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Abstract: This is the first article of the two papers in which we investigate the holomorphic
and formal flattening problem for a codimension two real submanifold in Cn with n ≥ 3
near a non-degenerate CR singular point. The problem is motivated from the study of the
complex Plateau problem that seeks for the Levi-flat hypersurface bounded by a given real
submanifold and is motivated by the classical complex analysis problem of finding the local
hull of holomorphy of a real submanifold in a complex space. The present article is focused on
the case of CR singular points with at least one elliptic direction. We solve the holomorphic
flattening problem and thus provide a complete description of the local hull of holomorphy in
this setting. The results in this paper and those in [HY3] are taken from our arxiv post [HY4].
We split [HY4] into two independent articles to avoid it being too long.

1 Introduction

A primary goal of this investigation is to study the question that asks when a real analytic
submanifold M of codimension two in Cn+1 bounds a real analytic (up to M) Levi-flat hyper-

surface M̂ near p ∈ M such that M̂ is foliated by a family of complex hypersurfaces moving
along the normal direction of M at p, and gives the invariant local hull of holomorphy of M
near p. This question can be reduced to the study of the holomorphic flattening property for
M near p.

To start with, we first discuss some basic holomorphic property for a real submanifold in
a complex space. For a point q in a real submanifold M ⊂ Cn+1, there is an immediate
holomorphic invariant, namely, the complex dimension CRM(q) of the tangent space of type
(1, 0) at q. CRM(q) is an upper semi-continuous function over M . q is called a CR point
of M if CRM(q′) ≡ CRM(q) for any q′(≈ q) ∈ M . Otherwise, q is called a CR singular
point of M . When M near p bounds a Levi-flat hypersurface foliated by a family of complex
hypersurfaces moving along the normal direction of M at p, then the tangent space of M at p

∗Supported in part by NSF-1363418
†Supported in part by FANEDD-201117, ANR-09-BLAN-0422, NSFC-10901123 and NSFC-11271291.

1



is a complex hyperplane. In this case p must be a CR singular point unless we are in the trivial
and uninteresting situation that M is a complex hypersurface itself.

Investigations for CR manifolds and CR singular manifolds have very different nature. There
is a vast amount of work related to the study of various problems for CR manifolds, which
goes back to the work of Poincaré [Po], Cartan [Cat] and Chern-Moser [CM]. The study of
submanifolds with CR singular points at least dates back to the fundamental paper of Bishop
[Bis] in 1965. Since then, many efforts have been paid to understand both the geometric and
analytic structures of such manifolds. Here, we mention the papers by Kenig-Webster [KW1-2],
Moser-Webster [MW], Bedford-Gaveau [BG], Huang-Krantz [HK], Huang [Hu1], Gong [Gon1-
3], Huang-Yin [HY1-2], Stolovitch [Sto], Dobeault-Tomassini-Zaitsev [DTZ1-2], Ahern-Gong
[AG], Coffman [Cof1-2], Lebl [Le1-2], Burcea [Va1], etc, and many references therein.

Let M ⊂ Cn+1 be a codimension two real submanifold with CR singular points. Then a
simple linear algebra computation shows that CRM(q) = n − 1 when q is a CR point, and
CRM(q) = n when q is a CR singular point. The general holomorphic (or, formal) flattening
problem is then to ask when M can be transformed, by a biholomorphic mapping (formal
equivalence, respectively), into the standard Levi-flat hyperplane (Cn × R1) × {0} ⊂ Cn+1. A
good understanding to this problem is crucial for understanding many geometric, analytic and
dynamic properties of the manifolds. For instance, by a classical theorem of Cartan, solving
the problem when M bounds a real analytic (up to M) Levi-flat hypersurface is equivalent
to solving the holomorphic flattening problem of the manifold. Here, we refer the reader to
the papers by Kenig-Webster [KW1], Moser-Webster [MW], Huang-Krantz [HK], Gong [Gon1-
3], Huang [Hu1], Stolovitch [Sto], Huang-Yin [HY1], Dobeault-Tomassini-Zaitsev[DTZ1], and
many references therein, for investigations along these lines.

The major difficulty for getting the flattening property for M lies in the complicated nature
of the CR singular points. And, in general, only non-degenerate CR singular points with a rich
geometric structure could be flattened. To be more precise, we use (z, w) := (z1, · · · , zn, w) for
the complex coordinates of Cn+1. We first make the following definition. For related concepts
and many intrinsic discussions on this matter, see the work in Stolovitch [Sto], Dobeault-
Tomassini-Zaitsev [DTZ1], and Huang-Yin [HY2]:

Definition 1.1. Let M be a codimension two real submanifold in Cn+1. We say that q ∈ M
is a non-degenerate CR singular point, or a non-degenerate complex tangent point, if there is
a biholomorphic change of coordinates which maps p to 0 and in the new coordinates (z, w),
M is defined near 0 by an equation of the following form:

w =
n∑

j=1

(
|zj|2 + λj(z

2
j + z2

j )
)

+ o(|z|2) (1.1)

Here, 0 ≤ λ1 ≤ · · · ≤ λn < ∞. {λ1, · · · , λn} (counting multiplicity) are called the Bishop
invariants of M at 0. We call λj an elliptic, parabolic or hyperbolic Bishop invariant of M at
0 in terms of 0 ≤ λj < 1/2, λj = 1/2, or λj > 1/2, respectively.
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Notice that the set of Bishop invariants at a non-degenerate CR singular point p ∈ M
consists of the only second order biholomorphic invariants of M at p ∈ M . By the results in
Moser-Webster [MW] and Huang-Krantz [HK], in the case of complex dimension two (n+1 = 2),
any real analytic real surface near an elliptic CR singular point can be holomorphically flattened.
However, in higher dimension, the situation is quite different.

Example 1.1. Let

M := { (z, w) ≈ 0, w =
2∑

j=1

|zj|2+2<
( ∑

j1+j2≥3

aj1j2z
j1
1 zj2

2

)
+
√−1

∑
j1≥2,j2≥2

bj1j2
zj1
1 z2

j2 , bjl̄ = blj.}

(1.2)

Here, we assume that the two power series in (1.2) are convergent. M then has a non-degenerate
CR singular point at 0 and all Bishop invariants of M at 0 are 0 and thus are elliptic. It was
shown in Huang-Yin [HY2] ([Remark 2.7, HY2]) that (M, 0) can not even be flattened to the
order m if bj1j2

6= 0 for some j1 + j2 ≤ m. Namely, if bj1j2
6= 0 for some j1 + j2 ≤ m, then there

is no holomorphic change of variables (preserving the origin) such that in the new coordinates,
M is defined near 0 by an equation of the form w = ρ with the property that =(ρ) vanishes
at the origin to the order at least m. through the study of a formal normal form near a CR
singular point with all vanishing (thus elliptic) Bishop invariants.

