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1 Introduction

A primary goal in this paper is to study the question that asks when a real analytic submanifold
M of codimension two in Cn+1 bounds a real analytic (up to M) Levi-flat hypersurface M̂ near

p ∈ M such that M̂ is foliated by a family of complex hypersurfaces moving along the normal
direction of M at p, and gives the invariant local hull of holomorphy of M near p. This question
is equivalent to the holomorphic flattening problem for M near p.
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To be more precise, we first discuss some basic holomorphic property for a real submanifold
in a complex space. For a point q in a real submanifold M ⊂ Cn+1, there is an immediate
holomorphic invariant, namely, the complex dimension CRM(q) of the tangent space of type
(1, 0) at q. CRM(q) is an upper semi-continuous function over M . q is called a CR point of M
if CRM(q′) ≡ CRM(q) for all q′(≈ q) ∈ M . Otherwise, q is called a CR singular point of M .
When M near p bounds a Levi-flat hypersurface foliated by a family of complex hypersurfaces
moving along the normal direction of M at p, then the tangent space of M at p is a complex
hyperplane. In this case p must be a CR singular point unless we are in the trivial and
uninteresting situation that M is a complex hypersurface itself.

Investigations for CR manifolds and CR singular manifolds have very different nature. There
is a vast amount of work related to the study of various problems for CR manifolds, which
goes back to the work of Poincaré [Po], Cartan [Cat] and Chern-Moser [CM]. The study of
submanifolds with CR singular points at least dates back to the fundamental paper of Bishop
[Bis] in 1965. Since then, many efforts have been paid to understand both the geometric and
analytic structures of such manifolds. Here, we mention the papers by Kenig-Webster [KW1-2],
Moser-Webster [MW], Bedford-Gaveau [BG], Huang-Krantz [HK], Huang [Hu1], Gong [Gon1-
3], Huang-Yin [HY1-2], Stolovitch [Sto], Dobeault-Tomassini-Zaitsev [DTZ1-2], Ahern-Gong
[AG], Coffman [Cof1-2], Lebl [Le1-2], Burcea [Va1], etc, and many references therein.

Let M ⊂ Cn+1 be a codimension two real submanifold with CR singular points. Then a
simple linear algebra computation shows that CRM(q) = n − 1 when q is a CR point, and
CRM(q) = n when q is a CR singular point. The general holomorphic (or, formal) flattening
problem is then to ask when M can be transformed, by a biholomorphic (formal equivalence,
respectively) mapping, to an open piece of the standard Levi-flat hyperplane (Cn×R1)×{0} ⊂
Cn+1. A good understanding to this problem is crucial for understanding many geometric,
analytic and dynamic properties of the manifolds. For instance, by a classical theorem of
Cartan, solving the problem when M bounds a real analytic (up to M) Levi-flat hypersurface
is equivalent to solving the holomorphic flattening problem of the manifold. Here, we refer
the reader to the papers by Kenig-Webster [KW1], Moser-Webster [MW], Huang-Krantz [HK],
Gong [Gon1-3], Stolovitch [Sto], Huang-Yin [HY1], Dobeault-Tomassini-Zaitsev[DTZ1], and
many references therein, for investigations along these lines.

The major difficulty for getting the flattening property for M lies in the complicated nature
of the CR singular points. And, in general, only non-degenerate CR singular points with a
rich geometric structure could be flattened. To be more precise, we use (z1, · · · , zn, w) for the
complex coordinates of Cn+1. We first make the following definition. For related concepts and
many intrinsic discussions on this matter, see the work in Stolovitch [Sto], Dobeault-Tomassini-
Zaitsev [DTZ1], and Huang-Yin [HY2]:

Definition 1.1. Let M be a codimmension two real submanifold in Cn+1. We say q ∈ M is
a non-degenerate CR singular point, or a non-degenerate complex tangent point, if there is a
biholomorphic change of coordinates which maps p to 0 and in the new coordinates (z, w), M
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is defined near 0 by an equation of the following form:

w =
n∑

j=1

(
|zj|2 + λj(z

2
j + z2

j )
)

+ o(|z|2) (1.1)

Here, 0 ≤ λ1, · · · , λn < ∞. {λ1, · · · , λn} (counting multiplicity) are called the Bishop invariants
of M at 0. We call λj an elliptic, parabolic or hyperbolic Bishop invariant of M at 0 in terms
of λj < 1/2, λj = 1/2, or λj > 1/2, respectively.

Notice that the set of Bishop invariants at a non-degenerate CR singular point p ∈ M
consists of the only second order biholomorphic invariants of M at p ∈ M . By the results in
Moser-Webster [MW] and Huang-Krantz [HK], in the case of complex dimension two (n+1 = 2),
any real analytic surface near an elliptic CR singular point can be flattened. On the other hand,
a generic real analytic surface near a parabolic or hyperbolic CR singular point can not be
flattened, though it can be formally flattened whenever the Bishop invariant is not exceptional.
See the work of Moser-Webster [MW], Gong [Gon 1-3] and a very recent paper by Ahern-Gong
[AG] on many discussions on this matter. Here, we recall that a Bishop invariant λ is called
non-exceptional if the following quadratic equation in ν has no roots of unity:

λν2 − ν + λ = 0. (1.2)

However, the situation for n > 1 is very different. Consider the following codimension two real
analytic submanifold in C3:

Example 1.1.

M := { w =
2∑

j=1

|zj|2 + 2<
( ∑

j1+j2≥3

aj1j2z
j1
1 zj2

2

)
+
√−1

∑
j1≥2,j2≥2

bj1j2
zj1
1 z2

j2 , bjl̄ = blj.} (1.3)

M has a non-degenerate CR singular point at 0 and all Bishop invariants of M at 0 are 0
and thus all elliptic. It was shown in Huang-Yin [HY2] ([Remark 2.7, HY2]) that (M, 0) can
not even be flattened to the order m if bj1j2

6= 0 for some j1 + j2 ≤ m. Namely, if bj1j2
6= 0 for

some j1 + j2 ≤ m, then there is no holomorphic change of variables (preserving the origin) such
that in the new coordinates, M is defined near 0 by an equation of the form w = ρ with the
property that =(ρ) vanishes at the origin to the order at least m.

Example 1.1 shows that in higher dimensions, the geometry from the nearby CR points
also play a role in the flattening problem, while in the two variables case, the nearby points
are totally real and can all be locally holomorphically flattened. Thus the nearby points in
the two dimension case has no influence for the holomorphic property at a non-degenerate CR
singular point. Indeed, suppose M is already flattened and is defined by an equation of the form
u = q(z, z), v = 0, where w = u+ iv. Then the complex hypersurface Su0 =: {w = u0 + i0} with
u0 ∈ R intersects M along a CR submanifold E of CR dimension (n−1) near p0 if Su0 intersects
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M (CR) transversally at p0. The points where Su0 is (CR) tangent to M are apparently CR
singular points of M . Recall a well-known terminology (see [T] and [Tu]): A point p in a
CR submanifold N is called a non-minimal point if N contains a proper CR submanifold S
containing p such that T

(1,0)
p S = T

(1,0)
p N. Hence, in such a terminology, we have the following

simple fact:

If M can be flattened, then all CR points in M are non-minimal CR points.

We mention that the necessary condition for the non-minimality of CR points already
appeared in the earlier work of Dobeault-Tomassini-Zaitsev [DTZ1-2] and Lebl [Le1-2] on the
study of the general complex Plateau problem, which looks for the Levi-flat varieties (even
maybe in the sense of current) bounded by the given manifolds.

Our main results, which we state below, demonstrate that, with the non-minimality as-
sumption at CR points, the existence of one Bishop invariant not being parabolic, namely, not
equal to 1

2
, is good enough for the formal flattening and the existence of just one elliptic Bishop

invariant suffices for the holomorphic flattening:

Theorem 1.2. Let M ⊂ Cn+1 with n > 1 be a codimension two smooth submanifold with
p ∈ M a non-degenerate complex tangent point p ∈ M . Suppose that one element λ from the
set of Bishop invariants of M at p is not parabolic, namely, not equal to 1

2
. Also assume that all

CR points of M near p are non-minimal. Then M can be formally flattened near p. Namely,
for any positive integer m, there is a holomorphic change of coordinates which maps p to 0 and
maps M to a manifold defined by an equation of the form w = ρ(z, z) with =ρ vanishing at
least to the order m at the origin.

We mention that the result in Theorem 1.2 holds even if M is assumed just to be a formal
submanifold with the same type of assumptions, or we need only assume that the set of non-
minimal CR points over M forms an open subset O with p ∈ O. (See Theorem 3.2 and Corollary
3.3.) However, as demonstrated even in the two dimensional case by Moser-Webster [MW] and
Gong [Gon1-3], more geometric structure is needed to get the holomorphic flattening in the
above theorem. Indeed, making use of the construction of holomorphic disks in Kenig-Webster
[KW1] and Huang-Krantz [HK], we have the following convergence result for Theorem 1.2 under
the assumption of at least one ellipticity for the Bishop invariants:

Theorem 1.3. Let M ⊂ Cn+1 with n > 1 be a codimension two real analytic CR manifold
with p ∈ M a non-degenerate complex tangent point (namely, a non-degenerate CR singular
point). Suppose one of the Bishop invariants λ of M at p is elliptic. Then M near p can be
holomorphically flattened if and only if all CR points of M near p are non-minimal.

As we mentioned above, by the classical Cartan theorem ([Cat]), Theorem 1.3 is equivalent
to the following geometric theorem:

Theorem 1.4. Let M ⊂ Cn+1 with n > 1 be a codimension two real analytic CR manifold with
p ∈ M a non-degenerate complex tangent point. Suppose one of the Bishop invariants λ of M
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at p is elliptic. Also assume that all CR points of M near p are non-minimal. Then the local
hull of holomorphy M̂ of M near p is a real analytic Levi-flat hypersurface which has M near
p as part of its real analytic boundary. Moreover M̂ is foliated by a family of smooth complex
hypersurfaces in Cn+1, that moves along the transversal direction of the tangent space of M at
p.

Example 1.5. Define M ⊂ C3 =: {(z1, z2, w)} by the following equation near 0:

w = q(z, z) + p(z, z) + iE(z, z).

Here q = |z1|2 + λ1(z
2
1 + z2

1) + |z2|2 + λ2(z
2
2 + z2

2) with 0 ≤ λ1, λ2 < ∞, and

p(z, z)+ iE(z, z) = µ1|z1|2(z1 +λ1z1)+µ2|z2|2(z2 +λ2z2)+µ1z1(|z2|2 +λ2z2
2)+µ2z2(|z1|2 +λ1z2

1).

Here µ1, µ2 are two complex numbers. Then, M is non-minimal at its CR points near its non-
degenerate CR singular point 0. (See Example 7.2.) Hence, our result says that when one of
the λ1, λ2 is not 1

2
, then M can be formally flattened at 0; and when one of the λ1, λ2 is less

than 1
2
, then M can be holomorphically flattened near 0.

In this example, M \ {0} near 0 is foliated by a family of three dimensional strongly pseu-
doconvex CR manifolds— the intersections of M with real hypersurfaces Kc : q(z, z) = c with
c ∈ R. (When both λ1, λ2 are elliptic, c > 0). Assume that one of the Bishop invariants {λ1, λ2}
is not elliptic. Then there is an orbit corresponding to c = 0, that extends to the CR singular
point with it as its non-smooth point. Also none of the orbits closes up near 0.

We next say a few words about the proof of our main geometric result: To prove Theorem
1.4, we first slice M near the complex tangent point p by a family of two dimensional complex
planes along the elliptic direction. We then get a family of elliptic Bishop surfaces. Now each
one bounds a three dimensional Levi flat CR manifold and their union forms a codimension one
subset M̃ in Cn+1 with M as part of its boundary. An analysis, based on Bishop disks, similar
to that in Kenig-Webster [KW1], and in particular, in Huang-Krantz [HK], shows that M̃ is a
real analytic hypersurface with M as part of its real analytic boundary. However, all we know
from this construction is that M̃ has only one Levi-flat direction (along the elliptic direction).

And it is not clear at all if M̃ is flat along the parameter directions. In fact, M̃ can not be Levi
flat without the non-minimality property from the nearby CR points. Now, the crucial issue is
that, with the assumption of the non-minimality at the nearby CR points, we can find a formal
transformation which makes M formally flattened, while any finite order truncation of this
transformation preserves M̃ . The existence of this transformation is the content of Theorem
3.1, which is a more general but also more technical version of Theorem 1.2. (Notice that in the

two dimensional setting, the uniqueness of M̃ is done normally by showing that M̃ is the local
hull of holomorphy of M and thus is invariant under biholomorphic transformation. However,
this is more or less equivalent to proving that M̃ is Levi-flat. Hence it can not be achieved in
this way in higher dimensions.) After this is done, we see that the Levi-form of M̃ vanishes
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to any high order as we like. Since M̃ is real analytic up to M , by the unique continuation
property for real-analytic functions, we conclude that the Levi-form of M̃ vanishes everywhere.
Thus, M̃ must be Levi-flat everywhere.

Most part of the paper is devoted to the proof Theorem 3.1 (a more general and more
technical version of Theorem 1.2). Here one sees an essential difference from arguments in the
two dimensional case. Indeed, the phenomenon is also different in this setting as there is no
need to impose the non-exceptional property for even a single Bishop invariant. Our basic idea
for the proof of Theorem 3.1 goes as follows: Suppose M in Theorem 3.1 is flattened to order
m − 1. We first normalize the mth-order of the imaginary part of the defining function of M
to fix all possible free choices of coordinates. This will be done in Theorem 4.2. Then we
show that the non-minimality of the nearby CR points forces the vanishing of such a normal
form. In §2 and §3, we will derive three basic equations that must be satisfied for M under the
non-minimality assumption. These will be used in §4 and §5 to prove Theorem 3.1.

Theorem 1.3 is equivalent to Theorem 1.4 by a classical result of Cartan which states that
a real analytic hypersurface is Levi-flat if and only if it can be transformed locally to an open
piece of the standard Levi-flat hyperplane defined by =w = 0. When all Bishop invariants
at p are elliptic, we mention that Theorem 1.4 can also be derived by combining the results
obtained in Dobeault-Tomassini-Zaitsev [DTZ1-2] and the work in a very recent preprint by
Burcea [Bur2] with a different approach. (The work in Dobeault-Tomassini-Zaitsev [DTZ1-2]
contains other very nice global results.) The arguments based on Dobeault-Tomassini-Zaitsev
[DTZ1-2] and Burcea [Bur2] depend strongly on all the ellipticity of Bishop invariants and
requires that the CR orbits in M near the CR singular point form a family of compact strongly
pseudoconvex manifolds shrinking down to the complex tangent such that the Harvey-Lawson
theorem applies. This is certainly not the case even when one non-elliptic Bishop invariant at
the CR singular point appears.

We also include an appendix to give a detailed proof of Theorem 3.1 in the special case
of n = 2 and m = 3. The reader may like to read the Appendix before reading §4 − §6. By
including such an appendix, we hope it will help the reader to see the basic ideas, through a
simple case, the complicated argument for the proof of Theorem 3.1 in the general setting in
§4− §6.

Acknowledgment: The major part of the paper was completed in the summer of 2011
when the first author was visiting Wuhan University. The first author would like to thank the
School of Mathematics and Statistics, Wuhan University for the hospitality during his stay.
Part of the work in the paper was done while the second author was taking a year long visit at
Rutgers University at New Brunswick in 2009. The second author likes to thank this institute
for the hospitality during his stay. The second author also likes very much to thank Nordine
Mir for his many helps both in his mathematics and in other arrangements during his stay at
the University of Rouen, through a European Union postdoctoral fellowship.
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2 An immediate consequence for non-minimality near

CR points

Let (M, 0) be a smooth submanifold of codimension two in Cn+1 with 0 ∈ M as a CR singular
point. Assume that the CR singular point at 0 ∈ M is non-degenerate as defined in Definition
1.1 such that after a holomorphic change of coordinates, M near 0 is defined by an equation of
the form:

w = q(z, z) + p(z, z) + iE(z, z), (2.1)

where q(z, z) =
∑n

i=1(|zi|2 + λi(z
2
i + z2

i )) with 0 ≤ λ1, · · · , λn < ∞ being the Bishop invariants
of M at 0, Ord(p), Ord(E) ≥ 3 and both p(z, z) and E(z, z) are real-valued smooth functions.
For convenience of notation, we also write

F (z, z) = p(z, z) + iE(z, z) and G(z, z) = q(z, z) + p(z, z). (2.2)

Then we have
w = q(z, z) + F (z, z) = G(z, z) + iE(z, z).

In what follows, as is standard in the literature, we write χα = ∂χ
∂zα

, χα = ∂χ
∂zα

with 1 ≤ α ≤ n
for a smooth function χ(z, z) in z. For 1 ≤ j ≤ n− 1, we define

Lj =(Gn − iEn)
∂

∂zj

− (Gj − iEj)
∂

∂zn

+ 2i(GnEj −GjEn)
∂

∂w

:=A
∂

∂zj

−B(j)
∂

∂zn

+ C(j)
∂

∂w
.

(2.3)

Then we have

Lj(−w + G + iE) = (Gn − iEn)(Gj + iEj)− (Gj − iEj)(Gn + iEn)

− 2i(GnEj −GjEn) = 0,

Lj(−w + G + iE) = (Gn − iEn)(Gj − iEj)− (Gj − iEj)(Gn − iEn) = 0.

Hence L1, · · · , Ln−1 are complex tangent vector fields of type (1, 0) along M near 0. Moreover,
for 1 ≤ j, k ≤ n− 1, a straightforward computation shows that

[Lj, Lk] =

[
A

∂

∂zj

−B(j)
∂

∂zn

+ C(j)
∂

∂w
, A

∂

∂zk

−B(k)
∂

∂zn

+ C(k)
∂

∂w

]

=λ(1jk)
∂

∂zk

+ λ(2jk)
∂

∂zn

+ λ(3jk)
∂

∂w
+ λ(4jk)

∂

∂zj

+ λ(5jk)
∂

∂zn

+ λ(6jk)
∂

∂w
,

(2.4)

where

λ(1jk) = A · (A)j −B(j)(A)n, λ(4jk) = −A · Ak + B(k)An,

λ(2jk) = −A · (B(k))j + B(j)(B(k))n, λ(5jk) = A · (B(j))k −B(k)(B(j))n,

λ(3jk) = A · (C(k))j −B(j)(C(k))n, λ(6jk) = −A · (C(j))k + B(k)(C(j))n.

(2.5)

7



Notice that
λ(1jk) = −λ(4kj), λ(2jk) = −λ(5kj), λ(3jk) = −λ(6kj). (2.6)

In what follows, write wj = zj + 2λjzj for 1 ≤ j ≤ n. Suppose that E 6≡ 0. We write in what
follows that

Ord(E) = m and H(z, z) := E(m)(z, z). (2.7)

From (2.3), we get the following approximation properties:

A = wn + O(2), B(j) = wj + O(2), C(j) = 2iΦ(j) + O(m + 1). (2.8)

Here (and also in what follows), we have

Φ(j) = wnHj − wjHn, and we write Φ = Φ(1). (2.9)

For future applications, we also write

Ψ(jk) = wnwn(Φ(j))k − wnwk(Φ(j))n + wk · Φ(j), Ψ = Ψ(11). (2.10)

Substituting these approximation properties to (2.5), we obtain

λ(1jk) =
(
wn + O(2)

) · ((wn)j + O(1)
)− (

wj + O(2)
) · ((wn)n + O(1)

)
= −wj + O(2),

λ(2jk) =− (
wn + O(2)

) · ((wk)j + O(1)
)

+
(
wj + O(2)

) · ((wk)n + O(1)
)

= −δjkwn + O(2),

λ(3jk) =
(
wn + O(2)

) · (− 2iΦ(k) + O(m + 1)
)

j
− (

wj + O(2)
) · (− 2iΦ(k) + O(m + 1)

)
n

=− 2iwn(Φ(k))j + 2iwj(Φ(k))n + O(m + 1).

Combining these relations with (2.6), we get

λ(1jk) =− wj + O(2), λ(2jk) = −δjkwn + O(2),

λ(4jk) =wk + O(2), λ(5jk) = δjkwn + O(2),

λ(3jk) =− 2iwn(Φ(k))j + 2iwj(Φ(k))n + O(m + 1),

λ(6jk) =− 2iwn(Φ(j))k + 2iwk(Φ(j))n + O(m + 1).

(2.11)

In what follows, we further assume that M is non-minimal at its CR points. Write S for
the set of CR singular points of M near 0. Suppose that 0 is not an isolated point in S. Notice
that T

(1,0)
0 M = span{ ∂

∂z1
|0, · · · , ∂

∂zn
|0}. For p0 ∈ S close to 0, we easily see that T

(1,0)
p0 M =

span{X1, · · · , Xn} for certain tangent vectors of type (1, 0) of the form: Xj = ∂
∂zj
|p0 + bj

∂
∂w
|p0 ,

j = 1, · · · , n. Since Xj(−w + q + F ) = 0, we get zj + 2λjzj = O(|z|2) when q0 ≈ 0. Write
zj = xj +

√−1yj. Then (1 + 2λj)xj = O(|z|2), (1 − 2λj)yj = O(|z|2) for j = 1, · · · , n. By the
implicit function theorem, we conclude that S is contained in a submanifold of M near 0 which
has at most real dimension n; and when none of the Bishop invariants of M at 0 is parabolic,
the only CR singular point of M near 0 is 0 itself.
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We next claim that there is an open dense subset Oi of M near 0 such that for any q0 ∈ Oi,
at q0, it holds that

[Li, Li] 6∈ Span{Lj, Lj}1≤j≤n−1 for 1 ≤ i ≤ n− 1. (2.12)

We prove the claim by contradiction. Suppose that we have at q0 ∈ Oi the following:

[Li, Li] =
n−1∑

l=1

(
α̂lLl + β̂lLl

)

=
n−1∑

l=1

α̂l

(
A

∂

∂zl

−B(l)
∂

∂zn

+ C(l)
∂

∂w

)
+

n−1∑

l=1

β̂l

(
A

∂

∂zl

−B(l)
∂

∂zn

+ C(l)
∂

∂w

)
.

(2.13)

Then by considering the coefficients of ∂
∂zl

and ∂
∂zl

for 1 ≤ l ≤ n− 1, we obtain

α̂l = β̂l = 0 for l 6= i, λ(4ii) = Aα̂i, λ(5ii) = −B(i)α̂i.

Eliminating α̂i from the above, we get Aλ(5ii) + B(i)λ(4ii) = 0. Combining this with the approx-
imation properties (2.8) and (2.11), we get |wi|2 + |wn|2 +O(3) = 0 at q0 ∈ Oi. Now, write this
equation as

|wi|2 + (1 + 2λn)2x2
n + (1− 2λn)2y2

n + h0 + h1xn + h2x
2
n + O(x3

n) = 0. (2.14)

Notice that when M is real analytic, it defines a closed proper analytic variety over M and Oi

can be simply defined as its compliment. In general, suppose it defines a subset which contains
an open subset Vi with 0 ∈ Vi. Differentiating (2.14) with respect to xn, we get the following
over Vi: (

2(1 + 2λn)2 + 2h2

)
xn = −h1 + O(x2

n).

Since h2 = o(1), by the implicit function theorem, the above defines a proper submanifold in
M . This is contradiction.

In the following, we write O = ∩n−1
i=1Oi \ S, which O is an open dense subset of M near 0.

In particular, at q0(≈ 0) ∈ O, we have

T := [L1, L1] 6∈ Span{Lj, Lj}1≤j≤n−1.

Hence, by the Frobenius theorem, the non-minimality at the subset O of the CR points (suffi-
ciently close to 0) is equivalent to the following property when restricted to the subset O:

[Li, Lj], [[Li, Lj], Lk] ∈ Span
{{Lh, Lh}1≤h≤n−1, T

}
for 1 ≤ i, j, k ≤ n− 1. (2.15)

Recall the following notation we set up before:

T = λ(111)
∂

∂z1

+ λ(211)
∂

∂zn

+ λ(311)
∂

∂w
+ λ(411)

∂

∂z1

+ λ(511)
∂

∂zn

+ λ(611)
∂

∂w
.
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Next we give equivalent conditions for (2.15), which are much easier to apply.

First, since [Lj, Lk] ∈ Span{{Lh, Lh}1≤h≤n−1, T} with 1 ≤ j, k ≤ n− 1 over M \S, we have,
over M \ S, the following

[Lj, Lk] =
n−1∑

l=1

(αlLl + βlLl) + γT for some coefficients αl, βl, γ.

