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Abstract. We give a solution to the equivalence problem for Bishop sur-
faces with the Bishop invariant λ = 0. As a consequence, we answer, in the
negative, a problem that Moser asked in 1985 after his work with Webster
in 1983 and his own work in 1985. This will be done in two major steps: We
first derive the formal normal form for such surfaces. We then show that two
real analytic Bishop surfaces with λ = 0 are holomorphically equivalent
if and only if they have the same formal normal form (up to a trivial ro-
tation). Our normal form is constructed by an induction procedure through
a completely new weighting system from what is used in the literature. Our
convergence proof is done through a new hyperbolic geometry associated
with the surface.

As an immediate consequence of the work in this paper, we will see
that the modular space of Bishop surfaces with the Bishop invariant van-
ishing and with the Moser invariant s < ∞ is of infinite dimension. This
phenomenon is strikingly different from the celebrated theory of Moser–
Webster for elliptic Bishop surfaces with non-vanishing Bishop invariants
where the surfaces only have two and one half invariants. Notice also that
there are many real analytic hyperbolic Bishop surfaces, which have the
same Moser–Webster formal normal form but are not holomorphically
equivalent to each other as shown by Moser–Webster and Gong. Hence,
Bishop surfaces with the Bishop invariant λ = 0 behave very differently
from hyperbolic Bishop surfaces and elliptic Bishop surfaces with non-
vanishing Bishop invariants.
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1 Introduction and statements of main results

In this paper, we study the precise holomorphic structure of a real analytic
Bishop surface near a complex tangent point with the Bishop invariant
vanishing. A Bishop surface is a generically embedded real surface in the
complex space of dimension two. Points on a Bishop surface are either
totally real or have non-degenerate complex tangents. The holomorphic
structure near a totally real point is trivial. Near a point with a complex
tangent, namely, a point with a non-trivial complex tangent space of type
(1, 0), the consideration could be much more subtle. The study of this
problem was initiated by the celebrated paper of Bishop in 1965 [4], where
for a point p on a Bishop surface M with a complex tangent, he defined
an invariant λ now called the Bishop invariant. Bishop showed that there
is a holomorphic change of variables, that maps p to 0, such that M, near
p = 0, is defined in the complex coordinates (z, w) ∈ C2 by

w = zz + λ(z2 + z2) + o(|z|2), (1.1)

where λ ∈ [0,∞]. When λ = ∞, (1.1) is understood as w = z2 + z2 +
o(|z|2). It is now a standard terminology to call p an elliptic, hyperbolic or
parabolic point of M, according to whether λ ∈ [0, 1/2), λ ∈ (1/2,∞] or
λ = 1/2, respectively.

Bishop discovered an important geometry associated with M near an
elliptic complex tangent p by proving the existence of a family of holo-
morphic disks attached to M shrinking down to p. He also proposed several
problems concerning the uniqueness and regularity of the geometric object
obtained by taking the union of all locally attached holomorphic disks.
These problems, including their higher dimensional cases, were completely
answered through the combining efforts of many people. (See [3,15,16,18,
19,21,22].)

Bishop invariant is a quadratic invariant, capturing the basic geometric
character of the surface. The celebrated work of Moser–Webster [22] first
investigated the more subtle higher order invariants. Different from Bishop’s
approach of using the attached holomorphic disks, Moser–Webster’s starting
point is the existence of a more dynamically oriented object: an intrinsic pair
of involutions on the complexification of the surface near a non-exceptional
complex tangent. Here, recall that the Bishop invariant is said to be non-
exceptional if λ �= 0, 1/2,∞ or if λν2 − ν + λ = 0 has no roots of unity in
the variable ν. Moser–Webster proved that, near a non-exceptional complex
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tangent, M can always be mapped, at least, by a formal transformation to
the normal form defined in the complex coordinates (z, w = u + iv) ∈ C2

by:

u = zz + (λ + εus)(z2 + z2), v = 0, ε ∈ {0, 1,−1}, s ∈ Z+. (1.2)