Example 1.1 shows that in higher dimensions, the geometry from the nearby CR points also
play a role in the flattening problem, while in the two variables case, the nearby points are
totally real and can be locally holomorphically flattened. Thus the nearby points in the two
dimension case has no influence for the holomorphic property at a non-degenerate CR singular
point. Indeed, suppose M is already flattened and is defined by an equation of the form
u = q(z, z), v = 0, where w = u+ iv. Then the complex hypersurface Su0 =: {w = u0 + i0} with
u0 ∈ R intersects M along a CR submanifold E of CR dimension (n−1) near p0 if Su0 intersects
M (CR) transversally at p0. The points where Su0 is (CR) tangent to M are apparently CR
singular points of M . Recall a well-known terminology (see [T] and [Tu]): A point p in a
CR submanifold N is called a non-minimal point if N contains a proper CR submanifold S
containing p such that T

(1,0)
p S = T

(1,0)
p N. Hence, in such a terminology, we have the following

simple fact:

If M can be flattened, then all CR points in M are non-minimal CR points.

We mention that the necessary condition for the non-minimality of CR points already
appeared in the earlier work of Dobeault-Tomassini-Zaitsev [DTZ1-2] and Lebl [Le1-2] on the
study of the general complex Plateau problem, which looks for the Levi-flat varieties (even
maybe in the sense of current) bounded by the given manifolds.

Our main results, which we state below, demonstrate that, with the non-minimality as-
sumption at CR points, the existence of one elliptic Bishop invariant is good enough for the
holomorphic flattening:
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Theorem 1.2. Let M ⊂ Cn+1 with n > 1 be a codimension two real analytic CR manifold with
p ∈ M a non-degenerate complex tangent point. Suppose one of the Bishop invariants λ of M
at p is elliptic. Also assume that all CR points of M near p are non-minimal. Then the local
hull of holomorphy M̂ of M near p is a real analytic Levi-flat hypersurface which has M near
p as part of its real analytic boundary. Moreover M̂ is foliated by a family of smooth complex
hypersurfaces in Cn+1, that moves along the transversal direction of the tangent space of M at
p.

Here, by saying that M̂ is the local hull of holomorphy of M near p, we mean that for any
small 0 < ε << 1, the germ at p of the holomorphic hull of the set M ∩{|(z, w)| < ε} coincides

with the germ of M̂ at p.
As we mentioned above, by the classical Cartan theorem ([Cat]), Theorem 1.2 gives the

following flattening theorem:

Theorem 1.3. Let M ⊂ Cn+1 with n > 1 be a codimension two real analytic CR manifold
with p ∈ M a non-degenerate complex tangent point (namely, a non-degenerate CR singular
point). Suppose that one of the Bishop invariants λ of M at p is elliptic. Then M near p can
be holomorphically flattened if and only if all CR points of M near p are non-minimal.

When M is merely smooth, our proof of Theorem 1.2 also produces a formal flattening
result for M near p. (See Theorem 2.2). In fact, through a more lengthy (but quite different)
argument which we will present in the second article to these series [HY3], as far as the formal
flattening is concerned, we need only the existence of one non-parabolic Bishop invariant. (See
Theorem 1.1 of [HY3])

Example 1.4. Define M ⊂ C3 with coordinates (z1, z2, w) by the following equation near 0:

w = q(z, z) + p(z, z) + iE(z, z).

Here q = |z1|2 + λ1(z
2
1 + z2

1) + |z2|2 + λ2(z
2
2 + z2

2) with 0 ≤ λ1, λ2 < ∞, and

p(z, z)+ iE(z, z) = µ1|z1|2(z1 +λ1z1)+µ2|z2|2(z2 +λ2z2)+µ1z1(|z2|2 +λ2z2
2)+µ2z2(|z1|2 +λ1z2

1).

Here µ1, µ2 are two complex numbers. Then, M is non-minimal at its CR points near its non-
degenerate CR singular point 0. (See Example 3.1.) Hence, Theorem 1.1 of [HY3] says that
when one of the λ1, λ2 is not 1

2
, then M can be formally flattened at 0; and when one of the

λ1, λ2 is less than 1
2
, then Theorem 1.3 says that M can be holomorphically flattened near 0.

In this example, M \ {0} near 0 is foliated by a family of three dimensional strongly pseu-
doconvex CR manifolds— the intersections of M with real hypersurfaces Kc : q(z, z) = c with
c ∈ R. (When both λ1, λ2 are elliptic, c > 0). Assume that one of the Bishop invariants {λ1, λ2}
is not elliptic. Then there is an orbit corresponding to c = 0, that extends to the CR singular
point with it as its non-smooth point. Also none of the orbits closes up near 0.
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We next say a few words about the proof of the above mentioned theorems: To prove
Theorem 1.2, we first slice M near the complex tangent point p by a family of two dimensional
complex planes transversal to the elliptic direction. We then get a family of elliptic Bishop
surfaces. Now each one bounds a three dimensional Levi flat CR manifold and their union
forms a codimension one subset M̃ in Cn+1 with M as part of its boundary. An analysis,
based on Bishop disks, similar to that in Huang-Krantz [HK], shows that M̃ is a real analytic
hypersurface with M as part of its real analytic boundary. However, all we know from this
construction is that M̃ has only one Levi-flat direction (along the elliptic direction). And it

is not clear at all if M̃ is flat along the parameter directions. In fact, M̃ can not be Levi flat
without the non-minimality property from the nearby CR points. Now, the issue is that, with
the assumption of the non-minimality at the nearby CR points, we can show that M̃ has a
nearby open piece which is Levi-flat. Since the Levi-form of a real analytic hypersurface can
be made to be real analytic, by the uniqueness of real analytic functions, we conclude that
M̃ has its Levi-form vanishing everywhere. This proves M̃ is Levi-flat. Next by the Cartan
theorem, M̃ can be holomorphically transformed to the standard Levi-flat hypersurface defined
by =w = 0. Then one can easily see that M̃ serves as the local hull of holomorphy of M near
the CR singular point p.