Namely, we have

λ(1jk)
∂

∂zk

+ λ(2jk)
∂

∂zn

+ λ(3jk)
∂

∂w
+ λ(4jk)

∂

∂zj

+ λ(5jk)
∂

∂zn

+ λ(6jk)
∂

∂w

=
n−1∑

l=1

αl

(
A

∂

∂zl

−B(l)
∂

∂zn

+ C(l)
∂

∂w

)
+

n−1∑

l=1

βl

(
A

∂

∂zl

−B(l)
∂

∂zn

+ C(l)
∂

∂w

)

+ γ

(
λ(111)

∂

∂z1

+ λ(211)
∂

∂zn

+ λ(311)
∂

∂w
+ λ(411)

∂

∂z1

+ λ(511)
∂

∂zn

+ λ(611)
∂

∂w

)
.

Comparing the coefficients of { ∂
∂zh

, ∂
∂zh
}1≤h≤n−1,

∂
∂w

, ∂
∂w

, respectively, we get, over O, the
following:

(I) If j 6= 1 and k 6= 1, then we have αl, βl = 0 for l 6= 1, l 6= j, l 6= k. Moreover, we have

A · β1 + γ · λ(111) = 0, A · α1 + γ · λ(411) = 0, λ(1jk) = A · βk, λ(4jk) = A · αj,

λ(2jk) = −β1 ·B(1) − βk ·B(k) + γ · λ(211), λ(3jk) = β1 · C(1) + βk · C(k) + γ · λ(311),

λ(5jk) = −α1 ·B(1) − αj ·B(j) + γ · λ(511), λ(6jk) = α1 · C(1) + αj · C(j) + γ · λ(611).

(2.16)

(II) If j = 1 but k 6= 1, then we get (i) αl = 0 for l 6 1 and (ii) βl = 0 for l 6= 1, l 6= k.
Moreover, we have

A · β1 + γ · λ(111) = 0, λ(41k) = A · α1 + γ · λ(411), λ(11k) = A · βk,

λ(21k) = −β1 ·B(1) − βk ·B(k) + γ · λ(211), λ(31k) = β1 · C(1) + βk · C(k) + γ · λ(311),

λ(51k) = −α1 ·B(1) + γ · λ(511), λ(61k) = α1 · C(1) + γ · λ(611).

(2.17)

Back to (2.16), we get from its first line that

Aβ1 = −γ · λ(111), Aα1 = −γ · λ(411), Aβk = λ(1jk), Aαj = λ(4jk).

Multiplying A and A to the second and the third lines in (2.16), respectively, and making use
of the just obtained relations, we obtain over O the following:

Aλ(2jk) = γ · λ(111) ·B(1) − λ(1jk) ·B(k) + Aγ · λ(211),

Aλ(3jk) = −γ · λ(111) · C(1) + λ(1jk) · C(k) + Aγ · λ(311),

Aλ(5jk) = γ · λ(411) ·B(1) − λ(4jk) ·B(j) + Aγ · λ(511),

Aλ(6jk) = −γ · λ(411) · C(1) + λ(4jk) · C(j) + Aγ · λ(611).
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After rewriting, we get
(
A · λ(211) + B(1) · λ(111)

) · γ =Aλ(2jk) + λ(1jk) ·B(k),(
A · λ(311) − C(1) · λ(111)

) · γ =Aλ(3jk) − λ(1jk) · C(k),(
A · λ(511) + B(1) · λ(411)

) · γ =Aλ(5jk) + λ(4jk) ·B(j),(
A · λ(611) − C(1) · λ(411)

) · γ =Aλ(6jk) − λ(4jk) · C(j).

(2.18)

Thus we get from the first and the last equations in (2.18) the following relation over O:

(A · λ(2jk) + B(k) · λ(1jk)) · (A · λ(611) − C(1) · λ(411))

= (A · λ(211) + B(1) · λ(111)) · (A · λ(6jk) − C(j) · λ(4jk))
(2.19)

After taking a limit, we see the equation in (2.19) holds over M near 0.

Next, we solve (2.17) by the same argument as that used to solve (2.16). In fact, we get
from the first line of (2.17) that

Aβ1 = −γ · λ(111), Aα1 = λ(41k) − γ · λ(411), Aβk = λ(11k).

Multiplying A and A to the second and the third lines of the equations in (2.17), respectively,
and using the just obtained relations, we have over M \ S

Aλ(21k) = γ · λ(111) ·B(1) − λ(11k) ·B(k) + Aγ · λ(211),

Aλ(31k) = −γ · λ(111) · C(1) + λ(11k) · C(k) + Aγ · λ(311),

Aλ(51k) = −(λ(41k) − γ · λ(411)) ·B(1) + Aγ · λ(511),

Aλ(61k) = (λ(41k) − γ · λ(411)) · C(1) + Aγ · λ(611).

Rearranging the terms and replacing γ by γ̂, we get over M \ S
(
Aλ(211) + λ(111) ·B(1)

) · γ̂ =Aλ(21k) + λ(11k) ·B(k),(
Aλ(311) − λ(111) · C(1)

) · γ̂ =Aλ(31k) − λ(11k) · C(k),(
Aλ(511) + λ(411) ·B(1)

) · γ̂ =Aλ(51k) + λ(41k) ·B(1),(
Aλ(611) − λ(411) · C(1)

) · γ̂ =Aλ(61k) − λ(41k) · C(1).

(2.20)

From the first and the last equations in (2.20), we see that, after taking a limit, the following
equation holds near 0:

(A · λ(21k) + B(k) · λ(11k)) · (A · λ(611) − C(1) · λ(411))

= (A · λ(211) + B(1) · λ(111)) · (A · λ(61k) − C(1) · λ(41k)).
(2.21)

Next we will examine [L1, T ]. A direct computation shows that

[L1, T ] = Γ(1)
∂

∂z1

+ Γ(2)
∂

∂zn

+ Γ(3)
∂

∂w
+ Γ(4)

∂

∂z1

+ Γ(5)
∂

∂zn

+ Γ(6)
∂

∂w
. (2.22)
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where

Γ(1) = A(λ(111))1 −B(1)(λ(111))n,

Γ(2) = A(λ(211))1 −B(1)(λ(211))n,

Γ(3) = A(λ(311))1 −B(1)(λ(311))n,

Γ(4) = A(λ(411))1 −B(1)(λ(411))n − λ(111)A1 − λ(211)An − λ(411)A1 − λ(511)An,

Γ(5) = A(λ(511))1 −B(1)(λ(511))n + λ(111)(B(1))1 + λ(211)(B(1))n + λ(411)(B(1))1 + λ(511)(B(1))n,

Γ(6) = A(λ(611))1 −B(1)(λ(611))n − λ(111)(C(1))1 − λ(211)(C(1))n − λ(411)(C(1))1 − λ(511)(C(1))n.

(2.23)

Suppose that over O we have

[L1, T ] =
n−1∑

h=1

(
κ(h)Lh + σ(h)Lh

)
+ τT

=
n−1∑

h=1

κ(h)

(
A

∂

∂zh

−B(h)
∂

∂zn

+ C(h)
∂

∂w

)
+

n−1∑

h=1

σ(h)

(
A

∂

∂zh

−B(h)
∂

∂zn

+ C(h)
∂

∂w

)

+ τ
(
λ(111)

∂

∂z1

+ λ(211)
∂

∂zn

+ λ(311)
∂

∂w
+ λ(411)

∂

∂z1

+ λ(511)
∂

∂zn

+ λ(611)
∂

∂w

)
.

Then combining this with (2.22), we get κ(h) = 0, σ(h) = 0 for h 6= 1 and

Γ(1) = A · σ(1) + τ · λ(111), Γ(4) = A · κ(1) + τ · λ(411),

Γ(2) = −B(1) · σ(1) + τ · λ(211), Γ(3) = C(1) · σ(1) + τ · λ(311),

Γ(5) = −B(1) · κ(1) + τ · λ(511), Γ(6) = C(1) · κ(1) + τ · λ(611).

(2.24)

We get from the first line in (2.24) that

Aσ(1) = Γ(1) − τ · λ(111), Aκ(1) = Γ(4) − τ · λ(411).

Multiplying A and A to the second and the third lines of the equations in (2.24), respectively,
and using the just obtained relations, we have over O

AΓ(2) = −B(1) · (Γ(1) − τ · λ(111)) + Aτ · λ(211),

AΓ(3) = C(1) · (Γ(1) − τ · λ(111)) + Aτ · λ(311),

AΓ(5) = −B(1) · (Γ(4) − τ · λ(411)) + Aτ · λ(511),

AΓ(6) = C(1) · (Γ(4) − τ · λ(411)) + Aτ · λ(611).

Rearranging the terms, we get over O
(
Aλ(211) + λ(111) ·B(1)

) · τ =AΓ(2) + Γ(1) ·B(1),(
Aλ(311) − λ(111) · C(1)

) · τ =AΓ(3) − Γ(1) · C(1),(
Aλ(511) + λ(411) ·B(1)

) · τ =AΓ(5) + Γ(4) ·B(1),(
Aλ(611) − λ(411) · C(1)

) · τ =AΓ(6) − Γ(4) · C(1).

(2.25)
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As before, from the first two equations in (2.25), we obtain, near 0, the following:

(A · Γ(2) + Γ(1) ·B(1)) · (A · λ(311) − λ(111) · C(1))

=(A · Γ(3) − Γ(1) · C(1)) · (A · λ(211) + λ(111) ·B(1)).
(2.26)

At last, if both [Lj, Lk] and [L1, T ] are contained in the span of {Lh, Lh}1≤h≤n−1 and T .
Then we have

[Lk, T ] = −[
L1, [L1, Lk]

]− [
L1, [Lk, L1]

] ∈ Span{{Lh, Lh}1≤h≤n−1, T}.

Summarizing the above, we have proved the following:

Proposition 2.1. Let (M, 0) be a 2n-dimensional real manifold in Cn+1 defined by (2.1).
Suppose M is non-minimal at the CR points near the origin. Then there is an open dense
subset O of M near 0 such that the systems (2.18), (2.20) and (2.25) are solvable over O with
unknowns γ, γ̂, τ , respectively. In particular, when M is non-minimal at the CR points near
the origin, we have (2.19), (2.21), and (2.26) near the origin.

We mention that (2.19), (2.21), and (2.26) are what we need for the proof of Theorem 1.2.

3 Derivation of three basic equations and statement of

Theorem 3.1

Let (M, 0) be a (2n)-dimensional smooth real submanifold in Cn+1 defined by (2.1). Suppose
that M is non-minimal at its CR points near 0 and the order of E(z, z) is m(≥ 3). We first
study three basic relations for terms in E(m), by making use of (2.19), (2.21) and (2.26).

By (2.8) and (2.11), we have

A · λ(2jk) + B(k) · λ(1jk) = (wn + O(2)) · (−wnδjk + O(2)) + (wk + O(2)) · (−wj + O(2))

= −(|wn|2 · δjk + wjwk) + O(3),

A · λ(6jk) − C(j) · λ(4jk) = (wn + O(2)) · λ(6jk) − C(j) · (wk + O(2))

= wn · λ(6jk) − wkC(j) + O(m + 2)

= wn · (−2iwn) · (Φ(j))k + wn · 2iwk(Φ(j))n − 2iwk · Φ(j) + O(m + 2)

= −2iΨ(jk) + O(m + 2).

Substituting these relations to (2.19), we get

(|wn|2 · δjk + wjwk) · (−Ψ(11) + O(m + 2)) + O(m + 4)

= (|wn|2 + |w1|2) · (−Ψ(jk) + O(m + 2)) + O(m + 4).
(3.1)
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Hence we obtain

(|wn|2 · δjk + wjwk) ·Ψ(11) = (|wn|2 + |w1|2) ·Ψ(jk). (3.2)

Notice that (2.21) is the same as (2.19) except that j is replaced by 1. By the same method
as that used to handle (2.19), we get the following equation which is the same as (3.2) except
that j is replaced by 1.

(|wn|2 · δ1k + w1wk) ·Ψ(11) = (|wn|2 + |w1|2) ·Ψ(1k). (3.3)

We next derive an equation from (2.26). From (2.8), (2.11) and (2.23), we obtain

Γ(1) =(wn + O(2)) · (−2λ1 + O(1))− (w1 + O(2)) ·O(1) = −2λ1wn + O(2),

Γ(2) =(wn + O(2)) ·O(1)− (w1 + O(2)) · (−2λn + O(1)) = 2λnw1 + O(2),

1

2i
Γ(3) =(wn + O(2)) · (− wnΦ1 + w1Φn + O(m + 1)

)
1

− (w1 + O(2)) · (− wnΦ1 + w1Φn + O(m + 1)
)

n

=− wn

(
wnΦ1 − w1Φn

)
1
+ w1

(
wnΦ1 − w1Φn

)
n

+ O(m + 1).

(3.4)

Hence we have

AΓ(2) + B(1)Γ(1) = (wn + O(2)) · (2λnw1 + O(2)) + (w1 + O(2)) · (−2λ1wn + O(2))

= 2λnwnw1 − 2λ1w1wn + O(3).
(3.5)

From (2.8), (2.10) and (3.4), we obtain

1

2i
(AΓ(3) − Γ(1)C(1))

=
(
wn + O(2)

) ·
{
− wn

(
wnΦ1 − w1Φn

)
1
+ w1

(
wnΦ1 − w1Φn

)
n

+ O(m + 1)
}

− (− 2λ1wn + O(2)
) · (− Φ + O(m + 1)

)

=− wn

(
wnwnΦ1 − wnw1Φn

)
1
+ w1

(
wnwnΦ1 − wnw1Φn

)
n

− w1

(
wnΦ1 − w1Φn

)− 2λ1wnΦ + O(m + 2)

=− wn

(
Ψ− w1Φ

)
1
+ w1

(
Ψ− w1Φ

)
n
− w1

(
wnΦ1 − w1Φn

)− 2λ1wnΦ + O(m + 2)

=− wnΨ1 + w1Ψn + O(m + 2).

(3.6)

By (2.8) and (2.11), we get

1

2i
(Aλ(311) − λ(111)C(1)) =(wn + O(2)) · {− wnΦ1 + w1Φn + O(m + 1)

}

− (−w1 + O(2)) · {− Φ + O(m + 1)
}

=− wnwnΦ1 + wnw1Φn − w1Φ + O(m + 2)

=−Ψ + O(m + 2),

Aλ(211) + B(1)λ(111) =(wn + O(2)) · (−wn + O(2)) + (w1 + O(2)) · (−w1 + O(2))

=− (|wn|2 + |w1|2) + O(3).

(3.7)
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Substituting (3.5)-(3.7) into (2.26), we obtain

− (|wn|2 + |w1|2 + O(3)
) · {− wnΨ1 + w1Ψn + O(m + 2)

}

=
(
2λnwnw1 − 2λ1w1wn + O(3)

) · {−Ψ + O(m + 2)
}
.

Hence we get

(|wn|2 + |w1|2
) · (wnΨ1 − w1Ψn

)
+

(
2λnwnw1 − 2λ1w1wn

) ·Ψ = 0. (3.8)

Now, for convenience of the reader, we put together, in the following, the equations in (3.2),
(3.3) and (3.8), that will be all we need to use to prove Theorem 1.2:

(|wn|2 · δ1k + w1wk) ·Ψ(11) = (|wn|2 + |w1|2) ·Ψ(1k), 1 < k < n

(|wn|2 · δjk + wjwk) ·Ψ(11) = (|wn|2 + |w1|2) ·Ψ(jk), 1, j, k < n(|wn|2 + |w1|2
) · (wnΨ1 − w1Ψn

)
+

(
2λnwnw1 − 2λ1w1wn

) ·Ψ = 0 with

Ψ(jk) = wnwn(Φ(j))k − wnwk(Φ(j))n + wk · Φ(j), Ψ = Ψ(11), where

Φ(j) = wnHj − wjHn, Φ = Φ(1), H = E(m), wl = zl + 2λlzl for 1 ≤ l ≤ n.

(3.9)

Notice that when n = 2, the first two equations in (3.9) disappear and we only have the
third one to use.

We will use (3.9) to prove the following theorem, which includes Theorem 1.2 as its special
case:

Theorem 3.1. Let (M, 0) be a (2n)-dimensional smooth real submanifold in Cn+1 defined by
(2.1). Suppose that there exists an i ∈ [1, n] such that λi 6= 1/2. We further suppose that
M is non-minimal at its CR points near 0. Then for any positive integer N , there exists a
holomorphic transform of the special form (z, w) → (z′ = z, w′ = w + o(|z|2, w)) such that in
the new coordinates, M is defined by an equation of the form: w′ = ρ(z′, z′) with =ρ vanishing
at least to the order N .

Remark 3.1. Let M be a formal (2n)-manifold in Cn+1 near 0 defined by a formal equation
of the form w = q(z, z) + O(|z|3). Here, as before, q(z, z) =

∑n
i=1(|zi|2 + λi(z

2
i + z2

i )) with
0 ≤ λ1, · · · , λn < ∞. Then we can similarly define the formal vector fields {L1, · · · , Ln−1, T}.
We call that M is formally non-minimal if (2.19), (2.21), and (2.26) hold in the formal sense.
Then the exact proof for Theorem 3.1 can be used to prove the following:

Theorem 3.2. Let (M, 0) be a (2n)-dimensional formal submanifold in Cn+1 defined by (2.1).
Suppose that there exists an i ∈ [1, n] such that λi 6= 1/2. Further assume that M is formally
non-minimal. Then for any positive integer N , there exists a holomorphic transform of the
special form (z, w) → (z′ = z, w′ = w + o(|z|2, w)) such that in the new coordinates, M is
defined by an equation of the form: w′ = ρ(z′, z′) with =ρ vanishing at least to the order N .
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As a corollary, when M is smooth near the non-degenerate CR singular point p = 0, defined
by (2.1), and when the set O of non-minimal CR points has p = 0 in its closure, then one sees
that (2.19), (2.21), and (2.26) hold in an open subset of Cn that has 0 in its boundary. We see
that they must hold for all z in a neighborhood of 0 ∈ Cn in the formal sense. Hence, we see
that M is formally non-minimal as just defined. Thus we have the following:

Corollary 3.3. Let (M, 0) be a (2n)-dimensional smooth submanifold in Cn+1 defined by (2.1)
near 0. Suppose that there exists an i ∈ [1, n] such that λi 6= 1/2. Further assume that the
set of non-minimal CR points of M forms an open subset with 0 in its closure . Then for any
positive integer N , there exists a holomorphic transform of the special form (z, w) → (z′ =
z, w′ = w + o(|z|2, w)) such that in the new coordinates, M is defined by an equation of the
form: w′ = ρ(z′, z′) with =ρ vanishing at least to the order N .

We notice that under the hypothesis in Corollary 3.3, when M is real analytic, it is easy to
see that M must be non-minimal at any CR point near p = 0. Hence, Corollary 3.3 does not
give any new result in the real analytic category.

4 Formal flattening near a CR singular point: Proof of

Theorem 3.1—Part I

Before reading §4-§6, the reader is suggested to read the Appendix in §8 for the proof in the
special case when n = 2,m = 3, to see basic ideas behind all these complicated computations.

We use the notations and definitions set up so far for the proof of Theorem 3.1. Due to
the complicated nature of the argument, we divided our proof into two parts. In this part, we
give an initial normalization by using biholomorphic change of coordinates without involving
the non-minimality at CR points.

Throughout this and the next sections, we also set up the following convention:

E(I,J) = 0 if one of the indices in I or J is negative. (4.1)

For quantities a, b1, · · · , bt, we write

a = F{b1, · · · , bt} or a = F{(bj)1≤j≤t}

if a =
∑t

j=1(cjbj + djbj). Here, when b′js are complex numbers, we require that cj, dj are
complex numbers. When a, bj are polynomials in (z, z), we require cj, dj are polynomials in
(z, z), too.

For §4 − §6, we make the range of indices j, k ∈ [2, n − 1] if n ≥ 3. For any homogeneous
polynomial χ(z, z) of degree k ≥ 1, write

χ =
∑

α≥0,β≥0,|α|+|β|=k

H(α,β)z
αzβ.
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Set

ξ = 2λn, η = 2λ1, θ = 1− ξ2,

H[tsrh] = H(ten+se1,ren+he1) for t + s + r + h = m,

Φ[tsrh] = Φ(ten+se1,ren+he1) for t + s + r + h = m,

Ψ[tsrh] = Ψ(ten+se1,ren+he1) for t + s + r + h = m + 1.

(4.2)

Here ej is the n-tuple with its jth element 1 and zero for the others. By (2.9), we have

Φ[tsrh] =ξ(h + 1)H[ts(r−1)(h+1)] + (h + 1)H[(t−1)sr(h+1)]

− (r + 1)H[t(s−1)(r+1)h] − η(r + 1)H[ts(r+1)(h−1)].
(4.3)

From (2.10), we obtain

Ψ[tsrh] =(s + 1)
{
ξΦ[t(s+1)(r−2)h] + (1 + ξ2)Φ[(t−1)(s+1)(r−1)h] + ξΦ[(t−2)(s+1)rh]

}

− ξ(t + 1)Φ[(t+1)s(r−1)(h−1)] − tΦ[tsr(h−1)] − ξη(t + 1)Φ[(t+1)(s−1)(r−1)h]

− ηtΦ[t(s−1)rh] + Φ[tsr(h−1)] + ηΦ[t(s−1)rh].

(4.4)

Notice that Φ[tsrh] are Ψ[t′s′r′h′] are understood as 0 if one of their indices is negative.
Collecting the coefficients of zt

nz
s−1
1 zn

r+3z1
h for t ≥ 0, s ≥ 1, r ≥ −3 and h = m + 1− t−

s− r ≥ 0 in (3.8), we get

s
{
ξΨ[tsrh] + (2ξ2 + 1)Ψ[(t−1)s(r+1)h] + (ξ3 + 2ξ)Ψ[(t−2)s(r+2)h] + ξ2Ψ[(t−3)s(r+3)h]

}

+ sη
{
Ψ[ts(r+2)(h−2)] + ξΨ[(t−1)s(r+3)(h−2)]

}
+ (1 + η2)(s− 1)

{
Ψ[t(s−1)(r+2)(h−1)]

+ ξΨ[(t−1)(s−1)(r+3)(h−1)]

}
+ (s− 2)η

{
Ψ[t(s−2)(r+2)h] + ξΨ[(t−1)(s−2)(r+3)h]

}

− {
(t + 1)ξΨ[(t+1)(s−1)(r+1)(h−1)] + t(1 + ξ2)Ψ[t(s−1)(r+2)(h−1)] + (t− 1)ξΨ[(t−1)(s−1)(r+3)(h−1)]

}

− η
{
(t + 1)ξΨ[(t+1)(s−2)(r+1)h] + t(1 + ξ2)Ψ[t(s−2)(r+2)h] + (t− 1)ξΨ[(t−1)(s−2)(r+3)h]

}

− (t + 1)
{
ηΨ[(t+1)(s−1)(r+3)(h−3)] + (2η2 + 1)Ψ[(t+1)(s−2)(r+3)(h−2)]

+ (η3 + 2η)Ψ[(t+1)(s−3)(r+3)(h−1)] + η2Ψ[(t+1)(s−4)(r+3)h]

}

+ ξ
{
ξΨ[t(s−1)(r+2)(h−1)] + Ψ[(t−1)(s−1)(r+3)(h−1)]

}
+ ξη

{
ξΨ[t(s−2)(r+2)h] + Ψ[(t−1)(s−2)(r+3)h]

}

− η
{
ηΨ[t(s−1)(r+2)(h−1)] + ξηΨ[(t−1)(s−1)(r+3)(h−1)] + Ψ[t(s−2)(r+2)h] + ξΨ[(t−1)(s−2)(r+3)h]

}
= 0.

(4.5)

Notice that (4.5) takes the following form:

s
{
ξΨ[tsrh] + (2ξ2 + 1)Ψ[(t−1)s(r+1)h] + (ξ3 + 2ξ)Ψ[(t−2)s(r+2)h]

+ ξ2Ψ[(t−3)s(r+3)h]

}
+ F{(Ψ[t′s′r′h′])s′+h′≤s+h−2,s′≤s,h′≤h} = 0.