Moser–Webster also provided a convergence proof of the above men-
tioned formal transformation in the non-exceptional elliptic case: 0 < λ <
1/2. However, the intriguing elliptic case with λ = 0 has to be excluded
from their theory. Instead, Moser in [21] carried out a study for λ = 0
from a more formal power series point of view. Moser derived the following
formal pseudo-normal form for M with λ = 0:

w = zz + zs + zs + 2Re
{ ∑

j≥s+1

aj z
j
}
. (1.3)

Here s is the simplest higher order invariant of M at a complex tangent with
a vanishing Bishop invariant, which we call the Moser invariant. Moser
showed that when s = ∞, M is then holomorphically equivalent to the
quadric M∞ = {(z, w) ∈ C2 : w = |z|2}.

Moser’s formal pseudo-normal form is still subject to the simplification
of a very complicated infinitely dimensional group aut0(M∞), the formal
self-transformation group of M∞. And it was left open from the work
of Moser [21] to derive any higher order invariant other than s from the
Moser pseudo-normal form. At this point, we mention that aut0(M∞) con-
tains many non-convergent elements. Based on this, Moser asked two basic
problems concerning a Bishop surface near a vanishing Bishop invariant
in his paper [21]. The first one is on the analyticity of the geometric ob-
ject formed by the attached disks up to the complex tangent point. This
was answered in the affirmative in [16]. Hence, the work of [16], together
with that of Moser–Webster [22], shows that, as far as the analyticity of
the local hull of holomorphy is concerned, all elliptic Bishop surfaces are
of the same character. The second problem that Moser asked concerns the
higher order invariants. Notice that by the Moser–Webster normal form,
an analytic elliptic Bishop surface with λ �= 0 is holomorphically equiva-
lent to an algebraic one and possesses at most two more higher order
invariants. Moser asked if M with λ = 0 is of the same character as
that for elliptic surfaces with λ �= 0. Is the equivalence class of a Bishop
surface with λ = 0 determined by an algebraic surface obtained by trun-
cating the Taylor expansion of its defining equation at a sufficiently higher
order level? Gong showed in [10] that under the equivalence relation of
a smaller class of transformation group, called the group of holomorphic
symplectic transformations, M with λ = 0 does have an infinite set of
invariants. However, under this equivalence relation, elliptic surfaces with
non-vanishing invariants also have infinitely many invariants. Gong’s work
later on (see, for example, [1,10,11]) demonstrates that as far as many
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dynamical properties are concerned, exceptional or non-exceptional hyper-
bolic, or even parabolic complex tangents are not much different from each
other.

In this paper, we derive a formal normal form for a Bishop surface
near a vanishing Bishop invariant, by introducing a quite different weight-
ing system. This new weighting system fits extremely well in our setting
and may have applications in the study of many other related problems.
We will obtain a complete set of invariants under the action of the formal
transformation group. We show, in particular, that the modular space for
Bishop surfaces with a vanishing Bishop invariant and with a fixed (finite)
Moser invariant s is an infinitely dimensional manifold in a Fréchet space.
This then immediately provides an answer, in the negative, to Moser’s
problem concerning the determination of a Bishop surface with a van-
ishing Bishop invariant from a finite truncation of its Taylor expansion.
Furthermore, it can also be combined with some already known arguments
to show that most Bishop surfaces with λ = 0, s �= ∞ are not holo-
morphically equivalent to algebraic surfaces. Hence, one sees a striking
difference of elliptic Bishop surfaces with a vanishing Bishop invariant
from elliptic Bishop surfaces with non-vanishing Bishop invariants. The
general phenomenon that the infinite dimensionality of the modular space
has the consequence that any subclass formed by a countable union of fi-
nite dimensional spaces is of the first category in the modular space seems
already clear even to Poincaré [23]. In the CR geometry category, we refer
the reader to a paper of Forstneric [8] in which the infinite dimensional-
ity of the modular space of generic CR manifolds is used to show that
CR manifolds holomorphically equivalent to algebraic ones form a very
thin set among all real analytic CR manifolds. Similar to what Forstneric
did in [8], our argument to show the generic non-algebraicity from the
infinite dimensionality of the modular space also uses the Baire category
theorem.