Theorem 1.3 is equivalent to Theorem 1.2 by a classical result of Cartan which states that
a real analytic hypersurface is Levi-flat if and only if it can be transformed locally to an open
piece of the standard Levi-flat hyperplane defined by =w = 0. When all Bishop invariants at p
are elliptic, we mention that Theorem 1.2 can also be derived by combining the results obtained
in Dobeault-Tomassini-Zaitsev [DTZ1-2] (see a recent preprint by Burcea [Bur2]). (The work in
Dobeault-Tomassini-Zaitsev [DTZ1-2] contains other very nice global results.) The arguments
based on Dobeault-Tomassini-Zaitsev [DTZ1-2] depend strongly on all the ellipticity of Bishop
invariants and requires that the CR orbits in M near the CR singular point form a family of
compact strongly pseudoconvex manifolds shrinking down to the complex tangent point such
that the Harvey-Lawson theorem applies. This is not the case even when one non-elliptic Bishop
invariant at the CR singular point appears.
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2 The geometry for manifolds with at least one elliptic

Bishop invariant

Let M be a (connected) real submanifold of real codimension two in Cn+1 with n ≥ 3. In
what follows, we use Z = (z,z

′, w) = (z1, z2, · · · , zn, w) for the coordinates of Cn+1 with z′ =
(z2, · · · , zn). We assume that M is not a complex submanifold, neither a CR manifold. Then
we have points in M where the complex dimension of holomorphic tangent space is n and we
have points where the holomorphic tangent space is of complex dimension (n − 1). We write
SM for the points of M where the holomorphic tangent space has complex dimension n. Then
M \ SM is a CR submanifold of CR dimension (n− 1). We assume that SM is nowhere dense
in M . Notice that SM(6= ∅) is the set of the CR singular points of M .

Assume that p ∈ M is a CR singular point. After a (holomorphic) linear change of coor-

dinates, we assume that p = 0 and dimT
(1,0)
0 M = {w = 0}. Then M near 0 is defined by an

equation of the following form:

w = F (z, z) = q(z, z) + O(|z|3), (2.1)

where q(z, z) is a quadratic polynomial in (z, z). We assume that 0 is a non-degenerate CR
singular point as defined in the introduction. Then q can be further simplified as follows, after
a holomorphic change of coordinates:

q =
n∑

j=1

(|zj|2 + λj(z
2
j + z2

j )), 0 ≤ λj < ∞.

For such a manifold, the set of CR singular points is defined by the following system of equations:
∂F
∂zj

= zj +2λjzj + o(|z|) = 0, j = 1, · · · , n; or (1+2λj)xj = o(|(x, y)|), (1−2λj)yj = o(|(x, y)|)
with x = <(z), y = =(z). Hence, if not all λj = 1/2, we can easily see that SM is contained in a
submanifold of M of real dimension at most (n− 1), which is smaller than 2(n− 1) for n ≥ 2.

Moreover ρ = −u + <F (z, z) = −u +
∑n

j=1(|zj|2 + λj(z
2
j + z2

j )) + o(|z|2) is plurisubharmonic
in a neighborhood of 0 and ρ = 0 defines a strongly pseudoconvex hypersurface near 0 which
contains M . Hence, if M is non-minimal at its CR points, then each CR foliation must be
strongly pseudoconvex.

More generally, we consider the class of real codimension two submanifolds (M, p) with
p ∈ SM , satisfying the following hypotheses:

Cond (1): The Hausdorff dimension of SM is less than 2(n− 1) and the CR points of M
are non-minimal. Also, for any q(≈ p) 6∈ SM , there exist a neighborhood Dq of q in Cn+1 and a
continuous plurisubharmonic function ρq over Dq such that the zero set of ρq contains M ∩Dq

but does not contain any germ of non-trivial holomorphic curve.

Cond (2): There exits a complex surface E, that is transversal to the holomorphic tangent

space T
(1,0)
p M of M at p, such that E ∩M is a Bishop surface of E with an elliptic complex

tangency at p.
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Here, we recall that a real surface M contained in a complex surface E is said to be a
Bishop surface with an elliptic complex tangency at p ∈ M if there is a holomorphic chart with
coordinates (z, w) ∈ C2 of E near p, that maps p to the origin of C2 and maps M to a real
surface near 0 defined by an equation of the form:

w = |z|2 + λ(z2 + z2) + O(|z|3), 0 ≤ λ <
1

2
.

We also give the following condition for the description of the holomorphic hull.

Cond (3): M is a codimension two real submanifold in Cn+1 with p being a CR singular
point. There are a neighborhood D0 of p in Cn+1 and a continuous plurisubharmonic function
ρ0 over D0 such that the zero set of ρ0 contains M ∩D0 but does not contain any non-trivial
holomorphic curves.

Our main theorem of this section states that under the hypotheses in Cond (1) and Cond
(2), assuming that M is real analytic, then M bounds a real analytic Levi-flat hypersurface

M̃ which has M as part of its real analytic boundary. Moreover, M̃ serves as the local hull of
holomorphy of M near 0 in case (M, p) also satisfies Cond (3). In the smooth category, we will
show that M can be formally flattened. Notice that the assumption that M is non-minimal at
its CR points gives a CR foliation by CR manifolds of CR dimension (n − 1) near each of its
CR points. Indeed, what is crucial for our argument is the hypotheses in Cond (2).

For the M as in Theorem 1.2, after a holomorphic change of coordinates which maps p = 0
and makes M near p = 0 into its second order normal form as in Definition 1.1, we easily see
that Cond (1), Cond (2) and Cond (3) hold for such an (M, 0) as argued before. We next state
the main result of this section as follows, which includes Theorem 1.2 as a special case:

Theorem 2.1. Let M ⊂ Cn+1 with n > 1 be a real codimension two real analytic submanifold
near the origin. Assume that p ∈ M is a CR singular point and M is non-minimal at all of its
CR points. Suppose that the hypotheses in Cond (1) and Cond (2) hold for (M, p). Then M

near p bounds a Levi-flat hypersurface M̃ which has M as part of its real analytic boundary.
Moreover, M̃ near p is the local hull of holomorphy of M near p if the hypothesis in Cond (3)
also holds for (M, p).