Thus for s ≥ 1, by keeping use this property, we can inductively get

Ψ[tsrh] = F{(Ψ[t′s′r′h′])s′+h′≤s+h−2,s′≤s,h′≤h}. (4.6)
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Substituting (4.4) into (4.6), we get, for s ≥ 1, the following

(s + 1)
{
ξΦ[t(s+1)(r−2)h] + (1 + ξ2)Φ[(t−1)(s+1)(r−1)h] + ξΦ[(t−2)(s+1)rh]

}

= F{(Φ[t′s′r′h′])s′+h′≤s+h−1,s′≤s+1,h′≤h}.
Hence for s ≥ 2, we can inductively obtain

Φ[tsrh] = F{(Φ[t′s′r′h′])s′+h′≤s+h−2,s′≤s,h′≤h}. (4.7)

Substituting (4.3) into (4.7), we get, for s ≥ 2 and h ≥ 0, the following

ξ(h + 1)H[ts(r−1)(h+1)] + (h + 1)H[(t−1)sr(h+1)] = F{(H[t′s′r′h′])s′+h′≤s+h−1,s′≤s,h′≤h+1}.
Hence for s ≥ 2 and h ≥ 1, we inductively get that

H[ts(m−t−s−h)h] = F{
(H[t′s′(m−t′−s′−h′)h′])s′+h′≤s+h−2,s′≤s,h′≤h

}
.

Notice that H[tsrh] = H[rhts]. Keeping applying the above until the assumption that s ≥ 2 and
h ≥ 1 do not hold anymore, we can inductively get the following crucial formula:

H[ts(m−t−s−h)h] = F{
(H[t′1(m−t′−2)1])1≤t′≤m−2, (H[t′0(m−t′−i)i])i≤max(s,h),0≤t′≤m−i

}
. (4.8)

Substituting (2.9) and (2.10) into (3.3), we get the following equation:

w1wk · (|wn|2H11 − wnw1Hn1 − w1wnH1n + |w1|2Hnn)

= (|wn|2 + |w1|2) · (|wn|2H1k − wnw1Hnk − wkwnH1n + wkw1Hnn).
(4.9)

Notice that it takes the form

−|wn|4H1k +
∑

in+jn≤3

zi1
1 zik

k zin
n z1

j1zk
jkzn

jn
∂h1

∂zh1
1

∂hk

∂zhk
k

∂hn

∂zhn
n

∂l1

∂z1
l1

∂lk

∂zk
lk

∂ln

∂z1
ln

H = 0,

where i1 + ik + in + j1 + jk + jn − (h1 + hk + hn + l1 + lk + ln) = 2. Hence we get

H(ten+e1+I,ren+ek+J) = F({H(t′en+I′,r′en+J ′)}t′+r′>t+r

)
. (4.10)

Similarly, substituting (2.9) and (2.10) into (3.2) and setting j = k(6= 1), we get the following
equation:

(|wn|2 + |wk|2) · (|wn|2H11 − wnw1Hn1 − w1wnH1n + |w1|2Hnn)

= (|wn|2 + |w1|2) · (|wn|2Hkk − wnwkHn1 − w1wnHkn + |wk|2Hnn).
(4.11)

Similar to (4.10), for any fixed s, h ≥ 1, we get

shH(ten+sek,ren+hek) −H(ten+(s−1)ek+e1,ren+(h−1)ek+e1)

+ F{(H(t′en+I,r′en+J))t′+r′>t+r} = 0.
(4.12)

Next we prove the following lemma, which is only needed for n ≥ 3.

18



Lemma 4.1. Suppose that n ≥ 3. For any given j with j ≥ 1 and any given I = (i1, · · · , in)
with i1 = ik = in = 0, suppose that H(ten+se1,ren+he1+I+(j′−2)ek) = 0 for all t, s, r, h ≥ 0, j′ ≤ j
and t + s + r + h = m + 2− |I| − j′. Then

H(ten+se1,ren+he1+I+jek) = F{(H(t′en,r′en+h′e1+I+jek))r′≥t′},
where t + s + r + h = t′ + r′ + h′ = m− |I| − j.

(4.13)

Proof of Lemma 4.1. Set

P (l) = {homogeneous polynomials of degree l} and

P
(l)

(1n1n)
= {homogeneous polynomials of degree l in (z1, zn, z1, zn)}.

In (4.9), the coefficients of terms other than (|wn|2 + |w1|2)(|wn|2H1k − wnw1Hnk), when

projected to the space of polynomials of the form: zI+(j−1)ekP
(m+3−|I|−j)

(1n1n)
, is a linear combination

of H(t′en+s′e1,r′en+h′e1+I+(j′−2)ek) with j′ ≤ j, which are 0 by our assumption. Here and in what

follows we equip the space of polynomials in (z, z) with {zαzβ} as an ortho-normal basis. Hence

by considering terms projected to the space zI+(j−1)ekP
(m+3−|I|−j)

(1n1n)
in (4.9), we get

|wn|2(|wn|2 + |w1|2)H1k − wnw1(|wn|2 + |w1|2)Hnk = 0 mod
(
{zI+(j−1)ekP

(m+3−|I|−j)

(1n1n)
}c

)
.

Here for a subspace A of the space of polynomials, we write Ac for its compliment. Namely, we
have

(zn + 2λnzn)H1k − (z1 + 2λ1z1)Hnk = 0 mod
(
{zI+(j−1)ekP

(m−|I|−j)

(1n1n)
}c

)
. (4.14)

Considering the coefficients of zs−1
1 zI+(j−1)ekzh

1zn
t+r+1 and zs−1

1 zt
nz

I+(j−1)ekzh
1zn

r+1, respectively,
with r = m− t− s− |I| − j − h, t ≥ 0, h ≥ 0, s ≥ 1 in (4.14), we get

sH(se1,((t+r)en+he1+I+jek)

=H(en+(s−1)e1,(t+r+1)en+(h−1)e1+I+jek) + 2λ1H(en+(s−2)e1,(t+r+1)en+he1+I+jek), and

s
(
H(ten+se1,ren+he1+I+jek) + 2λnH((t−1)en+se1,(r+1)en+he1+I+jek)

)

=(t + 1)
(
H((t+1)en+(s−1)e1,(r+1)en+(h−1)e1+I+jek) + 2λ1H((t+1)en+(s−2)e1,(r+1)en+he1+I+jek)

)
.

(4.15)

Hence for s ≥ 1, we obtain

H(ten+se1,ren+he1+I+jek) = F{(H(t′en+(s−1)e1,r′en+(h−1)e1+I+jek))r′−t′≥r−t,

(H(t′en+(s−2)e1,r′en+he1+I+jek))r′−t′≥r−t}.
(4.16)

Next we prove by induction that

H(ten+se1,ren+he1+I+jek) = F{(H(t′en,r′en+h′e1+I+jek))r′−t′≥r−t}. (4.17)
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In fact, the claim holds automatically for s = 0. If s = 1, (4.17) follows from (4.16). Now
we suppose that (4.17) holds for s < s0, we can get by (4.16) that

H(ten+s0e1,ren+he1+I+jek) = F{(H(t′en+(s0−1)e1,r′en+(h−1)e1+I+jek))r′−t′>r−t,

(H(t′en+(s0−2)e1,r′en+he1+I+jek))r′−t′≥r−t}
= F{

(H(t′en,r′en+h′e1+I+jek))r′−t′≥r−t}.
(4.18)

The last equality follows from our assumption. Hence (4.17) also holds for s0. This finishes the
proof of (4.17).

By interchanging the role of z1 and zn in (4.17), we can get

H(ten+se1,ren+he1+I+jek) = F{(H(s′e1,r′en+h′e1+I+jek))h′−s′≥h−s}. (4.19)

As a special case of (4.19) or (4.17), we obtain the following:

H(t′en,r′en+h′e1+I+jek) = F{(H(s′′e1,r′′en+h′′e1+I+jek))h′′−s′′≥h′}.
H(s′′e1,r′′en+h′′e1+I+jek) = F{(H(t′′′en,r′′′en+h′′′e1+I+jek))r′′′−t′′′≥r′′}.

(4.20)

Now we conclude from (4.17) and (4.20) that

H(ten+se1,ren+he1+I+jek) = F{(H(t′′′en,r′′′en+h′′′e1+I+jek))r′′′−t′′′≥0}.

This completes the proof of Lemma 4.1.

For the rest of this section, for simplicity of notation, we assume that λn is the smallest
non-parabolic Bishop invariant, namely, the smallest one that is not equal to 1

2
. Then we have

the following normalization for E(z, z). We notice that the following result holds in general
even without assuming the non-minimality condition at CR points. Also, in this result, there
is no need to assume that λn 6= 1

2
.

Theorem 4.2. For any given l ≥ 3, there exists a holomorphic transformation near the orign
(z, w) → (z′ = z, w′ = w + o(|z|2, w)) such that in the new coordinates, the E(z, z) defined in
(2.1) satisfies

E(I,0) = E(ten+J,sen) = 0 for t ≥ s, |J | 6= 0, |I| = t + s + |J | ≤ l. (4.21)

Moreover, we have the following normalizations:
(I) When λn = 0, we have

E(ten,sen) = 0 for t ≥ s. (4.22)

(II) When λn 6= 0, for any m0 ≤ l, the normalization is divided into the following six cases:
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(II−3) If m0 = 6m̂− 3, then we have

E(ten,sen) = 0 for 4m̂− 1 ≤ t ≤ m0 − 1,

E((2t+1)en+e1,(m0−2t−3)en+e1) = 0 for 2m̂− 2 ≤ t ≤ 3m̂− 3.
(4.23)

(II−2) If m0 = 6m̂− 2, then we have

E(ten,sen) = 0 for 4m̂− 1 ≤ t ≤ m0 − 1,

E((2t+1)en+e1,(m0−2t−3)en+e1) = 0 for 2m̂− 1 ≤ t ≤ 3m̂− 3,

<E((4m̂−3)en+e1,(2m̂−1)en+e1) = 0.

(4.24)

(II−1) If m0 = 6m̂− 1, then we have

E(ten,sen) = 0 for 4m̂ ≤ t ≤ m0 − 1,

E((2t+1)en+e1,(m0−2t−3)en+e1) = 0 for 2m̂− 1 ≤ t ≤ 3m̂− 2.
(4.25)

(II0) If m0 = 6m̂, then we have

E(ten,sen) = 0 for 4m̂ + 1 ≤ t ≤ m0 − 1,

E((2t+1)en+e1,(m0−2t−3)en+e1) = 0 for 2m̂− 1 ≤ t ≤ 3m̂− 2,

<E(4m̂en,2m̂en) = 0.

(4.26)

(II1) If m0 = 6m̂ + 1, then we have

E(ten,sen) = 0 for 4m̂ + 1 ≤ t ≤ m0 − 1,

E((2t+1)en+e1,(m0−2t−3)en+e1) = 0 for 2m̂ ≤ t ≤ 3m̂− 1.
(4.27)

(II2) If m0 = 6m̂ + 2, then we have

E(ten,sen) = 0 for 4m̂ + 2 ≤ t ≤ m0 − 1,

E((2t+1)en+e1,(m0−2t−3)en+e1) = 0 for 2m̂ ≤ t ≤ 3m̂− 1,

<E((4m̂+1)en,(2m̂+1)en) = 0.

(4.28)

Proof of Theorem 4.2. Suppose that z′ = z, w′ = w+B(z, w) transforms w = q(z, z)+p(z, z)+
iE(z, z) to w′ = q(z′, z′) + p′(z′, z′) + iE ′(z′, z′), where p′(z′, z′) and E ′(z′, z′) are real valued
and both of their orders are at least three. Then

q(z, z) + p(z, z) + iE(z, z) + B(z, w) = q(z, z) + p′(z, z) + iE ′(z, z). (4.29)

Hence we get
=(B(z, w)) = E ′(z, z)− E(z, z). (4.30)

Set
B(m0)(z, w) =

∑

|I|+2j=m0

b(Ij)z
Iwj.
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We further normalize B(z, z) such that Re(b(0
m0
2

)) = 0 if m0 is even. Then the real dimension

of B(m0) is

2 · ]{(i1, · · · , in, j) ∈ Rn+1 : i1, · · · , in, j ≥ 0, i1 + · · ·+ in + 2j = m0, 2j 6= m0

}
+ δm0

=2 · ]{(i1, · · · , in, j) ∈ Rn+1 : I ′ 6= 0, i1 + · · ·+ in + 2j = m0

}
+ 2[

m0 + 1

2
] + δm0 .

(4.31)

Here δm0 = 1 when m0 is even and 0, otherwise.
The dimension of the term

∑
I′ 6=0,|I|+2j=m0

a(Ij)(z
′)I′zin

n |zn|2j is

2 · ]{(i1, · · · , in, j) ∈ Rn+1 : i1, · · · , in, j ≥ 0, I ′ 6= 0, i1 + · · ·+ in + 2j = m0}. (4.32)

(I) Assume that λn = 0. Set

P̂ (m0) =
{
polynomials of the form 2<

∑

|I|+2j=m0

a(Ij)z
I |zn|2j, =(a0,[m0/2]) = 0 for m0 even

}
.

To get the normalization condition (4.21) and (4.22), we only need to prove that

=(
B(m0)(z, q(z, z))

)∣∣
P̂ (m0) = Q(m0)(z, z) (4.33)

is solvable for any Q(m0)(z, z) ∈ P̂ (m0). Notice that P̂ (m0) and the space {B(m0)(z, q(z, z))} have
the same dimension. Here, we recall that for a polynomial A and a subspace of polynomials,
we write A|P for the projection of A to P . Hence to prove (4.33), we need to show that

=(
B(m0)(z, q(z, z))

)∣∣
P̂ (m0) = 0 and <(b(0

m0
2

)) = 0 for m0 even ⇐⇒ B = 0.

By considering the coefficients of terms involving only zn and zn, we get

=(∑
i+2j=m0

b(0inj)z
in
n |zn|2j

)
= 0.

Thus we get b(0inj) = 0. Suppose that b(I′inj) = 0 for |I ′| ≤ k0. Considering terms of the form:
zI′zin

n |zn|j with |I ′| = k0 + 1, we get

∑
|I′|=k0+1,i+2j=m

b(I′inj)z
′I′zin

n |zn|2j = 0,

from which it follows that b(I′inj) = 0. Thus we get B(m0)(z, z) = 0.
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(II) Assume that λn 6= 0. Write P̃ for the space of polynomials of the form: |z1|2P1(zn, zn)+
P2(zn, zn). Then

=B(z, q(z, z))
∣∣ eP ==B(0, zn, |zn|2 + λnz

2
n + λnz

2
n + |z1|2)

∣∣ eP
=

∑

h+2j=m0

1

2i
(b(0hj)z

h
n − b(0hj)z

h
n)(|zn|2 + λnz

2
n + λnz

2
n + |z1|2)j

∣∣ eP

=
∑

h+2j=m0

1

2i
b(0hj)z

h
n(|zn|2 + λnz

2
n + λnz

2
n + |z1|2)j

∣∣ eP

−
∑

h+2j=m0

1

2i
b(0hj)zn

h(|zn|2 + λnz
2
n + λnz

2
n + |z1|2)j

∣∣ eP

:=Ĩ
∣∣ eP − J̃

∣∣ eP .

(4.34)

Here, for a subspace A of the space of polynomials and for a polynomial X, we write X|A for
the projection of X to A. Write

Ikl =
∑

h+2j=m0,j≥k+l

1

2i
b(0hj)(

j
j−k−l)λ

j−k
n (k+l

l ), Jkl =
∑

h+2j=m0,j≥k+l

1

2i
b(0hj)(

j
j−k−l)λ

j−k
n (k+l

l ). (4.35)

Then we have

Jkl = −Ikl, Ikl = (k+l
k )λl

nIk+l,0. (4.36)

A direct computation shows that

Ĩ
∣∣ eP =

∑

h+2j=m0

1

2i
b(0hj)z

h
n

∑

0≤k+l≤j

(j
j−k−l)(λnz

2
n)j−k−l(k+l

l )(λnz
2
n)l|zn|2k

+
∑

h+2j=m0

1

2i
b(0hj)z

h
n

∑

0≤k+l≤j

(j
j−k−l)(λnz

2
n)j−k−l(k+l

l )(λnz
2
n)l|zn|2(k−1) · k|z1|2

=
∑

0≤k+2l≤m0,k+l≤m0
2

Iklz
m0−k−2l
n zk+2l

n +
∑

k≥1,0≤k+2l≤m0,

k+l≤m0
2

kIkl|z1|2zm0−k−2l−1
n zk+2l−1

n .

(4.37)

Similarly, we have

J̃
∣∣ eP =

∑
0≤k+2l≤m

k+l≤m0
2

Jklz
k+2l
n zn

m0−k−2l +
∑

k≥1,0≤k+2l≤m0
k+l≤m0

2

kJkl|z1|2zk+2l−1
n zn

m0−k−2l−1.
(4.38)

Hence the coefficients of zt
nz

s
n(t ≥ s, t + s = m0) and zt−1

n zs−1
n |z1|2(t ≥ s, t + s = m0) in

Im(B(z, q(z, z))) are, respectively, the following:
∑

k+2l=s

Ikl −
∑

k+2l=t
k+l≤m0/2

Jkl and
∑

k+2l=s

kIkl −
∑

k+2l=t
k+l≤m0/2

kJkl. (4.39)
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(II−3): In this case, we have set m0 = 6m̂− 3. Write

P̂
(m0)
−3 =

{
polynomials of the form

∑

t≥4m̂−1

atz
t
nz

m0−t
n

+
∑

t≥2m̂−2

btz
2t+1
n zm0−2t−3

n |z1|2 +
∑

I′ 6=0

CI′t(z
′)I′zm−|I′|−2t

n |zn|2t
}
.

To get the normalization condition (4.21) and (4.23), we only need to prove that

=(
B(m0)(z, q(z, z))

)∣∣
P̂

(m0)
−3

= Q(m0)(z, z) (4.40)

is solvable for any real valued polynomial Q(m0)(z, z) ∈ P̂
(m0)
−3 . Notice that the dimension of the

space of polynomials of the form:
∑

t≥4m̂−1

atz
t
nz

m0−t
n +

∑
t≥2m̂−2

btz
2t+1
n zm0−2t−3

n |z1|2 is

2
(
6m̂− 3− (4m̂− 2)

)
+ 2

(6m̂− 6

2
− (2m̂− 3)

)
= 6m̂− 2 = 2

[6m̂− 2

2

]
. (4.41)

Combining this with (4.31) and (4.32), we know that the space {B(m0)(z, q(z, z))} and the space

P̂
(m0)
−3 have the same dimension. Hence to prove (4.40), we need to show that B(m0) = 0 if

=(
B(m0)(z, q(z, z))

)∣∣
P̂

(m0)
−3

= 0. (4.42)

By (4.39), the condition (4.23) gives that

∑

k+2l=2t−1

kIkl =
∑

k+2l=m0−2t+1
k+l≤m0/2

kJkl,
∑

k+2l=2t−1

Ikl =
∑

k+2l=m0−2t+1
k+l≤m0/2

Jkl,

∑

k+2l=2t

Ikl =
∑

k+2l=m0−2t
k+l≤m0/2

Jkl for 1 ≤ t ≤ m̂− 1,
(4.43)

and
∑

k+2l=2m̂−1

kIkl =
∑

k+2l=m0−2m̂+1
k+l≤m0/2

kJkl.
(4.44)

Next we prove by induction that, for 1 ≤ t ≤ m̂− 1, we have

I2t−1,0 = I2t,0 = J0,3m̂−1−t = 0 (4.45)

Setting t = 1 in (4.43), we get

I10 = 0, I1,0 = J0,3m̂−2, I20 + I01 = J1,3m̂−3.
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Together with (4.36), we obtain I10 = I20 = J0,3m̂−2 = 0.
Suppose that (4.45) holds for t ≤ t0 ∈ [1, m̂ − 2]. Setting t = t0 + 1 in (4.43) and making

use of the relations above, we get

I2t0+1,0 = 0, I2t0+1,0 = J0,3m̂−t0−2, I2t0+2,0 + I2t0,1 = J1,3m̂−t0−3.

Combining this with (4.36), we obtain (4.45) for t = t0+1. Hence (4.45) holds for 1 ≤ t ≤ m̂−1.
Substituting the relations in (4.45) to (4.44), we get I2m̂−1,0 = 0. Thus we get

It,0 = J0,t′ = 0 for 1 ≤ t ≤ 2m̂− 1, 2m̂ ≤ t′ ≤ 3m̂− 2. (4.46)

Namely, we have It,0 = 0 for 1 ≤ t ≤ 3m̂− 2. By (4.35), we know that

Ik0 =
1

2i
b(0(m0−2k)k) + F{(b(0(m0−2t)t))t>k}. (4.47)

In particular, we have b(01(3m̂−2)) = 2iI(3m̂−2)0. Combining this with (4.46) and (4.47), we
inductively get b(0(m0−2k)k) = 0.

Suppose that b(I′inj) = 0 for |I ′| ≤ k0. Next we will prove b(I′inj) = 0 for |I ′| = k0 + 1.
Considering all terms of forms zI′zh

n|zn|2j with |I ′| = k0 +1, |I ′|+h+2j = m0 in (4.42), we get

∑
|I′|=k0+1,h+2j=m0−|I′|

b(I′hj)z
′I′zh

n

(|zn|2 + λnz
2
n + λnz

2
n

)j∣∣
P̂

(m0)
−3

= 0, (4.48)

Write

Îkl =
∑

h+2j=m0−|I′|,j≥k+l

b(I′hj)(
j
j−k−l)λ

j−k
n (k+l

l ). (4.49)

Then we have

Îkl = (k+l
k )λl

nÎk+l,0. (4.50)

A direct computation shows that
∑

|I′|=k0+1,h+2j=m0−|I′|
b(I′hj)z

′I′zh
n

(|zn|2 + λnz
2
n + λnz

2
n

)j∣∣
P̂

(m0)
−3

=
∑

|I′|=k0+1,h+2j=m0−|I′|
b(I′hj)z

′I′zh
n

∑

0≤k+l≤j

(j
j−k−l)(λnz

2
n)j−k−l(k+l

l )(λnz
2
n)l|zn|2k

∣∣
P̂

(m0)
−3

=
∑

|I′|=k0+1

0≤k+2l≤m0−|I′|
2

Îklz
′I′zm0−|I′|−k−2l

n zk+2l
n .

Thus (4.48) is equivalent to

∑

k+2l=m̌

Îkl = 0 for 1 ≤ m̌ ≤ [m0 − |I ′|
2

]
. (4.51)

25



Setting m̌ = 1 in (4.51), we get Î10 = 0. Combining this with (4.51) and (4.50), we inductively

obtain Ît,0 = 0 for 1 ≤ t ≤ [m0−|I′|
2

]. From (4.49), we know that

Îk0 = b(I′(m0−|I′|−2k)k) + F{(b(I′(m0−|I′|−2t)t))t>k}. (4.52)

In particular, we have
b(

I′(m0−|I′|−2[
m0−|I′|

2
])[

m0−|I′|
2

]
) = Î

[
m0−|I′|

2
],0

.

Combining this with (4.52), we inductively get b(I′hj) = 0 for |I ′| = k0 + 1, h + 2j = m0 − |I ′|.
Thus we get B(m0)(z, z) = 0.

(II−2) In this case, we have set m0 = 6m̂− 2. Write

P̂
(m0)
−2 =

{
polynomials of the form

∑

t≥4m̂−1

atz
t
nz

m0−t
n +

∑

t≥2m̂−1

btz
2t+1
n zm0−2t−3

n |z1|2

+ 2<(
b4m̂−3z

4m̂−3
n z2m̂−1

n |z1|2
)

+
∑

I′ 6=0,0≤2t≤m0−|I′|
CI′t(z

′)I′zm−|I′|−2t
n |zn|2t

}
.

To get the normalization condition (4.21) and (4.24), we only need to prove that

=(
B(m0)(z, q(z, z))

)∣∣
P̂

(m0)
−2

= Q(m0)(z, z) (4.53)

is solvable for any real valued formal power series Q(m0)(z, z) ∈ P̂
(m0)
−2 .

The dimension of
∑

t≥4m̂−1

atz
t
nz

m0−t
n +

∑

t≥2m̂−1

btz
2t+1
n zm0−2t−3

n |z1|2 + 2<(
b4m̂−3z

4m̂−3
n z2m̂−1

n |z1|2
)

is

2
(
6m̂− 2− (4m̂− 2)

)
+ 2

(6m̂− 6

2
− (2m̂− 2)

)
+ 1 = 6m̂− 1 = 2

[6m̂− 1

2

]
+ 1. (4.54)

Combining this with (4.31) and (4.32), we know that B(m0)(z, z) and P̂
(m0)
−2 have the same

dimension. Hence to prove (4.53), now we only need to prove that B(m0) ≡ 0 if

=(
B(m0)(z, q(z, z))

)∣∣
P̂

(m0)
−2

= 0, <(b0(3m̂−1)) = 0. (4.55)

By (4.39), the condition (4.24) means that

∑

k+2l=2t−1

Ikl =
∑

k+2l=m0−2t+1
k+l≤m0/2

Jkl,
∑

k+2l=2t

kIkl =
∑

k+2l=m0−2t
k+l≤m0/2

kJkl,

∑

k+2l=2t

Ikl =
∑

k+2l=m0−2t
k+l≤m0/2

Jkl for 1 ≤ t ≤ m̂− 1,
(4.56)
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and

∑

k+2l=2m̂−1

Ikl =
∑

k+2l=m0−2m̂+1
k+l≤m0/2

Jkl,
∑

k+2l=2m̂

<(
kIkl

)
=

∑
k+2l=m0−2m̂

k+l≤m0/2

<(
kJkl

)
. (4.57)

Next we prove by induction that the following hods for 1 ≤ t ≤ m̂− 1:

Ij0 = (3m̂−1
j )λ3m̂−1−j

n J3m̂−1,0 for 1 ≤ j ≤ 2t,

Jj0 = (3m̂−1
j )λ3m̂−1−j

n J3m̂−1,0 for 3m̂− 1− t ≤ j ≤ 3m̂− 2.
(4.58)

Setting t = 1 in (4.56), we get

I10 = J1,3m̂−2, 2I2,0 = 2J2,3m̂−3, I20 + I01 = J2,3m̂−3 + J0,3m̂−2.

