 7é O, |I| =t{+ s+ |J| S . (421)

Moreover, we have the following normalizations:

(I) When A, =0, we have
Ee, sen) = 0 fort > s. (4.22)

(II) When X\, # 0, for any mo < I, the normalization is divided into the following siz cases:
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(I1_3) If mo = 6m — 3, then we have

Elensen) =0 fordm —1 <t <mg — 1,

) ) (4.23)
E(@t41)enter,(mo—2t—3)en+er) = 0 for 2m — 2 <t < 3 — 3.
(II_3) If mg = 6m — 2, then we have
Elensen) =0 fordm —1 <t <mg—1,
E((2t+1)en+€17(m0_gt_3)en+el) =0 fOT 2m — 1 S t S 3m — 3, (424)
RE((4m—3)en+er,@m—1)en+er) = 0.
(II_1) If my = 6m — 1, then we have
Eie se.y=0 fordm <t <mg—1,
(ten,sen) f 0 (4.25)

E(2t41)enter,(mo—2t—3)en+er) = 0 for 2m —1 <t < 3 — 2.
(IIy) If mg = 61, then we have

Elen sen) = 0 for dm +1 <t <mgy — 1,
E((2t+1)en+e1,(m072t*3)€n+61) =0 fO’I“ 2m —1 S t S 3m — 2, (4.26)
RE (4men 2men) = 0.

(II,) If mg = 6m + 1, then we have

Een sen) = 0 fordm +1 <t <mgy — 1,

) i (4.27)
E((2t+1)en+e1,(mo—2t—3)en+e1) =0 fO’I” 2m <t <3m— 1.

(IL;) If mg = 6m + 2, then we have
Een sen) = 0 for dm +2 <t <mgy — 1,
E((2t+1)en+el,(m0—2t—3)en+e1) =0 for2m <t <3m-—1, (4.28)
RE (4m+1)en,2m+1)en) = 0.

Proof of Theorem 4.2. Suppose that 2’ = z, v’ = w+ B(z,w) transforms w = ¢(z,%)+p(z,2)+
iF(z,Z) tow = q(2,Z)+p'(¢,Z) + iE'(Z,Z), where p/(z/,Z) and E’'(2/,Z’) are real valued
and both of their orders are at least three. Then

q(2,2) + p(2,2) + iE(2,2) + B(z,w) = q(2,2) + P/ (2,2) + iE'(2,Z). (4.29)

Hence we get
S(B(z,w)) = E'(2,%Z) — E(z,%). (4.30)

Set A
B (7 w) = Z bz w’.

[1|4+25=m0
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We further normalize B(z,%) such that Re(bgma)) = 0 if mg is even. Then the real dimension
of Bm) is

Zﬂ{(’ll, 7in7j)€Rn+1: 7:17"' 7in7j207 Zl++2n+2j:m07 2j#m0}+5m0
m0+1
2

ZQh{(Zlv 7Zn7])€Rn+1 I/#Oa 11++2n+2]:m0}+2[ ]+5m0

(4.31)
Here 6,,, = 1 when my is even and 0, otherwise.
The dimension of the term 3 aqrjy(2) 2|z, |7 is
I'#0,|1|+2j=mo
2-8{(i1, ip,g) €ER™ iy, e iy, j >0, I'#0, i1 4 -+ + iy + 2) = mo} (4.32)
(I) Assume that A, = 0. Set

pimo) — {polynomials of the form 2R Z a(Ij)ZI|zn|2j, S(ao,fmgy21) = 0 for mg even}.
|7|+25=mo

To get the normalization condition (4.21) and (4.22), we only need to prove that
%(B(m‘)) (z,q(z, E))) |15<mo> = QM) (z,%) (4.33)

is solvable for any Q") (z,z) € P™). Notice that P(") and the space {B()(z, q(z,%))} have
the same dimension. Here, we recall that for a polynomial A and a subspace of polynomials,
we write A|p for the projection of A to P. Hence to prove (4.33), we need to show that

(B (z,q(2,7))) |15<mo> = 0 and R(bgma)) = 0 for mg even <= B =0.
By considering the coefficients of terms involving only z, and Z,, we get
inl. 27\ _
%(Zi+2j:m0b(0inj)zn ’Zn’ ]> = 0.

Thus we get b, ;) = 0. Suppose that by, ;) = 0 for |I'| < ky. Considering terms of the form:
22|z, with [I'] = ko + 1, we get

E o i 2
‘I’\:ko+1i+2j:mb(llznj)z 2 leal™ =0,

from which it follows that b(y;, ;) = 0. Thus we get B™0)(z,%z) = 0.
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(IT) Assume that A, # 0. Write P for the space of polynomials of the form: |21|2P;(zn, Z0) +
P5(zn,%Zp). Then

%B(Za Q(Z,E))l %B(Oa Zny |Zn|2 + )‘nerL + >‘n3721 + ’21’2)|ﬁ

ﬁ:
1 - . .
= Y 5ok = b Z) ([l + Mz + ME + )]
h+2j:m0
1 .
= Y Sbomah(ml 4 dz 4 Mz 2 PY 5 (434)
h+2j=mg
1__ . .
= X gt (e + Az AZ PP
h+2j:m0
=1 = Jl

Here, for a subspace A of the space of polynomials and for a polynomial X, we write X|, for
the projection of X to A. Write

1 . - 1 -
In= ), 57008 G- )X (), T = ) 57000 (o)X G- (4.35)

h+2j=mo,j2k+1 h+2j=mo,j2k+l

Then we have
i = —T, Ty = (N0 (4.36)

A direct computation shows that

~ 1 ; g _
I‘ﬁ: Z 2_z‘b(0hj)ZZ Z (;,k,l)()\nzi)J * l(fﬂ)()‘nzi)qzd%

h+2j=mo 0<k+I<j
1 . . ~ )
D gbomm Do GudOwsY TG [ T Kt 5
ht2j=mo 0<k-+<j
=X e EP 3T Rl
0§k+2[§mo,k+l§% kZl,ngt%ngmo,

i<

Similarly, we have

T k4+2l—mo—k—21 2 _k+2l—1—mo—k—2l—1
T= > Juztt¥zmme + > kdulz| 2, " 2™ :

0<k+21<m k>1,0<k421<mg (4'38)
ers T i< T0

Hence the coefficients of 2tz5(t > s,t + s = mg) and 201257z |?(t > s,t + s = mg) in
Im(B(z,q(z,%))) are, respectively, the following:

Z Ikl_ Z Jkl and Z k[kl_ Z kt]kl (439)

k+2l=s k+2l=t k+2l=s k+2l=t
k+l<mgq/2 k+l<mg /2
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(ITI_3): In this case, we have set my = 6m — 3. Write

]5£7§°) = {polynomials of the form Z atZZ??°_t
t>dm—1

+ Z btzrzlt+1znmof2t—3|zl|2+ZCﬂ(/z/)nglflpkzt’Zn’m}_

t>2m—2 I'#0

To get the normalization condition (4.21) and (4.23), we only need to prove that
%(B(mO) (Z, Q(Za E))) |15(mo) = Q(mO) (Z7 z) (440)
-3

is solvable for any real valued polynomial Q(™0)(z,%) € 158;}0). Notice that the dimension of the

space of polynomials of the form: Y auzizmo~t 4 S by p2HIZmo=273 512 s
t>4m—1 £>2m—2

6m — 6
2

6ﬁ1—2]
5 .

2(6m — 3 — (4 — 2)) +2( — (2 —3)) =6m —2=2] (4.41)

Combining this with (4.31) and (4.32), we know that the space { B(™)(z, q(2,%))} and the space
155’;}0) have the same dimension. Hence to prove (4.40), we need to show that B(™0) = 0 if

F(B™)(2,4(z,2)))] pimo) = 0. (4.42)

By (4.39), the condition (4.23) gives that

Z k]kl = Z k‘Jkl, Z Ik;l = Z Jkla

k+20=2t—1 k42l=mg—2t+1 k+21=2t—1 k+2l=mg—2t+1
k+1<mg/2 k+l1<mg/2
(4.43)
E ]kl: E Jklforlgtgm—l,
k+21=2t k+2l=mg—2t
k+l1<mg/2

and

Z kI = Z kJy. (4.44)

k+21=2m—1 k+2l=mg—2mm+1
k+1<mq/2

Next we prove by induction that, for 1 <t < m — 1, we have
Ii10 = Iato = Jogm-1-t =0 (4.45)
Setting t = 1 in (4.43), we get
Lo =0, Lip= Jozm—2, loo+ lo1 = Ji3m—3-
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Together with (4.36), we obtain I1g = oo = Jo3m-—2 = 0.
Suppose that (4.45) holds for ¢t <ty € [1,7 — 2]. Setting t = ¢y + 1 in (4.43) and making
use of the relations above, we get

Lyigr10 =0, Iogr1,0 = Jogm—to—2, L2t942,0 + Lotg,1 = J1.3m—t0—3-

Combining this with (4.36), we obtain (4.45) for ¢t = ty+1. Hence (4.45) holds for 1 <t < —1.
Substituting the relations in (4.45) to (4.44), we get Ios_10 = 0. Thus we get

Lo=Joy =0for 1 <t <2m—1, 2 <t < 3 — 2. (4.46)
Namely, we have I, = 0 for 1 <¢ < 3m — 2. By (4.35), we know that

1

Iy = 5 —bo(mo—2kk) T F{(b0(mo—20)) )tk }- (4.47)

In particular, we have boi(sm—2)) = 2il(3m—2). Combining this with (4.46) and (4.47), we
inductively get b(o(mo—2r)k) = 0.

Suppose that b;,;) = 0 for |I'| < ko. Next we will prove by, = 0 for [I'| = ko + 1.
Considering all terms of forms 2’ 2"|2,|% with |I'| = ko + 1, |I'| + h+2j = mg in (4.42), we get

2
ZII’I:ko+1,h+2j:mo—|I’|b(m” 2 (|Z"| +Anzy + AnZ, {P(mO) =0, (4.48)
Write

Ly = > b G N G, (4.49)

h+2j=mo—|I'|,j>k+I

Then we have
Iy = (Ilz+l))‘izjk+l,0- (4.50)
A direct computation shows that
2
Z‘I’|:k0+l,h+2j:mo_|p|b(I hj) Z Z (|Z7L| +)\ Z +)\ Z ) ‘P(mO)

I _h j —k—1 (k+l =211 k
=D rostmsnieme P E 7 2 G ) Qnz ) Onz) ol o

0<kt1<j
— § ]’klzll mo—|I'|—k— 2lzk+21
[T’ |=kg+1
0§k+2l§mﬂo_ﬂ

Thus (4.48) is equivalent to

R
3 fu=0for 1 << (Mo

k+2l=m

] (4.51)
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Setting 7 = 1 in (4.51), we get Io = 0. Combining this with (4.51) and (4.50), we inductively
obtain I;o =0 for 1 <t < [m‘)%W] From (4.49), we know that

To = b(rr(mo—|171—2kyk) + F L0 (o111 —2090) )tk }- (4.52)

In particular, we have

):f

b([’(m0_|11|_2[m0;|1/|])[mogu/\] [mog\ﬂ\LO'

Combining this with (4.52), we inductively get biyp;) = 0 for [I'| = ko + 1,h + 25 = mo — |I'|.
Thus we get B0 (z,Z) = 0.

(IT_5) In this case, we have set my = 6m — 2. Write

plmo) — {polynomials of the form Z agzhzZmo Tt 4 Z bzt Hizmo=2t=3) |2
t>4m—1 t>2m—1
+ 2%(b4m—32im_35,21m_1|21|2) + Z Ollt(zl)f’zgz—‘p‘—Qt|Zn|2t}‘

I'#£0,0<2t<mo—|I'|

To get the normalization condition (4.21) and (4.24), we only need to prove that
%(B(m(’)(z, q(z,E))) |15(m0> = Q™) (2,%) (4.53)

is solvable for any real valued formal power series Q") (z,%) € Pg“’).
The dimension of

t =mo—t 2+1omo—2t—3|, |2 An—3=2mm—1, |2
g apz, Zn° "+ E byzottizmo |z1]? 4+ 2R (bam—zzy " 22" 2 ?)
t>drm—1 #>2m—1
1s
6m — 1
2

2(6m — 2 — (41 — 2)) +2(6m_6

—(@2m—=2))+1=6m—1=2]

| +1.  (4.54)

Combining this with (4.31) and (4.32), we know that B(™)(z %) and ]58;0) have the same
dimension. Hence to prove (4.53), now we only need to prove that B0 = 0 if

S(BU(2,4(2,2)) | pne = 0, Rlbogain-1)) = 0. (4.55)

By (4.39), the condition (4.24) means that

Z Iy = Z il Z kly = Z kJy,

k+20=2t—1 k+}§l:l7<n0*?t+1 k+20=2t kz%lzmo;?t
+l<mg/2 +l<mg/2
(4.56)
E ]k:l: E JklfOI"lStSm—l,
k+21=2t k+2l=mg—2¢
k+1<mqg/2
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and

o Iu= D> Ju, Y, Rk = > R(kJu). (4.57)

k4-20=2m—1 k+2l=mq—2m+1 k4-21=2m k+2l=mq—21n
k+1<mgq/2 k+1<mg /2

Next we prove by induction that the following hods for 1 <t < m — 1:

IjO = (?mjl))\imilijjgmfl’o for 1 S j S 2t,

R X A 4.58
JjO = (?m_l))\im_l_]qjgm_lp for3m —1—1¢ S] S 3m — 2. ( )
Setting t = 1 in (4.56), we get
Lo = Ji3m—2, 20 = 2J235m—3, Io0 + lo1 = Jo3m—3 + Jo3m—2-
Hence we obtain
Lio = (3 — DAY 2 Ja 10, Too = G A2 T 10, (4.59)

Jai—20 = N 2 0o = A3 P2N (3 — DAY 2 g 10 = (G0 A\ Sz 10-

This proves (4.58) for ¢ = 1.