It remains to be an open question to answer whether the new normal
form obtained in this paper for a real analytic Bishop surface with λ = 0,
s < ∞ is always convergent. However, we will show that two Bishop sur-
faces with λ = 0 and s < ∞ are holomorphically equivalent if and only
if their formal normal forms are the same up to a trivial rotation of the
form: (z, w) �→ (eiθ z, w) with eiθs = 1. Hence, the formal normal form
that we will derive provides a solution to the equivalence problem also in
the holomorphic category. We will achieve this goal by proving that any
formal map between two real analytic Bishop surfaces with λ = 0, s < ∞
is convergent. Remark that there are many non-convergent formal maps
transforming real analytic Bishop surfaces with a vanishing Bishop invari-
ant and with s = ∞ to the model surface M∞ defined before. (See [14,
21,22]). Hence, our convergence theorem reveals a non-trivial role that
the Moser invariant has played in the study of the precise holomorphic
structure of a Bishop surface with λ = 0. At this point, we would like
to mention that there are manyother different type of problems where one
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studies the convergence problem for formal power series, though very dif-
ferent methods and approaches need to be employed in different settings.
Just to name a few, we here mention the work in [2,20,24,25] and the
references therein.

Our convergence argument uses the Moser–Webster [22] polarization,
as in the non-vanishing Bishop invariant case treated by Moser–Webster.
However, different from the Moser–Webster situation, we do not have a pair
of involutions, which were the starting point of the Moser–Webster theory.
The main idea in the present paper for dealing with the convergence problem
is to find a new surface hyperbolic geometry, by making use of the flattening
theorem of Huang–Krantz [16].

We next state our main results, in which we will use some terminology
to be defined in the next section:

Theorem 1.1. Let M be a formal Bishop surface which has an elliptic
complex tangent at 0 with its Bishop invariant λ = 0 and its Moser invariant
s ≥ 3 and s < ∞. Then there exists a formal equivalence map:

(z′, w′) = F(z, w) = ( f̃ (z, w), g̃(z, w)), F(0, 0) = (0, 0)

such that in the (z′, w′) coordinates, M′ = F(M) is represented near the
origin by a formal equation of the following normal form:

w′ = z′z′ + z′s + z′s + ϕ(z′) + ϕ(z′)

where

ϕ(z′) =
∞∑

k=1

s−1∑
j=2

aks+ j z
′ks+ j

.

Such a formal transform is unique up to a composition from the left with
a rotation of the form:

(z′′, w′′) = Rθ(z
′, w′) := (e

√−1θ z′, w′),

where θ is a constant with e
√−1sθ = 1.

Namely, if there is another formal equivalence map (z′′, w′′) = F∗(z, w)
with F∗(0) = 0 that maps M into the following normal form:

w′′ = z′′z′′ + z′′s + z′′s + ϕ∗(z′′) + ϕ∗(z′′) with

ϕ∗(z′′) =
∞∑

k=1

s−1∑
j=2

a∗
ks+ j z

′′ks+ j
.

Then

F∗ = Rθ ◦ F for a certain θ with e
√−1θs = 1 and aks+ j = e

√−1 jθa∗
ks+ j .
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Theorem 1.2. Let M1 and M2 be real analytic Bishop surfaces with λ = 0
and s �= ∞ at 0. Suppose that M1 has a formal normal form:

w′ = z′z′ + z′s + z′s + 2Re
{ ∞∑

k=1

s−1∑
j=2

aks+ j z
′ks+ j

}
;

and suppose that M2 has a formal normal form:

w′ = z′z′ + z′s + z′s + 2Re
{ ∞∑

k=1

s−1∑
j=2

bks+ j z
′ks+ j

}
.