Hence we obtain

I10 = (3m̂− 1)λ3m̂−2
n J3m̂−1,0, I20 = (3m̂−1

2 )λ3m̂−3
n J3m̂−1,0,

J3m̂−2,0 = λ−3m̂+2
n I01 = λ−3m̂+2

n λn(3m̂− 1)λ3m̂−2
n J3m̂−1,0 = (3m̂−1

3m̂−2)λnJ3m̂−1,0.
(4.59)

This proves (4.58) for t = 1.
Suppose that (4.58) holds for some t ≤ t0 ∈ [1, m̂− 2]. Next we will prove it also holds for

t = t0 + 1.
By our assumption, we get, for k + l ≤ 2t0 and l ≤ t0, the following

Ikl = (k+l
k )λl

nIk+l,0 = (k+l
k )λl

n · (3m̂−1
k+l )λ3m̂−1−k−l

n J3m̂−1,0

= (3m̂−1
k )(3m̂−1−k

l )λ3m̂−1−k
n J3m̂−1,0,

Jk,3m̂−1−k−l = (3m̂−1−l
k )λ3m̂−1−k−l

n J3m̂−1−l,0 = (3m̂−1−l
k )λ3m̂−1−k−l

n · (3m̂−1
3m̂−1−l)λ

l
nJ3m̂−1,0

= (3m̂−1
k )(3m̂−1−k

l )λ3m̂−1−k
n J3m̂−1,0.

Hence we get, for k + l ≤ 2t0 and l ≤ t0, the following

Ikl = Jk,3m̂−1−k−l. (4.60)

Setting t = t0 + 1 in (4.56) and making use of (4.60), we obtain

I2t0+1,0 = J2t0+1,3m̂−2t0−2,

(2t0 + 2)I2t0+2,0 + 2t0I2t0,1 = (2t0 + 2)J2t0+2,3m̂−2t0−3 + 2t0J2t0,3m̂−2t0−2,

I2t0+2,0 + I2t0,1 + I0,t0+1 = J2t0+2,3m̂−2t0−3 + J2t0,3m̂−2t0−2 + J0,3m̂−t0−2.

(4.61)

From the first equation, we get

I2t0+1,0 = (3m̂−1
2t0+1)λ

3m̂−2t0−2
n J3m̂−1,0.

27



Then (4.60) holds for k + l = 2t0 + 1, l ≤ t0. Namely, we obtain I2t0,1 = J2t0,3m̂−2t0−2. Hence we
have

I2t0+2,0 = J2t0+2,3m̂−2t0−3 = (3m̂−1
2t0+2)λ

3m̂−2t0−3
n J3m̂−1,0,

J3m̂−t0−2,0 = λ−3m̂+t0+2
n J0,3m̂−t0−2 = λ−3m̂+t0+2

n I0,t0+1 = (3m̂−1
3m̂−t0−2)λ

t0+1
n J3m̂−1,0.

(4.62)

This proves (4.58) for t = t0 + 1. Hence we get

Ij0 = (3m̂−1
j )λ3m̂−1−j

n I3m̂−1,0 for 1 ≤ j ≤ 2m̂− 2,

Jj0 = (3m̂−1
j )λ3m̂−1−j

n J3m̂−1,0 for 2m̂ ≤ j ≤ 3m̂− 2.
(4.63)

Notice that now (4.60) holds for k + l ≤ 2m̂ − 2, l ≤ m̂ − 1. Substituting these relations to
(4.57) and making use of (4.60) for k + l ≤ 2m̂− 2, l ≤ m̂− 1, we get

I2m̂−1,0 = J2m̂−1,m̂,

<(
2m̂I2m̂,0 + (2m̂− 2)I2m̂−2,1

)
= <(

2m̂J2m̂,m̂−1 + (2m̂− 2)J2m̂−2,m̂

)
.

From (4.63) and the first equation above, we get

I2m̂−1,0 = (3m̂−1
2m̂−1)λ

m̂J3m̂−1,0. (4.64)

Combining this with (4.36), we obtain I2m̂−2,1 = J2m̂−2,m̂. Thus we obtain

<(
I2m̂,0 − 2m̂J2m̂,m̂−1

)
= 0.

Since b(0,3m̂−1) is purely imaginary, we know I3m̂−1,0 = 1
2i

b(0,3m̂−1) is real. Hence

I2m̂,0 = −J2m̂,0 = −(3m̂−1
2m̂ )λm̂−1J3m̂−1,0, J2m̂,m̂−1 = (3m̂−1

m̂−1 )λm̂−1J3m̂−1,0.

Thus we obtain J3m̂−1,0 = 0. Combining this with (4.63) and (4.64), we get Ik,0 = 0 for
1 ≤ k ≤ 3m̂− 1. By (4.35), we know that

Ik0 =
1

2i
b(0(m0−2k)k) + F{(b(0(m0−2t)t))t>k}. (4.65)

In particular, we have b(00(3m̂−1)) = 2iI3m̂−1,0. Hence we inductively get b(0(m0−2k)k) = 0.
By a similar induction argument as that used in the (II−3) case, we get b(Ij) = 0. Hence we

obtain B(m0)(z, z) = 0.

The cases (II−1) and (II1) can be similarly done as for (II−3), while the cases (II0) and (II2)
can be similarly done as in the case (II−2). This completes the proof of Theorem 4.2.
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5 Proof of Theorem 3.1— Part II

We continue our proof of Theorem 3.1. In this part, we assume that M is non-minimal at its
CR points near the origin. We will prove H ≡ 0 when it satisfies the normalization in Theorem
4.2.

The crucial step is to prove the following proposition, which is more or less the content of
Theorem 3.1 when n = 3:

Proposition 5.1. Suppose that λn 6= 1/2. Then for t, r, s ≥ 0 with t + r + s ≤ m, we have

H(ten+re1,(m−t−r−s)en+se1) = 0. (5.1)

Proof. The proof of Proposition 5.1 is carried out in three steps, according to λ1 = λn = 0
or λn = 0, λ1 6= 0 or λn 6= 0, λ1 6= 0. We notice that when λn 6= 0, it must hold that λ1 6= 0 by
our choice of λn.

Step I: In this case, we assume that λn = λ1 = 0. Then (3.8) has the following form:

znΨ1 = z1Ψn. (5.2)

By considering the coefficients of zt
nz

s−1zn
r+1z1

h for t ≥ 0, s ≥ 1, r ≥ 0 and h = m+1−t−s−r ≥
0 in (5.2), we get

sΨ[tsrh] = (t + 1)Ψ[(t+1)(s−1)(r+1)(h−1)]. (5.3)

Setting h = 0 in (5.3), we get Ψ[tsr0] = 0 for s ≥ 1. Combining this with (5.3), we inductively
get Ψ[tsrh] = 0 for s ≥ h + 1. Together with (4.4), we obtain:

(s + 1)Φ[(t−1)(s+1)(r−1)h] = (t− 1)Φ[tsr(h−1)] for s ≥ h + 1. (5.4)

Setting h = 0 in (5.4), we get Φ[tsr0] = 0 for s ≥ 2. Combining this with (5.4), we inductively
get Φ[tsrh] = 0 for s ≥ h + 2. Together with (4.3), we get

(h + 1)H[(t−1)sr(h+1)] = (r + 1)H[t(s−1)(r+1)h] for s ≥ h + 2. (5.5)

Setting t = 0, we get H[0srh] = 0 for s ≥ h + 1, r ≥ 1. Then we inductively get H[tsrh] = 0
for s ≥ h + 1, r ≥ t + 1. When s ≥ h + 1, r ≤ t, from (5.5), we inductively get H[tsrh] =
F{(H[t′s′r′0])t′≥r′}, which is 0 by our normalization in (4.21). Thus we have proved

H[tsrh] = 0 for s ≥ h + 1. (5.6)

Next we will prove that H[tsrs] = 0. Setting s = h ≥ 1, t ≥ 0 and r = −1 in (5.3), we get
Ψ[ts0s] = 0 for t ≥ 1. Substituting it back to (5.3), we inductively get

Ψ[tsrs] = 0 for t ≥ r + 1.
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Substituting (4.4) into this equation, we get

(s + 1)Φ[(t−1)(s+1)(r−1)s] = (t− 1)Φ[tsr(s−1)] for t ≥ r + 1. (5.7)

Setting s = 0, we get Φ[t1r0] = 0 for t ≥ r + 1. Substituting this back to (5.7), we get
Φ[t(s+1)rs] = 0 for t ≥ r + 1. Together with (4.3), we get

(s + 1)H[(t−1)(s+1)r(s+1)] = (r + 1)H[ts(r+1)s] for t ≥ r + 1.

Notice that H[t0r0] = 0 by our normalization. Hence we inductively get

H[tsrs] = 0 for t ≥ r. (5.8)

Since H[tsrh] = H[rhts], (5.6) and (5.8) imply (5.1) for the case λn = λ1 = 0.

Step II: In this step, we assume that λn = 0 and λ1 6= 0. Proposition 5.1 is an immediate
consequence of the following lemma:

Lemma 5.2. Suppose that λn = 0 and λ1 6= 0. Assume that there exists an h0 ≥ −1 such that

Ψ[tsrh] = Φ[tsrh] = 0 for h ≤ h0, H[tsrh] = 0 for max(s, h) ≤ h0 + 1. (5.9)

Then we have

Ψ[tsrh] = Φ[tsrh] = 0 for h ≤ h0 + 1, H[tsrh] = 0 for max(s, h) ≤ h0 + 2. (5.10)

Once we have Lemma 5.2 at our disposal, since (5.9) holds for h0 = −1 by our normalization,
hence (5.10) holds for h0 = −1. Then by an induction, we see that (5.10) holds for all h0 ≤ m−2.
This will complete the proof of Proposition 5.1 in this setting.

Proof of Lemma 5.2. Setting ξ = 0 in (4.5) and making use of the assumptions in Lemma 5.2,
we get:

sΨ[(t−1)s(r+1)(h0+1)] + (s− 2)ηΨ[t(s−2)(r+2)(h0+1)] − tηΨ[t(s−2)(r+2)(h0+1)]

− (t + 1)η2Ψ[(t+1)(s−4)(r+3)(h0+1)] − ηΨ[t(s−2)(r+2)(h0+1)] = 0.

Namely, we have

sΨ[(t−1)s(r+1)(h0+1)] = (t + 3− s)ηΨ[t(s−2)(r+2)(h0+1)] + (t + 1)η2Ψ[(t+1)(s−4)(r+3)(h0+1)]. (5.11)

By setting r = −3 in (5.11), we get Ψ[ts0(h0+1)] = 0 for t ≥ 1. Substituting this back to (5.11),
we inductively get that Ψ[tsr(h0+1)] = 0 for t ≥ r + 1. Combining this with (4.4) and (5.9), we
obtain

(s + 1)Φ[(t−1)(s+1)(r−1)(h0+1)] = (t− 1)ηΦ[t(s−1)r(h0+1)] for t ≥ r + 1. (5.12)
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Setting r = 0 in (5.12), we get Φ[ts0(h0+1)] = 0 for t ≥ 2. Hence we inductively get Φ[tsr(h0+1)] = 0
for t ≥ r+2. In particular, we have Φ[t0r(h0+1)] = 0 for t ≥ r+2. Combining this with (4.3), (5.9)
and λn = 0, we get (h0 + 2)H[(t−1)0r(h0+2)] = 0 for t ≥ r + 2. Namely, we obtain H[t0r(h0+2)] = 0
for t ≥ r + 1. Together with our normalization (4.21), we obtain:

H[t0r(h0+2)] = 0. (5.13)

Case I of Step II: When h0 = −1, setting s = 0 in (5.12), we get Φ[(t−1)1(r−1)0] = 0 for
t ≥ r+1. Together with (4.3) and (4.22), we get H[(t−1)1r1] = (r+1)H[t0(r+1)0] = 0 for t ≥ r+1.
Namely, we obtain H[t1r1] = 0 for t ≥ r. By the reality of H, we get

H[t1r1] = 0. (5.14)

From (4.3), (5.13) and (5.14), we obtain Φ[t0r0] = Φ[t1r0] = 0. Together with (4.4), we see that
Ψ[t0r0] = 0.

Setting h = 0 in (4.6) and making use of Ψ[t0r0] = 0, we first get Ψ[t1r0] = Ψ[t2r0] = 0, then
inductively get Ψ[tsr0] = 0. Combining this with (4.4), we get

(s + 1)Φ[(t−1)(s+1)(r−1)0] = (t− 1)ηΦ[t(s−1)r0], (5.15)

Setting s = 0 in (5.15), we obtain Φ[t1r0] = 0. By an induction argument, we get Φ[tsr0] = 0.
This proves (5.10) for the case h0 = −1.

Case II of Step II: When h0 ≥ 0, from (4.8),(5.13) and (5.14), we inductively get
H[tsr(h0+2)] = 0 for s ≤ h0 + 2. Combining this with (4.3) and (5.14), we get Φ[t0r(h0+1)] =
Φ[t1r(h0+1)] = 0. Substituting this back to (4.4), we obtain Ψ[t0r(h0+1)] = 0. Together with (4.6),
we inductively get Ψ[tsr(h0+1)] = 0. Combining this with (4.4), we obtain

(s + 1)Φ[(t−1)(s+1)(r−1)(h0+1)] = (t− 1)ηΦ[t(s−1)r(h0+1)].

As in Case I, we inductively get Φ[tsr(h0+1)] = 0. This proves (5.10) for the case h0 ≥ 0 and thus
completes the proof of Lemma 5.2.

Step III: In this step, we assume that λn 6= 0 and λ1 6= 0. Similar to the situation in Step
II, Proposition 5.1 in this setting follows from the following lemma:

Lemma 5.3. Suppose that λn 6= 0 and λ1 6= 0. Then we have the following:
(I)

H(ten+e1,(m−t−2)en+e1) = H(ten,(m−t)en) = 0. (5.16)

(II) Assume that there exists an h0 ≥ −1 such that

Ψ[tsrh] = Φ[tsrh] = 0 for h ≤ h0, H[tsrh] = 0 for max(s, h) ≤ h0 + 1. (5.17)

Then we have

Ψ[tsrh] = Φ[tsrh] = 0 for h ≤ h0 + 1, H[tsrh] = 0 for max(s, h) ≤ h0 + 2. (5.18)
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Before proving Lemma 5.3, we first make the needed preparations. For any fixed s, h ≥ 0
and nonnegative integer k, set

Ψ
(k)
[sh] =

∑m+1−s−h

t=k
(−ξ)m+1−t−s−h(t

k)Ψ[ts(m+1−t−s−h)h],

Φ
(k)
[sh] =

∑m−s−h

t=k
(−ξ)m−t−s−h(t

k)Φ[ts(m−t−s−h)h],

H
(k)
[sh] =

∑m−s−h

t=k
(−ξ)m−t−s−h(t

k)H[ts(m−t−s−h)h].

(5.19)

Next we would like to transfer the relations among Ψ, Φ and H into the relations among
Ψ

(k)
[s(h0+1)], Φ

(k)
[s(h0+1)] and H

(k)
[s(h0+2)].

Lemma 5.4. Assume that there exists an h0 ≥ −1 such that

Ψ[tsrh] = Φ[tsrh] = 0 for h ≤ h0, H[tsrh] = 0 for max(s, h) ≤ h0. (5.20)

Then we have

Φ
(k)
[s(h0+1)] =(h0 + 2)θH

(k)
[s(h0+2)] + (h0 + 2)H

(k−1)
[s(h0+2)]

+
1

ξ

(
(m− s− h0 − k)H

(k)
[(s−1)(h0+1)] − (k + 1)H

(k+1)
[(s−1)(h0+1)]

)
, (5.21)

Ψ
(k)
[s(h0+1)] =(s + 1)

(
ξθΦ

(k−1)
[(s+1)(h0+1)] + ξΦ

(k−2)
[(s+1)(h0+1)]

)

− η(k + 1)θΦ
(k+1)
[(s−1)(h0+1)] − η(k − 1)Φ

(k)
[(s−1)(h0+1)]. (5.22)

Moreover, Ψ
(k)
[s(h0+1)] satisfies the following equation:

sξ2θΨ
(k−2)
[s(h0+1)] + sξ2Ψ

(k−3)
[s(h0+1)] =ξη

{
(k − 1)θΨ

(k)
[(s−2)(h0+1)] + (k + 1− s)Ψ

(k−1)
[(s−2)(h0+1)]

}

+ (k + 1)η2Ψ
(k+1)
[(s−4)(h0+1)].

(5.23)

Proof of Lemma 5.4. Under the assumption in (5.20), we easily conclude that (4.3) and (4.4)
have the following expressions:

Φ[tsr(h0+1)] =(h0 + 2)(ξH[ts(r−1)(h0+2)] + H[(t−1)sr(h0+2)])− (r + 1)H[t(s−1)(r+1)(h0+1)]. (5.24)

Ψ[tsr(h0+1)] =(s + 1)
{
ξΦ[t(s+1)(r−2)(h0+1)] + (1 + ξ2)Φ[(t−1)(s+1)(r−1)(h0+1)]

+ ξΦ[(t−2)(s+1)r(h0+1)]

}− {
ξη(t + 1)Φ[(t+1)(s−1)(r−1)(h0+1)] (5.25)

+ η(t− 1)Φ[t(s−1)r(h0+1)]

}
.
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For fixed s ≥ 0, a direct computation shows that

∑m−s−h0−1

t=k
(−ξ)m−t−s−h0−1(t

k)H[ts(m−t−s−h0−2)(h0+2)]

=(−ξ)
∑m−s−h0−1

t=k
(−ξ)m−t−s−h0−2(t

k)H[ts(m−t−s−h0−2)(h0+2)]

=− ξH
(k)
[s(h0+2)],∑m−s−h0−1

t=k
(−ξ)m−t−s−h0−1(t

k)H[(t−1)s(m−t−s−h0−1)(h0+2)]

=
∑m−s−h0−1

t=k
(−ξ)m−t−s−h0−1

(
(t−1
k ) + (t−1

k−1)
)
H[(t−1)s(m−t−s−h0−1)(h0+2)]

=H
(k)
[s(h0+2)] + H

(k−1)
[s(h0+2)].

(5.26)

Notice that

(m− t− s− h0)(
t
k) =

(
(m− s− k − h0)− (t− k)

)
(t
k) = (m− s− k − h0)(

t
k)− (k + 1)(t

k+1).

Thus we have

∑m−s−h0−1

t=k
(−ξ)m−t−s−h0−1(t

k)(m− t− s− h0)H[t(s−1)(m−t−s−h0)(h0+1)]

=
1

−ξ

∑m−s−h0

t=k
(−ξ)m−t−s−h0

(
(m− s− k − h0)(

t
k)− (k + 1)

)
(t
k+1)

)
H[t(s−1)(m−t−s−h0)(h0+1)]

=
1

−ξ

(
(m− s− k − h0)H

(k)
[(s−1)(h0+1)] − (k + 1)H

(k+1)
[(s−1)(h0+1)]

)
.

(5.27)

Substituting (5.26) and (5.27) into (5.24), we get (5.21).
Next we prove (5.22). A direct computation shows that

∑m−s−h0

t=k
(−ξ)m−t−s−h0(t

k)
{
ξΦ[t(s+1)(m−t−s−h0−2)(h0+1)] + (1 + ξ2)Φ[(t−1)(s+1)(m−t−s−h0−1)(h0+1)]

+ ξΦ[(t−2)(s+1)(m−t−s−h0)(h0+1)]

}

=
∑m−s−h0−2

t=k−2
(−ξ)m−t−s−h0−2

{
ξ · ξ2(t

k)− ξ(1 + ξ2)(t+1
k ) + ξ(t+2

k )
}
Φ[t(s+1)(m−t−s−h0−2)(h0+1)]

=
∑m−s−h0−2

t=k−2
(−ξ)m−t−s−h0−2

{
ξθ(t

k−1) + ξ(t
k−2)

}
Φ[t(s+1)(m−t−s−h0−2)(h0+1)]

=ξθΦ
(k−1)
[(s+1)(h0+1)] + ξΦ

(k−2)
[(s+1)(h0+1)].

(5.28)
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We also have

∑m−s−h0

t=k
(−ξ)m−t−s−h0(t

k)
{
ξ(t + 1)Φ[(t+1)(s−1)(m−t−s−h0−1)(h0+1)]

+ (t− 1)Φ[t(s−1)(m−t−s−h0)(h0+1)]

}

=− ξ2
∑m−s−h0

t=k
(−ξ)m−t−s−h0−1(k + 1)(t+1

k+1)Φ[(t+1)(s−1)(m−t−s−h0−1)(h0+1)]

+
∑m−s−h

t=k
(−ξ)m−t−s−h0

{
(k + 1)(t

k+1) + (k − 1)(t
k)

}
Φ[t(s−1)(m−t−s−h0)(h0+1)]

=− ξ2(k + 1)Φ
(k+1)
[(s−1)(h0+1)] + (k + 1)Φ

(k+1)
[(s−1)(h0+1)] + (k − 1)Φ

(k)
[(s−1)(h0+1)]

=θ(k + 1)Φ
(k+1)
[(s−1)(h0+1)] + (k − 1)Φ

(k)
[(s−1)(h0+1)].

(5.29)

Substituting (5.28) and (5.29) into (5.25), we get (5.22).
Now we turn to the proof of (5.23). Under the assumption (5.20), (4.5) has the following

form:

s
{
ξΨ[tsr(h0+1)] + (2ξ2 + 1)Ψ[(t−1)s(r+1)(h0+1)] + (ξ3 + 2ξ)Ψ[(t−2)s(r+2)(h0+1)] + ξ2Ψ[(t−3)s(r+3)(h0+1)]

}

+ η
{
(s− 2)Ψ[t(s−2)(r+2)(h0+1)] + ξ(s− 2)Ψ[(t−1)(s−2)(r+3)(h0+1)]

}

− η
{
(t + 1)ξΨ[(t+1)(s−2)(r+1)(h0+1)] + t(1 + ξ2)Ψ[t(s−2)(r+2)(h0+1)] + (t− 1)ξΨ[(t−1)(s−2)(r+3)(h0+1)]

}

− (t + 1)η2Ψ[(t+1)(s−4)(r+3)(h0+1)] − ηθΨ[t(s−2)(r+2)(h0+1)] = 0.

(5.30)

Notice that

(−ξ)3ξ(t
k) + (−ξ)2(2ξ2 + 1)(t+1

k ) + (−ξ)(ξ3 + 2ξ)(t+2
k ) + ξ2(t+3

k )

=ξ2
{
(t+3
k )− 2(t+2

k ) + (t+1
k )

}− ξ4
{
(t+2
k )− 2(t+1

k ) + (t
k)

}

=ξ2
{
(t
k−2) + (t

k−3)
}− ξ4(t

k−2) = ξ2θ(t
k−2) + ξ2(t

k−3).

Hence we have

∑m−s−h0+3

t=k
(−ξ)m−t−s−h0+3(t

k)
{
ξΨ[ts(m−t−s−h0)(h0+1)] + (2ξ2 + 1)Ψ[(t−1)s(m−t−s−h0+1)(h0+1)]

+ (ξ3 + 2ξ)Ψ[(t−2)s(m−t−s−h0+2)(h0+1)] + ξ2Ψ[(t−3)s(m−t−s−h0+3)(h0+1)]

}

=
∑m−s−h0

t=k−3
(−ξ)m−t−s−h0

{
(−ξ)3ξ(t

k) + (−ξ)2(2ξ2 + 1)(t+1
k )

+ (−ξ)(ξ3 + 2ξ)(t+2
k ) + ξ2(t+3

k )
}
Ψ[ts(m−t−s−h0)(h0+1)]

=
∑m−s−h0

t=k−3
(−ξ)m−t−s−h0

{
ξ2θ(t

k−2) + ξ2(t
k−3)

}
Ψ[ts(m−t−s−h0)(h0+1)]

=ξ2θΨ
(k−2)
[s(h0+1)] + ξ2Ψ

(k−3)
[s(h0+1)].