Suppose that (4.58) holds for some t <ty € [1,m — 2]. Next we will prove it also holds for
t=1ty+ 1.

By our assumption, we get, for k + 1 < 2ty and [ < ty, the following

))\l Ik—l—l 0= (k—i—l))\l . (2?[—1))\37%—1—]{?—[(]37%_170

(k—l—

(3m 1)(3m 1- k))\Sm 1- kJSm 1.0,
G

("

—1- l))\3m 1—k— l=]3m 110 = <2m 1— l))\3m 1-k—1 @2:%4))\2{}37%7170

)(Sm 1— k))\?)m 1— kJ3m 1.0-

JkSm 1—k—

Hence we get, for k + 1 < 2ty and [ < ¢y, the following
T = Jrzm—1-k-1- (4.60)
Setting ¢ = tp + 1 in (4.56) and making use of (4.60), we obtain

Doty 41,0 = J2t9+1,3m—2t0—25
(2to + 2) Loty 42,0 + 2toLar,1 = (2t + 2) oty +2,3m—2t0—3 + 2t0 Sty 3m—2t0—2: (4.61)

Ioig42,0 + Totg 1 + Lo tg+1 = Jotg42,3m—2t0—3 + Jorg 3m—2t0—2 + Jo,3m—t0—2-

From the first equation, we get
3ri—1Y \ 3ri—2t0—2
[2to+1,0 = (2t0+1))\n 0 J3m71,0-
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Then (4.60) holds for k+1 = 2t, + 1,1 < to. Namely, we obtain Is;, 1 = Jar, 3m—2t,—2. Hence we
have

3h—11 \ 3r—2t0—3
Doig 420 = Jorgr2,3m—200-3 = (g 12) A 0 " J3m—1,0,

oo . . (4.62)
Jam—to-20 = Ay O T g gg—2 = AR 0 400 = (G )N a0
This proves (4.58) for ¢ = ¢y + 1. Hence we get
Lo = (N g1 for 1 < j < 2 — 2, (463)

Jio = ("N g1 for 2 < j < 3 — 2.

Notice that now (4.60) holds for k£ + 1 < 2m — 2,1 < m — 1. Substituting these relations to
(4.57) and making use of (4.60) for k + 1 < 2m — 2,1 <1 — 1, we get

L1 = J2m—1m,
R (200 Lo + (201 — 2) Loy 1) = R0 sn 1 + (2000 — 2)Join2.n).
From (4.63) and the first equation above, we get
D10 = G DA J3m_1,0- (4.64)
Combining this with (4.36), we obtain Ios_21 = Jam-244. Thus we obtain
§R(I2m,o — 2mJ2m,m—1) =0.
Since b(,3m—1) is purely imaginary, we know Is;_10 = %b(g,gm_l) is real. Hence
Lono = —Jomo = =GP N 10, Jommme1 = Cr N s 10

Thus we obtain Js3_109 = 0. Combining this with (4.63) and (4.64), we get I;o = 0 for
1 <k <3m—1. By (4.35), we know that

1

I = Zb(()(mo—%)k) + F{(bomo—20)t) )tk }- (4.65)

In particular, we have bozm—1)) = 2i13n-1,0. Hence we inductively get b(omo—2r)k) = 0.
By a similar induction argument as that used in the (II_3) case, we get b(;;) = 0. Hence we
obtain B(™)(z,%) = 0.

The cases (IT_7) and (II;) can be similarly done as for (IT_3), while the cases (IIy) and (II5)
can be similarly done as in the case (II_5). This completes the proof of Theorem 4.2. O
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5 Proof of Theorem 3.1— Part 11

We continue our proof of Theorem 3.1. In this part, we assume that M is non-minimal at its
CR points near the origin. We will prove H = 0 when it satisfies the normalization in Theorem
4.2.

The crucial step is to prove the following proposition, which is more or less the content of
Theorem 3.1 when n = 3:

Proposition 5.1. Suppose that A, # 1/2. Then for t,r,s > 0 with t +r + s < m, we have
H(ten+r51,(m—t—r—s)en—i—sel) = 0. (51)

Proof. The proof of Proposition 5.1 is carried out in three steps, according to \y = A\, =0
or A, =0,\; Z0 or A\, # 0, \; # 0. We notice that when A, # 0, it must hold that A\; # 0 by
our choice of \,.

Step I: In this case, we assume that A\, = A\; = 0. Then (3.8) has the following form:
ZnV1 = 21V,. (5.2)

By considering the coefficients of zf]zs_lﬁ"“z_lh fort >0,s>1,r>0and h =m+1—t—s—r >
0 in (5.2), we get

5V tern) = (T 4+ 1)V [(t41)(s—1)(r+1)(h=1)] (5.3)

Setting h = 0 in (5.3), we get Wy = 0 for s > 1. Combining this with (5.3), we inductively
get Wpgp = 0 for s > h + 1. Together with (4.4), we obtain:

(S + 1)(1)[(t—1)(s+1)(r—1)h] = (t — 1)(I)[tsr(h—1)] for s > h+1. (5.4)

Setting h = 0 in (5.4), we get ®pqq = 0 for s > 2. Combining this with (5.4), we inductively
get ®pp) = 0 for s > h + 2. Together with (4.3), we get

(h 4+ 1) Hig—1)sr(ht1y) = (1 + 1) Hys—1)(r1yn) for s > h 4 2. (5.5)

Setting ¢t = 0, we get Higgp = 0 for s > h + 1, 7 > 1. Then we inductively get Hip = 0
fors > h+1, r >t+1. When s > h+1,r <t from (5.5), we inductively get Hyon =
F{(Hsro))e>r}, which is 0 by our normalization in (4.21). Thus we have proved

Hiyspy = 0 for s > h + 1. (5.6)

Next we will prove that Hp,, = 0. Setting s = h > 1,¢ > 0 and 7 = —1 in (5.3), we get
W05 = 0 for ¢ > 1. Substituting it back to (5.3), we inductively get

Visrs) = 0 for ¢ > r + 1.
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Substituting (4.4) into this equation, we get
(5 + 1)®iu—1)s+1)r—1)s) = (t = 1)Ppor(s—1y) for t > r + 1. (5.7)

Setting s = 0, we get ®pi,0p = 0 for ¢ > 7 4 1. Substituting this back to (5.7), we get
Pry(s41)rs) = 0 for t > r + 1. Together with (4.3), we get

(S + 1)H[(t_1)(5+1)r(8+1)} = (7’ + 1)H[t5(r+1)s] fort > r+ 1.
Notice that Hp.q) = 0 by our normalization. Hence we inductively get
Hisp) = 0 for t > 7. (5.8)
Since Hispn) = Hipnes), (5.6) and (5.8) imply (5.1) for the case A, = Ay = 0.

Step II: In this step, we assume that A\, = 0 and A\; # 0. Proposition 5.1 is an immediate
consequence of the following lemma:

Lemma 5.2. Suppose that A, =0 and \y # 0. Assume that there exists an hg > —1 such that
Uitern] = Pprsrn) = 0 for h < ho, Hpysen) = 0 for max(s,h) < ho + 1. (5.9)

Then we have
Uiporn] = Pprorn) = 0 for h < ho + 1, Hyen) = 0 for max(s, h) < hg + 2. (5.10)

Once we have Lemma 5.2 at our disposal, since (5.9) holds for hg = —1 by our normalization,
hence (5.10) holds for hy = —1. Then by an induction, we see that (5.10) holds for all hy < m—2.
This will complete the proof of Proposition 5.1 in this setting.

Proof of Lemma 5.2. Setting £ = 0 in (4.5) and making use of the assumptions in Lemma 5.2,
we get:

SU-1)s(r+1)(ho+1)] T (8 = 2)NV [t(s—2)(r+2) o+ 1)) — NV [t(5—2) (r+2) (o +1)]
— (t+ D 1)s-0)r+3)(ho+1)] — MY [t(s—2)(r+2)(ho+1)] = O

Namely, we have
sU -1t )(hot 1) = (E+ 3 = $)NWpis )i (horn)) + (E+ DYy i orn)- (5.11)

By setting r = —3 in (5.11), we get Wso(hy+1)) = 0 for ¢ > 1. Substituting this back to (5.11),
we inductively get that Wi, (441 = 0 for ¢ > r 4+ 1. Combining this with (4.4) and (5.9), we
obtain

(5 + D@1 (s r—1)ho+1)) = (£ = 1)1 Ppa(s—1yr(ho+1y for ¢ =+ 1. (5.12)
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Setting r = 01in (5.12), we get @so(no+1)) = 0 for t > 2. Hence we inductively get @sp(no11)) = 0
for t > r42. In particular, we have ®po,(n41y) = 0 for ¢ > r+2. Combining this with (4.3), (5.9)
and A\, = 0, we get (hg + 2)Hit—1yor(no+2)) = 0 for t > 7 4 2. Namely, we obtain Hor(n+2) = 0
for t > r + 1. Together with our normalization (4.21), we obtain:

Hitor(no+2)) = 0. (5.13)

Case I of Step II: When hy = —1, setting s = 0 in (5.12), we get ®jy—_1)1(r—1y0] = 0 for
t > r+1. Together with (4.3) and (4.22), we get Hi—1)1,1) = (r+1)Hpgorg1y0) = 0 for ¢t > r+1.
Namely, we obtain Hp,q) = 0 for ¢ > r. By the reality of H, we get

Hispy) = 0. (5.14)

From (4.3), (5.13) and (5.14), we obtain ®p,0) = Pp1r = 0. Together with (4.4), we see that
Vis0r0) = 0.
Setting h = 0 in (4.6) and making use of Uor0) = 0, we first get Wi,00 = Ypizro) = 0, then
inductively get W0 = 0. Combining this with (4.4), we get
(5 + 1)Pre—1)s+1)r—1y0] = (& = D)nPprgs—1yr0], (5.15)
Setting s = 0 in (5.15), we obtain @100 = 0. By an induction argument, we get @0 = 0.
This proves (5.10) for the case hg = —1.

Case II of Step II: When hy > 0, from (4.8),(5.13) and (5.14), we inductively get
Hitsrhot2)) = 0 for s < hg + 2. Combining this with (4.3) and (5.14), we get Ppor(no+1) =
Pi1r(ho+1)) = 0. Substituting this back to (4.4), we obtain Wy, he41)] = 0. Together with (4.6),
we inductively get Wi (n41)) = 0. Combining this with (4.4), we obtain

(5 + D1+ r-1)ho+1)] = (8= 1)1P(s-1)r(ho+1))-

As in Case I, we inductively get ®por(no+1)) = 0. This proves (5.10) for the case hy > 0 and thus
completes the proof of Lemma 5.2. O]

Step III: In this step, we assume that A\, # 0 and A\; # 0. Similar to the situation in Step
IT, Proposition 5.1 in this setting follows from the following lemma:

Lemma 5.3. Suppose that A\, # 0 and \y # 0. Then we have the following:
(1)
H(ten+el,(mft72)en+e1) = H(ten,(mft)en) = 0. (516)

(1) Assume that there exists an hy > —1 such that
Uitern) = Pprsrn) = 0 for h < hg, Hpysen) = 0 for max(s,h) < ho + 1. (5.17)
Then we have

Uiporn] = Pprorn) = 0 for h < ho + 1, Hpern) = 0 for max(s, h) < ho + 2. (5.18)
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Before proving Lemma 5.3, we first make the needed preparations. For any fixed s,h > 0
and nonnegative integer k, set

k m+1—s—h T
‘I’fszz} Zt:k (=)™ ) Vst 1—t—s— )

k) m—s—h it —s—h t
Qi = Zt:k (=)™ () Plts(m—t—s—n)l; (5.19)

k m—s—h et s
H[(sh)] = Zt:k ( 6) - h( )H[tS(m t—s—h)h]-

Next we would like to transfer the relations among ¥, & and H into the relations among

o) o . and H*

[s(ho+1)]” = [s(ho+1)] [S(h +2)I°

Lemma 5.4. Assume that there exists an hg > —1 such that

Witern) = Pporn) = 0 for h < hg, Hysen) = 0 for max(s, h) < hy. (5.20)
Then we have
(I)[(f()ho+1)] =(ho + Q)QH[( o + (ho +2) [(S(hoJ)rQ)]
+ é((m —s—ho— k)H[((IZ)_l)(hg—f—l)] — (k+ 1>H[((]Zt11))(h0+1)]>7 (5.21)
‘I’[(f()hoﬂ)} =(s+1) (59@ ks+11)(h0+1 nt SCI)[(ksfl) h0+1)])
=k + D)0, oy =l = DR (5.22)