Here, by saying that M̃ is the local hull of holomorphy of M near p, we mean that for any
small 0 < ε << 1, the germ at p of the holomorphic hull of the set M ∩ {|Z − p| < ε} coincides

with the germ of M̃ at p.
When M is merely smooth, we provide the following weaker result:

Theorem 2.2. Let M ⊂ Cn+1 with n > 1 be a real codimension two smooth submanifold
with p ∈ M . Assume that p is a CR singular point. Suppose that the hypotheses in Cond (1)
and Cond (2) hold for (M, p). Then M near p can be holomorphically flattened to any order.
Namely, for any positive integer m, there is a holomorphic change of coordinates which maps
p to 0 and maps M to a manifold defined by an equation of the form w = ρ(z, z) with =ρ
vanishing at least to the order m at the origin.
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Our proof of Theorem 2.1 is based on the following parametrized version of a result of Huang
and Krantz[HK].

Theorem 2.3. Let M be a real analytic hypersurface with 0 ∈ M being its CR singular point.
Suppose that there is a holomorphic change of coordinates preserving the origin such that M in
the new coordinates (which for simplicity we still write as (z, w)) is defined by an equation of
the form:

w = G(z, z) + iE(z, z) = O(|z|2), (G + iE)(z1, 0, z1, 0) = |z1|2 + λ1(z
2
1 + z1

2) + o(|z1|2). (2.2)

Here the constant λ1 is such that 0 ≤ λ1 < 1
2

and the real analytic functions G,E are real-

valued. Then, there is a positive constant ε0 > 0 such that for any ~t ∈ Cn−1 with |~t| < ε0,

M~t := M ∩ {z′ = ~t} bounds a Levi-flat real-analytic three dimensional submanifold M̃~t that

has M~t as part of its real analytic boundary and M̃~t is contained in a real analytic submanifold
foliated by a family of holomorphic disks attached to M~t∩{|(z, w)| < ε′0} with 0 < ε0 << ε′0 <<

1, shrinking down to a certain point P (~t) ∈ M . Moreover M̃# := ∪|~t|<ε0
M̃~t is a real analytic

hypersurface with M near 0 as part of its real analytic boundary and P (t) is a real analytic
embedding from {|~t|} < ε0 into M .

We will present a proof of Theorem 2.3 in the next section. The above result in the smooth
category or the parametrized result of Kenig-Webster [KW], which will be used to prove Theo-
rem 2.2 was done in [Bur2] more or less in the same time as our work in [HY4] where a version
of Theorem 2.3 was first given, also by modifying the construction of holomorphic disks in
Huang-Krantz [HK].

Proofs of Theorem 2.1 and Theorem 2.2: We next proceed to the proof of Theorem 2.1. We
assume the hypotheses in Cond (1) and Cond (2) hold for (M, p). After a holomorphic change
of coordinates, we also assume that the CR singular point is at the origin. We first pick a point
q(≈ 0) ∈ M \SM . Notice that the hypothesis in Cond (1) holds near q and the CR leaf through
q must be a CR submanifold of hypersurface type of CR dimension (n − 1). After a linear
(holomorphic) change of coordinates, we assume that q = 0 and T0M = {y1 = =z1 = 0, v = 0}
and T

(1,0)
0 M = {z1 = w = 0}. Performing a linear transformation, we also assume that ∂

∂x1
|0 is

tangent to the CR foliation at 0 and ∂
∂u
|0 is transversal to the CR foliation of M near q = 0.

We assume that M is of Ca-smoothness, where when a = ∞, M is smooth and when a = ω,
M is assumed to be real analytic. Now, by a basic fact from the foliation theory, we can find
a real valued function t(Z) defined over a certain neighborhood U0 of q = 0 in M such that
for each t0 ∈ Iδ0 = (−δ0, δ0) with a certain small 0 < δ0 << 1, Mt0 = {Z ∈ U0, t(Z) = t0} is a
connected CR submanifold of hypersurface type of CR dimension (n− 1). Moreover dt|U0 6= 0.
We assume that 0 ∈ Mt0=0. Define Ψ : U0 → Cn × R by sending Z = (z1, z

′, w) ∈ U0 to
Ψ(Z) = (z1, z

′, t(Z)). After shrinking U0 and δ0 if needed, we can assume that Ψ is a Ca-
embedding. Write M∗

t for Ψ(Mt) for each t ∈ Iδ0 . Since each component of Ψ is the restriction
of a holomorphic function over Mt, Ψ is a CR diffeomorphism from Mt to M∗

t .
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Now, by the hypothesis in Cond (1), shrinking U0 and δ0 if needed, we can find a neigh-
borhood D of q = 0 in Cn+1 and a continuous plurisubharmonic function ρD such that
U0 ⊂ H = {ρD = 0} and ρD < 0 defines the pseudoconvex side D− of H. Hence, {M∗

t }t

is a family of real hypersurface, depending Ca-smoothly on the parameter. Since M∗
t cannot

contain any non-trivial holomorphic curve, M∗
t is a minimal CR manifold. By the Trepreau

theorem, there is a domain M̃∗
t in Cn × {t = t(Mt)} having M∗

t as part of its Ca-smooth
boundary, that can be filled in by small holomorphic disks attached to M∗

t , such that any CR

function defined over M∗
t extends holomorphically to M̃∗

t. Writing Ψ−1
t for the holomorphic

extension of Ψ−1|M∗
t

to M̃∗
t and considering the plurisubharmonic function ρD ◦Ψ−1

t over M̃∗
t,

since we assumed that the zero set of ρD does not contain any non-trivial holomorphic curve,
we see that ρD ◦Ψ−1

t < 0 in M̃∗
t. Hence, each M̃∗

t is pseudoconvex.
In what follows, we write ε0, ε1, ε2, for sufficiently small positive constant. Choose a curve