Then (M1, 0) is biholomorphic to (M2, 0) if and only if there is a constant θ

with esθ
√−1 = 1, such that aks+ j = eθ j

√−1bks+ j for any k ≥ 1 and j =
2, . . . , s − 1.

Theorems 1.1 and 1.2 give a solution to the equivalence problem for
Bishop surfaces with λ = 0 and s < ∞. Theorem 1.1 is used to prove
the following Theorem 1.3. Theorems 1.1 and 1.3 provide, in the negative,
a solution to a problem that Moser asked on [21, p. 399].

Theorem 1.3. Most real analytic elliptic Bishop surfaces with the Bishop
invariant λ = 0 and the Moser invariant s < ∞ at 0 are not equivalent to
algebraic surfaces in C2.

Define Zs for the group of transformations consisting of maps of the
form {ψθ : (z, w) �→ (eiθ z, w), eisθ = 1}. Then the following corollary is
a consequence of Theorems 1.1 and 1.2:

Corollary 1.4. (a) Suppose Mnor is a formal Bishop surface near the origin
defined by

w = zz + zs + zs + 2Re
{ ∞∑

k=1

s−1∑
j=2

aks+ j z
ks+ j
}
.

Then the group of the origin preserving formal self-transformations
of Mnor, denoted by aut0(Mnor), is a subgroup of Zs. Moreover, ψθ ∈
aut0(Mnor) if and only if

aks+ j = 0 for any k and j with k ≥ 1, 2 ≤ j ≤ s − 1, e
√−1 jθ �= 1.

(b) aut0(Ms) = Zs, where Ms is defined by w = zz + zs + zs.
(c) Any subgroup of Zs can be realized as the formal automorphism group

of a certain algebraic surface Mnor.
(d) Let M be a formal Bishop surface with a vanishing Bishop invariant

and s < ∞ at 0. Then aut0(M) is isomorphic to a subgroup of Zs.
(e) Let M be a real analytic Bishop surface with a vanishing Bishop in-

variant and the Moser invariant s < ∞ at 0. Suppose that aut0(M) is
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isomorphic to Zs. Then (M, 0) is biholomorphic to (Ms, 0), where Ms,
as before, is defined by w = zz + zs + zs.

(f) Let M be a real analytic elliptic Bishop surface with λ = 0 and s
a prime number at 0. Then aut0(M) is a trivial group unless (M, 0) is
biholomorphic to (Ms, 0).

The convergence statement in Theorem 1.2 is obtained by proving the
following:

Theorem 1.5. Let M and M′ be real analytic Bishop surfaces near 0 with
the Bishop invariant vanishing and the Moser invariant finite. Suppose that
F : (M, 0) → (M′, 0) is a formal equivalence map. Then F is biholomor-
phic near 0.

Idea for the proof of Theorem 1.1. We give the main idea behind the
complicated argument for the proof of Theorem 1.1. Let M be as in The-
orem 1.1. We want to find a formal biholomorphic map sending M into
a formal normal form. We also need to prove that such a map is unique
up to a trivial rotation. This then leads us to study an infinite system
of homogeneous equations by truncating the original equation. Now, the
homogeneous linearized normalization equations (see Sect. 3) have non-
trivial kernel spaces, due to the fact that aut0(M∞) is of infinite dimension.
The non-uniqueness part of the lower degree solutions needs to be uniquely
determined in the higher order equations. Unfortunately, these lower order
terms get into the scene in the higher order truncation non-linearly. Hence,
the normalization problem in this setting is a non-linear normalization prob-
lem, which is quite different from the consideration in the literature (see
Chern–Moser [6] and Moser in [21]), where the normalization equation is
always truncated into an infinite system of linear equations. The new idea
to overcome this difficulty is to consider a new model w = |z|2 + zs + zs