(5.31)
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A direct computation shows that

∑m−s−h0+3

t=k
(−ξ)m−t−s−h0+3(t

k)
{
Ψ[t(s−2)(m−t−s−h0+2)(h0+1)] + ξΨ[(t−1)(s−2)(m−t−s−h0−3)(h0+1)]

}

=
∑m−s−h0+2

t=k−1
(−ξ)m−t−s−h0+2

{− ξ(t
k) + ξ(t+1

k )
}
Ψ[t(s−2)(m−t−s−h0+2)(h0+1)]

=
∑m−s−h0+2

t=k−1
(−ξ)m−t−s−h0+2ξ(t

k−1)Ψ[t(s−2)(m−t−s−h0+2)(h0+1)]

=ξΨ
(k−1)
[(s−2)(h0+1)].

(5.32)

We also obtain the following formulas:

∑m−s−h0+3

t=k
(−ξ)m−t−s−h0+3(t

k)
{
(t + 1)ξΨ[(t+1)(s−2)(m−t−s−h0+1)(h0+1)]

+ t(1 + ξ2)Ψ[t(s−2)(m−t−s−h0+2)(h0+1)] + (t− 1)ξΨ[(t−1)(s−2)(m−t−s−h0+3)(h0+1)]

}

=
∑m−s−h0+2

t=k−1
(−ξ)m−t−s−h0+2

{
(−ξ)2tξ(t−1

k )− ξ(1 + ξ2)t(t
k) + tξ(t+1

k )
}
Ψ[t(s−2)(m−t−s−h0+2)(h0+1)]

=
∑m−s−h0+2

t=k−1
(−ξ)m−t−s−h0+2

{
kξθ(t

k) + (k − 1)ξ(t
k−1)

}
Ψ[t(s−2)(m−t−s−h0+2)(h0+1)]

=kξθΨ
(k)
[(s−2)(h0+1)] + (k − 1)ξΨ

(k−1)
[(s−2)(h0+1)].

(5.33)

∑m−s−h0+3

t=k
(−ξ)m−t−s−h0+3(t

k)(t + 1)Ψ[(t+1)(s−4)(m−t−s−h0+3)(h0+1)] = (k + 1)Ψ
[(k+1)
[(s−4)(h0+1)],

∑m−s−h0+3

t=k
(−ξ)m−t−s−h0+3(t

k)Ψ[t(s−2)(m−t−s−h0+2)(h0+1)] = −ξΨ
(k)
[(s−2)(h0+1)].

(5.34)

Combining (5.31)-(5.34) with (5.30), we obtain

sξ2θΨ
(k−2)
[s(h0+1)] + sξ2Ψ

(k−3)
[s(h0+1)] + (s− 2)ξηΨ

(k−1)
[(s−2)(h0+1)] − η

(
kξθΨ

(k)
[(s−2)(h0+1)] + (k − 1)ξΨ

(k−1)
[(s−2)(h0+1)]

)

− (k + 1)η2Ψ
(k+1)
[(s−4)(h0+1)] + ξηθΨ

(k)
[(s−2)(h0+1)] = 0.

This finishes the proof of (5.23).

Now we are in a position to prove Lemma 5.3.

Proof of Lemma 5.3. (I) Setting h0 = −1, k = 0 and h0 = −1, k = 1 in (5.23), respectively, we
get

ξη(−1)θΨ
(0)
[s−2,0] + η2Ψ

(1)
[s−4,0] = 0, ξη(2− s)Ψ

(0)
[s−2,0] + 2η2Ψ

(2)
[s−4,0] = 0.

Namely, we have

ξθΨ
(0)
[s−2,0] = ηΨ

(1)
[s−4,0], (s− 2)ξΨ

(0)
[s−2,0] = 2ηΨ

(2)
[s−4,0]. (5.35)
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Next we prove that for 2s ≤ m + 2, 2k ≤ m + 2− 2s, we have

2sξθΨ
(2k)
[2s,0] = (2s + 2k)ηΨ

(2k+1)
[2s−2,0], 2sξΨ

(2k)
[2s,0] = (2k + 2)ηΨ

(2k+2)
[2s−2,0]. (5.36)

Notice that Ψ
(k)
[ij] = 0 for i + j + k ≥ m + 2. Hence all the terms in (5.36) are 0 when

2k > m + 2− 2s. Thus (5.36) holds for all k ≥ 0. Also notice that (5.36) implies

(2s + 2k)Ψ
(2k+1)
[2s−2,0] = (2k + 2)θΨ

(2k+2)
[2s−2,0]. (5.37)

We prove (5.36) by induction on s.

If m = 2m̂ then the largest possible s is s = m̂ + 1. In this case, (5.36) is has only one

nontrivial equation: Ψ
(1)
[2m̂,0] = 0. This can be got by setting s = 2m̂ + 4 and k = 0 in the first

equation of (5.35).
If m = 2m̃ + 1, then the largest possible s is s = m̃ + 1. In this case, we must have k = 0.

Hence (5.36) is the same as (5.35).

Suppose that (5.36) holds for s ≥ s0(≥ 2). Since (5.36) holds for s = s0 − 1 and k = 0, we
can further suppose that (5.36) holds for s = s0 − 1 and k ≤ k0. Next we will prove (5.36) for
s = s0 − 1 and k = k0 + 1.

Setting h0 = −1, s = 2s0, k = 2k0 + 2 in (5.23), we get

2s0ξ
2θΨ

(2k0)
[2s0,0] + 2s0ξ

2Ψ
(2k0−1)
[2s0,0]

=ξη
{
(2k0 + 1)θΨ

(2k0+2)
[2s0−2,0] + (2k0 + 3− 2s0)Ψ

(2k0+1)
[2s0−2,0]

}
+ η2(2k0 + 3)Ψ

(2k0+3)
[2s0−4,0].

(5.38)

By our assumption, (5.37) holds for s = s0 + 1, k = k0 − 1 and s = s0, k = k0, respectively.
Hence we get:

(2s0 + 2k0)Ψ
(2k0−1)
[2s0,0] = 2k0θΨ

(2k0)
[2s0,0], (2s0 + 2k0)Ψ

(2k0+1)
[2s0−2,0] = (2k0 + 2)θΨ

(2k0+2)
[2s0−2,0]. (5.39)

By (5.36) with s = s0, k = k0 and (5.39), we obtain

2s0ξ
2θΨ

(2k0)
[2s0,0] + 2s0ξ

2Ψ
(2k0−1)
[2s0,0] =

(
2s0ξ

2θ + 2s0ξ
2 2k0

2s0 + 2k0

θ
)
Ψ

(2k0)
[2s0,0]

=
(
1 +

2k0

2s0 + 2k0

)
2s0ξ

2θΨ
(2k0)
[2s0,0]

=
(
1 +

2k0

2s0 + 2k0

)
(2k0 + 2)ξηθΨ

(2k0+2)
[2s0−2,0].

(5.40)

By (5.39), we have

ξη
{
(2k0 + 1)θΨ

(2k0+2)
[2s0−2,0] + (2k0 + 3− 2s0)Ψ

(2k0+1)
[2s0−2,0]

}
+ η2(2k0 + 3)B

(2k0+3)
[2s0−4,0]

=ξη
{
2k0 + 1 + (2k0 + 3− 2s0)

2k0 + 2

2s0 + 2k0

}
θΨ

(2k0+2)
[2s0−2,0] + (2k0 + 3)η2Ψ

(2k0+3)
[2s0−4,0].

(5.41)
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Substituting (5.40)-(5.41) back into (5.38), we get

η2(2k0 + 3)Ψ
(2k0+3)
[2s0−4,0] =

(
1 +

2k0 + 2

2s0 + 2k0

(2s0 − 3)
)
ξηθΨ

(2k0+2)
[2s0−2,0]

=
(2k0 + 3)(2s0 − 2)

2s0 + 2k0

ξηθΨ
(2k0+2)
[2s0−2,0]

This is just the first equation of (5.36).
Setting h0 = −1, s = 2s0 and k = 2k0 + 3 in (5.23), we get

2s0ξ
2θΨ

(2k0+1)
[2s0,0] + 2s0ξ

2Ψ
(2k0)
[2s0,0]

=ξη
{
(2k0 + 2)θΨ

(2k0+3)
[2s0−2,0] + (2k0 + 4− 2s0)Ψ

(2k0+2)
[2s0−2,0]

}
+ η2(2k0 + 4)Ψ

(2k0+4)
[2s0−4,0].

(5.42)

By our assumption, (the second equation in) (5.36) holds for s = s0, k = k0 + 1 and for s = s0,
k = k0. Namely, we have

2s0ξΨ
(2k0+2)
[2s0,0] = (2k0 + 4)ηΨ

(2k0+4)
[2s0−2,0], 2s0ξΨ

(2k0)
[2s0,0] = (2k0 + 2)ηΨ

(2k0+2)
[2s0−2,0]. (5.43)

By our assumption, (5.37) holds for s = s0 + 1, k = k0 and s = s0, k = k0 + 1, respectively.
Hence we get:

(2s0 + 2k0 + 2)Ψ
(2k0+1)
[2s0,0] = (2k0 + 2)θΨ

(2k0+2)
[2s0,0] , (2s0 + 2k0 + 2)Ψ

(2k0+3)
[2s0−2,0] = (2k0 + 4)θΨ

(2k0+4)
[2s0−2,0].

Combining this with (5.43), we get

2s0ξ
2Ψ

(2k0+1)
[2s0,0] =

2s0

2s0 + 2k0 + 2
(2k0 + 2)ξ2θΨ

(2k0+2)
[2s0,0]

=
2k0 + 2

2s0 + 2k0 + 2
ξθ(2k0 + 4)ηΨ

(2k0+4)
[2s0−2,0]

= (2k0 + 2)ξηΨ
(2k0+3)
[2s0−2,0].

(5.44)

Substituting (5.43) and (5.44) into (5.42), we get

ξ(2s0 − 2)Ψ
(2k0+2)
[2s0−2,0] = η(2k0 + 4)Ψ

(2k0+4)
[2s0−4,0].

This completes the proof of (5.36).

Setting s = 1 in (5.37), we get

θΨ
(2k+2)
[0,0] = Ψ

(2k+1)
[0,0] for 0 ≤ 2k ≤ m. (5.45)

By (5.22), we have Ψ
(k)
[0,0] = ξθΦ

(k−1)
[1,0] + ξΦ

(k−2)
[1,0] . Hence (5.45) is equivalent to

θ
(
ξθΦ

(2k+1)
[1,0] + ξΦ

(2k)
[1,0]

)
= ξθΦ

(2k)
[1,0] + ξΦ

(2k−1)
[1,0] for 0 ≤ 2k ≤ m. (5.46)
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Namely, we have θ2Φ
(2k+1)
[1,0] = Φ

(2k−1)
[1,0] . Setting k = 0 in this equation, we get Φ

(1)
[1,0] = 0. Thus

we inductively get Φ
(2k−1)
[1,0] = 0. Together with (5.21), we obtain

(−ξ)
(
θH

(2k−1)
[11] + H

(2k−2)
[11]

)− (m + 1− 2k)H
(2k−1)
[00] + 2kH

(2k)
[00] = 0. (5.47)

(II−3): In this case, we have m = 6m̂− 3.
First, we prove by induction that

H[t1(m−t−2)1] = 0 fort ≥ 4m̂− 3. (5.48)

In fact, from (4.23), we get

H
(t)
[00] = 0 for t ≥ 4m̂− 1 and H

(6m̂−5)
[11] = 0. (5.49)

Setting 2k = 6m̂− 4 in (5.47), we get H
(6m̂−6)
[11] = 0. Together with H[(6m̂−5)101] = 0, we obtain

H[(6m̂−6)111] = 0.

Suppose that we have obtained H
(2t)
[11] = 0 for t ≥ t0(≥ 2m̂). Then H

(2t0−1)
[11] = 0. Setting

2k = 2t0 in (5.47), we get H
(2t0−2)
[11] = 0. Since H[t1(m−t−2)1] = 0 for t ≥ 2t0− 1. Hence we obtain

H[(2t0−2)1(m−2t0)1] = 0. This completes the proof of (5.48).
Now (5.47) takes the following form

(−ξ)
∑

2m̂−1≤t≤4m̂−4

{
θ(t

2k−1)(−ξ)m−t−2H[t1(m−t−2)1] + (t
2k−2)(−ξ)m−t−2H[t1(m−t−2)1]

}

−
∑

2m̂−1≤t≤4m̂−2

{
(m + 1− 2k)(t

2k−1)(−ξ)m−tH[t0(m−t)0] − 2k(t
2k)(−ξ)m−tH[t0(m−t)0]

}
= 0.

(5.50)

Notice that

θ(t
2k−1) + (t

2k−2) = (t+1
2k−1)− (t

2k−1)ξ
2,

(m + 1− 2k)(t
2k−1)− 2k(t

2k) = (m + 1− 2k)(t
2k−1)− (t− 2k + 1)(t

2k−1) = (m− t)(t
2k−1).

Hence (5.50) takes the following form

(−ξ)
∑

2m̂−1≤t≤4m̂−4

{(
(t+1
2k−1)− (t

2k−1)ξ
2
)
(−ξ)m−t−2H[t1(m−t−2)1]

}

−
∑

2m̂−1≤t≤4m̂−2

{
(m− t)(t

2k−1)(−ξ)m−tH[t0(m−t)0]

}
= 0.

(5.51)
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Recall that HIJ = HJI . By considering the real part and the imaginary part in (5.51), respec-
tively, we obtain:

(−ξ)
∑

3m̂−2≤t≤4m̂−4

(
(t+1
2k−1)− (t

2k−1)ξ
2 ± (−ξ)2t+2−m

(
(m−t−1
2k−1 )− (m−t−2

2k−1 )ξ2
))

(−ξ)m−t−2Ĥ±
[t1]

−
∑

3m̂−1≤t≤4m̂−2

(
(m− t)(t

2k−1)± (−ξ)2t−mt(m−t
2k−1)

)
(−ξ)m−tĤ±

[t0] = 0.

(5.52)

Here we write

Ĥ+
[t1] = <(H[t1(m−t−2)1]), Ĥ−

[t1] = =(H[t1(m−t−2)1]),

Ĥ+
[t0] = <(H[t0(m−t)0]), Ĥ−

[t0] = =(H[t0(m−t)0]).
(5.53)

Then to prove that Ĥ±
[t1] = Ĥ±

[t0] = 0, we only need to prove that the matrices (R±
ij)1≤i,j≤2m̂−1

are invertible, where R±
ij are defined as follows:

R±
ij(ξ) =





(4m̂−2−j
2i−1 )− (4m̂−3−j

2i−1 )ξ2 ± (−ξ)2m̂−1−2j
(
(2m̂−1+j
2i−1 )− (2m̂−2+j

2i−1 )ξ2
)

for 1 ≤ j ≤ m̂− 1,

(m̂− 1 + j)(5m̂−2−j
2i−1 )± (−ξ)4m̂−1−2j(5m̂− 2− j)(m̂−1+j

2i−1 )

for m̂ ≤ j ≤ 2m̂− 1.

(5.54)

This will be done in Lemma 6.2 of the next section. The proof for the Case (II−3) is complete.

(II−2): In this case, we have m = 6m̂− 2. First, we prove by induction that

Ht1(m−t−2)1 = 0 for t ≥ 4m̂− 2. (5.55)

In fact, from (4.24), we get

H
(t)
[00] = 0 for t ≥ 4m̂− 1. (5.56)

Setting 2k = 6m̂− 2 in (5.47) and noticing that H
(6m̂−3)
[11] = 0, we get H

(6m̂−4)
[11] = 0, which gives

that H[(6m̂−4)101] = 0.

Suppose that we know that H
(2t)
[11] = 0 for t ≥ t0(≥ 2m̂). Then H

(2t0−1)
[11] = 0. Setting

2k = 2t0 in (5.47), we get H
(2t0−2)
[11] = 0. Since H[t1(m−t−2)1] = 0 for t ≥ 2t0− 1. Hence we obtain

H[(2t0−2)1(m−2t0)1] = 0. This proves (5.55).
Now (5.47) takes the form:

(−ξ)
∑

2m̂−1≤t≤4m̂−3

{
θ(t

2k−1)(−ξ)m−t−2H[t1(m−t−2)1] + (t
2k−2)(−ξ)m−t−2H[t1(m−t−2)1]

}

−
∑

2m̂≤t≤4m̂−2

{
(m + 1− 2k)(t

2k−1)(−ξ)m−tH[t0(m−t)0] − 2k(t
2k)(−ξ)m−tH[t0(m−t)0]

}
= 0.

(5.57)
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As for (5.50), it takes the form:

(−ξ)
∑

2m̂−1≤t≤4m̂−3

{(
(t+1
2k−1)− (t

2k−1)ξ
2
)
(−ξ)m−t−2H[t1(m−t−2)1]

}

−
∑

2m̂≤t≤4m̂−2

{
(m− t)(t

2k−1)(−ξ)m−tH[t0(m−t)0]

}
= 0.

(5.58)

Recall that HIJ = HJI . By considering the real part and imaginary part in (5.58), respectively,
we obtain:

(−ξ)
∑

3m̂−1≤t≤4m̂−4

(
(t+1
2k−1)− (t

2k−1)ξ
2 + (−ξ)2t+2−m

(
(m−t−1
2k−1 )− (m−t−2

2k−1 )ξ2
))

(−ξ)m−t−2Ĥ+
[t1]

+ (−ξ)(−ξ)m−(3m̂−2)−2
(
(3m̂−1
2k−1 )− (3m̂−2

2k−1 )ξ2
)
Ĥ+

[(3m̂−2)1]

−
∑

3m̂≤t≤4m̂−2

(
(m− t)(t

2k−1) + (−ξ)2t−mt(m−t
2k−1)

)
(−ξ)m−tĤ+

[t0]

− (3m̂− 1)(3m̂−1
2t−1 )(−ξ)3m̂−1Ĥ+

[(3m̂−1)0] = 0

(5.59)

and

(−ξ)
∑

3m̂−1≤t≤4m̂−3

(
(t+1
2k−1)− (t

2k−1)ξ
2 − (−ξ)2t+2−m

(
(m−t−1
2k−1 )− (m−t−2

2k−1 )ξ2
))

(−ξ)m−t−2Ĥ−
[t1]

−
∑

3m̂≤t≤4m̂−2

(
(m− t)(t

2k−1)− (−ξ)2t−mt(m−t
2k−1)

)
(−ξ)m−tĤ−

[t0] = 0.

(5.60)

To prove that Ĥ[t1] = Ĥ[t0] = 0, we only need to prove that the matrices (Nij)1≤i,j≤2m̂−1

(Tij)1≤i,j≤2m̂−2 are nonsingular, where Nij and Tij are defined by:

Nij =





(4m̂−2−j
2i−1 )− (4m̂−3−j

2i−1 )ξ2 + ξ2m̂−2−2j
(
(2m̂+j
2i−1 )− (2m̂−1+j

2i−1 )ξ2
)

for 1 ≤ j ≤ m̂− 2,

(3m̂−1
2i−1 )− (3m̂−2

2i−1 )ξ2 for j = m̂− 1,

(m̂ + j)(5m̂−2−j
2i−1 ) + ξ4m̂−2−2j(5m̂− 2− j)(m̂+j

2i−1) for m̂ ≤ j ≤ 2m̂− 2,

(3m̂− 1)(3m̂−1
2i−1 ) for j = 2m̂− 1,

Tij =

{
(4m̂−1−j
2i+1 )− (4m̂−2−j

2i+1 )ξ2 − ξ2m̂−2j
(
(2m̂−1+j
2i+1 )− (2m̂−2+j

2i+1 )ξ2
)

for 1 ≤ j ≤ m̂− 1,

(m̂ + j)(5m̂−2−j
2i+1 )− ξ4m̂−2−2j(5m̂− 2− j)(m̂+j

2i+1) for m̂ ≤ j ≤ 2m̂− 2.

(5.61)

These will be the content of Lemma 6.3 of the next section. Hence we complete the proof of
Lemma 5.3 for the case (II−2).
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Case(II−1) and Case (II1) can be done in a similar way as that for Case (II−3), while Case
(II0) and case (II2) can be done in a similar way as that for Case (II−2). Hence we see the proof
of Part (I) of Lemma 5.3.

Now we turn to the proof of Part (II) of Lemma 5.3. From (4.5), we can conclude that

Ψ[t(2s+1)r(h0+1)] = F{(Ψ[t′(2s′+1)r′(h0+1)])s′<s, (Ψ[t′′s′′r′′h′′])h′′≤h0} for s ≥ 0. (5.62)

In particular, we obtain
Ψ[t1r(h0+1)] = F{(Ψ[t′s′r′h′])h′≤h0} = 0.

The last equality follows from the assumptions in (5.17). By an induction argument, we obtain

Ψ[t(2s+1)r(h0+1)] = 0 for 1 ≤ 2s + 1 ≤ m− h0. (5.63)

Combining this with (5.22), we get

(2s + 2)ξ
(
θΦ

(k−1)
[2s+2,h0+1] + Φ

(k−2)
[2s+2,h0+1]

)
= η(k + 1)θΦ

(k+1)
[2s,h0+1] + η(k − 1)Φ

(k)
[2s,h0+1]. (5.64)

Setting k = 0 in (5.64), we obtain

θΦ
(1)
[2s,h0+1] = Φ

(0)
[2s,h0+1] for 0 ≤ 2s ≤ m− h0 − 1. (5.65)

Next we prove by induction that

θΦ
(2k+1)
[2s,h0+1] = Φ

(2k)
[2s,h0+1] for 0 ≤ 2s ≤ m− h0 − 1, 0 ≤ 2k ≤ m− 2s− h0 − 1. (5.66)

Notice that (5.66) also holds for 2k > m − 2s − h0 − 1, in which case, all the terms in (5.66)
are 0.

When m − h0 − 1 = 2m̂ (2m̃ + 1, respectively), then the largest possible s is s = m̂ (m̃,
respectively). In this case, k = 0, (5.66) reduces to (5.65).

Suppose that we already have (5.66) for s ≥ s0. By (5.65), we see that (5.66) also holds for
k = 0, s = s0 − 1. Hence we can suppose that (5.66) holds for k ∈ [0, k0], s = s0 − 1, Next we
will prove that (5.66) also holds for s = s0 − 1, k = k0 + 1.

Setting s = s0, k = 2k0, 2k0 + 1, 2k0 + 2 in (5.64), respectively, we get

2s0ξ
(
θΦ

(2k0−1)
[2s0,h0+1] + Φ

(2k0−2)
[2s0,h0+1]

)
= η(2k0 + 1)θΦ

(2k0+1)
[2s0−2,h0+1] + η(2k0 − 1)Φ

(2k0)
[2s0−2,h0+1], (5.67)

2s0ξ
(
θΦ

(2k0)
[2s0,h0+1] + Φ

(2k0−1)
2s0,h0+1

)
= η(2k0 + 2)θΦ

(2k0+2)
[2s0−2,h0+1] + η2k0Φ

(2k0+1)
[2s0−2,h0+1], (5.68)

2s0ξ
(
θΦ

(2k0+1)
[2s0,h0+1] + Φ

(2k0)
[2s0,h0+1]

)
= η(2k0 + 3)θΦ

(2k0+3)
[2s0−2,h0+1] + η(2k0 + 1)Φ

(2k0+2)
[2s0−2,h0+1]. (5.69)

Since (5.66) holds for s = s0, k = k0− 1, k0, k0 + 1, respectively, we conclude that the left hand
side of (5.67)− 2θ(5.68) + θ2(5.69) can be written as follows:

2s0ξ
{
2θΦ

(2k0−1)
[2s0,h0+1] − 2θ

(
θΦ

(2k0)
[2s0,h0+1] + Φ

(2k0−1)
[2s0,h0+1]

)
+ 2θ2Φ

(2k0)
[2s0,h0+1]

}
= 0. (5.70)
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Setting s = s0 − 1, k = k0 in (5.66), we get θΦ
(2k0+1)
[2s0−2,h0+1] = Φ

(2k0)
[2s0−2,h0+1]. Thus we obtain:

(2k0 + 1)θΦ
(2k0+1)
[2s0−2,h0+1] + (2k0 − 1)Φ

(2k0)
[2s0−2,h0+1] − 2θ · 2k0Φ

(2k0+1)
[2s0−2,h0+1] = 0. (5.71)

Hence by calculating (5.67)− 2θ(5.68) + θ2(5.69) and making use of (5.70)-(5.71), we obtain:

θ2
{
(2k0 + 3)θΦ

(2k0+3)
[2s0−2,h0+1] + (2k0 + 1)Φ

(2k0+2)
[2s0−2,h0+1]

}− 2θ · (2k0 + 2)θΦ
(2k0+2)
[2s0−2,h0+1] = 0. (5.72)

Thus we get
θΦ

(2k0+3)
[2s0−2,h0+1] = Φ

(2k0+2)
[2s0−2,h0+1].