γ(t) in U0 through p = 0, over which t(Z) is a diffeomorphism to Iδ0 with t(γ(t)) = t. We

construct M̃∗
t such that for a certain sufficiently small (fixed) number ε′, M̃∗

t contains all
points in the pseudoconvex side of M∗

t that is at most ε′-distance away from Ψ(γ(t)) for any

t ∈ Iδ0 . Write M̃∗ =
(
∪t∈Iδ0

M̃∗
t

)
∩ {|Z∗| < ε1}, where Z∗ is also the coordinate for Cn+1 and

ε1 << ε′. Then M̃∗ is a Ca-regular Levi-flat hypersurface with M∗ ∩ {|Z∗| < ε1} as part of its
Ca-regular boundary. Write Φ = Ψ−1 : M∗ → U0. Shrinking U0 and δ0 appropriately if needed,
Φ is a diffeomorphism and is a CR diffeomorphism when restricted to each M∗

t . Moreover, Φ

extends to a holomorphic embedding when restricted to each M̃∗
t. Still denote the extended

map by Φ and write its inverse as Ψ. By tracing the Baouendi-Treves approximation theorem
and the disk filling property of each M̃∗

t, we can see that Φ is a smooth embedding over M̃∗

and holomorphic over each leaf M̃∗
t∩{|Z∗| < ε1}. Now, as in [Hu1], we can apply the Whitney

extension theorem to extend Φ almost holomorphically (∂− flatly) from M̃∗ to a neighborhood

of M̃∗ in Cn × C. Namely ∂Φ vanishes to infinitely order along M̃∗. Still write this ∂-flat
extension as Φ and write Ψ as its inverse. Write Z∗ = (z, t +

√−1τ) as mentioned above. Fix
ε0 and ε∗0 such that 0 < ε0 << ε∗0 << 1. For any 0 < ε < 1, we define ρ±ε = ±τ + ε(|Z∗|2 − 1)

where |Z∗| < ε∗0. Define Ωε = {Z ∈ {|Z| < ε∗0} : ρ±ε ◦ Ψ(Z) < 0, ρD < ε}. Write M̃ = Φ(M̃∗).
Then it is easy to see that (∩0<ε<<1Ωε) ∩ {|Z| ≤ ε0} = M̃ ∩ {|Z| ≤ ε0}.

We claim that ρ±ε ◦Ψ(Z) are strongly plurisubharmonic in a neighborhood of Ωε when ε > 0

is sufficiently small. To see that, since Φ is ∂-flat along M̃∗, we see that its inverse Ψ is also
∂-flat along M̃ . For Z ∈ Ωε with dist(Z, M̃ ∩ {|Z| ≤ ε0}) ≤ ε1, we have the the following
computation:

∂∂ρ±ε ◦Ψ(Z) = ∂∂{±ψn+1 + ε(
n+1∑
j=1

|ψj|2 − 1)}

=
n+1∑
j=1

C(ε + O(ε2))dzj ∧ dzj +
n+1∑

j,k=1

O(ε2)dzj ∧ dzk.

(2.3)
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In the above, we have written Ψ = (ψ1, · · · , ψn+1) and w = zn+1. Also C is a certain positive
constant. Hence, the complex Hessian of ρ±ε are positive definite over Ωε for 0 < ε << 1.
Now from the way Ωε is defined, it is apparently pseudoconvex and we thus conclude that
M̃ ∩ {|Z| ≤ ε0} is holomrphically convex. By the continuity principle, we see that its germ at
0 is precisely the germ of holomorphic hull of M ∩ {|Z| ≤ ε1} with 0 < ε1 << ε0 << 1. As an
immediate consequence of the above construction, we have the following:

Proposition 2.4. There exits a sufficiently small positive number ε such that for any continuous
family of holomorphic disks {φt}0≤t≤1 attached to M ∩ {|Z|} < ε with φt=0(∆) being a point in

M , it holds that φt(∆) ⊂ M̃ for any 0 ≤ t ≤ 1.

Here, we recall that a holomorphic disk φ is said to be attached to M if φ is a holomorphic
map over the unit disk ∆, continuous up to the boundary (the unit circle S1) and it holds that
φ(S1) ⊂ M . We say {φt} is a continuous family with parameter t if φ is a continuous function
in (ξ, t) for ξ ∈ ∆.

Proof of Proposition 2.4: Fix a sufficiently small positive number ε. By the hypothesis,
for any 0 < ε′ << 1, we have ρ±ε′ ◦ φt(ξ) < 0, ρD ◦ φt(ξ) < ε′ for |ξ| = 1 and t ∈ [0, 1]. For
0 ≤ t << 1, we also have ρ±ε′ ◦ φt(ξ) < 0, ρ±D ◦ φt(ξ) < ε′ for ξ ∈ ∆. Now suppose t0 is smallest
t such that the above does not hold. Then we have a ξ0 ∈ ∆ such that either ρ+

ε′ ◦ φt(ξ0) = 0,
or ρ−ε′ ◦ φt(ξ0) = 0, or ρD ◦ φt(ξ0) = ε′. By the maximum principle for subharmonic functions,
we get either ρ+

ε′ ◦ φt ≡ 0, or ρ−ε′ ◦ φt ≡ 0, or ρD ◦ φt ≡ ε′. This is a contradiction. Since ε′ << 1
is arbitrary, we see the proof of the proposition.

Now let M̃# and M̃~t be as constructed in Theorem 2.3. Let p(t) be the embedding from
{t ∈ Cn−1 : |t| < ε2} with 0 < ε2 << 1 into M with p(0) = 0, where p(t) is the complex tangent
point of M~t. Since SM is assumed to have Hausdorff dimension less than 2(n− 1), we can find
a sequence of points {pj = p(tj)} with tj → 0 such that the assumption in Cond(1) holds. Let

M̃j be the local hull of holomorphy of M near pj, as constructed above, which is a Ca-smooth

Levi-flat hypersurface with M near pj as part of its Ca-smooth boundary. Notice that M̃~tj
is

foliated by holomorphic disks shrinking down to pj. Hence, by Proposition 2.4, we see that for

a certain small ε, M̃~t ∩ {|Z − pj| < ε} is contained in M̃j for each ~t ≈ ~tj. Hence the germ of

M̃# at pj is contained in the germ of M̃j at pj. Since near pj, both M̃j and M̃# are smooth,
share the same boundary, and have the same dimension. We can easily conclude that they
completely coincide near pj.

Now, when M is real analytic, M̃# is also real analytic and thus its Levi-form can be made

to be real analytic too. Since the Levi form vanishes in a small neighborhood of pj in M̃#, we

conclude that M̃# is Levi flat everywhere. Hence, M̃# is a real analytic Levi-flat hypersurface

with M near 0 as part of its smooth boundary. By the classical Cartan theorem, M̃# can be
biholomorphically transformed into v = 0. Now, assuming that the hypothesis in Cond (3)

holds, it is easy to argue, as above, that M̃# also serves as the local hull of holomorphy of
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M near 0. This completes the proof of Theorem 2.1. Thus the proof of Theorem 1.2 is also
complete.