instead of the quadric, which reduces the automorphism group to the finite
group Zs. Now, to treat |z|2 equally with the term zs, it forces us to define
the weight of z to be s − 1 and thus |z|2 + zs is a weighted homogeneous
polynomial of degree s. Indeed, under the new weighting system and with
a complicated induction argument, we will be able to trace precisely how
the lower order terms get involved non-linearly: The kernel space of degree
2t + 1 is used and determined at the truncated equation of degree ts + 1
and the kernel space of degree 2t + 2 is used and determined at the trun-
cated equation of degree ts + s. This approach seems to be powerful in
handling the normalization problem, where the model has a big automor-
phism group. It may find applications in the study of many other related
problems.

One of the new features of this part of the paper is that we are studying
a normalization problem whose linear truncation at each weighted degree
level turns out to be a semi-non-linear equation. In this sense, our normal-
ization problem seems to be quite different from what has been studied in
the literature.
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Idea for the proof of Theorem 1.5. We next say a few words about the
complicated argument for the proof of Theorem 1.5. Let M be a real analytic
Bishop surface as in Theorem 1.5. (Assume that M has been normalized up
to a certain order, say order s.) By a result of Huang–Krantz [16], M can
be assumed to be in C × R. Consider its Moser–Webster complexific-
ation M, which is a complex surface in C4. There is a natural projection
from M into C2, which is generically s to one. The projection is branched
along a one dimensional complex analytic variety, whose intersection with
C × R gives s-curves z = Aj(u) with j = 0, . . . , s − 1. Here, we use
(z, u) for the coordinates of C× R and each Aj(u) has a convergent power
series expansion in u1/s. These curves are invariant under a biholomorphic
transformation and are formally invariant in a certain sense under a formal
invertible transformation. For each 0 < u � 1, (Aj(u), u)′s are roughly
equally distributed s-points on the circle with center at the origin and of
radius C(s)u(s−1)/s in a simply connected Riemann surface D(u) × {u}
attached to M. (D(u) is roughly a disk centered at the origin with radius√

u.) The hyperbolic geometry derived from Aj (u)′s with the Poincaré
metric over D(u), as well as its counterpart from M′, can be used to control
the (normalized) formal map F from M to M′. This, in particular, provides
us a convergence proof for the map in Theorem 1.5.

Acknowledgment. The major part of this work was done when the first author was taking
a sabbatical leave from Rutgers University to visit the School of Mathematics and Statistics,
Wuhan University, China in the Spring of 2006 and when both authors were enjoying the
month long visit at the Institute of Mathematical Sciences, The Chinese University of Hong
Kong, in February of 2006. The first author would like very much to thank Professors Hua
Chen and Gengsheng Wang from Wuhan University for their hospitality during his visit
at Wuhan Unversity. Both authors would also like to express their appreciation to IMS at
the Chinese University of Hong Kong for its generous supports and helps provided during
the authors’ visit to CUHK. The authors are also indebted to the referee for many very
useful and constructive suggestions and comments, which have greatly improved both the
mathematics and the exposition of the paper.

2 A uniqueness theorem for formal maps

In what follows, we use (z, w) or (z′, w′) for the coordinates of C2. Let
A(z, z) be a formal power series in (z, z) without constant term. We say
that the order of A(z, z) is k if A(z, z) = ∑

j+l=k Ajlz
j zl + o(|z|k) with at

least one of the Ajl ∈ C ( j + l = k) not equal to 0. In this case, we write
Ord(A(z, z)) = k. We say Ord(A(z, z)) ≥ k if A(z, z) = O(|z|k). When
A ≡ 0, we say that the order of A is ∞.