This completes the proof of (5.66).

Setting s = 0 in (5.66), we get

θΦ
(2k+1)
[0,h0+1] = Φ

(2k)
[0,h0+1] for 0 ≤ 2k ≤ m− h0 − 1. (5.73)

Substituting (5.21) into (5.73) and making use of the assumptions in (5.9), we get

θ(θH
(2k+1)
[0,h0+2] + H

(2k)
[0,h0+2]) = θH

(2k)
[0,h0+2] + H

(2k−1)
[0,h0+2].

Hence we get
θ2H

(2k+1)
[0,h0+2] = H

(2k−1)
[0,h0+2] for 0 ≤ 2k ≤ m− h0 − 1. (5.74)

Setting k = 0 in (5.74), we get H
(1)
[0,h0+2] = 0. By an induction, we get

H
(2k+1)
[0,h0+2] = 0 for 0 ≤ 2k ≤ m− h0 − 3. (5.75)

Next, we will use the just obtained (5.75) to show that H[t0(m−t−h0−2)(h0+2)] = 0. We will
proceed in terms of the even or odd property of m− h0 − 1.

(1) In this case, we assume m−h0−1 = 2m̂. By H
(2m̂−1)
[0(h0+2)] = 0, we get H[(2m̂−1)00(h0+2)] = 0.

By our normalization (4.21), we have H[t0r(h0+2)] = 0 for t ≤ m̂ − 1. Hence (5.75) with
0 ≤ k ≤ m̂− 2 takes the following form:

m̂−1∑
j=1

S
(2m̂−2)
ij (−ξ)j−1H[(2m̂−1−j)0j(h0+2)] = 0.

Here we have set
S = (S

(2m̂−2)
ij ) =

(
(2m̂−1−j
2i−1 )

)
1≤i,j≤m̂−1

. (5.76)

By Lemma 6.1, S = (S
(2m̂−2)
ij ) is nonsingular. Hence we have H[(2m̂−1−j)0j(h0+2)] = 0.
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(2) In this case, we assume m − h0 − 1 = 2m̃ + 1. By our normalization (4.21), we have
H[t0r(h0+2)] = 0 for t ≤ m̃. Hence (5.75) has the following form:

em∑
j=1

Sij(−ξ)j−1H[(2em+1−j)0(j−1)(h0+2)] = 0 for 1 ≤ i ≤ m̃.

Here S = (Sij) =
(
(2em+1−j
2i−1 )

)
1≤i,j≤em. Now, by Lemma 6.1, we conclude that H[t0r(h0+2)] = 0.

Thus we got H[t0r(h0+2)] = 0. By (4.8), we get H[tsr(h0+2)] = 0 for s ≤ h0 + 2. Combining
this with (5.24), we get

Φ[t0r(h0+2)] = Φ[t1r(h0+2)] = 0. (5.77)

Substituting this back to (4.4), we obtain Ψ[t0r(h0+2)] = 0. By (4.6), we inductively get
Ψ[tsr(h0+2)] = 0. Combining (4.7) with (5.77), we inductively get Φ[tsr(h0+2)] = 0. This proves
(5.18) for the case h0 ≥ 0 and completes the proof of Lemma 5.3. This also finishes the proof
of Proposition 5.1.

Finally, we are in a position to complete the proof of Theorem 3.1.

Proof of Theorem 3.1. By an induction argument, we need only to that H ≡ 0.
When n = 3, Theorem 3.1 is the content of Proposition 5.1. Next we suppose that n > 3.

We prove H = 0 by induction according to the order of zn in H. By Lemma 4.1 and Proposition
5.1, we have H(ten+sek,ren+hen) = 0 for t + s = m or m− 1. Suppose that

H(ten+I,ren+J) = 0 for t + r ≥ m0 (m0 ≤ m− 1). (5.78)

Next we will prove that H(ten+I,ren+J) = 0 for t + r ≥ m0 − 1. The terms of H can be divided
into the following four types:

H(ten,ren+I), H(ten+se1,ren+he1), H(ten+sek,ren+hek) with s, h ≥ 1, H(ten+ej+I,ren+ek+J).

By Lemma 4.1 and Proposition 5.1, terms of the first two types are 0. H(ten+sek,ren+hek) = 0
follows from (4.12) and (5.78), while H(ten+ej+I,ren+ek+J) = 0 follows from (4.10) and (5.78).
Thus we get H ≡ 0. This completes the proof of Theorem 3.1.

6 Computation of determinants

In this section, we will prove that the matrices S(m), R±(m), N (m) and T (m) in the previous
section are nonsingular when λn 6= 0, 1/2.

Lemma 6.1. The matrices D(2m̂) =
(
(2m̂−j
2i−2 )

)
1≤i,j≤m̂

and S(2m̂) =
(
(2m̂+1−j
2i−1 )

)
1≤i,j≤m̂

are non-

singular.
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Proof of Lemma 6.1. Set

S̃
(2m̂)
ij =

(2i− 1)

2m̂− j + 1
S

(2m̂)
ij for 1 ≤ i ≤ m̂, 1 ≤ j ≤ m̂,

Š
(2m̂)
ij = S̃

(2m̂)
ij − S̃

(2m̂)
i,j+1 for 1 ≤ i ≤ m̂, 1 ≤ j ≤ m̂− 1,

Š
(2m̂)
i,m̂ = S̃

(2m̂)
i,m̂ for 1 ≤ i ≤ m̌.

(6.1)

Then we have

S̃
(2m̂)
ij =

2i− 1

2m̂− j + 1
(2m̂−j+1
2i−1 ) = (2m̂−j

2i−2 ) = D
(2m̂)
ij for 1 ≤ i ≤ m̂.

Š
(2m̂)
1,j = 0 for 1 ≤ j ≤ m̂− 1, Š

(2m̂)
1,m̌ = 1,

Š
(2m̂)
ij = (2m̂−j

2i−2 )− (2m̂−j−1
2i−2 ) = (2m̂−j−1

2i−3 ) = S
(2m̂−2)
i−1,j for 2 ≤ i ≤ m̂.

(6.2)

For 1 ≤ i, j ≤ m̂, we write S̃
(2m̂)
ij = (S̃

(2m̂)
ij ), Š

(2m̂)
ij = (Š

(2m̂)
ij ). By (6.2), we obtain

Š(2m̂) =

(
0 1

(S
(2m̂−2)
i−1,j )2≤i≤m̂,1≤j≤m̂−1 ∗

)
.

Hence we have
det(Š(2m̂)) = (−1)m̂+1 det S(2m̂−2). (6.3)

By (6.1)-(6.3), we get

det(S(2m̂)) =
m̂∏

i,j=1

(2m̂− j + 1)(2i− 1)−1 · det(S̃(2m̂))

=
m̂∏

i,j=1

(2m̂− j + 1)(2i− 1)−1(−1)m̂+1 det(S(2m̂−2)).

(6.4)

Notice that det(S(2)) = (2
1) = 2. Thus S(2m̂) is nonsingular. Combining this with the first

equation in (6.2), we also conclude that D(2m̂) is nonsingular.

Lemma 6.2. Assume that ξ 6= 0, 1
2
. Then the matrices R±(ξ) defined by (5.54) are nonsingular.

Proof. Set

R
[1]
ij = (2i− 1)R+

ij for j ≤ m̂− 1; R
[1]
ij =

2i− 1

(5m̂− 2− j)(m̂− 1 + j)
R+

ij for m̂ ≤ j ≤ 2m̂− 1.

Notice that (2i− 1)(t
2i−1) = t(t−1

2i−2). Thus for 1 ≤ j ≤ m̂− 1, we get

R
[1]
ij =(2i− 1)(4m̂−2−j

2i−1 )− (2i− 1)(4m̂−3−j
2i−1 )ξ2

+ (−ξ)2m̂−1−2j
{
(2i− 1)(2m̂−1+j

2i−1 )− (2i− 1)(2m̂−2+j
2i−1 )

}

=(4m̂− 2− j)(4m̂−3−j
2i−2 )− (4m̂− 3− j)(4m̂−4−j

2i−2 )ξ2

+ (−ξ)2m̂−1−2j
{
(2m̂− 1 + j)(2m̂−2+j

2i−2 )− (2m̂− 2 + j)(2m̂−3+j
2i−2 )ξ2

}
.

(6.5)
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For m̂ ≤ j ≤ 2m̂− 1, we obtain:

R
[1]
ij =

2i− 1

5m̂− 2− j
(5m̂−2−j
2i−1 ) + (−ξ)4m̂−1−2j 2i− 1

m̂− 1 + j
(m̂−1+j
2i−1 )

=(5m̂−3−j
2i−2 ) + (−ξ)4m̂−1−2j(m̂−2+j

2i−2 ).

(6.6)

For 1 ≤ i ≤ 2m̂− 1, write

R
[2]
ij =R

[1]
ij − (4m̂− 2− j)R

[1]
i,j+m̂ + (4m̂− 3− j)R

[1]
i,j+m̂+1ξ

2 for 1 ≤ j ≤ m̂− 2,

R
[2]
i,m̂−1 =R

[1]
i,m̂−1 −

(
3m̂− 1 + (3m̂− 2)ξ

)
R

[1]
i,2m̂−1,

R
[2]
ij =(m̂− 1 + j)R

[1]
ij + (4m̂− 3− 2j)R

[1]
i,j+1

− (5m̂− 4− j)R
[1]
i,j+2ξ

2 + R
[2]
i,j−m̂+1 for m̂ ≤ j ≤ 2m̂− 3,

R
[2]
i,2m̂−2 =(3m̂− 3)R

[1]
i,2m̂−2 +

(
1 + (3m̂− 2)ξ

)
R

[1]
i,2m̂−1 + R

[2]
i,m̂−1, R

[2]
i,2m̂−1 = R

[1]
i,2m̂−1.

(6.7)

Then for 1 ≤ i ≤ 2m̂− 1 and 1 ≤ j ≤ m̂− 2 , we have

R
[2]
ij =(4m̂− 2− j)(4m̂−3−j

2i−2 )− (4m̂− 3− j)(4m̂−4−j
2i−2 )ξ2

+ (−ξ)2m̂−1−2j
{
(2m̂− 1 + j)(2m̂−2+j

2i−2 )− (2m̂− 2 + j)(2m̂−3+j
2i−2 )ξ2

}

− (4m̂− 2− j)(4m̂−3−j
2i−2 )− (4m̂− 2− j)(−ξ)4m̂−1−2(m̂+j)(m̂−2+m̂+j

2i−2 )

+ (4m̂− 3− j)(4m̂−4−j
2i−2 )ξ2 + (4m̂− 3− j)(−ξ)4m̂−1−2(m̂+j+1)(m̂−2+m̂+j+1

2i−2 )ξ2

=(−ξ)2m̂−1−2j
{

(4m̂− 3− j)(2m̂−1+j
2i−2 )− (2m̂− 1− 2j)(2m̂−2+j

2i−2 )

− (2m̂− 2 + j)(2m̂−3+j
2i−2 )ξ2

}
.

(6.8)

When j = m̂− 1, we obtain

R
[2]
i,m̂−1 =(4m̂− 2− m̂ + 1)(4m̂−3−m̂+1

2i−2 )− (4m̂− 3− m̂ + 1)(4m̂−4−m̂+1
2i−2 )ξ2

+ (−ξ)2m̂−1−2m̂+2
{
(2m̂− 1 + m̂− 1)(2m̂−2+m̂−1

2i−2 )− (2m̂− 2 + m̂− 1)(2m̂−3+m̂−1
2i−2 )ξ2

}

− (
3m̂− 1 + (3m̂− 2)ξ

){
(5m̂−3−2m̂+1
2i−2 ) + (−ξ)4m̂−1−4m̂+2(m̂−2+2m̂−1

2i−2 )
}

=(−ξ)
{
(3m̂− 2)(3m̂−2

2i−2 )− (3m̂−3
2i−2 )− (3m̂− 3)(3m̂−4

2i−2 )ξ2
}
.

(6.9)

For 1 ≤ i ≤ 2m̂− 1 and m̂ ≤ j ≤ 2m̂− 3 , we get

R
[2]
ij =(m̂− 1 + j)

{
(5m̂−3−j
2i−2 ) + (−ξ)4m̂−1−2j(m̂−2+j

2i−2 )
}

+ (4m̂− 3− 2j) · {(5m̂−4−j
2i−2 ) + (−ξ)4m̂−3−2j(m̂−1+j

2i−2 )
}

− (5m̂− 4− j)ξ2
{
(5m̂−5−j
2i−2 ) + (−ξ)4m̂−5−2j(m̂+j

2i−2)
}

+ (−ξ)2m̂−1−2j+2m̂−2
{
(4m̂− 3− j + m̂− 1)(2m̂−1+j−m̂+1

2i−2 )

− (2m̂− 1− 2j + 2m̂− 2)(2m̂−2+j−m̂+1
2i−2 )− (2m̂− 2 + j − m̂ + 1)(2m̂−3+j−m̂+1

2i−2 )
}

=(m̂− 1 + j)(5m̂−3−j
2i−2 ) + (4m̂− 3− 2j)(5m̂−4−j

2i−2 )− (5m̂− 4− j)(5m̂−5−j
2i−2 )ξ2.

(6.10)
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When j = 2m̂− 2, we obtain

R
[2]
i,2m̂−2 =(3m̂− 3)

{
(5m̂−3−2m̂+2
2i−2 ) + (−ξ)4m̂−1−4m̂+4(m̂−2+2m̂−2

2i−2 )
}

+
(
1 + (3m̂− 2)ξ

){
(5m̂−3−2m̂+1
2i−2 ) + (−ξ)4m̂−1−4m̂+2(m̂−2+2m̂−1

2i−2 )
}

+ (−ξ)
{
(3m̂− 2)(3m̂−2

2i−2 )− (3m̂−3
2i−2 )− (3m̂− 3)(3m̂−4

2i−2 )ξ2
}

=(3m̂− 3)(3m̂−1
2i−2 ) + (3m̂−2

2i−2 )− (3m̂− 2)(3m̂−3
2i−2 )ξ2.

(6.11)

Set

R
[3]
ij = R

[2]
i,m̂−1+j for 1 ≤ j ≤ m̂− 1,

R
[3]
ij =

−1

ξ2j+1−2m̂
R

[2]
i,2m̂−1−j for m̂ ≤ j ≤ 2m̂− 2, R

[3]
i,2m̂−1 = R

[2]
i,2m̂−1.

(6.12)

Then for 1 ≤ i ≤ 2m̂− 1, 1 ≤ j ≤ m̂− 1, we get

R
[3]
ij =(m̂− 1 + m̂− 1 + j)(5m̂−3−m̂+1−j

2i−2 ) + (4m̂− 3− 2m̂ + 2− 2j)(5m̂−4−m̂+1−j
2i−2 )

− (5m̂− 4− m̂ + 1− j)(5m̂−5−m̂+1−j
2i−2 )ξ2

=(2m̂− 2 + j)(4m̂−2−j
2i−2 ) + (2m̂− 1− 2j)(4m̂−3−j

2i−2 )− (4m̂− 3− j)(4m̂−4−j
2i−2 )ξ2.

(6.13)

For 1 ≤ i ≤ 2m̂− 1, m̂ ≤ j ≤ 2m̂− 2, we get

R
[3]
ij =(4m̂− 3− 2m̂ + 1 + j)(2m̂−1+2m̂−1−j

2i−2 )− (2m̂− 1− 4m̂ + 2 + 2j)(2m̂−2+2m̂−1−j
2i−2 )

− (2m̂− 2 + 2m̂− 1− j)(2m̂−3+2m̂−1−j
2i−2 )ξ2

=(2m̂− 2 + j)(4m̂−2−j
2i−2 ) + (2m̂− 1− 2j)(4m̂−3−j

2i−2 )− (4m̂− 3− j)(4m̂−4−j
2i−2 )ξ2.

(6.14)

Thus for 1 ≤ i ≤ 2m̂− 1, 1 ≤ j ≤ 2m̂− 2, we get

R
[3]
ij = (2m̂− 2 + j)(4m̂−2−j

2i−2 ) + (2m̂− 1− 2j)(4m̂−3−j
2i−2 )− (4m̂− 3− j)(4m̂−4−j

2i−2 )ξ2,

R
[3]
i,m̂−1 = (3m̂−2

2i−2 )− (3m̂−3
2i−2 )ξ.

(6.15)

Thus we get

det(R+) = C1(−ξ)C0 det




R
[3]
11 · · · R

[3]
1,2m̂−2 (3m̂−2

0 )− ξ(3m̂−3
0 )

...
. . .

...
...

R
[3]
2m̂−1,1 · · · R

[3]
2m̂−1,2m̂−2 (3m̂−2

4m̂−4)− ξ(3m̂−3
4m̂−4)


 . (6.16)

Here C0 =
m̂−1∑
i=1

(2i− 1). Set

R
[4]
i,j =

1

4m̂− 3− j
R

[3]
ij , R

[4]
i,2m̂−1 = R

[3]
i,2m̂−1 for 1 ≤ i ≤ 2m̂− 1, 1 ≤ j ≤ 2m̂− 2.
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Then for 2 ≤ i ≤ 2m̂− 1 and 1 ≤ j ≤ 2m̂− 2, we have

R
[4]
i,j =

2m̂− 2 + j

4m̂− 3− j

(
(4m̂−2−j
2i−2 )− (4m̂−3−j

2i−2 )
)

+ (4m̂−3−j
2i−2 )− (4m̂−4−j

2i−2 )ξ2

=
2m̂− 2 + j

4m̂− 3− j
(4m̂−3−j
2i−3 ) + (4m̂−4−j

2i−3 ) + (4m̂−4−j
2i−2 )θ

=
2m̂− 2 + j

2i− 3
(4m̂−4−j
2i−4 ) +

4m̂− 4− j − 2i + 4

2i− 3
(4m̂−4−j
2i−4 ) + (4m̂−4−j

2i−2 )θ

=
6m̂− 2− 2i

2i− 3
(4m̂−4−j
2i−4 ) + (4m̂−4−j

2i−2 )θ.

(6.17)

Set

R
[5]
2m̂−1,j = R

[4]
2m̂−1,j, R

[5]
i,j = R

[4]
i,j −

(2i− 1)θ

6m̂− 2i− 4
R

[5]
i+1,j for 1 ≤ i ≤ 2m̂− 2. (6.18)

Then

R
[5]
1,j = 0, R

[5]
i,j =

6m̂− 2− 2i

2i− 3
(4m̂−4−j
2i−4 ) for 2 ≤ i ≤ 2m̂− 1, 1 ≤ j ≤ 2m̂− 2. (6.19)

Hence we obtain

det(R+) = C2ξ
C0 det

(
0 R

[5]
1,2m̂−1(

6m̂−2i−4
2i−1

(4m̂−4−j
2i−2 )

)
1≤i,j≤2m̂−2

∗

)

= C3ξ
C0 det

(
(4m̂−4−j
2i−2 )1≤i,j≤2m̂−2

)
R

[4]
1,2m̂−1.

(6.20)

By Lemma 6.1,
(
(4m̂−4−j
2i−2 )1≤i,j≤2m̂−2

)
is nonsingular. Now we only need to prove that R

[5]
1,2m̂−1 6= 0

for ξ 6= 0, 1, which follows from the following claim:

R
[5]
1,2m̂−1 = α3m̂−2 with α = (1− ξ)/2.

Notice that (3m̂−2
2k−2 ) = 0 when k ≥ [3m̂

2
] + 1. By (6.19), we inductively get

R
[5]
1,2m̂−1 = R

[4]
1,2m̂−1 +

[ 3m̂
2

]∑

k=2

(−1)k−1
∏k

j=2(2j − 3)θk−1

∏k−1
j=1(6m̂− 4− 2j)

R
[4]
k,2m̂−1.
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Recall that θ = 1− ξ2 = (1− ξ)(1 + ξ) = 22α(1− α). Hence we have

(−1)k−1
∏k

j=2(2j − 3)θk−1

∏k−1
j=1(6m̂− 4− 2j)

R
[4]
k,2m̂−1

=
(−1)k−122k−2αk−1(1− α)k−1

2k−1(k − 1)!(3m̂−3
k−1 )

(2k − 3)!

2k−2(k − 2)!

(
(3m̂−3
2k−3 ) + 2α(3m̂−3

2k−2 )
)

=2αk−1(α− 1)k−1 (2k−3
k−1 )

(3m̂−3
k−1 )

(3m̂−3
2k−3 )

(
1 +

3m̂− 2k

k − 1
α
)

=2(α− 1)k−1αk−1(3m̂−2−k
k−2 )

(
1 +

3m̂− 2k

k − 1
α
)

=2(α− 1)k−1αk−1
(
(3m̂−2−k
k−2 ) + (3m̂−2−k

k−1 )α
)
.

(6.21)

Hence we get

R
[5]
1,2m̂−1 = 2α +

[ 3m̂
2

]−1∑

k=1

2(α− 1)kαk
(
(3m̂−3−k
k−1 ) + (3m̂−3−k

k )α
)
.

Next we prove by induction the following:

α3m̂−2 − α−
k0∑

k=1

(α− 1)kαk
(
(3m̂−3−k
k−1 ) + (3m̂−3−k

k )α
)

=(α− 1)k0+1αk0+1

3m̂−4−k0∑

t=k0

(t
k0

)α3m̂−4−k0−t.

(6.22)

Notice that α3m̂−2 − α = α(α − 1) · ∑3m̂−4
i=0 αi. This proves (6.22) for k0 = 0. Suppose that

(6.22) holds for k0, then

α3m̂−2 − α−
k0+1∑

k=1

(α− 1)kαk
(
(3m̂−3−k
k−1 ) + (3m̂−3−k

k )α
)

=(α− 1)k0+1αk0+1
{ 3m̂−4−k0∑

t=k0

(t
k0

)α3m̂−4−k0−t − (
(3m̂−4−k0
k0

) + (3m̂−4−k0
k0+1 )α

)}

=(α− 1)k0+1αk0+1
{ 3m̂−5−k0∑

t=k0

(t
k0

)α3m̂−4−k0−t − (3m̂−4−k0
k0+1 )α

}
.
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Notice that (3m̂−4−k0
k0+1 ) =

3m̂−5−k0∑
t=k0

(t
k0

). Hence we have

α3m̂−2 − α−
k0+1∑

k=1

(α− 1)kαk
(
(3m̂−3−k
k−1 ) + (3m̂−3−k

k )α
)

=(α− 1)k0+1αk0+1

3m̂−5−k0∑

t=k0

(t
k0

)
(
α3m̂−4−k0−t − α

)

=(α− 1)k0+1αk0+1

3m̂−5−k0∑

t=k0

(t
k0

)(α− 1)α

3m̂−5−k0−t∑
i=0

αi

=(α− 1)k0+2αk0+2

3m̂−5−k0∑

t=k0+1

(t
k0+1)α

3m̂−5−k0−t.

(6.23)

This proves (6.22) for k = k0 + 1 and completes the proof of (6.22). Setting k0 = [3m̂
2

], we

obtain R
[5]
1,2m̂−1 = 2α3m̂−2. Hence R± = C1ξ

C0(1 ∓ ξ)3m̂−2 for some C1 6= 0. This finishes the
proof of Lemma 6.2.

Lemma 6.3. Assume that ξ 6= 0. Then the matrices N and T defined by (5.61) are nonsingular.

Proof. For 1 ≤ t ≤ m̂− 2 and m̂ ≤ t′ ≤ 2m̂− 2, we set

N
[1]
i,2m̂−1 =

1

3m̂− 1
Ni,2m̂−1 = (3m̂−1

2i−1 ),

N
[1]
i,m̂−1 = − 1

ξ2

(
Ni,m̂−1 −N

[1]
i,2m̂−1

)
= (3m̂−2

2i−1 ),

N
[1]
it = − 1

ξ2(m̂−t)

(
Nit −N

[1]
i,t+m̂ + N

[1]
i,t+m̂+1ξ

2 − ξ2m̂−2t−2N
[1]
i,t+1

)
= (2m̂−1+t

2i−1 ),

N
[1]
it′ = − 1

t′ + m̂

(
Nit′ − (5m̂− 2− t′)N [1]

i,t′−m+1ξ
4m̂−2−2t′) = (5m̂−2−t′

2i−1 ).