Moreover, \IJ[( () satisfies the following equation:

ho+1)]

2 (k—2) °g B (#) (k1)
SEOV oy + SE 5’7{( = DOV oy (B 1= )W 560 11y)

2.7, (k+1)
+ (b D0 g )

} (5.23)

Proof of Lemma 5.4. Under the assumption in (5.20), we easily conclude that (4.3) and (4.4)
have the following expressions:

Plisr(ho+1)] =(ho + 2)(EHs(r—1)(ho+2)] + Hit—1)srho+2)]) — (7 + 1) Hps— 1y 1) (ho+1)) - (5.24)
Witor(ho+1)] =(5 + DI{EPp(s11)r-2)(ho+1)] + (14 E) Ppiem1)(s1) (1) (ho +1)]
+ P2 (s+1)r(ho+1)] } — LENE + D) P(t11)(s-1)(r—1)(ho+1) (5.25)
+ 1t — D) @p(s—1)r(ho+1)] -
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For fixed s > 0, a direct computation shows that

m—s—hg—1 o
Z ( f)m tmsho= 1( )H[ts(m t—s—ho—2)(ho+2)]

t=k
m—s—ho—1 et 5
:<_£)Zt k ( 5) tmsho= 2( )H[ts(m t—s—ho—2)(ho+2)]
k)
= S (10 96
m—s—hg—1 M—t—s—ho—1 ( . )
>, 9 " ) Hi-1)s0m—t—s-ho—1) (ho+2)]
m—s—ho—1 et — 5B — _ _
=> e GO A+ GED) Hig-stmot-s-ho- 1) o4 2)
(%) (h—1)
=Highor2) T Hishor2)-

Notice that

(m—t—s—ho)()=((m—s—k—ho) = (t—k)) () = (m— 5=k —ho) () = (k + 1)(y).

Thus we have

m—s—ho—1 Mt 5P —
Zt B (=¢) tmeho 1(2)(7” —t—s5— hO)H[t(s—l)(m—t—s—ho)(ho+1)]

m—s— ho s
_{22 )y (m— s — k= ho) () — (k4 1)) (1)) Hit(s—1)(m—t—s—ho)(ho+1)]

— (k+ 1)HFY ).

= S ((m s~k — h)HY [(s—1)(o-+1)]

[(s=1)(ho+1)]
(5.27)

Substituting (5.26) and (5.27) into (5.24), we get (5.21).
Next we prove (5.22). A direct computation shows that

m=s—ho m—t—s—hg [t 2
Zt:k (_5) (k){fq’[t(s+1)(m—t—s—ho—2)(ho+1)] + (1 +¢& )CD[(t—l)(s+1)(m—t—s—h0—1)(ho+l)]

+ ED[(1—2)(5+1) (m—t—s—ho) (ho+1)] }

:Zz;i;ho_2(—f)m_t_s_h°_2{5 €0 — L+ )G + €6} Ppetsn) m—t—s—ho—2)(ho-+1)

m—s—hg—2 Mt — 5 —ho—
=D -2 (=)™ 7710 7{€001) + E(-2) } Prr(o 1 mt-3-ho-2)(ho 41

(k— 2)
=509 5+1 )(ho+1)] +§¢ [(s+1)(ho+1)]"
(5.28)
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We also have

ZZ;S_hO(—f)m‘t‘s‘h" () LECE + D)@y 1) (5= 1) (m—t—s—ho—1) (ho+1)]
+(t— 1)<I>[t<s71><mftfs7ho>(ho+1>]}
=y ()™ (4 )P 1) o1t s o)
> h(—om-t-s-ho{(k + D) + (= DI Pl m-rs-ho)(no+1)
=— &k + 1)(I)E(k+1))(h fy +(E+ 1)@[(ks+11))(h0+1)] +(k— 1)®Eé)_1)(h0+1)]
=0k + DBy + (k= DR

(5.29)

Substituting (5.28) and (5.29) into (5.25), we get (5.22).
Now we turn to the proof of (5.23). Under the assumption (5.20), (4.5) has the following

form:
S{EWusr(ho+1)] + (262 + 1) P 1)1 o+ 1) + (€ + 28) Wiu—2)str+2)(ho+1) + E Y [=3)s(r-+3)(ho+1)] }
+1{(5 = 2)Wis-2)r12)00 1)) + (5 = 2)W(e-1)(s- 20043 (ho+1) |
= n{(t + D&Y (1204100 41) + HL+ E) V-2 2)(h0+ 1) + (= DEY 1) (0-2)+8) o+ 1) |
— (t+ D0 (1) (s )r43) (o 1] — M0P t(5—2) (r42)(ho+1)]) = 0.

(5.30)

Notice that
(—5)35(2) + (—5)2(252 + 1)) + (—5)(53 +26) (%) + E(.7)
_¢? { t+2 t+1 } ¢t { (4+2) t+1)+(k)}
=£? { o) + (s }_f hg) =& 9(#2) +&%(j._s)-

Hence we have

m—s—ho+3 et 5
Zt i (=) (O €W prs(mot—s—ho) (ho+1)] F (267 4+ D)W [(t—1)s(m—t—s—ho+1)(ho+1)]

(§3+2§) (t=2)s(m—t—s—ho+2) (ho+1)] T & W [(t=3)s(m—t—s—ho+3)(ho+1)] }
ST gt f—e)e(l) 4+ (—€)2(26 + 1))

t=k—3
<_£)(€3 + 25) (t+2> + 52 t+3 }‘Ij[ts(m—t—s—hg)(ho—i-l)]

m—s— ho m s—
_Z TE0(5,—0) + € (ims) } Vitstm—t—s—ho)(ho+1)]

t=k—3
2 (k—2) 2.7, (k—3)
=200 + ET ).

(5.31)
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A direct computation shows that

m—s—ho+3 Mt — s
Zt k (&)™ B O W a2y m—t—s—hor2) (o +1)] F EV 1) (s—2)(m—t—s—ho—3) (ho+1)] }

m—s— h0+2
_Zt k—1 )" T hOH{ §( )_'_5(?_1)}\Ij[t(872)(m*tfsfhoJrQ)(hoJrl)]

m—s— h0+2
=> s )" O () Wia(s—2) (m—t—s—ho+2) (o)

o (k—1)
=EV D) o1y
(5.32)

We also obtain the following formulas:

m—s—ho+3 et — 5
Zt:k (=) s (8 4 1)EW 11y (5-2) (m—t—s—ho+1) (ho+1)]

+ (1 + E)Wl(o—2) (m—t—s—ho+2)(ho+1)] + (& = 1)EV[(t=1)(5—-2) (m—t—s—ho+3)(ho+1)] }
m—s—ho+2 e _
=> (=)Mo L)) — E(1+ ) + tEGH) F W as—2)(m—t—s—ho42) (ho+1)]

t=k—1
m—s— h0+2
=2 i T h°+2{k‘59 (k= 1EG-1) } Uir(s-2 mt-s-ho+2)(ho+1)
:kfg\ll[(tsf?)(hoﬂ)] + (k= DEVIETY gy o
5.33
m—s—ho+3 et —s— +1
Yo (OO A+ Dyt imet-s-nora)ornl = (K + DTy
m—s—ho+3 et
Y (O T ) W mot-shor 20+ 0] = —EC L gy

(5.34)
Combining (5.31)-(5.34) with (5.30), we obtain
SEXOV ) + SE Uiy + (5 — DENT(Y) = (KEO gy ey + (k= DEV S 0y
= (k+ 1) Q‘I’féﬁl))(hoﬂ + N0V () oy gy = 0
This finishes the proof of (5.23). O
Now we are in a position to prove Lemma 5.3.

Proof of Lemma 5.3. (1) Setting hg = —1, k =0 and hg = —1, k = 1 in (5.23), respectively, we
get

En(— 1)0%0) 20 T 772\1/%?40 =0, &n(2 - 8)\11[(31270] + 2772\1[%52)—470] =0
Namely, we have

2
56\11[8 2,00 = U\I’Es)u)]? (s — )qu[s 2,00 = 2n@fsl4,0]' (5.35)

35



Next we prove that for 2s < m + 2, 2k < m + 2 — 2s, we have

(2k+1) (2K 2k+2
25E0W oY = (25 + 2k, 256U = (2k + 2GR (5.36)

Notice that \Ilg;)] =0 for i +j+k > m+ 2. Hence all the terms in (5.36) are 0 when
2k > m + 2 — 2s. Thus (5.36) holds for all £ > 0. Also notice that (5.36) implies

k (2k
(25 + 2k)BHA0) = (2k + 20000 (5.37)

We prove (5.36) by induction on s.

If m = 2m then the largest possible s is s = 7 + 1. In this case, (5.36) is has only one
nontrivial equation: ‘I’lev)ﬁ,o] = 0. This can be got by setting s = 2m + 4 and k = 0 in the first
equation of (5.35).

If m = 2m + 1, then the largest possible s is s = m + 1. In this case, we must have k = 0.
Hence (5.36) is the same as (5.35).

Suppose that (5.36) holds for s > sq(> 2). Since (5.36) holds for s = s — 1 and k = 0, we
can further suppose that (5.36) holds for s = s9 — 1 and k < kq. Next we will prove (5.36) for
s=8y—1land k =ky+ 1.

Setting hg = —1, s = 2sg, k = 2ko + 2 in (5.23), we get

2506200 iy + 2502 W e Y

(5.38)
—en{(2ko + 1)00 225“220] + (2ko + 3 — 280)\Ifgfo+l b P (2K + 3)@{2250*;)0}

By our assumption, (5.37) holds for s = so + 1, k = kg — 1 and s = sg, k = ko, respectively.
Hence we get:

(250 + 2ko) Wipe* (Y = 2ko0V 0L | (250 + 2ko) Whatt )l = (2ko + 2)0W D) (5.39)

By (5.36) with s = sg, k = ko and (5.39), we obtain

(2ko) (2ko—1) 2k (2ko)
2805 H\II[QSOO] + 2s ()5 \11[2300 (2505 0+ 230§ % so+ 2]{30 ) [2500,0]
2]{?0 (2ko)
=(1+ ST )250& 9\11[2550 (5.40)
2k 2k +2)
—(14+ —"0 ) (2ky + 2)EnO 2o
+ 250 + QkO)( 0+ 2)8n [250-2,0]"

By (5.39), we have

k
én{ (2ko + 1)9@&0” + (2ko+3— 250)\11[2250“) b+ (2o + 3)3522;0;%3)]
ko + 2
280 +

(5.41)

—tn{2ko + 1 + (2ko + 3 — 2s0) oy ot o T (2ho + 32w D
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Substituting (5.40)-(5.41) back into (5.38), we get

(2ko+3) 2ko +2 (2ko+2)

1 (2ko + 3) Wy = (1 + o0 1 2 (250~ 3))€n0% 50 20,
_ (2]€0 + 3) (280 )f 0w (2ko+2)
250 + 2ko [250—2,0]

This is just the first equation of (5.36).
Setting hg = —1, s = 259 and k = 2ky + 3 in (5.23), we get
250820W G oV + 2502V 1)

[250,0]

=&n{(2ko + 2)9\1; ;foﬁjo] + (2ko + 4 — 250)\1,(2k0+2 } 4P (2o + 4)\1,(21@0&1)0}

[2s0 [2s

(5.42)

By our assumption, (the second equation in) (5.36) holds for s = sg, k = ko + 1 and for s = s,
k = kyg. Namely, we have

2505‘11 2k0+2) — (2ko + 4)n g (2ko-+4) 2506 W 2k00] = (2ko + 2)77\11[(22:(?52)0] (5.43)

[2 So— 20]’

By our assumption, (5.37) holds for s = s + 1, k = ko and s = sg, k = ko + 1, respectively.
Hence we get:

(250 + 2ko + 2) U0 = (2k + 2)0W 0P (250 + 2ko + 2) WG T = (2 + OGN

Combining this with (5.43), we get

2s
\Ij 2]{:0+1) — 0 Qk 2 0\]:} 2k0+2)
208" [250,0] 250 + 2k + 2( 0 +2)&" [250,0
2ko 42 (2ko+4) 5.44
= Ta0 1 0ky 20 o+ i (5.44)
(2ko+3
(2k0 + 2)5 \Ij[zs;ﬂ; )0]

Substituting (5.43) and (5.44) into (5.42), we get
£(250 — 2) UGt = n(2ko + )WL
This completes the proof of (5.36).
Setting s = 1 in (5.37), we get

0wy = qu’g]“’ for 0 < 2k < m. (5.45)

By (5.22), we have \II[O o = §09 fol + el i 0] . Hence (5.45) is equivalent to

O(S0DY + €)= €00l + € for 0 < 2k < m. (5.46)

37



(2k+1) £ (2k—1
Cug = Pg
we inductively get @Eflf)]_l) = 0. Together with (5.21), we obtain

), Setting £ = 0 in this equation, we get ) = 0. Thus

Namely, we have 6? [1.0]

(h) — . (5.47)

(- (OH " + HE) = (m+1— 2k)Higy ™ + 2k Hjgg

[11] [11]

(II_3): In this case, we have m = 6m — 3.
First, we prove by induction that

H[tl(m_t_Q)l] =0 fort Z 4m — 3. (548)
In fact, from (4.23), we get

H(t)

by =0 for t >4 —1 and Hij ¥ =0. (5.49)

Setting 2k = 61 — 4 in (5.47), we get H{}\|" " = 0. Together with Hig—s)1011 = 0, we obtain
Hi6m—6)111] = 0.