Consider a formal real surface M inC2 near the origin. Suppose that 0 is
a point of complex tangent for M. Then, after a linear change of variables,
we can assume that T (1,0)

0 M = {w = 0}. If there is no change of coordinates
such that M is defined by an equation of the form w = O(|z|3), we then say
that 0 is a point on M with a non-degenerate complex tangent. In this case,
Bishop showed that there is a change of coordinates in which M is defined
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by ([4,13]):

w = zz + λ(z2 + z2) + O(|z|3). (2.1)

Here λ ∈ [0,∞] and when λ = ∞, the equation takes the form: w =
z2 + z2 + O(|z|3). λ is the first absolute invariant of M at 0, called the
Bishop invariant. Bishop invariant is a quadratic invariant, resembling to
the Levi eigenvalue in the hypersurface case. When λ ∈ [0, 1/2), we say
that M has an elliptic complex tangent at 0. In this paper, we are only
interested in the case of an elliptic complex tangent. We need only to study
the case of λ = 0; for, in the case of λ ∈ (0, 1/2), the surface has been
well understood by the work of Moser–Webster [22]. When λ = 0, Moser–
Webster and Moser showed in [22,21] that there is an integer s ≥ 3 or
s = ∞ such that M is defined by

w = zz + zs + zs + E(z, z), (2.2)

where E is a formal power series in (z, z) with Ord(E) ≥ s + 1. When
s = ∞, we understand the above equation as w = zz, namely, M is formally
equivalent to the quadric M∞ = {w = zz}. s is the next absolute invariant for
M, called the Moser invariant. The case for s = ∞ is also well-understood
through the work of Moser [21]. Hence, in all that follows, our M will have
λ = 0 and a fixed s < ∞.

A formal map z′ = F(z, w), w′ = G(z, w) without constant terms is
called a formal equivalence transformation (or simply, a formal transform-
ation) if ∂(F,G)

∂(z,w)
(0, 0) is invertible. When a formal map has no constant term,

we also say that it preserves the origin.

Lemma 2.1. Let M be defined as in (2.2). Suppose that z′ = F(z, w),w′ =
G(z, w) is a formal equivalence transformation preserving the origin and
sending M into M′, where M′ is defined by w′ = z′z′ + z′s + z′s + E∗(z′, z′)
with Ord(E∗) ≥ s + 1. Then

(i) F = az + bw + O(|(z, w)|2), G = cw + O(|w|2 + |zw| + |z|3) where
c = |a|2, a �= 0.

(ii) Suppose that M and M′ are further defined by w = H(z, z) = zz +
zs + zs + o(|z|s) and w′ = H∗(z′, z′) = z′z′ + z′s + z′s + o(|z′|s),
respectively, where s ≥ 3. Then

(F, G) = (eiθ z + O(|z|2 + |w|),w + O(|w|2 + |zw| + |z|3))
where θ is a constant with eisθ = 1.

(iii) In (i), when E(z, z) = E(z, z) + o(|z|N ) and E∗(z′, z′) = E∗(z′, z′) +
o(|z|N ) with N ≥ s, we then have

G(z, w) =
∑

1≤ j≤[N/2]
ajw

j +
∑

j+2k≥N+1

bjkz jwk

with aj = aj for j ∈ [1, [N/2]].
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In particular, when E(z, z) = E(z, z) and E∗(z′, z′) = E∗(z′, z′),
then G satisfies the following reality condition:

G(z, w) = G(w) and G(w) = G(w).

Proof of Lemma 2.1. (i) is the content of Lemma 3.2 of [13]. To prove (ii),
we write (F, G) = (az + f, cw + g), where by (i), we can assume that

f(z, w) = O(|z|2 + |w|), g(z, w) = O(|w|2 + |zw| + |z|3).
Notice that

f(0, H(0, z)) = O(zs), f (z, H(z, 0)) = O(z2), g(0, H(0, z)) = o(zs).

Applying the defining equation of M′, we have on M the following:

cw + g(z, w) = |a|2|z|2 + az f(z, w) + az f (z, w) + f(z, w) f (z, w)

+ (az + f(z, w))s + (az + f (z, w))s + o(|z|s).
Regarding z and z as independent variables in the above equation and then
letting z = 0, w = H(0, z) = zs + o(zs), w = H(z, 0) = zs + o(zs), we
obtain

czs + o(zs) = (az)s + o(zs).