Now, we assume that M is merely smooth. As we mentioned before, modifying the argument

in Kenig-Webster [KW1] and Huang-Krantz [HK], Burcear in [Bur2] also constructed M̃# which
is now only a smooth real-hypersurface with M as part of its smooth boundary. We first make

p = 0 and T0M̃# = {v = 0}. We extend M̃# smoothly across M , which we still denote by M̃#.

We then have the following property for M̃#:

There is a sequence of points {pj} ⊂ M̃#, converging to 0, and an open neighborhood Uj of

pj in M̃# for each j, such that M̃# is Levi-flat over Uj.
Now the proof of Theorem 2.2 follows from this property and the following lemma:

Lemma 2.5. Let M ⊂ Cn+1 be a real hypersurface containing the origin. Suppose that there
is a sequence {pj} ⊂ M with pj → 0 and there is an open subset pj ∈ Uj of M such that
Uj is Levi-flat for each j. Then for any positive integer N , there is a holomorphic change of
coordinates preserving the origin such that in the new coordinates, M is defined by an equation
of the form: v = ρN(z, z, u) = O(|(z, u)|N).

Proof of Lemma 2.5: Suppose that the statement in the lemma does not hold. Then we have
a sufficiently large integer N such that for any holomorphic change of coordinates preserving
the origin, M can can not be defined by an equation of the form: v = O(|(z, u)|N+1).

We first choose a coordinate system such that M is defined at the point under study by an
equation of the form:

v = ρ = ρN(z, z, u) + O(|(z, u)|N+1),

where ρN(z, z, u) = o(|(z, u)|) is a real-valued polynomial of degree N . By Lemma 3.2 of Chern-
Moser [CM], we can find a holomorphic change of coordinates preserving the origin such that
in the new system, we can make ρN(z, 0, u) = 0.

After a linear change of coordinates, we can assume that ρN((z1, 0), (z1, 0), u) 6≡ 0.
Now, for each t ∈ Cn−1 near 0, define rt = −v + ρ((z1, t), (z1, t), u) and

Lt =
∂

∂z1

+ 2i
ρz1((z1, t), (z1, t), u))

1− iρu((z1, t), (z1, t), u))

∂

∂w
;

λt =< ∂∂rt, Lt ∧ Lt >;

Tt =
∂

∂u
+ ρu((z1, t), (z1, t), u)

∂

∂v
.

(2.4)

Lt is a non-vanishing CR vector field along the three dimensional CR manifold Mt, Tt is a
tangential, but normal to the CR-direction, vector field along Mt and λt is the Levi-function
over Mt with respect to the frames such chosen. We will treat t as a parameter. Notice all
these quantities depend smoothly on t. We consider the following two cases.
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Case I: Assume that ρ((z1, 0), (z1, 0), 0) = Pk(z1, z1) + o(|z1|k) with 2 ≤ k ≤ N , where

Pk(z1, z1) is a non-zero homogeneous real-valued polynomial of degree k. Assume that ∂kPk

∂zα+1
1 ∂zβ+1

1

6=
0 for a certain pair α, β ≥ 0 with α + β = k − 2. Next, we notice that (see [(3.19), Ko], for
instance)

λt =
4

|1− iρu|2{rz1z1|rw|2 + rww|rz|2 − rz1wrwrz1 − rz1wrwrz1}.

We compute that

Lt=0 =
∂

∂z1

+ O(|z1|k−1 + u|z1|) ∂

∂w
, λt=0 = (Pk)z1z1 + O(|z1|k−1 + u|z1|2).

Hence, one sees that

Lt=0λt=0 = (Pk)z2
1z1

+ O(|z1|k−2 + u|z1|), Ltλt=0 = (Pk)z1z2
1
+ O(|z1|k−2 + u|z1|).

By an induction argument, we have

Lα
t=0L

β
t=0λt=0|0 =

∂kPk

∂zα+1
1 ∂z1

β+1
6= 0.

However, by the assumption, there is a sequence of tj such that Mtj is Levi flat over a certain
open piece U ′

j = {z′ = tj} ∩ Uj for each j, for which 0 is an accumulation point of {U ′
j}. Since

the Levi function vanishes identically over a Levi-flat piece, by passing to a limit, we reach a
contradiction.

Case II: Assume that ρ((z1, 0), (z1, 0), u) = uj
(
Qk−j(z1, z1) + O(|z1|k−j+1) + O(|uz2

1 |)
)

+
O(|z1|N+1) for some j ≥ 1 with 2 ≤ k ≤ N , where Qk−j(z1, z1) is a non vanishing homogeneous
real-valued polynomial of degree k − j ≥ 2. Then

Lt=0 =
∂

∂z1

+ O(|ujz1|) ∂

∂w
, λt=0 = uj

(
(Qk−j)z1z1 + O(|z1|k−j−1) + O(|u|)) + O(|(z1, u)|N−1).

Hence T j
t=0λt=0 = j!(Qk−j)z1z1 + O(|z1|k−j−1) + O(|u|), and

Lt=0T
j
t=0λt=0 = j!(Qk−j)z2

1z1
+ O(|z1|k−j−2 + u), Lt=0T

j
t=0λt=0 = j!(Qk−j)z1z2

1
+ O(|z1|k−j−2 + u).

By an induction argument, we have

Lα
t=0L

β
t=0T

j
t=0λt=0|0 6= 0

for a certain pair (α, β) with α + β = k − j. Again λtj ≡ 0 over Uj ∩ {z′ = t} and thus

Lα
t=tj

Lβ
t=tjT

j
t=tjλt=tj |0 ≡ 0 over Uj ∩Mtj as above. Passing to the limit, this is again a contra-

diction.
The proof of Lemma 2.5 and thus the proof of Theorem 2.2 are complete.

Hence, the proof of Theorem 1.3 is complete. .
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3 A parametrized version of a result of Huang-Krantz

In this section, we give the proof of Theorem 2.3. Our proof is fundamentally based on the
construction of holomorphic disks attached to an elliptic real surface in a complex surface.
Since the proof is more or less a generalization of that in Huang-Krantz [HK], we only give the
necessary argument needed for dealing with the parameter.