(6.24)

Set

N
[2]
t = N

[1]
t+m̂−1 for 1 ≤ t ≤ m̂, N

[2]
t = N

[1]
2m̂−t for m̂ + 1 ≤ t ≤ 2m̂− 1. (6.25)

Then N
[2]
ij = (4m̂−1−j

2i−1 ). By Lemma 6.1, the matrix
(
(
2(2m̂−1)+1−t
2i−1 )

)
1≤t≤2m̂−1

is nonsingular.
Next we calculate the determination of the matrix T , which is done by a similar argument

as that for R± (And the proof now, in fact, is much simpler). For the convenience of the reader,
we include the following details.

Set

T
[1]
ij = (2i + 1)Tij for 1 ≤ j ≤ m̂− 1, T

[1]
ij =

2i + 1

(5m̂− 2− j)(m̂ + j)
Tij for m̂ ≤ j ≤ 2m̂− 2.
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Corresponding to (6.5) and (6.6), we get

T
[1]
ij =(4m̂− 1− j)(4m̂−2−j

2i )− (4m̂− 2− j)(4m̂−3−j
2i )ξ2

− ξ2m̂−2j
{
(2m̂− 1 + j)(2m̂−2+j

2i )− (2m̂− 2 + j)(2m̂−3+j
2i )ξ2

}
for 1 ≤ j ≤ m̂− 1,

T
[1]
ij =(5m̂−3−j

2i )− (−ξ)4m̂−2−2j(m̂−1+j
2i ) for m̂ ≤ j ≤ 2m̂− 2.

(6.26)

Set

T
[2]
ij =

1

−ξ2m̂−2j

(
T

[1]
ij − (4m̂− 1− j)T

[1]
i,m̂−1+j + (4m̂− j − 2)T

[1]
i,m̂+jξ

2
)

for 1 ≤ i ≤ m̂− 2,

T
[2]
m̂−1 =

1

−ξ2

(
T

[1]
i,m̂−1 − 3m̂T

[1]
i,2m̂−2

)
,

T
[2]
ij =(j + m̂)T

[1]
ij + (4m̂− 2j − 4)T

[1]
j+1 − (5m̂− j − 4)T

[1]
i,j+2ξ

2 − ξ4m̂−2j−4T
[2]
i,j−m̂+2

for m̂ ≤ j ≤ 2m̂− 4,

T
[2]
i,2m̂−3 =(3m̂− 3)T

[1]
i,2m̂−3 + 2T

[1]
i,2m̂−2, T

[2]
i,2m̂−2 = (3m̂− 2)T

[1]
i,2m̂−2.

(6.27)

By exactly the same argument as that in (6.8)-(6.11), we get

T
[2]
ij =(4m̂− j − 2)(2m̂−1+j

2i )− (2m̂− 2j)(2m̂+j−2
2i )− (2m̂− 2 + j)(2m̂+j−3

2i )ξ2

for 1 ≤ i ≤ m̂− 1,

T
[2]
i,m̂−1 =(3m̂− 1)(3m̂−2

2i )− 2(3m̂−3
2i )− (3m̂− 3)(3m̂−4

2i )ξ2,

T
[2]
ij =(j + m̂)(5m̂−3−j

2i ) + (4m̂− 4− 2j)(5m̂−4−j
2i )− (5m̂− 4− j)(5m̂−5−j

2i )ξ2

for m̂ ≤ j ≤ 2m̂− 4,

T
[2]
i,2m̂−3 =(3m̂− 3)(3m̂

2i ) + 2(3m̂−1
2i )− (3m̂− 1)(3m̂−2

2i )ξ2,

T
[2]
i,2m̂−2 =(3m̂− 2)(3m̂−1

2i )− (3m̂− 2)(3m̂−3
2i )ξ2.

(6.28)

Set

T
[3]
ij = T

[2]
i,m̂−1+j for 1 ≤ j ≤ m̂− 1, N

[3]
ij = N

[2]
i,2m̂−1−j for m̂ ≤ j ≤ 2m̂− 2. (6.29)

Then for 1 ≤ i ≤ 2m̂− 2, corresponding to (6.15), we have

T
[3]
ij =(2m̂ + j − 1)(4m̂−2−j

2i )− (2j + 2− 2m̂)(4m̂−j−3
2i )− (4m̂− 3− j)(4m̂−j−4

2i )ξ2. (6.30)

By the same computation as that used in (6.17), we obtain

T
[4]
ij :=

1

4m̂− 3− j
T

[3]
ij =

6m̂− 3− 2i

2i− 1
(4m̂−4−j
2i−2 ) + (4m̂−4−j

2i )θ. (6.31)
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Set

T
[5]
(2m̂−2)j =

4m̂− 5

2m̂ + 1
T

[4]
(2m̂−2)j, T

[5]
ij =

2i− 1

6m̂− 3− 2i

(
T

[4]
ij − θT

[5]
(i+1)j

)
for 1 ≤ i ≤ 2m̂− 3.

Then T
[5]
ij =

(
(4m̂−4−j
2i−2 )

)
1≤i,j≤2m̂−2

. By lemma 6.1, T [5] is non-singular. Thus T is non-singular.

This completes the proof of Lemma 6.3.

7 Holomorphic flattening, proofs of Theorems 1.3, 1.4

Our proof of Theorem 1.3 is fundamentally based on Theorem 3.1 and the two dimensional
results in Kenig-Webster [KW1] and Huang-Krantz [HK]. First, as we observed already in §1,
when M can be holomorphically flattened near p = 0, all CR points of M near 0 must be non-
minimal. Hence, in Theorem 1.3, we need only to prove the converse. The proof of Theorem
1.3 is an immediate consequence of Theorem 3.1 and the following result:

Theorem 7.1. Let M be a real analytic hypersurface with a CR singularity at 0. Suppose that
for any N ≥ 3, there is a holomorphic change of coordinates of the special form (z′, w′) :=
(z, w + O(|zw|+ |w|2 + |z|3)) such that M in the new coordinates (which for simplicity we still
write as (z, w)) is defined by an equation of the form:

w = G(z, z)+iE(z, z) = O(|z|2), G(z1, 0, z1, 0) = |z1|2+λ1(z
2
1+z1

2)+o(|z1|2), E(z, z) = O(|z|N).
(7.1)

Here the constant λ1 is such that 0 ≤ λ1 < 1
2

and the real analytic functions G,E are real-valued.
Then M can be holomorphically flattened near 0,

Proof. We now proceed to the proof of Theorem 7.1. The special form for the change of
coordinates in the theorem suggests us to slice M along the t := (z2, · · · , zn) = const–direction
and apply the two dimensional result in [HK]. By the stability of the elliptic tangency (see
[For] for instance), we get a family of elliptic Bishop surfaces parametrized by t. By the work
in Kenig-Webster [KW1] and Huang-Krantz [HK], each surface bounds a three dimensional
real-analytic Levi-flat manifold. Putting these manifolds together and tracing the construction
of these manifolds through the Bishop disks, we will obtain a real-analytic hypersurface M̂N . A
major feature for M̂N is that it has an order O(N) of vanishing for its Levi-form at 0. Now, the
crucial point is that the assumption in the theorem and the uniqueness in Kenig-Webster [KW1]

assures that M̂N will be biholomorphically transformed to each other near 0 when making N
larger and larger. Hence, we see that M̂N is a real-analytic hypersurface with its Levi-form
vanishing to the infinite order at 0. Thus the Levi-form of M̂N vanishes everywhere. Hence M̂N

is Levi-flat. This then completes the proof of the theorem. We next give the details on these.
In the following, we write t = (z2, · · · , zn) = and write u = <w, v = =w. For |t| small,

define Mt = {(z, w) ∈ M : (z2, · · · , zn) = t}. Then Mt is a small deformation of the original
M0, which has a unique elliptic complex tangent at z1 = 0 for |z1| < ε0 << 1. Since a small
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deformation of the surface will only move the complex tangent point to a nearby point and
elliptic complex tangency is stable under small deformation, intuitively, Mt must have an elliptic
complex tangent near z1 ≈ 0, which is completely determined by the equation:

∂w

∂z1

= 2λ1z1 + z1 +
∂(p + iE)

∂z1

(z1, t, z1, t) = 0.

Here, we also write p(z, z) = G(z, z)− (|z1|2 + λ1(z
2
1 + z1

2)). By the implicit function theorem,
one can solve uniquely z1 = a(t, t) = O(|t|), which is Cω in t. Then

P (t) =
(
a(t, t), t, (G +

√−1E)(a, t, a, t)
)

is the elliptic complex tangent point over Mt obtained by deforming the 0 on M0 to Mt. Next,
we expand (7.1) at (a(t, t), t):

w = w0(t, t) + b(t, t)(z1 − a(t, t)) + 2< (
c(t, t)(z1 − a(t, t))2

)
+ d(t, t)|z1 − a(t, t)|2+

h∗(z1 − a(t, t), t, z1 − a(t, t), t) +
√−1G∗

(
z1 − a(t, t), t, z1 − a(t, t), t

) (7.2)

Here, all functions appeared above depend Cω-smoothly on their variables with w0(0, 0) =
0, d(0, 0) = 1, b(0, 0) = 0, c(0, 0) = λ1. Moreover, h∗(η, t, η, t) = O(|η|3), G∗(η, t, η, t) =
O(|η|2) ∩ O(|η|N + |t|N) and d(t, t) are all real-valued. By continuity, for |t| small, we have
A(η, η, t, t) := 2< (

c(t, t)η2
)

+ d(t, t)|η|2 ≥ C|η|2 for a certain positive constant C independent
of |t|. Hence, for |t| small and for a real number r with |r| << 1, the following defines a simply
connected (convex) domain Dt in C with a real analytic boundary:

Dt := {η ∈ C : 2< (
c(t, t)η2

)
+ d(t, t)|η|2 + r−2h∗(rη, rη, t, t) ≤ 1}.

Let σ(ξ, t, t, r) be the Riemann mapping from the unit disk to Dt preserving the origin. By
[Lemma 2.1, Hu1], σ(ξ, t, t, r) depends Cω on its variables and is holomorphic in ξ in a fixed
neighborhood of ∆. (See also [Lemma 4.1, Hu2] for a detailed proof on this.)

Now, we construct a family of holomorphic disks with parameter (t, r) for |t|, |r| << 1
attached to M , which takes the following form:

z1(ξ, t, t, r) = a(t, t) + rσ(ξ, t, t, r)(1 + ψ1(ξ, t, t, r)),

(z2, · · · , zn) = t,

w(ξ, t, t, r) = w0(t, t) + b1(t, t) · rσ(ξ, t, t, r)(1 + ψ1(ξ, t, t, r)) + r2(1 + ψ2(ξ, t, t, r)),

<ψ1(0, t, t, r) = 0, =ψ2(0, t, t, r) = 0,

ψ = (z1(ξ, t, t, r), t, w(ξ, t, t, r))

(7.3)

Here ψ1, ψ2 are holomorphic functions in ξ ∈ ∆, and are Cω on (ξ, t, r) over ∆ × {t ∈ Cn−2 :
|t| < ε0} × {r ∈ R : |r| < ε0}. Substituting (7.3) into (7.2) with |ξ| = 1, we get the following:

ψ2(ξ, t, t, r) = Ω1 + Ω2 +
√−1Ω3. (7.4)
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Here Ω1 = 2<
(
{∂A

∂η
(σ, t, σ, t)σ + σr−1 ∂h∗

∂η
(rσ, t, rσ, t)}ψ1

)
, Ω2 = O(|ψ1|2), and Ω3 = O(|t|N−2 +

|r|N−2) are all real-valued. Moreover, Ωj (j = 1, 2, 3) depend Cω on there variables (ψ1, t, r) in
a certain suitable Banach space defined in [§5, Hu1]. Write g(ξ, ξ, t, t, r) = 2σ{∂A

∂η
(σ, t, σ, t)σ +

r−1 ∂h∗
∂η

(rσ, t, rσ, t)}. Then we similarly have <g > 0, which makes results in [Lemma 5.1, Hu1]
applicable in our setting. Write H for the standard Hilbert transform, we obtain the following
singular Bishop equation:

<{g(ξ, ξ, t, t, r)ψ1}+ Ω2(ψ1, ψ1, t, t, r) = −H(Ω3). (7.5)

Now, write ψ1 = U(ξ, ξ, t, t, r) +
√−1H(U(ξ, ξ, t, t, r)) for |ξ| = 1. By the argument in [§5,

Hu1], from (7.5), one can uniquely solve U(ξ, ξ, t, t, r) for |t|, |r| << 1. Moreover, U(ξ, ξ, t, t, r)
depends Cω on (ξ, ξ, t, t, r) and U(ξ, ξ, t, t, r) = O(|t|N−2 + |r|N−2). Hence U(ξ, ξ, t, t, r) +√−1H(U(ξ, ξ, t, t, r)) extends to a holomorphic function in ξ which also depends Cω on its
variables (ξ, ξ, t, t, r) with |ξ| ≤ 1. Moreover, we have the estimates

ψ1, ψ2 = O(|t|N−2 + |r|N−2). (7.6)

Next, we let M̂N =
⋃

0≤r<<1, |t|<<1,ξ∈∆ ψ(ξ, t, t, r). Let M̃ = π(M̂N) where π is the projection

from Cn+1 into the (z, u)-space. By the results in Kenig-Webster [KW1] and Huang-Krantz

[HK], for each fixed t, M̂N,t = M̂N ∩{z′ = t}∩BP (t,t)(r0) must be the local hull of holomorphic
of Mt, that is a manifold Cω-regular up to the boundary Mt. Here Ba(t,t)(r0) is the ball
centered at P (t, t) with a certain fixed radius r0 > 0. Also, since v = G(z1, t, z1, t) defines a

strongly pseudoconvex hypersurface in C2 for each fixed t, we see that π(M̂N,t) ⊂ M̃∗
t, where

M̃∗ := {(z, w) : u ≥ G(z, z)} and M̃∗
t = M̃∗ ∩ {(z2, · · · , zn) = t}. Indeed, π, when restricted to

M̂N,t is a Cω-diffeomorphism to M̃∗
t in the intersection of M̂N,t with the ball centered at P (t)

with a certain fixed radius 1 >> r0 > 0. To see this, by our normalization presented in the
previous section or by the Kenig-Webster [KW], we have a change of variables in (z1, w):

z′1 = z1 − a(t, t), w′ = w0(t, t) +
m∑

j=1

bj(t, t)(w − w0(t, t))
j,

where w0, bj depend smoothly on t and takes values 0 at 0. In this coordinates, Mt is mapped
to M ′

t that is flattened to order m at 0. Hence, for m >> 1, the holomorphic hull of M ′
t near

0 now is tangent to (z′1, u
′)-space (See [KW] [HK]), in particular, must be transversal to the

v′−axis. Since the hull is a biholomorphic invariant, we see that M̂N,t has to be transversal to

the v-axis when |t| is small. Hence, π is a one to one and onto map from M̂N to M̃∗ near 0.

Write the inverse map of π as v(z1, z1, t, t), which is defined over M̃∗ near 0. Notice that it is

the graph function of M̂N near 0 and has to be Cω-regular for each fixed t.
Next, we solve v(z1, z1, t, t) from (7.3). For this, we use the computation in [HK]. First, we

let

z′1 = z1 − a(t, t)

w′ = w − (
w0(t, t) + b1(t, t)(z1 − a(t, t))

) (7.7)
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Then (7.3) can be rewritten as

z′1(ξ, t, t, r) = rσ(ξ, t, t, r)(1 + ψ1(ξ, t, t, r)),

(z2, · · · , zn) = t,

w′(ξ, t, t, r) = r2(1 + ψ2(ξ, t, t, r)).

(7.8)

Write w′ = u′ +
√−1v′. Now, by the proof in [HK, pp 225], we see that for each (z′1, u

′, t),
there is a unique v′ satisfying (7.8). Moreover v′, as a function in (z′1, u

′, t), has the following
generalized Puiseux expansion:

v′ =
∑

i,j,s,α,β≥0

Sijsαβu′
i−j−s

2 zj
1z1

stαtβ,

where |Sijkαβ| <∼ Ci+j+k for some positive constant C. By the regularity of M̂N,t as mentioned

above, we know that ∂j+sv′

∂z′j1∂z′1
s |z1=0 must be smooth for each |t| small and u′ ≥ 0. This shows

that Sijsαβ = 0 when i−j−s
2

is not a positive integer. As in [HK, pp 227], we see that v′ is a real
analytic function in (z′1, u

′, t) near 0. By (7.7), we see that v is analytic function in (z1, u, t).

Hence, we proved that M̂N is a real analytic manifold, which can be represented as a graph
over M̃∗ in (z, u)-space. Moreover the analytic graph function v = ρ = O(|t|N−2 + |z1|N/2). To
see this, by (7.3) (7.6), we need only to explain that =(w0) = O(|t|N) and b1(t, t) = O(|t|N−1).

Indeed, =(w0) = E(a(t, t), a(t, t), t, t) = O(|t|N) and

b1 =
∂(G +

√−1E)

∂z1

(a(t, t), a(t, t), t, t).

Since
∂(G +

√−1E)

∂z1

(a(t, t), a(t, t), t, t) = 0,

we get

b1 = 2
√−1

∂E

∂z1

(a(t, t), a(t, t), t, t) = O(|t|N−1).

Still let v = ρ be the defining function as mentioned above. Since ρ is real analytic, we can
extend M̂N to a real analytic hypersurface M#

N near the origin by using the graph of ρ. Now,
we let

θ =
√−1∂(−w − w

2
√−1

+ ρ), Lj =
∂

∂zj

+
2
√−1ρzj

1− 2
√−1ρw

∂

∂w
.

Then θ is a contact form along M#
N and {Lj}n

j=1 forms a basis of real analytic tangent vector

fields of type (1, 0) along M#
N near 0. With respect to such a contact form and a basis of
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tangent vector fields of type (1, 0), we obtain the following Levi-matrix, which is a real analytic
n× n-matrix near 0:

LN =
(
(
√−1dθ, Lj ∧ Lk)

)
1≤j,k≤n

.

Since ρ = O(|z|N/2), we see that L = O(|z|N/2−3) as z → 0. Now, for N ′ > N , by the existence of
the special change of coordinates as in the hypothesis of the theorem, we have a transformation
of the form z′ = z, w′ = w + h(z, w) = w + o(1), which further flattens M to M ′ near 0 to the

order of N ′. For M ′, we similarly have M̂ ′
N ′ , which, by the special property that z′ = z of our

transformation, can be seen to be precisely the image of M̂N , near 0, under the transformation.
(Here, it suffices to use the two dimensional uniqueness result of Kenig-Webster [KW]). Next,
we can similarly define θ′, L′j, as well as, the Levi matrix L′N ′ . Now L′N ′ = O(|z|N ′/2−3). By
the transformation formula of the Levi -form, we see that there is an invertible real analytic
matrix B near 0 and a positive real analytic function κ near 0 such that

LN = κAL′N ′At.

Hence, LN = O(|z|N ′/2−3) for any N ′ > N. By the analyticity of LN . We see that LN ≡ 0

and thus M̂N is Levi-flat. Next, by the classical theorem of Cartan, we see that M̂N can be
hiholomorphically mapped to an open piece in Cn×R. This completes the proof of the theorem.

Proof of Theorem 1.3 and Theorem 1.4: The proof of Theorem 1.3 and Theorem 1.4 is
an immediate consequence of Theorem 3.1 and Theorem 7.1. Here, we only need to mention
that when M is already flattened, it is obvious that the M̂N constructed is the local hull of
holomorphy of M near 0. By the invariant property of holomorphic hull, we conclude that this
is also the case when M is not flattened yet.

Example 7.2. Define M ⊂ C3 by the following equation near 0:

w = q(z, z) + p(z, z) + iE(z, z).

Here as before q = |z1|2+λ1(z
2
1 +z2

1)+|z2|2+λ2(z
2
2 +z2

2) with 0 ≤ λ1, λ2 < ∞, and p, E = O(|z|3)
are real-valued. Also G(z, z) := q(z, z)+p(z, z). For any c ∈ R\{0}, define the real hypersurface
Kc by the equation q(z, z) = c. Then Kc intersects transversally M along a submanifold Lc

of real dimension 3. Then Lc is a CR submanifold of CR dimension 1 if and only if L(q) ≡ 0
along Lc. Here

L =(G2 − iE2)
∂

∂z1

− (G1 − iE1)
∂

∂z2

+ 2i(G2E1 −G1E1)
∂

∂w
, (7.9)

that is non-zero and tangent to M \ {0}.
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Write Ψ = p(z, z)−iE(z, z). Then the above is equivalent to the equation Ψ2 ·(z1+2λ1z1) =
Ψ1 · (z2 + 2λ2z2). Namely, M is non-minimal at its CR points near 0 if and only if the just
mentioned equation holds.

One solution is given by Ψ = p(z, z) − iE(z, z) = µ1(|z1|2z1 + λ1|z1|2z1) + µ2(|z2|2z2 +
λ2|z2|2z2) + µ1z1(|z2|2 + λ2z

2
2) + µ2z2(|z1|2 + λ1z

2
1), with µ1, µ2 ∈ C. Then Ψ1 = (µ1z1 +

µ2z2)(z1 +2λ1z1) and Ψ2 = (µ2z2 +µ1z1)(z2 +2λ1z2). Thus Ψ2 · (z1 +2λ1z1) = Ψ1 · (z2 +2λ2z2)
holds trivially.

Finally, We also mention a recent preprint [Bur2] for some generalization of the work in
Kenig-Webster [KW] and Huang-Krantz [HK].
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8 Appendix

In this appendix, for convenience of the reader, we give a detailed proof of Theorem 1.2 for the
case n = 2, m = 3 to demonstrate the basic ideas of the complicated calculations for the proof
of Theorem 1.2 performed in Sections 4-6 of this paper.

In Section 3, we have showed, by making use of the non-minimality, the following:

(|wn|2 + |w1|2
) · (wnΨ1 − w1Ψn

)
+

(
2λnwnw1 − 2λ1w1wn

) ·Ψ = 0, where

Ψ = wnwnΦ1 − wnw1Φn + w1 · Φ, Φ = wnH1 − w1Hn,

H = E(m), wj = zj + 2λjzj for 1 ≤ j ≤ n = 2.

(8.1)

We use the following notations

ξ = 2λn, η = 2λ1, θ = 1− ξ2,

H[tsrh] = H(ten+se1,ren+he1) for t + s + r + h = m,

Φ[tsrh] = Φ(ten+se1,ren+he1) for t + s + r + h = m,

Ψ[tsrh] = Ψ(ten+se1,ren+he1) for t + s + r + h = m + 1

(8.2)

Here, for any homogeneous polynomial χ(z, z) of degree k ≥ 1, we write

χ =
∑

α≥0,β≥0,|α|+|β|=k

H(α,β)z
αzβ.

We first set up more notations and establish formulas which are crucial in the general case
discussed in §4− §6.

By (8.1), we have

Φ[tsrh] =ξ(h + 1)H[ts(r−1)(h+1)] + (h + 1)H[(t−1)sr(h+1)]

− (r + 1)H[t(s−1)(r+1)h] − η(r + 1)H[ts(r+1)(h−1)],
(8.3)

and

Ψ[tsrh] =(s + 1)
{
ξΦ[t(s+1)(r−2)h] + (1 + ξ2)Φ[(t−1)(s+1)(r−1)h] + ξΦ[(t−2)(s+1)rh]

}

− ξ(t + 1)Φ[(t+1)s(r−1)(h−1)] − tΦ[tsr(h−1)] − ξη(t + 1)Φ[(t+1)(s−1)(r−1)h]

− ηtΦ[t(s−1)rh] + Φ[tsr(h−1)] + ηΦ[t(s−1)rh].

(8.4)

Collecting the coefficients of zt
nz

s−1
1 zn

r+3z1
h for t ≥ 0, s ≥ 1, r ≥ −3 and h = m + 1− t−

s− r ≥ 0 in (8.1), we get

s
{
ξΨ[tsrh] + (2ξ2 + 1)Ψ[(t−1)s(r+1)h] + (ξ3 + 2ξ)Ψ[(t−2)s(r+2)h]

+ ξ2Ψ[(t−3)s(r+3)h]

}
+ F{(Ψ[t′s′r′h′])s′+h′≤s+h−2,s′≤s,h′≤h} = 0.
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Here, for a set of complex numbers (or polynomials) {aj, b}k
j=1, we say b ∈ F{a1, · · · , ak} if

b =
∑k

j=1(cjaj + djcj) with cj, dj ∈ C. Also, we set up the convention that χ[tsrh] = 0 if one of
the indices is negative.