Hence, it follows that c = as. Together with c = |a|2 �= 0 and s ≥ 3, we get

c = 1, a = eiθ , where θ is a constant with eisθ = 1.

This completes the proof of Lemma 2.1 (ii).
Now we turn to the proof of (iii). Notice that

G(z, w) = |F(z, w)|2 + (F(z, w))s + F(z, w)
s + E∗(F(z, w), F(z, w))

for (z, w) ∈ M.

Since E, E∗ are assumed to be real valued up to order N, we have

G(z, w) = G(z, w) + o(|z|N ) when w = |z|2 + zs + zs + E(z, z).

Write

G(z, w) =
∞∑

α+2β>0

aαβzαwβ.

When α + 2β ≤ N, we will prove inductively that aαβ = aαβ for α = 0 and
aαβ = 0 otherwise. First, for each positive integer m, write E(z, z) =
E(m)(z, z) + Em(z, z) with E(m)(z, z) a polynomial of degree at most
m − 1 and Em(z, z) = O(|z|m). Since E(N+1)(z, z) is real-valued by the
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hypothesis, we then get the following:

N∑
α+2β>0

aαβzαwβ =
N∑

α+2β>0

aαβzαwβ + o(|z|N ),

w = zz + zs + zs + E(N+1)(z, z).

(2.3)

Next, suppose that N0 = α0 + 2β0 is the smallest number such that aαβ

is real-valued for α = 0, and zero otherwise whenever α + 2β < N0.
If N0 ≥ N + 1 or N0 = ∞, then Lemma 2.1 (iii) holds automatically.
Hence, we assume that N0 ≤ N. For 0 < r � 1, define σN(ξ, r) to be the
biholomorphic map from the unit disk ∆ := {τ ∈ C : |τ| < 1} to the
smoothly bounded simply connected domain: {ξ ∈ C : |ξ|2 + r−2{rsξs +
rsξ

s + E(N+1)(rξ, rξ)} < 1} with σN(ξ, r) = ξ(1 + O(r)). (See [15, Lemma
2.1].) Since the disk ξ �→ (rσN(ξ, r), r2) is attached to MN+1 defined by
w = zz + zs + zs + E(N+1)(z, z), it follows that

∑
α+2β=N0

aαβr N0ξα =
∑

α+2β=N0

aαβξαr N0 + o(r N0), |ξ| = 1. (2.4)

Deleting the common factor r N0 of both sides and then letting r → 0, we
get

∑
α+2β=N0

aαβξ
α =

∑
α+2β=N0

aαβξα, |ξ| = 1. (2.5)

Hence, under the assumption that α + 2β = N0, it follows that aαβ is real
when α = 0, β = N0

2 ∈ N and aαβ = 0 otherwise. This contradicts the
choice of N0 and thus completes the proof of Lemma 2.1 (iii). ��

The main purpose of this section is to prove the following uniqueness
result:

Theorem 2.2. Let n, j0 be two integers with n ≥ 1 and j0 ∈ [0, s − 1].
Suppose that the following formal power series
⎧⎪⎨
⎪⎩

z′ = z + f(z, w), f(z, w) = O(|w| + |z|2),
w′ = w + g(w) + gerro(z, w), g(w) = g(w) = O(|w|2),

gerro(tz, t2w) = o(tns+ j0) (as t → 0),

(2.6)

transforms the formal Bishop surface M defined by

w = zz + 2Re
(

zs +
∑

ks+ j≤ns+ j0
0≤ j≤s−1

aks+ j z
ks+ j
)

+ E1(z, z)
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to the formal Bishop surface defined by

w′ = z′z′ + 2Re
(

z′s +
∑

ks+ j≤ns+ j0
0≤ j≤s−1

bks+ j z
′ks+ j

)
+ E2(z

′, z′).