Suppose that we have obtained H[(ff]) = 0 for t > to(> 2m). Then H[(121t]071) = 0. Setting
2k = 2ty in (5.47), we get H[(fltf_Q) = 0. Since Hyyy(m—¢—2)1) = 0 for ¢ > 2ty — 1. Hence we obtain
Hi(2t9—2)1(m—2t0)1] = 0. This completes the proof of (5.48).

Now (5.47) takes the following form

(=€) Z {e(gk—l)(_f)mitﬂH[ﬂ(m—t—?)I] + (ék—?)(_£)m7t72H[t1(m—t—2)1]}

2 —1<t<dm—4

- > {mr 1206 (O™ Hiotn-tor — 2k (—€)™ Him-o0 } = 0.

2 —1<t<drn—2

(5.50)

Notice that

0(5k_1) + (br_a) = (i11) — (Ge1)E?
(m+1=2k)(3_1) = 2k(5) = (m + 1= 2k)(5,_) — (t = 2k + 1) (3 _1) = (m —)(55_1)-

Hence (5.50) takes the following form

0 > ()~ G O™ o |

2h—1<t<dm—4

(5.51)
B Z {(m - t)(gk—1)(_§)m_tH[t0(m—t)o]} = 0.

2m—1<t<4m—2
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Recall that Hy; = Hjy;. By considering the real part and the imaginary part in (5.51), respec-
tively, we obtain:

O () - G = OG- ) (-
-2 ((m = D)) & (= ™5 ) (9™ iy = 0.

(5.52)
Here we write

Hit = R(Hpm—r-21)s Hiyp = S(Hprm-1-21), (5.53)
Hyy = R(Hyowm-n0)s Hyg = S(Hpom—1)0)-

%

Then to prove that ]_:[[:;] = ﬁ[ﬁ)] = 0, we only need to prove that the matrices (Rf;)lgi,jggm,l
are invertible, where R?; are defined as follows:

(") = G+ (P () - GIT)EY)
for 1 <j<m-—1,

(7 — 1+ )G 7) £ (=)™ 2 (5 — 2 — §) (1 P)
form <7 <2m—1.

RE(¢) = (5.54)

This will be done in Lemma 6.2 of the next section. The proof for the Case (II_3) is complete.

(IT_5): In this case, we have m = 61 — 2. First, we prove by induction that

Htl(mfth)l =0 fort Z 4m — 2. (555)
In fact, from (4.24), we get
Higy =0 for t > 41 — 1. (5.56)
(61—3) (61—4)

Setting 2k = 6/ — 2 in (5.47) and noticing that H
that H[(6m_4)101] = 0.

Suppose that we know that H[(lzlt]) = 0 for t > to(> 2/m). Then H[(fltf*l) = 0. Setting
2k = 2to in (5.47), we get H{{?™? = 0. Since Hiyi(m—s—2 = 0 for t > 2t — 1. Hence we obtain
H[(gto,g)l(m,gto)l} = 0. This proves (555)

Now (5.47) takes the form:

(=€) Z {e(ék—ﬂ(_5)m7t72H[t1(m—t—2)1] + (ék—Q)(_f)mitﬂH[tl(m—t—?)l}}

2 —1<t<dm—3

= Y {m 1= 206 ) (0™ Hion-o = 2k (=€) Him-o0) } = 0.

2 <t<drh—2

o =0, we get H[u] = 0, which gives

(5.57)
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As for (5.50), it takes the form:

6 Y () - @) O™ Hiago |

2 —1<t<dm—3

B Z {(m - t)(gk71>(_f)mitH[tO(m—t)O]} =0.

2 <t<dm—2

(5.58)

Recall that H;; = Hj;. By considering the real part and imaginary part in (5.58), respectively,
we obtain:

6 3 ()~ G )@+ (MG — G E) ) (O
(O (E) = G Ea
= > (=) + (COP G ) (o i

— (3 — 1) () (=€)

[(3m—1)0] = 0

O Y () - )€ - COMER(G) - (E)) (Com
= > (m D) — (O TG ) (<€) gy = 0.

(5.60)

To prove that I:[[ﬂ] = f:[[to] = 0, we only need to prove that the matrices (N;;)1<ij<om—1
(Tij)1<i j<2m—2 are nonsingular, where N;; and T;; are defined by:

(i) = GI" )€ + @ () = GIR)E) for 1< < h =2,
(i) = Gy*)E? for j =i — 1, -

(f+ )72 4 422 (5 — 2 — §) () for i < j < 2 — 2,

( (5.61)
(
(

w
3
|
—

)5t for j = 2m — 1,

dm—1—j dm—2—j m—2j ((2m—14j 2m—2+ N
2i+11 ]) N (2¢+‘1 J)f2 - 52 2 ((2z+11+]) - <2i+1 +J)€2) for1<j<m-—1,
M+ )G ) = € (5 — 2 — ) (51]) for i < j < 2 — 2.

These will be the content of Lemma 6.3 of the next section. Hence we complete the proof of
Lemma 5.3 for the case (II_5).
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Case(I1_;) and Case (II;) can be done in a similar way as that for Case (II_3), while Case
(IIp) and case (IIz) can be done in a similar way as that for Case (II_5). Hence we see the proof
of Part (I) of Lemma 5.3.

Now we turn to the proof of Part (II) of Lemma 5.3. From (4.5), we can conclude that
U254 1)r(ho+1)] = F LY 25 41)r (ho+1)])s'<ss (¥ )wr<n } for s > 0. (5.62)

In particular, we obtain
Wit ho+1)] = FL( Ve )ni<ne } = 0
The last equality follows from the assumptions in (5.17). By an induction argument, we obtain
\I/[t(28+1)7~(h0+1)} =0for1<2s+1<m— hyg. (5.63)
Combining this with (5.22), we get

(k1) (k—2) (k+1) (k)
(25 + 2)E (020572 po 1) + Parrongsy) = 1k + DOBEI G+ 0k = D), e (5.64)

Setting k = 0 in (5.64), we obtain

6(13[28 ho+1] — CD[(zs) ho+1] for 0 <2s <m —hy — 1. (5.65)
Next we prove by induction that
D) =0 for 0<2s <m—hy—1, 0< 2k <m—2s—ho— L. (5.66)

Notice that (5.66) also holds for 2k > m — 2s — hy — 1, in which case, all the terms in (5.66)
are 0.

When m — hg — 1 = 2m (2m + 1, respectively), then the largest possible s is s = m (m,
respectively). In this case, k = 0, (5.66) reduces to (5.65).

Suppose that we already have (5.66) for s > so. By (5.65), we see that (5.66) also holds for
k=0,s = sy — 1. Hence we can suppose that (5.66) holds for k € [0, kq], s = so — 1, Next we
will prove that (5.66) also holds for s = sg — 1, k = ko + 1.

Setting s = sg, k = 2kg, 2ko + 1, 2ko + 2 in (5.64), respectively, we get

2ko—1) (2ko—2) (2ko+1) 2ko)

2506 (R + BOF ) ) = p(2ko + D)IRGET), (2o — DG, (5.67)
2ko) (2ko—1) 2ko+2 (2ko+1

2508 (0RGe o1y + Poanoty) = 1(2ko + 20000 D+ n2ke@r ) (5.68)
2ko+1) (2ko) (2ko+3) 2ko+2

2506 (R r 1)+ BOF ) = n(2ko + 3)0RGETD, (ko + OGO L (5.60)

Since (5.66) holds for s = sg, k = ko — 1, ko, ko + 1, respectively, we conclude that the left hand
side of (5.67) — 260(5.68) + 6%(5.69) can be written as follows:

(2ko—1) (2ko) (2ko—1) (2ko) .
2506 {20000 1 | — 20(0DH) L+ B ) 202000, Y =0, (5.70)
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Setting s = sp — 1, k = k¢ in (5.66), we get 9@%225;);17)}10“] = (I)gf;zzhoﬂ]' Thus we obtain:

(2ko+1) (2ko) (2ko+1) -
(2o + DRG0+ 2k — DBGE — 20 2k S =0, (5.71)

Hence by calculating (5.67) — 260(5.68) + 6*(5.69) and making use of (5.70)-(5.71), we obtain:

2 (2ko+3) (2ko+2) (2ko+2) o
02 {(2ko + 3)0P 3oy pay T (ko + DTS 0} =20 (2ko +2)0P 70 =0, (5.72)
Thus we get
0®(2k0+3) 5 (2ko+2)
[280—2,’10-1—1} - [250—2,h0+1]'

This completes the proof of (5.66).
Setting s = 0 in (5.66), we get

(2k+1) _ & (2k)
0P hys1] = Plopgryy for 0 <2k <m —ho — 1. (5.73)

Substituting (5.21) into (5.73) and making use of the assumptions in (5.9), we get

(2k+1) (2k) . (2k) (2k—1)
Q(QH[O,hoJrQ] + H[O,ho+2}) - 9H[0,ho+2] + H[o,ho+2}'

Hence we get

2 77 (2k+1) _ pp(2k—1)
0" H G horo) = Hig porzy for 0 < 2k <m — ho — 1. (5.74)
Setting k = 0 in (5.74), we get H[(OI,LHQ] = 0. By an induction, we get
(2k+1)
HEE = 0for 0 < 2k < m — hy — 3. (5.75)

Next, we will use the just obtained (5.75) to show that Hyo(m—t—no—2)(ho+2)) = 0. We will
proceed in terms of the even or odd property of m — hg — 1.

(1) In this case, we assume m —hg— 1 = 2. By H[(S(T;:%)] = 0, we get Hiam—1)00(ho+2)] = 0
By our normalization (4.21), we have Hpgp(no2 = 0 for ¢ < m — 1. Hence (5.75) with
0 < k <m — 2 takes the following form:

m—1
(2m—-2),  pyj— _
Sy =€) T Hiam-1-j)0j(ho+2)) = 0.
j=1
Here we have set
2m—2 2m—1—j
S =S5 = (")) ey (5.76)

By Lemma 6.1, S = (Si(fm_z)) is nonsingular. Hence we have Hjs—1-j)0j(ho+2)] = 0
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(2) In this case, we assume m — hg — 1 = 2m + 1. By our normalization (4.21), we have
Hiyor(hgt2)) = 0 for t < m. Hence (5.75) has the following form:

m

> 8i(=&) T Higmer—jpog-1)hos2) = 0 for 1 < i < fin.

J=1

Here S = (5;;) = ((gf{l*j))lg’jgm. Now, by Lemma 6.1, we conclude that Hio,(ng42) = 0.
Thus we got Hpor(hgt2)] = 0. By (4.8), we get Hygp(ng+2)) = 0 for s < hg + 2. Combining
this with (5.24), we get
Ppror(ho+2)) = Pperr(no+2)) = 0. (5.77)
Substituting this back to (4.4), we obtain Wpo,no+2) = 0. By (4.6), we inductively get
Witsr(ho+2)] = 0. Combining (4.7) with (5.77), we inductively get ®psp(not2)) = 0. This proves
(5.18) for the case hy > 0 and completes the proof of Lemma 5.3. This also finishes the proof
of Proposition 5.1. |

Finally, we are in a position to complete the proof of Theorem 3.1.

Proof of Theorem 3.1. By an induction argument, we need only to that H = 0.

When n = 3, Theorem 3.1 is the content of Proposition 5.1. Next we suppose that n > 3.
We prove H = 0 by induction according to the order of z,, in H. By Lemma 4.1 and Proposition
5.1, we have H e, +sey renthe,) = 0 for t +s =m or m — 1. Suppose that

Hen+1ren+0) = 0 for t +1 >mgy (mg <m —1). (5.78)

Next we will prove that H e, 41 re,+) = 0 for t +r > my — 1. The terms of H can be divided
into the following four types:

H(ten,renJrI)a H(ten+sel,ren+h61)a H(ten+sek,ren+hek) with S, h Z 1a H(ten+ej+l,ren+ek+J)-

By Lemma 4.1 and Proposition 5.1, terms of the first two types are 0. Hse, yse ren+he,) = 0
follows from (4.12) and (5.78), while He,te;+1ren+e,+s) = 0 follows from (4.10) and (5.78).
Thus we get H = 0. This completes the proof of Theorem 3.1. n

6 Computation of determinants

In this section, we will prove that the matrices S, RF™ N and T in the previous
section are nonsingular when \, # 0,1/2.