Proof of Theorem 2.3: We now proceed to the proof of Theorem 2.3. We use the same
notation set up in the statement of Theorem 2.3. The special form for the change of coordinates
in the theorem suggests us to slice M along the t := (z2, · · · , zn) = const–direction and apply
the two dimensional result in [HK]. By the stability of the elliptic tangency (see [For] for
instance), we get a family of elliptic Bishop surfaces parametrized by t. By the work in Huang-
Krantz [HK], each surface bounds a three dimensional real-analytic Levi-flat manifold. Putting
these manifolds together and tracing the construction of these manifolds through the Bishop
disks, we will obtain a real-analytic hypersurface M̂ . We next give the details on these.

In this section, we write t = (z2, · · · , zn). We also write u = <w, v = =w. For |t| small,
define Mt = {(z, w) ∈ M : (z2, · · · , zn) = t}. Then Mt is a small deformation of the original
M0, which has a unique elliptic complex tangent point at z1 = 0 for |z1| < ε0 << 1. Since a
small deformation of the surface will only move the complex tangent point to a nearby point
and elliptic complex tangency is stable under small deformation, intuitively, Mt must have an
elliptic complex tangent near z1 ≈ 0, which is completely determined by the equation:

∂w

∂z1

= 2λ1z1 + z1 +
∂(p + iE)

∂z1

(z1, t, z1, t) = 0.

Here, we write p(z, z) = G(z, z)−q(z, z). By the implicit function theorem, one solves uniquely
z1 = a(t, t) = O(|t|), which is Cω in t. Then

P (t) =
(
a(t, t), t, (G +

√−1E)(a, t, a, t)
)

is the elliptic complex tangent point over Mt obtained by deforming the 0 on M0 to Mt. Next,
by making use of the Kenig-Webster formal normalization in the two dimensional setting, after
a change of holomorphic coordinates of the form Z ′ = (z1, z

′, w + A(z1, w) = w + O(|(z, w)|2)
if needed, we can assume without loss of generality that E(z1, 0, z1, 0) = O(|z1|7). We expand
w = G + iE at (a(t, t), t) to get:

w = w0(t, t) + b(t, t)(z1 − a(t, t)) + 2< (
c(t, t)(z1 − a(t, t))2

)
+ d(t, t)|z1 − a(t, t)|2+

h∗(z1 − a(t, t), t, z1 − a(t, t), t) +
√−1G∗

(
z1 − a(t, t), t, z1 − a(t, t), t

) (3.1)

Here, all functions appeared above depend Cω-smoothly on their variables with w0(0, 0) =
0, d(0, 0) = 1, b(0, 0) = 0, c(0, 0) = λ1. Moreover, h∗(η, t, η, t) = O(|η|3), G∗(η, t, η, t) =
O(|η|7 + |t||η|2) and d(t, t) are all real-valued. By continuity and the ellipticity of 0 ≤ λ1 < 1/2,
for |t| small, we have A(η, η, t, t) := 2< (

c(t, t)η2
)

+ d(t, t)|η|2 ≥ C|η|2 for a certain positive
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constant C independent of |t|. Hence, for |t| small and for a real number r with |r| << 1, the
following defines a simply connected (convex) domain Dt in C with a real analytic boundary:

Dt := {η ∈ C : 2< (
c(t, t)η2

)
+ d(t, t)|η|2 + r−2h∗(rη, t, rη, t) ≤ 1}.

Let σ(ξ, t, t, r) be the Riemann mapping from the unit disk to Dt preserving the origin and
with positive derivative at the origin. By [Lemma 2.1, Hu1], σ(ξ, t, t, r) depends Cω on its
variables and is holomorphic in ξ in a fixed neighborhood of ∆. (See also [Lemma 4.1, Hu2] for
a detailed proof on this.)

Now, we construct a family of holomorphic disks with parameter (t, r) for |t|, |r| << 1
attached to M , which takes the following form:

z1(ξ, t, t, r) = a(t, t) + rσ(ξ, t, t, r)(1 + ψ1(ξ, t, t, r)),

(z2, · · · , zn) = t,

w(ξ, t, t, r) = w0(t, t) + b(t, t) · rσ(ξ, t, t, r)(1 + ψ1(ξ, t, t, r)) + r2(1 + ψ2(ξ, t, t, r)),

<ψ1(0, t, t, r) = 0, =ψ2(0, t, t, r) = 0,

ψ = (z1(ξ, t, t, r), t, w(ξ, t, t, r))

(3.2)

Here ψ1, ψ2 are holomorphic functions in ξ ∈ ∆, and are Cω on (ξ, t, r) over ∆ × {t ∈ Cn−2 :
|t| < ε0} × {r ∈ R : |r| < ε0}. Substituting (3.2) into (3.1) with |ξ| = 1, we get the following:

ψ2(ξ, t, t, r) = Ω1 + Ω2 +
√−1Ω3. (3.3)

Here Ω1 = 2<
(
{∂A

∂η
(σ, t, σ, t)σ + σr−1 ∂h∗

∂η
(rσ, t, rσ, t)}ψ1

)
, Ω2 = O(|ψ1|2), and Ω3 = O(|t|+|r|5)

are all real-valued. Moreover, Ωj (j = 1, 2, 3) depend Cω on there variables (ψ1, t, r) in a
certain suitable Banach space defined in [§5, Hu1]. Write g(ξ, ξ, t, t, r) = 2σ{∂A

∂η
(σ, t, σ, t) +

r−1 ∂h∗
∂η

(rσ, t, rσ, t)}. Then we similarly have <g > 0, which makes results in [Lemma 5.1, Hu1]
applicable in our setting. Write H for the standard Hilbert transform, we obtain the following
singular Bishop equation:

<{g(ξ, ξ, t, t, r)ψ1}+ Ω2(ψ1, ψ1, t, t, r) = −H(Ω3). (3.4)

Now, write ψ1 = U(ξ, ξ, t, t, r) +
√−1H(U(ξ, ξ, t, t, r)) for |ξ| = 1. By the argument in [§5,

Hu1], from (3.4), one can uniquely solve U(ξ, ξ, t, t, r) for |t|, |r| << 1. Moreover, U(ξ, ξ, t, t, r)
depends Cω on (ξ, ξ, t, t, r) and U(ξ, ξ, t, t, r) = O(|t|+ |r|5). Hence

U(ξ, ξ, t, t, r) +
√−1H(U(ξ, ξ, t, t, r))

extends to a holomorphic function in ξ which also depends Cω on its variables (ξ, ξ, t, t, r) with
|ξ| ≤ 1. Moreover, we have the estimates