Thus for s ≥ 1, we can inductively get

Ψ[tsrh] = F{(Ψ[t′s′r′h′])s′+h′≤s+h−2,s′≤s,h′≤h}. (8.5)

Substituting (8.4) into (8.5), we get, for s ≥ 1, the following

(s + 1)
{
ξΦ[t(s+1)(r−2)h] + (1 + ξ2)Φ[(t−1)(s+1)(r−1)h] + ξΦ[(t−2)(s+1)rh]

}

= F{(Φ[t′s′r′h′])s′+h′≤s+h−1,s′≤s+1,h′≤h}.

Hence for s ≥ 2, we can inductively obtain

Φ[tsrh] = F{(Φ[t′s′r′h′])s′+h′≤s+h−2,s′≤s,h′≤h}. (8.6)

Substituting (8.3) into (8.6), we get, for s ≥ 2 and h ≥ 0, the following

ξ(h + 1)H[ts(r−1)(h+1)] + (h + 1)H[(t−1)sr(h+1)] = F{(Φ[t′s′r′h′])s′+h′≤s+h−2,s′≤s,h′≤h}
+ (r + 1)H[t(s−1)(r+1)h] + η(r + 1)H[ts(r+1)(h−1)].

= F{
(H[t′s′(m−t′−s′−h′)h′])s′+h′≤s+h−1,s′≤s,h′≤h+1

}
.

Hence for s ≥ 2 and h ≥ 1, we can inductively get that

H[ts(m−t−s−h)h] = F{
(H[t′s′(m−t′−s′−h′)h′])s′+h′≤s+h−2,s′≤s,h′≤h

}
.

Notice that H[tsrh] = H[rhts]. Keeping applying the above until the assumption that s ≥ 2 and
h ≥ 1 do not hold anymore, we can inductively get the following crucial formula:

H[ts(m−t−s−h)h] = F{
(H[t′1(m−t′−2)1])1≤t′≤m−2, (H[t′0(m−t′−i)i])i≤max(s,h),0≤t′≤m−i

}
. (8.7)

Now, we assume m = 3. We first normalize H := E(3) without using the non-minimality
condition.

Let z′ = z, w′ = w+B(z, w) be a holomorphic transformation that transforms w = G(z, z)+
iE(z, z) to w′ = G′(z′, z′) + iE ′(z′, z′). Then we get

=B(z, w) = E ′(z, z)− E(z, z).

Here B(z, w) is a weighted holomorphic homogeneous polynomial in (z, w) of degree 3, with
wt(z) = 1 and wt(w) = 2.

Sub-appendix I: In this part, we first prove the following:
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Lemma 8.1. After a holomorphic transformation, we can have E(z, z) defined in (2.1) to
satisfy the following normalization:
(1) When λn = 0, then

E(3en,0) = E(2en+e1,0) = E(en+2e1,0) = E(3e1,0) = E(2en,en) = E(en+e1,en) = 0. (8.8)

(2) When λn 6= 0, then

E(3en,0) = E(2en+e1,0) = E(en+2e1,0) = E(3e1,0) = E(en+e1,e1) = E(en+e1,en) = 0. (8.9)

Proof. First, notice that the real dimension of the space of all such B(3) is

2 · ]{(i1, in, j) ∈ R3 : i1, in, j ≥ 0, i1 + in + 2j = 3
}

=2 · ]{(i1, in, j) ∈ R3 : i1 6= 0, i1 + in + 2j = 3
}

+ 4.
(8.10)

(1) Assume that λn = 0. Set

P̂ (3) =
{
polynomials of the form 2<

∑

i+j+2k=3

a(ijk)z
i
1z

j
n|zn|2k

}
.

To get the normalization condition (8.8), we only need to prove that

=(
B(3)(z, q(z, z))

)∣∣
P̂ (3) = Q(3)(z, z) (8.11)

is solvable for any Q(3)(z, z) ∈ P̂ (3). Here, we choose an orthonormal basis {zαzβ} for the space
of (not necessarily holomorphic) polynomials. Then for any subspace P and a polynomial A,
we write A|P for the orthogonal projection of A to P .

Notice that P̂ (3) and the space {B(3)(z, q(z, z))} have the same dimension. Hence to prove
(8.11), we need to show that

=(
B(3)(z, q(z, z))

)∣∣
P̂ (3) = 0 ⇐⇒ B = 0.

By considering the terms involving only zn and zn, we get

=(
b(011)zn|zn|2 + b(030)z

3
n

)
= 0.

Thus we get b(011) = b(030) = 0. Hence, if =(
B(3)(z, q(z, z))

)∣∣
P̂ (3) = 0, we have that B(3)(z, |zn|2+

λ1z
2
1) = 0. Namely, we have

b(120)z1z
2
n + b(101)z1|zn|2 + b(210)z

2
1zn + (b(300) + λ1b101)z

3
1 = 0. (8.12)

Hence we get b(ijk) = 0. Furthermore, we obtain B(3)(z, z) = 0.
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(2) In this case, we assume λn 6= 0. Write

P̂
(3)
−3 = {homogeneous polynomials of the form:

2<( ∑

i≥1,i+j+2k=3

aijkz
i
1z

j
n|zn|2k + bz3

n + czn|z1|2
)}.

To get the normalization condition (8.9), we only need to prove that

=(
B(3)(z, q(z, z))

)∣∣
P̂

(3)
−3

= Q(3)(z, z) (8.13)

is solvable for any real valued polynomial Q(3)(z, z) ∈ P̂
(3)
−3 . Notice that the real dimension of

P̂
(3)
−3 is

2 · ]{(i1, in, j) ∈ R3 : i1 6= 0, i1 + in + 2j = 3
}

+ 4,

which is the same as the real dimension of all such B(z, w)′s. Hence to prove (8.13), we need
to show that

=(
B(3)(z, q(z, z))

)∣∣
P̂

(3)
−3

= 0 ⇐⇒ B(3) = 0.

Notice that

0 = =B(3)(z, w)
∣∣
P̂

(3)
−3

= =
( ∑

i≥1,ij+2k=3

b(ijk)z
i
1z

j
nw

k + b(030)z
3
n + b(011)zn(|zn|2 + λnz

2
n + λnzn

2 + λ1z
2
1 + |z1|2)

)∣∣
P̂

(3)
−3

.

(8.14)

Collecting the coefficients of zn|z1|2 and z3
n, respectively, in (8.14), we get b(011) = 0 and b(030) +

λnb(011) = 0. Thus we get b(030) = b(011) = 0. Hence =B(3)(z, w)
∣∣
P̂

(3)
−3

= 0 implies that

b(300)z
3
1 + b(210)z

2
1zn + b(120)z1z

2
n + b(101)z1(|zn|2 + λnz

2
n + z2

1) = 0.

Now it is obvious that b(101) = b(120) = b(300) = b(210) = 0. Hence we have get B(3) = 0. This
completes the proof of (8.9).

Sub-appendix II: Now we proceed to prove Theorem 1.2 for n = 2 and m = 3.

Case I: In this case, we assume that λn = λ1 = 0. Then (8.1) has the following form:

znΨ1 = z1Ψn. (8.15)

By considering the coefficients of zt
nz

s−1
1 zn

r+1z1
h for t ≥ 0, s ≥ 1, r ≥ 0 and h = (m + 1)− t−

s− r ≥ 0 in (8.15), we get

sΨ[tsrh] = (t + 1)Ψ[(t+1)(s−1)(r+1)(h−1)]. (8.16)
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Setting h = 0 in (8.16), we get Ψ[tsr0] = 0 for s ≥ 1. Combining this with (8.16), we inductively
get Ψ[tsrh] = 0 for s ≥ h + 1. Now, we will apply (8.4). Notice that we now have ξ = η = 0.
We thus obtain:

(s + 1)Φ[(t−1)(s+1)(r−1)h] = (t− 1)Φ[tsr(h−1)] for s ≥ h + 1. (8.17)

Setting h = 0 in (8.17), we get Φ[tsr0] = 0 for s ≥ 2. Combining this with (8.17), we inductively
get Φ[tsrh] = 0 for s ≥ h + 2. Together with (8.3), we get

(h + 1)H[(t−1)sr(h+1)] = (r + 1)H[t(s−1)(r+1)h] for s ≥ h + 2. (8.18)

Setting t = 0, we get H[0srh] = 0 for s ≥ h + 1, r ≥ 1. Then we inductively get H[tsrh] = 0
for s ≥ h + 1, r ≥ t + 1. When s ≥ h + 1, r ≤ t, from (8.18), we inductively get H[tsrh] =
F{(H[t′s′r′0])t′≥r′}, which is 0 by our normalization in (8.8). Thus we have proved

H[tsrh] = 0 for s ≥ h + 1. (8.19)

Next we will prove that H[tsrs] = 0. Setting s = h ≥ 1, t ≥ 0 and r = −1 in (8.16), we get
Ψ[ts0s] = 0 for t ≥ 1. Substituting it back to (8.16), we inductively get

Ψ[tsrs] = 0 for t ≥ r + 1.

Substituting (8.4) into this equation, we get

(s + 1)Φ[(t−1)(s+1)(r−1)s] = (t− 1)Φ[tsr(s−1)] for t ≥ r + 1. (8.20)

Setting s = 0, we get Φ[t1r0] = 0 for t ≥ r + 1. Substituting this back to (8.20), we get
Φ[t(s+1)rs] = 0 for t ≥ r + 1. Together with (8.3), we get

(s + 1)H[(t−1)(s+1)r(s+1)] = (r + 1)H[ts(r+1)s] for t ≥ r + 1.

Notice that H[t0r0] = 0 by our normalization. Hence we inductively get

H[tsrs] = 0 for t ≥ r. (8.21)

Since H[tsrh] = H[rhts], (8.19) and (8.21) imply H ≡ 0 for the case λn = λ1 = 0.

Step II: In this step, we assume that λn = 0 and λ1 6= 0. Theorem 1.2 with m = 3 in this
setting is an immediate consequence of the following lemma:

Lemma 8.2. Suppose that λn = 0 and λ1 6= 0. Assume that there exists an h0 ≥ −1 such that

Ψ[tsrh] = Φ[tsrh] = 0 for h ≤ h0, H[tsrh] = 0 for max(s, h) ≤ h0 + 1. (8.22)

Then we have

Ψ[tsrh] = Φ[tsrh] = 0 for h ≤ h0 + 1, H[tsrh] = 0 for max(s, h) ≤ h0 + 2. (8.23)
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Once we have Lemma 8.2 at our disposal, since (8.22) holds for h0 = −1 by our normaliza-
tion, hence (8.23) holds for h0 = −1. Then by an induction, we see that (8.23) holds for all
h0 ≤ m− 2. This completes the proof of Theorem 1.2 in this setting.

Proof of Lemma 8.2. First, notice that (8.1) has the following form:

(|zn|2 + ηz2
1)(znΨ1 − ηz1Ψn)− ηz1znΨ + z1F{Ψ1, Ψn, Ψ} = 0.

Collecting the coefficients of zt
nz

s−1
1 zn

r+3z1
h0+1 in the above equation and making use of the

assumptions in Lemma 8.2, we have:

sΨ[(t−1)s(r+1)(h0+1)] + (s− 2)ηΨ[t(s−2)(r+2)(h0+1)] − tηΨ[t(s−2)(r+2)(h0+1)]

− (t + 1)η2Ψ[(t+1)(s−4)(r+3)(h0+1)] − ηΨ[t(s−2)(r+2)(h0+1)] = 0.

Namely, we have

sΨ[(t−1)s(r+1)(h0+1)] = (t + 3− s)ηΨ[t(s−2)(r+2)(h0+1)] + (t + 1)η2Ψ[(t+1)(s−4)(r+3)(h0+1)]. (8.24)

By setting r = −3 in (8.24), we get Ψ[ts0(h0+1)] = 0 for t ≥ 1. Substituting this back to (8.24),
we inductively get that Ψ[tsr(h0+1)] = 0 for t ≥ r + 1. Combining this with (8.4) and the
hypothesis, we obtain

(s + 1)Φ[(t−1)(s+1)(r−1)(h0+1)] = (t− 1)ηΦ[t(s−1)r(h0+1)] for t ≥ r + 1. (8.25)

Setting r = 0 in (8.25), we get Φ[ts0(h0+1)] = 0 for t ≥ 2. Hence we inductively get Φ[tsr(h0+1)] = 0
for t ≥ r +2. In particular, we have Φ[t0r(h0+1)] = 0 for t ≥ r +2. Combining this with (8.3),the
hypothesis and λn = 0, we get (h0 + 2)H[(t−1)0r(h0+2)] = 0 for t ≥ r + 2. Namely, we obtain
H[t0r(h0+2)] = 0 for t ≥ r + 1. Together with our normalization (8.8) and the reality of H, we
obtain:

H[t0r(h0+2)] = 0. (8.26)

(1) When h0 = −1, setting s = 0 in (8.25), we get Φ[(t−1)1(r−1)0] = 0 for t ≥ r + 1. Together
with (8.3) and (8.8), we get that H[(t−1)1r1] = (r + 1)H[t0(r+1)0] = 0 for t ≥ r + 1. Namely, we
obtain H[t1r1] = 0 for t ≥ r. By the reality of H, we get for all t, r the following:

H[t1r1] = 0. (8.27)

From (8.3), (8.26) and (8.27), we obtain Φ[t0r0] = Φ[t1r0] = 0. Together with (8.4), we see that
Ψ[t0r0] = 0.

Setting h = 0 in (8.5) and making use of Ψ[t0r0] = 0, we first get Ψ[t1r0] = Ψ[t2r0] = 0, then
inductively get Ψ[tsr0] = 0. Combining this with (8.4), we get

(s + 1)Φ[(t−1)(s+1)(r−1)0] = (t− 1)ηΦ[t(s−1)r0], (8.28)
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Setting s = 0 in (8.28), we obtain Φ[t1r0] = 0. By an induction argument, we get Φ[tsr0] = 0.
This proves (8.23) for the case h0 = −1.

(2) When h0 ≥ 0, from (8.7),(8.26) and (8.27), we inductively get H[tsr(h0+2)] = 0 for
s ≤ h0 + 2. Combining this with (8.3) and (8.27), we get Φ[t0r(h0+1)] = Φ[t1r(h0+1)] = 0.
Substituting this back to (8.4), we obtain Ψ[t0r(h0+1)] = 0. Together with (8.5), we inductively
get Ψ[tsr(h0+1)] = 0. Combining this with (8.4), we obtain

(s + 1)Φ[(t−1)(s+1)(r−1)(h0+1)] = (t− 1)ηΦ[t(s−1)r(h0+1)].

As in Case I, we inductively get Φ[tsr(h0+1)] = 0. This proves (8.23) for the case h0 ≥ 0 and thus
completes the proof of Theorem 1.2 for the case λn = 0 and λ1 6= 0.

Case III: In this case, we assume λn 6= 0 and λ1 6= 0. Considering the coefficients of z3
1zn

3,
z3
1znzn

2, z3
1z

2
nzn and z3

1z
3
n, respectively, in (8.1), we get

4ξΨ[0400] + 2ηΨ[0220] − ηξΨ[1210] − η2Ψ[1030] − ηθΨ[0220] = 0,

4(2ξ2 + 1)Ψ[0400] + 2η(Ψ[1210] + ξΨ[0220])− η(2ξΨ[2200]

+ (1 + ξ2)Ψ[1210])− 2η2Ψ[2020] − ηθΨ[1210] = 0,

4(ξ3 + 2ξ)Ψ[0400] + 2η(Ψ[2200] + ξΨ[1210])− η(2(1 + ξ2)Ψ[2200]

+ ξΨ[1210])− 3η2Ψ[3010] − ηθΨ[2200] = 0,

4ξ2Ψ[0400] + 2ηξΨ[2200] − η2ξΨ[2200] − 4η2Ψ[4000] = 0.

Simplifying the above from the last equation to the first one, we get

4ξ2Ψ[0400] = 4η2Ψ[4000], (8.29)

4(ξ3 + 2ξ)Ψ[0400] + η
{
(−2ξ2 − θ)Ψ[2200] + ξΨ[1210]

}
= 3η2Ψ[3010], (8.30)

4(2ξ2 + 1)Ψ[0400] + η
{− 2ξΨ[2200] + 2ξΨ[0220]

}
= 2η2Ψ[2020], (8.31)

4ξΨ[0400] + η
{− ξΨ[1210] + (2− θ)Ψ[0220]

}
= η2Ψ[1030]. (8.32)

A direct computation shows that

(2− 3θ)ξ2 − (2− 2θ)ξ(ξ3 + 2ξ) + (2− θ)ξ2(2ξ2 + 1)− 2ξ3ξ

=2ξ2 − 2ξ(ξ3 + 2ξ) + 2ξ2(2ξ2 + 1)− 2ξ3ξ + θ(−3ξ2 + 2ξ(ξ3 + 2ξ)− ξ2(2ξ2 + 1)) = 0.
(8.33)

We also have the following computation:

− (2− 2θ)ξ
{
(−2ξ2 − θ)Ψ[2200] + ξΨ[1210]

}
+ (2− θ)ξ2

{− 2ξΨ[2200] + 2ξΨ[0220]

}

− 2ξ3
{− ξΨ[1210] + (2− θ)Ψ[0220]

}

=(−ξ)
{
(2− 2θ)(θ − 2) + 2ξ2(2− θ)

}
Ψ[2200] + ξ2

{− (2− 2θ) + 2ξ2
}
Ψ[1210]

− ξ3
{− 2(2− θ) + 2(2− θ)

}
Ψ[0220]

=0.

(8.34)
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Computing (2− 3θ)(8.29)− (2− 2θ)ξ(8.30) + (2− θ)ξ2(8.31)− 2ξ3(8.32) and making use of
(8.33)-(8.34), we get

(2− 3θ)4Ψ[4000] − (2− 2θ)ξ3Ψ[3010] + (2− θ)ξ22Ψ[2020] − 2ξ3Ψ[1030] = 0. (8.35)

Substituting (8.4) into (8.35), we get

(2− 3θ)4Ψ[4000] − (2− 2θ)ξ3Ψ[3010] + (2− θ)ξ22Ψ[2020] − 2ξ3Ψ[1030]

=(2− 3θ)4ξΦ[2100] − (2− 2θ)ξ3
{
(1 + ξ2)Φ[2100] + ξΦ[1110]

}

+ (2− θ)ξ22
{
ξΦ[2100] + (1 + ξ2)Φ[1110] + ξΦ[0120]

}

− 2ξ3
{
ξΦ[1110] + (1 + ξ2)Φ[0120]

}

=ξ
{
4(2− 3θ)− 3(2− 2θ)(1 + ξ2) + 2ξ2(2− θ)

}
Φ[2100]

+ ξ2
{− 3(2− 2θ) + 2(2− θ)(1 + ξ2)− 2ξ2

}
Φ[1110]

+ ξ3
{
2(2− θ)− 2− 2ξ2

}
Φ[0120]

=− 4ξθ2Φ[2100] + ξ22θ2Φ[1110] = −2ξθ2(2Φ[2100] + (−ξ)Φ[1110]).

(8.36)

Since θ 6= 0 with the assumption that λn 6= 1
2
. Hence we get 2Φ[2100] + (−ξ)Φ[1110] = 0. From

(8.3), we get

0 = 2Φ[2100] + (−ξ)Φ[1110] = 2(H[1101] −H[2010])− ξ
(
ξH[1101] + H[0111] − 2H[1020]

)
. (8.37)

By our normalization (8.9), we have H[1101] = H[0111] = 0. Thus we get 2H[2010]− 2ξH[1020] = 0.
By the reality of H, we obtain:

2(1− ξ)<H[2010] +
√−1 · 2(1 + ξ)=H[2010] = 0.

When λn 6= 1/2, then 1− ξ 6= 0. Hence we get H[2010] = 0.

Collecting the terms of the form zt
nzn

6−t (0 ≤ t ≤ 6) in (8.1), we get

|wn|2wn

∑

t′+r′=3

Ψ[t′1r′0]z
t′
n zn

r′ = 0.

Thus we get
Ψ[t1r0] = 0 for t + r = 3. (8.38)

Combining this with (8.4), we get

0 =Ψ[3100] + (−ξ)Ψ[2110] + (−ξ)2Ψ[1120] + (−ξ)3Ψ[0130]

=2ξΦ[1200] − 2ηΦ[3000] + (−ξ)
{
2(1 + ξ2)Φ[1200] + 2ξΦ[0210] − 3ξηΦ[3000] − ηΦ[2010]

}

+ (−ξ)2
{
2ξΦ[1200] + 2(1 + ξ2)Φ[0210] − 2ξηΦ[2010]

}

+ (−ξ)3
{
2ξΦ[0210] − ξηΦ[1020] + ηΦ[0030]

}

=(−2 + 3ξ2)ηΦ[3000] + (ξ − 2ξ3)ηΦ[2010] + ξ4ηΦ[1020] − ξ3ηΦ[0030]

=(1− 3θ)ηΦ[3000] + (−ξ)(1− 2θ)ηΦ[2010] + ξ2(1− θ)ηΦ[1020] + (−ξ)3ηΦ[0030].

(8.39)
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Substituting (8.3) into the equation above, we get

(1− 3θ)ηH[2001] + (−ξ)(1− 2θ)η
(
ξH[2001] + H[1011]

)

+ (−ξ)2(1− θ)η
(
ξH[1011] + H[0021]

)
+ (−ξ)3ηξH[0021] = 0.

(8.40)

By (8.9), we have H[1011] = H[0021] = 0. Hence we get −2θ2H[2001] = 0. When θ 6= 0 or ξ 6= 1
2
,

we conclude that H[2001] = 0. Together with H[2010], the normalization in (8.3) and the reality
of H, we see that H[tsrh] = 0 for s, h ≤ 1. Substituting this back to (8.3) and (8.4), we get
Φ[t′0r′0] = Φ[t′′1r′′0] = 0 and thus also Ψ[t0r0] = 0 for t + r = 4 and t′ + r′ = 3, t′′ + r′′ + 1 = 3.

Collecting terms of the form zt
nz1 · zn

5−t (0 ≤ t ≤ 5) in (8.1), and making use of Ψ[t′0r′0] = 0,
we get

|wn|2wn

∑

t′+r′=3

Ψ[t′1r′1]z
t′
n zn

r′ = 0.

Thus we get Ψ[t1r1] = 0. Combining this with (8.4), we get

0 =Ψ[2101] + (−ξ)Ψ[1111] + (−ξ)2Ψ[0121]

=2ξΦ[0201] − ηΦ[2001] + (−ξ)
{
2(1 + ξ2)Φ[0201] − 2ξηΦ[2001]

}

+ (−ξ)2
{
2Φ[0201] − ξηΦ[1011] + ηΦ[0021]

}

=(−1 + 2ξ2)ηΦ[2001] − ξ3ηΦ[1011] + ξ2ηΦ[0021]

=(1− 2θ)ηΦ[2001] + (−ξ)(1− θ)ηΦ[1011] + ξ2ηΦ[0021].

(8.41)

Substituting (8.3) into this equation, we get

(1− 2θ)η2H[1002] + (−ξ)(1− θ)η
(
2ξH[1002] + 2H[0012]

)
+ ξ2ηξ2H[0012] = 0. (8.42)

By (8.9), we have H[0012] = 0. Hence we get −θ2H[1002] = 0. Since θ 6= 0, we see that H[1002] = 0.
By (8.38), we have Ψ[0130] = 0. Combining this with (8.4), we get

Ψ[0130] =2ξΦ[0210] − (ξηΦ[1020] − ηΦ[0030])

=2ξ(ξH[0201] − 2H[0120]) = 2ξ2H[0201].
(8.43)

Here, we used the fact that Φ[1020] = Φ[0030] = 0 and H[tsrh] = 0 for s, h ≤ 1. Thus we get
H[0201] = 0. Now, combing the normalization in (8.4) with H[0201] = 0, H[2010] = 0, H[tsrh] = 0
for s, h ≤ 1, we conclude that H ≡ 0. This completes the proof of Theorem 1.2 for the case of
λn 6= 0, n = 2 and m = 3.

65



References

[AG] P. Ahern and X. Gong, Real analytic manifolds in Cn with parabolic complex
tangents along a submanifold of codimension one, Ann. Fac. Sci. Toulouse Math.
(6) 18 (2009), no. 1, 1-64.

[BG] E. Bedford and B. Gaveau, Envelopes of holomorphy of certain 2-spheres in C2,
Amer. J. Math. (105), 975-1009, 1983.

[Bur1] V. Burcea, A normal form for a submanifold M ⊂ CN+1 of codimension 2 near
a flat CR singularity, preprint, 2011.

[Bur2] V. Burcea, On a family of analytic discs attached to a real submanifold M in
CN+1, preprint, 2012. (arXiv:1201.4136)

[Bis] E. Bishop, Differentiable manifolds in complex Euclidean space, Duke Math. J.
(32), 1-21, 1965.
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