Lemma 6.1. The matrices D@ = ((gﬁ;j))lw% and S = ((3?1*11‘]

singular.

))1§i7j§fn are non-
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Proof of Lemma 6.1. Set

S(2m 2i—1 S
sz)—u& for1<i<m, 1<j<m,
J 2 —j+1 4
SE™ = G _ FEW for 1 < i <y, 1< j < — 1, (6.1)
Qﬁlzsﬁfbrlgzgﬁk
Then we have
217) 20—=1  opj in—j 210 o
SZ(J - m(gi—1ﬁl> = (gz‘—Qj) = Dz(j ) for 1 <t<m.
S =0for 1<j<m—1, S&) =1, (6.2)
S = Gl - G = G = P Y for 2 < i <o
C . S2m S@2m)y  &@2m 2rh) :
For 1 <i,j < m, we write Si(j ) = (Sfj )), S,L-(j ) = (Si(j ). By (6.2), we obtain
o 0 1
S(2m) — ( . ) )
(S0 )acizmzjcmot *
Hence we have ) ) )
det(S®™M) = (—1)™*1 det S22 (6.3)
By (6.1)-(6.3), we get
det(S®™) = TT (2 — j + 1)(2i — 1)7" - det(S®™)
Ve (6.4)
=[] @h—j+1)(2i — 1) (=1)™"" det(S*"2).
ij=1
Notice that det(S®) = () = 2. Thus S®™ is nonsingular. Combining this with the first
equation in (6.2), we also conclude that D™ is nonsingular. ]

Lemma 6.2. Assume that & # 0, % Then the matrices RE(E) defined by (5.54) are nonsingular.

Proof. Set

2t —1
~ (B —2—j)(m—1+)
( 5). Thus for 1 < j <m —1, we get

Rl = (2i —1)R; for j < —1; R} R, for i < j < 2 — 1.

Notice that (2¢ — 1)(4,_,) =
R =(2i = 1)) - (2 - DEIT)E

+(=OPI{(2i - DG - (20 - DG}

=(i = 2= )57 7) = (i = 3 = HGL)E

+ (=P (2 — 14+ ) GI) — (2 - 24 )G 7)E

(6.5)
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For m < j < 2m — 1, we obtain:

21— 1 o A S 2i—1 :
R[l] 5m—2—j + (= 4m—1-2j m—1+j
i 5 — 2 — ] (2171 ) ( 6) m—1 _'_j(szl ) (66)
=55 )+ (=TI (GIET).
For 1 <i<2m — 1, write
RE =R — (i —2— HRY, . + @m—3— )R, & for 1 <j<m—2,
R?jn 1 R'Elr}n 1 (3m — 1+ (3m - 2)5) Rz[,%mfv

RY =(m — 1+ j)RY + (4 — 3 - 2/)R",, (6.7)

ij
— (51— 4 — R L+ RE ., for i < j < 2 — 3,
RE, 5 =i —3)R. o+ (1+ (G —2¢) R, + RO, B, =R, .
Then for 1 <:<2m—1land 1 <j<m—2, we have
Ry =(dim —2 = )57 ) = (4 =3 — )55 )€
+ (=P @2 = 1+ )G — (20— 2+ 5)G15T)E)
— (4 =2 = )(5157) = (=2 = j)(=)* 2“”*”(ZL“"”")

2i—2
+ (4 — 3 — j)(4m 4— ])5 + (4 — 3 — §)(— 6)4m7172(m+j+1)($_§+m+j+l)£2 (6.8)

=) { (4 = 3= )L — (@ — 1 2)(5")

— (2 -2+ )E")e )

When j = m — 1, we obtain
Ry =i —2 =i+ D7) = (k= 3 =+ 1) (575" )E
+(_§>2m 1- 2m+2{ " — 1+m_1)(2m 24-1m— 1) <2m 2+m_1)(2m 3+m— 1)52}

m—242m—1

(3m — 14+ (3m — 2)5) {(577123 2m+1) + (_§)4m tam 2 )}

=(={Bm - 2)(G3%) — (G5°) — (3 = 3)(3751)E%
(6.9)

Fori1<:<2m—1land m <j <2m — 3, we get
R =0 = 14+ ){GI") + (O™ H (G5
(4 _3_ 23) {(Sm 24 ]) + (_€)4fn7372j<g;:;+]>}
= (G =4 = HE{ET") + (-9} (6.10)
+( 6)2m 1—2j+2m— 2{ 4m —3 _]+m - 1)(3?151+j—m+1) .
(Qm—1—2j—|—2m—2)(2m 24j— m+1) (2777, 2+]_m+1)(2m 3+j— m+1)}

=(1h — 1+ )05 7) + (i — 3= 25) (3751 7) — (5 — 4 — ) (505 )R
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When j = 2m — 2, we obtain

REQém ) ( " — 3){(5m 3— 2m+2) + (_§)4m—1—4m+4($:§+2m—2)}
(

(3 2) ){(5m23 2m+1) 4 (_5)4m 1— 4m+2(m 2+2fn71)} (6 11)
—O{Bm = 2)(3"3%) — G5°) — (B = 3)(55NE} '
o~ D+ G — (o D
Set
R[.?’.} = Rl[?lh_1+j for1<j<m-—1,
" 6.12
R L wm<s<omn-n B~k . O

€212 21—
Then for 1 <i<2m—1,1<75<m—1, we get
RY =(m —1+mm— 145G ) 4 (i — 3 — 2+ 2 — 25) (575 )
— (B —d—rh+1— )G " )e (6.13)
=(2m =2+ )65 + (2 — 1= 2))(51577) — (4 =3 — ) (515 )€
For 1 <i<2m—1,m <j<2m— 2, we get
RE =(4m — 3= 2m 4+ 14 §)(F52 19 — (2 — 1 — drin + 2 + 25) (35221 )
— (2 =2+ 2 — 1 — )55 e (6.14)
=2 = 24 ) (515 ) + (2 — 1= 2) (55" ) — (4 — 3 — ) (55 )ER

Thus for 1 <i<2m—1,1< 75 <2m — 2, we get

RY = (2 — 2+ )57 70) + (2 — 1= 2)) (5757 7) — (4 — 3 — j) (575 7)€,

ij
(6.15)
R = (G757 - G
Thus we get
Bii o Ribaa @066
det(R™) = C1(=£)“ det S : ; . (6.16)
3 3 77— h—
R[271n4,1 e Rgrlnq,mﬂ (ijﬁ - f(imj)
-1
Here Cy = > (20 —1). Set
i=1
1
RM = RELRM. =RP for1<i<2m—1,1<j<2m-2

W4 -3 -4 Y
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Then for 2 <1 <2m —1and 1 < j <2m — 2, we have

4 2 =247 amo Ari—3—j Ain—3—j d—4—j
By =g (") = GL) + G7) — GL)e?
2m — 2+ J am-3—j din—d—j din—4—j
:47?1 3—. (2173 ]> + (2%3 ]> + (21'72 3)9
2m — 2+ J 4 dm—4—7—2i+4 45 4 d—4—j
W(gl 4 ]) 2 —3 (aica )+ (o )0
6m — 2 — 20 45 _4; din—d—j
:W(%% )+ Gt )0
Set
o o 5l _ ol (20—1)0 e o
Then
6m —2— 2
R[l‘r’]J.:o,Rl["’]].ZmQ.—BZ(Q‘T i for2<i<2m—1, 1<j<2m—2
I 2. Z —_—
Hence we obtain
c 0 R[152A 1
det(R") = 56" det (Gr2id (47?1747]')) ’*m_
2i—1 \2i—2 1<i,j<2m—2

= (560 det ((4m =i )1§i,j§2m72)R[1%]2m—1‘

By Lemma 6.1, ((4m - ])197]52,%_2) is nonsingular. Now we only need to prove that R

for € # 0,1, which follows from the following claim:
RY ) = a® with a = (1 - €)/2.

Notice that (3;'7) = 0 when k > [22] + 1. By (6.19), we inductively get

2] k IH (2 3 k—1
Z 5(27 — 3)0 4
12m 1+ = N

R _
1,2m—1 6m 4 _ 2]) k,2m—1
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Recall that =1 —¢2 = (1 — &)(1+ &) = 2%a(1 — a). Hence we have

(_1)k—1 Hf:2(2j _ 3)0k—1 n
[T (6 —4—25) ™"
_(_1)k7122k72ak71<1 _ a)kfl (2k _ 3)]

' ((3m—3) + 2a(3m—3))

Qk_l(k _ 1>'<2T1_3) 2k_2(k: _ 2)' 2k—3 2k—2
- 5 21)
- G5 e 3 — 2k (6

=20 a —1)*! ) (i) (1 + ﬁa)

k—1

1 k132 3m — 2k
:2(a 1)k lak 1@_22 k)(l + ﬁa)
=2(a — D)o (RTN) 4+ (P a).
Hence we get
[2%54)-1
Rina =20+ 37 20— Dfak (@079 + (7 a).
k=1
Next we prove by induction the following:
ko
adm2 _ o — Z(a o 1)kzak((zizl—3—k) + (2m—3—k)a)
k=1
3m—4—ko (6.22)
:(& _ 1)k0+104k0+1 Z (1}5c )a?)fn—zl—ko—t
0 .
t=ko

Notice that a®™2 —a = afa — 1) - 32" o, This proves (6.22) for ky = 0. Suppose that
(6.22) holds for ko, then

ko+1
a2 _ g — Z (a _ 1>kak((2rizl—3—k) + (2m—3—k)a)
k=1
3m—4—ko
:(OA _ 1)k0+1ak0+1{ Z (20>a3m747k07t . ((2?744@0) + (ig”:ffko)a)}
t=ko
3rm—5—ko
—(a— 1)ko+1ako+1{ (L Yalmd—kot _ (222—14—1@0)&}.
t=ko
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Notice that (37'7**) =3 (I ). Hence we have
t=ko
ko+1
0¥ —a =Y (o= Dt (1) + (7))
k=1
31—5—ko
—(a — 1)roFlghkot! Z (L) (a¥i—kot _ )
t=ko
3m—5—kgo 3m—5—ko—t (6-23)
=(a—1DfFaPt N ((Na-Da )Y o
t=ko i=0
3i—5—ko
—(a — 1)k0+2ak0+2 Z (Zo+1)a3m_5_k0_t-
t=ko+1

This proves (6.22) for k = ko + 1 and completes the proof of (6.22). Setting ko = [22], we

obtain R[15,]2m—1 = 2072 Hence R* = C1£°0(1 F £)3"~2 for some C; # 0. This finishes the
proof of Lemma 6.2. [

Lemma 6.3. Assume that{ # 0. Then the matrices N and T defined by (5.61) are nonsingular.

Proof. For 1 <t <m —2and m <t <2m — 2, we set

1 1 M—
z'[,Q]m—l = 3m—_1Ni’2m4 = (giﬂl)a
1 1 1 M—
Ni[,vlzfl = _S_Q(Ni,m—l - Ni[,Z]mfl) = @1712%
1 (6.24)
1 1 1 F—2t— 1 T
Ni[t] _W(Ni - Nz‘[,t]+m + Ni[,t]—i-m+1€2 - 52 2 2Nz’[7t}+1) = (gifll—i_t)a
1 ]. ~ 1 mi _ ! mi 4
Ni[t’] = _t’ + 7 (Nit’ - (57” -2- t/)Ni[,t]’—m+1£4 ? 2t) = (%—12 t)-
Set
NI=NY for1<t<m NP =NY form+1<t<2m—1 (6.25)
t = Vigm—1 SUSM, Ny = WNog 4 SUS . .

Then Ng] = (577"7). By Lemma 6.1, the matrix <(§§37i11—1)+1—t>)1<t<2m_1 is nonsingular.

Next we calculate the determination of the matrix 7', which is done by a similar argument
as that for R* (And the proof now, in fact, is much simpler). For the convenience of the reader,
we include the following details.

Set

2141
(5 — 2 = j) (1 + )

TV =i+ 1) for 1<j<m—1, T} = Ty for 1 < j < 2 — 2.
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Corresponding to (6.5) and (6.6), we get

T[l] (4m_1_j)<4m 2— ]) (4m—2—])(4m 3— J)g
— &AL (2 — 1+ ) — (2 — 2+ PR for 1 < j <in—1, (6.26)
T[1] <5m 373‘) _ (_€)4m 2— 2]@; 1+J’) for m < j < 2 — 2.