ψ1, ψ2 = O(|t|+ |r|5). (3.5)
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Next, we let M̂ =
⋃

0≤r<<1, |t|<<1,ξ∈∆ ψ(ξ, t, t, r). Let M̃ = π(M̂) where π is the projection

from Cn+1 into the (z, u)-space. By the result in Huang-Krantz [HK], for each fixed t, M̂t =

M̂ ∩ {z′ = t} ∩ BP (t,t)(r0) must be the local hull of holomorphic of Mt, that is a manifold Cω-
regular up to the boundary Mt. Here BP (t,t)(r0) is the ball centered at P (t, t) with a certain fixed
radius r0 > 0. Also, since u = G(z1, t, z1, t) defines a strongly pseudoconvex hypersurface in C2

for each fixed t with |t| << 1, we see that π(M̂t) ⊂ M̃∗
t, where M̃∗ := {(z, u) : u ≥ G(z, z)}

and M̃∗
t = M̃∗ ∩ {(z2, · · · , zn) = t}. Indeed, π, when restricted to M̂t is a Cω-diffeomorphism

to a neighborhood of π(P (t)) in M̃∗
t from the intersection of M̂t with the ball centered at

P (t) with a certain fixed radius 1 >> r0 > 0. To see this, by the normalization presented by
Kenig-Webster [KW], we have a change of variables in (z1, w):

z′1 = z1 − a(t, t), w′ =
6∑

α+β=1

bαβ(t, t)(w − w0(t, t))
α(z1 − a(t, t))β,

where w0, a bαβ depend smoothly on t and takes values 0 at 0 for α + β ≥ 2. Also, b10(0, 0) =
1, b01(0, 0) = 0. In thses coordinates, Mt is mapped to M ′

t that is flattened to order 6 at 0.
Hence, the holomorphic hull of M ′

t near 0 now is tangent to (z′1, u
′)-space (See [KW] [HK]), in

particular, must be transversal to the v′−axis. Since the holomorphic hull is a biholomorphic
invariant, and the (z′1, u

′)-plane is pulled to a real hypersurface near P (t) defined by v =

E(a(t, t), t, a(t, t), t) + O(t). We see that M̂t has to be transversal to the v-axis when |t| is

small. Hence, π is an embedding from M̂t ∩ BP (t)(ε1) to M̃∗
t with a certain fixed ε1 << 1

and also the image of π
(
M̂t ∩BP (t)(ε1)

)
contains M̃∗

t ∩Bπ(P (t))(ε
′
1) with ε′1 a sufficiently small

positive number independent of t. Thus π can be seen to be a one to one and onto map from
M̂ to M̃∗ near 0. Write the inverse map of π as v(z1, z1, t, t), which is defined over M̃∗ near 0.

Notice that it is the graph function of M̂ near 0 and has to be Cω-regular for each fixed t.
Next, we solve v(z1, z1, t, t) from (3.2). For this, we use the computation in [HK]. First, we

let

z′1 = z1 − a(t, t)

w′ = w − (
w0(t, t) + b(t, t)(z1 − a(t, t))

) (3.6)

Then (3.2) can be rewritten as

z′1(ξ, t, t, r) = rσ(ξ, t, t, r)(1 + ψ1(ξ, t, t, r)),

(z2, · · · , zn) = t,

w′(ξ, t, t, r) = r2(1 + ψ2(ξ, t, t, r)).

(3.7)

Write w′ = u′ +
√−1v′. Now, by the proof in [HK, pp 225], we see that for each (z′1, u

′, t),
there is a unique v′ satisfying (3.7). Moreover v′, as a function in (z′1, u

′, t), has the following
generalized Puiseux expansion:

v′ =
∑

i,j,s,α,β≥0

Sijsαβu′
i−j−s

2 zj
1z1

stαtβ,
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where |Sijkαβ| <
∼

Ci+j+k for some positive constant C. By the regularity of M̂t as mentioned

above, we know that ∂j+sv′

∂z′j1∂z′1
s |z1=0 must be smooth for each |t| small and u′ ≥ 0. This shows

that Sijsαβ = 0 when i−j−s
2

is not a positive integer. As in [HK, pp 227], we see that v′ is a real
analytic function in (z′1, u

′, t) near 0. By (3.6), we see that v is an analytic function in (z1, u, t).

Hence, we proved that M̂ is a real analytic manifold, which can be represented as a graph over
M̃∗ in (z, u)-space.

This completes the proof of Theorem 2.3.

Example 3.1. Define M ⊂ C3 by the following equation near 0:

w = q(z, z) + p(z, z) + iE(z, z).

Here as before q = |z1|2+λ1(z
2
1 +z2

1)+|z2|2+λ2(z
2
2 +z2

2) with 0 ≤ λ1, λ2 < ∞, and p, E = O(|z|3)
are real-valued. Also G(z, z) := q(z, z)+p(z, z). For any c ∈ R\{0}, define the real hypersurface
Kc by the equation q(z, z) = c. Then Kc intersects transversally M along a submanifold Lc

of real dimension 3. Then Lc is a CR submanifold of CR dimension 1 if and only if L(q) ≡ 0
along Lc. Here

L =(G2 − iE2)
∂

∂z1

− (G1 − iE1)
∂

∂z2

+ 2i(G2E1 −G1E1)
∂

∂w
, (3.8)

that is non-zero and tangent to M \ {0}.
Write Ψ = p(z, z)−iE(z, z). Then the above is equivalent to the equation Ψ2 ·(z1+2λ1z1) =

Ψ1 · (z2 + 2λ2z2). Namely, M is non-minimal at its CR points near 0 if and only if the just
mentioned equation holds.

One solution is given by Ψ = p(z, z) − iE(z, z) = µ1(|z1|2z1 + λ1|z1|2z1) + µ2(|z2|2z2 +
λ2|z2|2z2) + µ1z1(|z2|2 + λ2z

2
2) + µ2z2(|z1|2 + λ1z

2
1), with µ1, µ2 ∈ C. Then Ψ1 = (µ1z1 +

µ2z2)(z1 +2λ1z1) and Ψ2 = (µ2z2 +µ1z1)(z2 +2λ1z2). Thus Ψ2 · (z1 +2λ1z1) = Ψ1 · (z2 +2λ2z2)
holds trivially.
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