21

Set
1
T —W(T[” (4 — 1 — )T+ (4 — j — 2)T10 L €2) for 1 < i <1 —2,
1 [1] 1]
Tm—l —?(sz 1_3 Tz2m—)

T[ ] :<] + m)T[ ] (4m — 2] — 4)7}[21 - (5m —] ) 1j+2€2 5477% 2= 4711%] m+2
for m < j <2m — 4,

2 . 1 1 2 1
Tz'[,2]m—3 =(3m — 3)Tz‘[,2]m—3 + 2Tz[2]m 2 Tz[Q]m o = (3 — Q)Tz'[,Z]ﬁz—Q'

(6.27)
By exactly the same argument as that in (6.8)-(6.11), we get
T =(din — j — 2) (@) — (20— 25) (5 72) — (2 — 2+ §) (57 e
for1 <i:<m-—1,
T2 =3m - 132 - 23770) — (3w - 3) (e,
T = +m) G0 7) + (i — 4 — 25) (57 ) — (5 — 4 — J)(57 )¢ (6.28)
for m < j <2m —4,
Ty =3 —3)(E) + 2671 — (3m — 1)(EM )¢,
TH o =Bm —2)E Y — (3m — 2) (3 %)e.
Set
3] _ 2] S 8] _ arl2] 9
T =T 1y for 1<j<m-—1, N =N, , ;form<j<2m—2. (6.29)

Then for 1 < i < 21 — 2, corresponding to (6.15), we have
T =i+ = )G 7) = (27 +2- 2177 = (-3 —)EITNE (6:30)

By the same computation as that used in (6.17), we obtain

1 6m — 3 — 20 454 ; L
w1 o sy | Ain—t-iyg .
7,] . 4m 3 . j iJ 22 . 1 (27/72 ) + (2’L ) . ( . )
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Set

15 _Am =5 B 2i—1 1 i)
T(th—2)j - 2 + 1T(2Th—2)j7 ,‘Tij - 6 — 3 — 2 (7;] 8T(i+1)j

) for 1 <i < 2m — 3.

Then TZ-[;)} = ((3?:47]' ))1 <ij<om_2" By lemma 6.1, 7! is non-singular. Thus 7" is non-singular.

This completes the proof of Lemma 6.3. ]

7 Holomorphic flattening, proofs of Theorems 1.3, 1.4

Our proof of Theorem 1.3 is fundamentally based on Theorem 3.1 and the two dimensional
results in Kenig-Webster [KW1] and Huang-Krantz [HK]. First, as we observed already in §1,
when M can be holomorphically flattened near p = 0, all CR points of M near 0 must be non-
minimal. Hence, in Theorem 1.3, we need only to prove the converse. The proof of Theorem
1.3 is an immediate consequence of Theorem 3.1 and the following result:

Theorem 7.1. Let M be a real analytic hypersurface with a CR singularity at 0. Suppose that
for any N > 3, there is a holomorphic change of coordinates of the special form (z',w') =
(z,w+ O(|zw| + |w|* + |2|*)) such that M in the new coordinates (which for simplicity we still
write as (z,w)) is defined by an equation of the form:

w = G(2,2)+iB(2,3) = O(2]), G(21,0,5,0) = |1+ M (22472 +ol|= ), E(2,%) = O(=).

(7.1)
Here the constant Ay is such that 0 < A\ < % and the real analytic functions G, E are real-valued.
Then M can be holomorphically flattened near 0,

Proof. We now proceed to the proof of Theorem 7.1. The special form for the change of
coordinates in the theorem suggests us to slice M along the t := (2, - , 2,,) = const—direction
and apply the two dimensional result in [HK]. By the stability of the elliptic tangency (see
[For] for instance), we get a family of elliptic Bishop surfaces parametrized by ¢. By the work
in Kenig-Webster [KW1] and Huang-Krantz [HK], each surface bounds a three dimensional
real-analytic Levi-flat manifold. Putting these manifolds together and tracing the construction
of these manifolds through the Bishop disks, we will obtain a real-analytic hypersurface My. A
major feature for My is that it has an order O(N) of vanishing for its Levi-form at 0. Now, the
crucial point is that the assumption in the theorem and the uniqueness in Kenig-Webster [KW1]
assures that JTL\V will be biholomorphically transformed to each other near 0 when making N
larger and larger. Hence, we see that My is a real-analytic hypersurface with its Levi-form
vanishing to the infinite order at 0. Thus the Levi-form of My vanishes everywhere. Hence My
is Levi-flat. This then completes the proof of the theorem. We next give the details on these.
In the following, we write t = (22, ,2,) = and write v = Rw, v = Sw. For |t| small,
define M; = {(z,w) € M : (z2,--- ,2,) = t}. Then M, is a small deformation of the original
My, which has a unique elliptic complex tangent at z; = 0 for |z;] < ¢ << 1. Since a small
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deformation of the surface will only move the complex tangent point to a nearby point and
elliptic complex tangency is stable under small deformation, intuitively, M; must have an elliptic
complex tangent near z; &~ 0, which is completely determined by the equation:

¥
(9_3 :2)\12_1+Z1+M

t,z1,t) = 0.
821 az—l (Zb y Rl )

Here, we also write p(z,%) = G(z,z) — (|21]> + M (2} + z1%)). By the implicit function theorem,
one can solve uniquely z; = a(t,t) = O(|t|), which is C* in ¢t. Then

Pt) = (alt,?),t, (G + V-1E)(a,t,a,1))

is the elliptic complex tangent point over M; obtained by deforming the 0 on M, to M;. Next,
we expand (7.1) at (a(t,1),t):

w=wo(t,t) + b(t,t)(z1 — a(t, ) + 2R (c(t, 1) (21 — a(t,1))?) + d(¢,E)|z1 — alt, T) ]+

P (21— a(t D).t 20— a(tD),0) + V16" (21— alt, D), 4,21 — altD),7) (72)

Here, all functions appeared above depend C“-smoothly on their variables with wy(0,0) =
0, d(0,0) = 1, b(0,0) = 0, ¢(0,0) = A;. Moreover, h*(n,t,7,t) = O(|n|*), G*(n,t,7,t) =
O(In)>) N O(In|Y + [t|™) and d(t,t) are all real-valued. By continuity, for [¢| small, we have
An,m,t,1) == 2R (c(t, T)n?) + d(t,T)|n]* = C|n|* for a certain positive constant C' independent
of |t|. Hence, for [t| small and for a real number r with |r| << 1, the following defines a simply
connected (convex) domain D; in C with a real analytic boundary:

D,:={neC: 2R (c(t,f)rf) +d(t,D)|n* +r2n*(rn,ry,t,1) < 1}

Let o(&,t,¢,7) be the Riemann mapping from the unit disk to D; preserving the origin. By
[Lemma 2.1, Hul], o(&,¢,t,7) depends C* on its variables and is holomorphic in ¢ in a fixed
neighborhood of A. (See also [Lemma 4.1, Hu2] for a detailed proof on this.)

Now, we construct a family of holomorphic disks with parameter (t,r) for ||, |r] << 1
attached to M, which takes the following form:

21(&, 8t r) = a(t, t) +ro(& tt,r)(1+Y1(&, Lt 7)),

(2270 ,20) =1,

w(&,t,T,r) = wo(t,t) + by(t, 1) - ro(&, 6,8, 7)(1+ (&8, 7)) +r2(1 + (&, t,1,7)),  (7.3)
Rp1(0,t,8,7) =0, Se(0,¢,,7) =0,

V= (z1(& 8,8, 7)), t,w(&, t,t,r))

Here vy, are holomorphic functions in & € A, and are C¥ on (£,t,7) over A x {t € C"2 :
[t < e} x {r € R:|r| <¢}. Substituting (7.3) into (7.2) with |{] = 1, we get the following:

wQ(fa ta %7 T) = Ql + QZ + \/__193 (74)
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Here ; = 2R ({%(U,t,ﬁ, t)o + 07‘*1%—}5(7’0,75,7“5, f)}z/q), Q= O(|¢Y1]?), and Q3 = O(|t|N 2 +

[r|¥=2) are all real-valued. Moreover, Q; (j = 1,2,3) depend C“ on there variables (¢1,t,7) in
a certain suitable Banach space defined in [§5, Hul]. Write g(&,&,t,t,7) = 20{%(0, t,o,t)o +

7’_1%—}?(7“0, t,77,t)}. Then we similarly have ®¢g > 0, which makes results in [Lemma 5.1, Hul]

applicable in our setting. Write H for the standard Hilbert transform, we obtain the following
singular Bishop equation:

%{g(fa 57 t,l_f, 7“)%[11} + Q2(¢1’ ¢17 taz7 7’) = _H(Q3) (75)
Now, write ¢, = U(&,&,t,8,7) + V—1TH(U(E,€,t,T,7)) for |€] = 1. By the argument in [§5,
Hul], from (7.5), one can uniquely solve U (&, &,t,1,7) for |t|,|r| << 1. Moreover, U(€,&,t,t,7)
depends C¥ on (&,&,t,%,7) and U(E,€,t,5,7) = O(Jt|N=2 + |[r|V=2). Hence U(&,&,t,t,7) +
V—IH(U(&,€,t,%,7)) extends to a holomorphic function in & which also depends C* on its
variables (&,&,t,,7) with |¢| < 1. Moreover, we have the estimates

1,09 = O([tN 2 4 ||V 72). (7.6)

Next, we let m = Uo<rear, it <<16€h W(&, t,t,r). Let M= W(A/KI\N) where 7 is the projection
from C"*! into the (z,u)-space. By the results in Kenig-Webster [KW1] and Huang-Krantz

[HK], for each fixed t, m = Myn {2/ =t} N Bp 3 (ro) must be the local hull of holomorphic
of My, that is a manifold C“-regular up to the boundary M;. Here B,z (o) is the ball
centered at P(t,t) with a certain fixed radius ro > 0. Also, since v = G(z1,t,771,t) defines a

strongly pseudoconvex hypersurface in C? for each fixed ¢, we see that m(My,) C /]\;[:t, where
M+ :={(z,w) :u > G(z,2)} and M} = M*N{(22,-+,2,) = t}. Indeed, 7, when restricted to
My, is a C¥-diffeomorphism to M/ in the intersection of My, with the ball centered at P(t)

with a certain fixed radius 1 >> ry > 0. To see this, by our normalization presented in the
previous section or by the Kenig-Webster [KW], we have a change of variables in (21, w):

A =2n—alt,l), w=uw(t,f)+ > b(t,)(w—wo(t,)),
j=1

where wy, b; depend smoothly on ¢ and takes values 0 at 0. In this coordinates, M, is mapped
to M| that is flattened to order m at 0. Hence, for m >> 1, the holomorphic hull of M, near
0 now is tangent to (z1,u')-space (See [KW] [HK]), in particular, must be transversal to the
v'—axis. Since the hull is a biholomorphic invariant, we see that M/\Nt has to be transversal to
the v-axis when || is small. Hence, 7 is a one to one and onto map from ]\/4; to M* near 0.
Write the inverse map of 7 as v(21, 21, t,t), which is defined over M~ near 0. Notice that it is
the graph function of ]\/47\; near (0 and has to be C*-regular for each fixed ¢.

Next, we solve v(z1, 71, t,t) from (7.3). For this, we use the computation in [HK]. First, we
let

2y =2z —a(t, 1)

w' =w — (wo(t,t) + bi(t, 1) (21 — a(t, 1)) (7.7)
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Then (7.3) can be rewritten as

Zi(gvtvfa T) = TO‘(g,t,f, T)(l + wl(fatafa T)),
<Z27 T 7Zn) =t, (78)
W48 7) = r2(1+ (€, 1,5, 7).

Write w' =« + +/—1v". Now, by the proof in [HK, pp 225], we see that for each (z], v/, 1),
there is a unique v’ satisfying (7.8). Moreover v/, as a function in (z{,’,t), has the following
generalized Puiseux expansion:

Z Sijsapt’ - zlstatﬁ

1,5,8,a,3>0

where |S;jkas] < C™ItF for some positive constant C. By the regularity of My ; as mentioned

9It+sy!
above, we know that 970

that Syjsas = 0 when = 32 % is not a positive integer. As in [HK, pp 227], we see that ¢’ is a real
analytic function in (21,u’,t) near 0. By (7.7), we see that v is analytic function in (21, u,t).

=0 must be smooth for each |¢| small and «' > 0. This shows

Hence, we proved that My is a real analytic manifold, which can be represented as a graph
over M* in (z,u)-space. Moreover the analytic graph function v = p = O([t|"Y =2 + |2 |V/?). To
see this, by (7.3) (7.6), we need only to explain that S(wp) = O([t|") and b (¢,7) = O([¢t|¥~1).
Indeed, S(wo) = E(a(t,),a(t,t),t,t) = O(]t|N) and

(G + v—-1E)
821

(a(t, D), a(t, D), 1, 7).

blz

Since
(G + V—1F)
0z

(a(t’ E)? a(t7¥)v t,%) =0,
we get

by = 2\/_821( a(t,?), a(t. ), £,7) = O(|t/¥ ).

Still let v = p be the defining function as mentioned above. Since p is real analytic, we can
extend My ~ to a real analytic hypersurface M} # near the origin by using the graph of p. Now,

we let
0 2v—1p,, 0

Y L=+
o1 T 0 T 1 oy ipy, 0w’

Then 0 is a contact form along Mﬁ and {L;}7_, forms a basis of real analytic tangent vector

0 =+/—10(—

fields of type (1,0) along Mﬁ near 0. With respect to such a contact form and a basis of
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tangent vector fields of type (1,0), we obtain the following Levi-matrix, which is a real analytic
n X n-matrix near 0:

Ly = ((V —1d0, Lj /\L_k>>1§j,k§n’

Since p = O(|z|V/?), we see that £ = O(|z|¥/?73) as z — 0. Now, for N’ > N, by the existence of
the special change of coordinates as in the hypothesis of the theorem, we have a transformation
of the form 2’ = z,w’ = w + h(z,w) = w + o(1), which further flattens M to M’ near 0 to the
order of N’. For M’ we similarly have m,, which, by the special property that z’ = z of our
transformation, can be seen to be precisely the image of ]\/47\[, near 0, under the transformation.
(Here, it suffices to use the two dimensional uniqueness result of Kenig-Webster [KW]). Next,
we can similarly define ¢, L', as well as, the Levi matrix £'n,. Now L'y = O(|z|N'/?-3). By
the transformation formula of the Levi -form, we see that there is an invertible real analytic
matrix B near 0 and a positive real analytic function s near 0 such that

ﬁN = KJAE/N/E.

Hence, Ly = O(|z|N'/?273) for any N’ > N. By the analyticity of £y. We see that Ly = 0
and thus My is Levi-flat. Next, by the classical theorem of Cartan, we see that My can be

hiholomorphically mapped to an open piece in C" x R. This completes the proof of the theorem.
O

Proof of Theorem 1.3 and Theorem 1.4: The proof of Theorem 1.3 and Theorem 1.4 is
an immediate consequence of Theorem 3.1 and Theorem 7.1. Here, we only need to mention
that when M is already flattened, it is obvious that the My constructed is the local hull of
holomorphy of M near 0. By the invariant property of holomorphic hull, we conclude that this
is also the case when M is not flattened yet. B

Example 7.2. Define M C C3 by the following equation near 0:
w=q(2,2) +p(z,2) +1E(z,Z).

Here as before ¢ = |22+ A (224 22) 4| 22| 2+ Ao (224 22) with 0 < Ay, Ay < 00, and p, E = O(|z]?)
are real-valued. Also G(z,%) := q(z,Z)+p(z,%). For any ¢ € R\{0}, define the real hypersurface
K. by the equation ¢(z,Z) = ¢. Then K. intersects transversally M along a submanifold L.
of real dimension 3. Then L. is a CR submanifold of CR dimension 1 if and only if L(q) =0
along L.. Here

0 0 0
L :(G2 - ZEQ)— - (Gl - ZEl)_ + 21<G2E1 - GlEl)a_wa

7.9
821 822 ( )

that is non-zero and tangent to M \ {0}.
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Write U = p(z,Z)—iFE(z,Z). Then the above is equivalent to the equation Wy (Z74+2A;21) =
Uy - (Z3 4+ 2X229). Namely, M is non-minimal at its CR points near 0 if and only if the just
mentioned equation holds.

One solution is given by ¥ = p(2,z) — iE(2,2) = p(|z1*21 + M|21*21) + po(|22]?z2 +
Aol 22]?22) + mZi(|22]® + Ao23) + peZ(|2a* + Mi2f), with py,pe € C. Then ¥y = (uz +
Woz2)(Z1 +2M121) and Wy = (uoZz + 121) (Za + 2A129). Thus Vo« (Z7 4+ 2M121) = ¥y - (Z3 + 2X929)
holds trivially.

Finally, We also mention a recent preprint [Bur2] for some generalization of the work in
Kenig-Webster [KW] and Huang-Krantz [HK].
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8 Appendix

In this appendix, for convenience of the reader, we give a detailed proof of Theorem 1.2 for the
case n = 2, m = 3 to demonstrate the basic ideas of the complicated calculations for the proof
of Theorem 1.2 performed in Sections 4-6 of this paper.

In Section 3, we have showed, by making use of the non-minimality, the following:
(\wn\Q + |w1|2) . (w_n\Ifl — w_l\Ifn) + (2/\nwn@1 — 2)\1w1@n) - W =0, where
vV = w,w,®; — w,w1 P, +wi - P, ®=w,Hr —w Hg, (8.1)
H=E™, w; = z; + 2Nz, for 1 <j<n=2.

We use the following notations

=2\, =2\, 0=1-¢,
H[tsrh] = H(ten+sel,ren+hel) fort+s+r+h= m,

(8.2)
CI>[tsrh] - CI)(ttan—+-561,7“en—Hze1) for ¢ +s+r+ h = m,

\Ij[tsrh] = ‘I;(ten-l-sehren—l—hel) fort+s+r+h=m+1

Here, for any homogeneous polynomial x(z,Z) of degree k > 1, we write

X = Z Hqp)2%25.
a>0,6>0,|al+|8]=k

We first set up more notations and establish formulas which are crucial in the general case
discussed in §4 — §6.
By (8.1), we have
Prisrn) =E(h + 1) Hygr—1y(ht 1) + (B + 1) Hi—1ysr(n+1)]

(8.3)
— (r+ D Hp(s—1)e+1n — (1 + 1) Hys(rr1)(h-1));

and

Uitorn) =(5 + D{EPp(srn)r—2pn) + (1 + E)Pe—1) (st 1)(r— 1)) + EP[e—2) (s 1)rh) }
— &t + D)Prag1)ser—1) (h-1)] — tPpsrn—1y] — EN(t + 1) @p141)(s—1)(r—1)1] (8.4)
— MPpy(s—1)rn] + Pitor(h—1)) + NPt(s—1)rh)-

Collecting the coefficients of zflzf_lz”*‘gz_lh fort>0,s>1,r>-3andh=m+1—1t—
s—r>0in (8.1), we get

${EWsrn) + (28% + 1)V —1ysrrnyn + (€2 4 28) W g_2)s(rrn)
+ 52\P[(t—3)s(r+3)h]} + F{(\Ij[t’s’r’h/])s’+h’§s+h—2,s’§s,h’§h} = 0.

57



we say b € F{ay, -+ ,ag} if
b= Z] L(cja; + d;c;) with ¢;,d; € C. Also, we set up the convention that x4 = 0 if one of
the indices is negative.

Thus for s > 1, we can inductively get

Here, for a set of complex numbers (or polynomials) {a;,b}¥_,,

Uirarn) = FA(Vosri) st/ <s+h—2,8'<s,h/'<h } - (8.5)
Substituting (8.4) into (8.5), we get, for s > 1, the following

(s + D{EPp(sr1yr—2)0 + (1 4+ E)Pp—1) (s 1) r—1)0] + EP[t=2)(5+1)r) |
= ‘/T{((I)[t’s’r’h/])s’+h’§s+h—1,s’§s+1,h’§h}~

Hence for s > 2, we can inductively obtain
<I>[tsrh] F{( [t's'r'h!] )s '+h/<s+h—2,s'<s h’<h} (86)
Substituting (8.3) into (8.6), we get, for s > 2 and h > 0, the following

E(h + 1) Hysr—1y(nrry) + (B + D) Hi—1)srnr)) = FUPRusmny) s s hi<sth—2,5<shi<n}
+ (r + D) Hp(s—1)en) + 10(r + 1) Hgsrr1) (h-1)) -

= f‘{ (H[t’s’(mft’fs’fh’)h’])s/+h/§s+h—1,s/§s,h/§h+l}-
Hence for s > 2 and h > 1, we can inductively get that
H[tsm t—s—h)h] — -,’t{ [t's ’(m—t’—s’—h’)h’])s’+h’§s+h72,s’§s,h’§h}-

Notice that Hyen) = Hpnes. Keeping applying the above until the assumption that s > 2 and
h > 1 do not hold anymore, we can inductively get the following crucial formula:

H[ts(mftfs h)h JT{ [t'1(m—t'— 2)1})1§t’§m727(H[t’(}(mft’fi)i])igmax(s,h),ogt’gmfi}- (87)

Now, we assume m = 3. We first normalize H := E®) without using the non-minimality
condition.

Let 2/ = z,w" = w+ B(z,w) be a holomorphic transformation that transforms w = G(z,%z)+
iE(2,Z) tow = G'(¢,Z') +iE' (2, Z"). Then we get

SB(z,w) = E'(2,Z) — E(2,2).

Here B(z,w) is a weighted holomorphic homogeneous polynomial in (z,w) of degree 3, with
wt(z) =1 and wt(w) = 2.

Sub-appendix I: In this part, we first prove the following:
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Lemma 8.1. After a holomorphic transformation, we can have E(z,Z) defined in (2.1) to
satisfy the following normalization:

(1) When A, =0, then

Ee,.0) = Eenter0) = Elent2e1,0) = E3e1.0) = E2en,en) = Elenter,en) = 0. (8.8)
(2) When A\, # 0, then

E@3e,0) = E@enter,00 = Eent2e1,0) = E3e1,0) = Elenterer) = Elenter,en) = 0. (8.9)

Proof. First, notice that the real dimension of the space of all such B®) is

Qh{(ll,h“j) € R3 : ilainaj > 07 Zl+ln+2,] = 3}

=2 8{(i1,in,5) ER®: iy #0, iy +1i, +2j =3} +4. (8.10)
(1) Assume that A\, = 0. Set
PO = {polynomials of the form 2R Z agijn 220 2}
i+j+2k=3
To get the normalization condition (8.8), we only need to prove that
3(B¥(2,4(2,2))) | py = Q¥ (2,2) (8.11)

is solvable for any Q®(z,z) € P®). Here, we choose an orthonormal basis {28} for the space
of (not necessarily holomorphic) polynomials. Then for any subspace P and a polynomial A,
we write A|p for the orthogonal projection of A to P.

Notice that P®) and the space {B®(z,¢(z,%))} have the same dimension. Hence to prove
(8.11), we need to show that

%(3(3)(z,q(2,f)))|ﬁ(3) =0 < B=0.
By considering the terms involving only z, and Z,, we get
%(b(011)2n|2n|2 + b(ogo)Zi) = 0

Thus we get bo11) = bso) = 0. Hence, if $(B®)(2,¢(2,%)))] p) = 0, we have that B®)(z, |z,[*+
A122) = 0. Namely, we have

b(lgo)zlzi + b(lOl)Zl‘Zn‘Q -+ b(glo)Z%Zn -+ (b(g()()) + )\1[)101)2’? = 0 (812)

Hence we get b;x) = 0. Furthermore, we obtain B®)(z,%z) = 0.
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(2) In this case, we assume A, # 0. Write

Pﬁ? = {homogeneous polynomials of the form:

2%( Z @iz 20| 20 [P 4 bz + czn| 21 7).
i>1,i+j+2k=3

To get the normalization condition (8.9), we only need to prove that
3(BY(2,4(2,2)))| poy = Q¥ (2,2) (8.13)
-3

. Notice that the real dimension of

is solvable for any real valued polynomial Q®)(z,%) € ]3(?;3

-3
2- {(Zl,ln,])eR : 217&“, Zl+ln+2] —‘3}+47

which is the same as the real dimension of all such B(z,w)’s. Hence to prove (8.13), we need
to show that
%(B(?’)(z, q(z,7))) ‘p(g) =0« B® =0.
-3

Notice that
0=SBY(z, w)|p<3)
-3
= 3( Z b(ijk)ZiZlek + b(ogo)Z,?L + b(011)zn(|zn|2 + An22 + AT+ A2+ |zl|2)> |15£3§'
i>1,ij+2k=3

(8.14)

Collecting the coefficients of z,|z|* and z7, respectively, in (8.14), we get b1y = 0 and b(o30) +
Anbo11) = 0. Thus we get b(oz0) = bo11) = 0. Hence IBO) (2, w)‘P(g) = 0 implies that
-3

b(300)25 + b210)25 2 + ba2oyz125 + baonyz1(|zal* + Anzi + 27) = 0.

Now it is obvious that b01) = b120) = bz00) = b210) = 0. Hence we have get B®) = (. This
completes the proof of (8.9). O

Sub-appendix II: Now we proceed to prove Theorem 1.2 for n = 2 and m = 3.

Case I: In this case, we assume that A, = A\; = 0. Then (8.1) has the following form:
Zn V1 =21V,. (8.15)

By considering the coefficients of z! 2 'z, "H1zt" for t >0, s > 1,r>0and h= (m+1) —t —
s—r>0in (8.15), we get

8V tern) = (t + 1)V [(t41)(s—1)(r+1)(h—1)] (8.16)
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Setting h = 0 in (8.16), we get W0 = 0 for s > 1. Combining this with (8.16), we inductively
get Wgp = 0 for s > h 4+ 1. Now, we will apply (8.4). Notice that we now have { = n = 0.
We thus obtain:

(S + 1)q)[(t—1)(s+1)(r—1)h] = (t — 1)(I)[tsr(h—1)] for s 2 h + 1. (817)

Setting h = 0 in (8.17), we get Pp0) = 0 for s > 2. Combining this with (8.17), we inductively
get ®pgn) = 0 for s > h + 2. Together with (8.3), we get

(h + 1)H[(t—1)sr(h+1)} = (7‘ + 1>H[t(s—1)(r+1)h] for s > h+ 2. (8.18)

Setting ¢t = 0, we get Higgp) = 0 for s > h + 1, » > 1. Then we inductively get Hp = 0
fors > h+4+1, r>t+1. When s > h+ 1,7 < t, from (8.18), we inductively get Hyop =
F{(Hysr0))pr>r}, which is 0 by our normalization in (8.8). Thus we have proved

H[tsrh] =0for s> h+1. (819)

Next we will prove that Hj.g = 0. Setting s = h > 1,¢ > 0 and » = —1 in (8.16), we get
Ups05) = 0 for ¢ > 1. Substituting it back to (8.16), we inductively get

Visrs) = 0 for ¢t > r + 1.
Substituting (8.4) into this equation, we get
(S -+ 1)(1)[(t_1)(s+1)(r_1)5] = (t — 1)(I)[tsr(s—1)] fort >r+1. (820)

Setting s = 0, we get @y, = 0 for ¢ > 7 4 1. Substituting this back to (8.20), we get
Pry(s41)rs) = 0 for t > r + 1. Together with (8.3), we get

(5 + 1) Hig—1)(s+1)r(s+1)) = (7 + 1) Hygs(r1ys) for ¢ > r + 1.
Notice that Hj.q) = 0 by our normalization. Hence we inductively get
Hipggg = 0 for t > r. (8.21)
Since Hisn) = Hpmg), (8.19) and (8.21) imply H = 0 for the case A, = A\; = 0.

Step II: In this step, we assume that A\, = 0 and A\; # 0. Theorem 1.2 with m = 3 in this
setting is an immediate consequence of the following lemma:

Lemma 8.2. Suppose that A, =0 and \y # 0. Assume that there exists an hg > —1 such that
Uitern] = Pprsrn) = 0 for h < ho, Hpysen) = 0 for max(s,h) < ho + 1. (8.22)
Then we have

Uiporn] = Pprorn) = 0 for h < ho + 1, Hpern) = 0 for max(s, h) < ho + 2. (8.23)
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Once we have Lemma 8.2 at our disposal, since (8.22) holds for hy = —1 by our normaliza-
tion, hence (8.23) holds for hg = —1. Then by an induction, we see that (8.23) holds for all
ho < m — 2. This completes the proof of Theorem 1.2 in this setting.

Proof of Lemma 8.2. First, notice that (8.1) has the following form:

(|,zn|2 + nz%)(z\lll —n2V,) — N2z, + 2 F{V,, ¥, ¥} =0.

Collecting the coefficients of 2% 257 'z,"+3z%0+1 in the above equation and making use of the
assumptions in Lemma 8.2, we have:

SVa-1)sert1)ho 1)) + (8 = 21V s rt2)(ho+1)] = NV [1(s-2)(42) (o +1)]

= (t+ D0 (1) 5=t (r43)(ho+1)] — N fr(s=2)(r+2)(ho+1)] = 0.

Namely, we have
SU -1+ 1) ho+1)] = (E+ 3 = )NV s—2) 42y ho+1)] + (E+ DV (a1 (s—a)rt3) (o1 (8.24)

By setting r = —3 in (8.24), we get Vso(hg+1)] =
we inductively get that Wig.(n41) = 0 for ¢ >
hypothesis, we obtain

0 for ¢ > 1. Substituting this back to (8.24),
r + 1. Combining this with (8.4) and the

(s + DPie-1) (s nr-1)ho+1)] = (8= DN Ppe(am1yr(ng+1y) for ¢ = + 1. (8.25)

Setting = 01in (8.25), we get Ppso(no+1)) = 0 for ¢ > 2. Hence we inductively get ®jorno+1)) = 0
for t > r+2. In particular, we have ®po,(no+1y] = 0 for ¢ > 7+ 2. Combining this with (8.3),the
hypothesis and X, = 0, we get (ho + 2)H|¢-1)or(ho+2)] = 0 for t > r + 2. Namely, we obtain
Hior(hg2) = 0 for t > r + 1. Together with our normalization (8.8) and the reality of H, we
obtain:

Hitor(no+2)) = 0. (8.26)

(1) When hg = —1, setting s = 0 in (8.25), we get ®(¢—1)1(r—1)0) = 0 for ¢ > r + 1. Together
with (8.3) and (8.8), we get that Hi;_1)1,1) = (7 + 1)Hpor41)0) = 0 for ¢ > r 4 1. Namely, we
obtain H,q = 0 for ¢ > r. By the reality of H, we get for all ¢,r the following:

Hi1) = 0. (8.27)

From (8.3), (8.26) and (8.27), we obtain ®y,0) = Pp1, = 0. Together with (8.4), we see that
\Ij[tOTO} = 0.

Setting h = 0 in (8.5) and making use of Wpo,q = 0, we first get Wii,0) = Wporg) = 0, then
inductively get W0 = 0. Combining this with (8.4), we get

(5 4+ 1)@—1)(s+1)r—1)0) = (£ = D)nPp(s—1yr0), (8.28)
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Setting s = 0 in (8.28), we obtain ®p,0) = 0. By an induction argument, we get ®pg = 0.
This proves (8.23) for the case hy = —1.

(2) When hy > 0, from (8.7),(8.26) and (8.27), we inductively get Hisp(ngt2) = O for
s < hg + 2. Combining this with (8.3) and (8.27), we get Puorng+1)] = Puar(hot1)) = 0.
Substituting this back to (8.4), we obtain W, (x,+1)) = 0. Together with (8.5), we inductively
get Wigr(ny+1y) = 0. Combining this with (8.4), we obtain

(s + D)1+ r-1)(ho+1)] = (8= D)1Ppe(s-1)r(ho+1))-

As in Case I, we inductively get ®por(no+1)) = 0. This proves (8.23) for the case hy > 0 and thus
completes the proof of Theorem 1.2 for the case A, = 0 and A\; # 0. n

Case III: In this case, we assume A, # 0 and \; # 0. Considering the coefficients of 23z,2,

3 3,25 3,3 - -
2207, 23222, and 2323 respectively, in (8.1), we get

45‘1’[0400] + 277‘11[0220} - 7)5‘1’[1210] - 772‘1’[1030} - 779‘11[0220] =0,
4(2€% 4 1) W 0400, + 20(¥210] + £V 0220) — 1(26 P 9200
+ (14 &)W 1a10) — 20°¥p020) — 70¥(1210) = 0,
4(&% + 28) W i0a00) + 20(¥2200] + EWn210) — M(2(1 + %) ¥ 2200
+ &V 21q)) — 3772‘1’[3010] — N0V [2900) = 0,
452‘11[0400} + 2n&W2200) — n2§ W (2200] — 4772‘1/[4000] =0.

Simplifying the above from the last equation to the first one, we get

A% Wi0400) = 4177 pa00), (8.29)
4%+ 28) Wiga00) + 77{(—252 — 0)Wig000] + 5‘11[1210]} = 3772q’[3010]> (8.30)
4(28% + 1) Wjoao0) + n{ — 26W 2000] + 26 W 0220 } = 207" V029, (8.31)
45‘1’[0400] + 77{ - fq’[lzlo} + (2 - 9)‘11[0220]} = 772‘11[1030}- (8-32)
A direct computation shows that
(230 = (2= 2)E(E +26) + (2 — (26 +1) - 267 -

=267 — 26(€° +26) + 262(26% + 1) — 26%€ + (=36 + 26(&% + 26) — £2(26° + 1)) = 0.
We also have the following computation:

- (2 - 29)5{(_252 - 9)\1/[2200] + 5@[1210]} + (2 - 9)52{ - 26‘11[2200] + 25‘1’[0220]}
- 253{ —&Wa10 + (2 — 9)\11[0220}}

=(=8){(2-20)(0 — 2) + 26*(2 — 0) } Upaang) + E{ — (2 — 20) + 26*} V101 (8.34)
— & —2(2-0)+2(2—0) } Ve

=0.
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Computing (2 — 36)(8.29) — (2 —260)£(8.30) + (2 — 0)£%(8.31) — 2£3(8.32) and making use of
(8.33)-(8.34), we get

(2 - 39)4\1’[4000] - (2 - 20)53‘1’[3010} + (2 - 9)622\11[2020] - 253\11[1030] - O (835)
Substituting (8.4) into (8.35), we get

(2 — 30) 4% 000) — (2 — 20)E3W 3010 + (2 — 0)E72W po20) — 26> W (1030
=(2 — 30)4EPp100) — (2 — 29)53{<1 + 52)q)[2100} + ﬁq)[mo]}

+ (2 = 0)E2{EPp100) + (1 4 ) Pu110) + EPlo120) }

- 253{5‘13[1110] +(1+ 52)‘1)[0120 }
=£{4(2—-30) — 3(2 — 20)(1 + &) + 26%(2 — 6) } Pp2109)

+e —3( 2—29)+2(2— 0)(1 4 €%) — 262} pr1g

+&{2(2-0) — 2 - 26%} Pjp1a)
= — 4¢0° ‘b[zwo +§ 20°®(1110) = —2£6%(2Ppa100) + (—E)Ppa110))-

Since § # 0 with the assumption that A, # 1 5. Hence we get 2®(2100) + (—&)Pp110) = 0. From
(8.3), we get

0 = 2®p100] + (=) Pi110) = 2(Hpio1) — Hpporo) — E(EHpon + Hor1) — 2Hpozo)).  (8.37)

(8.36)

By our normalization (8 9) we have H[1101] = H[Olll} = 0. Thus we get 2H [2010] — 2§H[1020] = 0.
By the reality of H, we obtain:

2(1 — 5)%H[2010] ++v—-1- 2(1 + f)%H[gom] = 0.
When A, # 1/2, then 1 — & # 0. Hence we get Hygig) = 0.
Collecting the terms of the form 2!7z,°* (0 < ¢ < 6) in (8.1), we get
|wn |1, Z \P[t/mnzzw' = 0.
t/4r/=3

Thus we get
Uipg) = 0 for t 4+ 7 = 3. (8.38)

Combining this with (8.4), we get

0 =Wis100) + (=€) Vp2110) + (—5)2‘1’[1120} (=€) W o130
=289 1200] — 2nP 3000 + {2 + )P 11200] + 2§ Ppo210) — 3ENP3000) — 77(1)[20101}
+ (= {25(13[1200] + 2(1 + & )Pro210] — 2577‘13[20101}
—5)3{25‘13[0210] — ENPpio20) + 7]‘1)[0030}}
(_2 + 352)77(13[3000] + (f - 253)77@[2010] + 6477(19[1020] - 5377(13[00301
:(1 - 39)77‘13[3000} + (_5)(1 - 2‘9)77‘1’[2010] + 52(1 - 9)77(1’[1020] + (—5)377@[0030}-

(8.39)
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Substituting (8.3) into the equation above, we get

(1 = 30)nH2001 + (=€) (1 — 29)77(51{[2001] + H[wn])
+ (=€)*(1 = 0)n(£Hpory + Hiooon) + (—€)*n€Higoan) = 0.

By (8.9), we have Hpg11) = Hoor) = 0. Hence we get —20%Hppgo = 0. When 6 # 0 or § # %,
we conclude that Hpo) = 0. Together with Hpag1g), the normalization in (8.3) and the reality
of H, we see that Hyp = 0 for s,h < 1. Substituting this back to (8.3) and (8.4), we get
Proro) = Pprirro) = 0 and thus also Vg =0 for t +r =4 and ¢/ +7' =3, t" +r" +1 = 3.

Collecting terms of the form z/z7-Z,>~" (0 <t <5) in (8.1), and making use of ¥yg,q) = 0,
we get

(8.40)

2—— § t'—r'
\wn] W, \Il[tfqu]znzn =0.
t'4+r'=3

Thus we get Wp1,q) = 0. Combining this with (8.4), we get

0 =101 + (=€) W11y + (—§)2‘I/[0121]
=2E®0201] — NPp001] + (—&){2(1 + £*)Plo201) — 26nPp2001) }
+ (=€) {2P(0201) — EnPpa011) + 7 Ppo021) | (8.41)
(—1+ 252)77(1)[2001] - 5377(13[1011] + 5277@[0021}
:(1 - 2‘9)77(1)[2001] + (_5)(1 - ‘9)77(1)[1011] + 5277@[0021]-

Substituting (8.3) into this equation, we get
(1 - 20)’[’/2H[1002} + (—f)(l — 9)77(25H[1002] + 2H[0012]) + €277£2H[0012] =0. (842)

By (8.9), we have Hgp19) = 0. Hence we get —GZH[loog] = 0. Since ¢ # 0, we see that Hjpog = 0.
By (8.38), we have W30 = 0. Combining this with (8.4), we get

Uio130) =26 P0210] — (§7Ppi020 — 7 Pp0030])
:2§(§H[0201} - 2H[0120]) = 2§2H[02o1]-

Here, we used the fact that @99 = Pjoo3g = 0 and Hjysp) = 0 for s,h < 1. Thus we get
Hip01) = 0. Now, combing the normalization in (8.4) with Ho1 = 0, Hjz010) = 0, Hpsrn) = 0
for s, h < 1, we conclude that H = 0. This completes the proof of Theorem 1.2 for the case of
A #0,n=2and m = 3.

(8.43)
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