Here for ks + j ≤ ns + j0, aks+ j , bks+ j are complex numbers with

aks+ j = bks+ j for j = 0, 1; (2.7)

and E1(z, z), E2(z, z) = o(|z|ns+ j0). Then the following holds:

(I) aks+ j = bks+ j for all ks + j ≤ ns + j0, 0 ≤ j ≤ s − 1.
(II) When Ord ( f(z, zz)) = 2t is an even number, it holds that st + 1 >

ns + j0. When Ord ( f(z, zz)) = 2t + 1 is an odd number, it holds that
st + s > ns + j0.

(III) Ord(g(zz)) ≥ min{ns + j0 + 1, Ord( f(z, zz)) + 1}.
One of the crucial ideas for the proof of Theorem 2.2 is to set the

weight of z differently from that of z. More precisely, we set the weight
of z to be 1 and that of z to be s − 1. For a formal power series A(z, z)
with no constant term, we say that wt(A(z, z)) = k, or wt(A(z, z)) ≥ k,
if A(tz, ts−1z) = tk A(z, z), or A(tz, ts−1z) = O(tk), respectively, as t ∈
R→ 0. In all that follows, we use Θ

j
l to denote a formal power series in z

and z of order at least j and weight at least l. (Namely, Θ
j
l (tz, tz) = O(t j )

and Θ
j
l (tz, ts−1z) = O(tl) as t → 0.) We use P j

l to denote a homogeneous
polynomial in z and z with P j

l (tz, tz) = t j
P

j
l (z, z) for t ∈ R and weight at

least l. We emphasize that Θ
j
l and P j

l may be different in different contexts.
In what follows, we also define the normal weight of z, w to be 1, 2,

respectively. For a formal power series h(z, w, z, w), we use wtnor(h) ≥ k
to denote the vanishing property: h(tz, t2w, tz, t2w) = O(tk) as t → 0. Let
h(z, w) be a formal power series in (z, w) without a constant term. Then
we have the formal expansion:

h(z, w) =
∞∑

l=1

h(l)
nor(z, w),

where

h(l)
nor(tz, t2w) = tlh(l)

nor(z, w)

is a polynomial in (z, w). Notice that h(l)
nor(z, w) is homogeneous of degree l

in the standard weighting system which assigns the weight of z and w to
be 1 and 2, respectively. In this and the next sections, we write

hl(z, w) =
∞∑
j=l

h( j )
nor(z, w) and h(l)(z, w) =

l−1∑
j=1

h( j )
nor(z, w). (2.8)
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Proof of Theorem 2.2. Besides proving that aks+ j = bks+ j for ks + j ≤
ns + j0, 0 ≤ j ≤ s − 1, we need to show that any solution ( f, g) of the
following equation has the vanishing property as stated in Theorem 2.2
(II)–(III), under the normalization condition for ( f, g) as in the theorem:

w + g(w) + o(|z|ns+ j0)

= (z + f(z, w))(z + f(z, w))

+ 2Re
{
(z + f(z, w))s +

∑
ks+ j≤ns+ j0

0≤ j≤s−1

bks+ j (z + f(z, w))ks+ j
}

+ E2(z + f(z, w), z + f(z, w)), (2.9)

where w = zz + zs + zs + E(z, z) with

E = 2Re
( ∑

ks+ j≤ns+ j0
0≤ j≤s−1

aks+ j z
ks+ j
)

+ E1(z, z).

With an immediate simplification, (2.9) takes the form:

g(w) = z f(z, w) + z f(z, w) + | f(z, w)|2 + 2Re
{
(z + f(z, w))s − zs

+
∑

ks+ j≤ns+ j0
0≤ j≤s−1

(
bks+ j (z + f(z, w))ks+ j − aks+ j z

ks+ j
)}

+ o(|z|ns+ j0). (2.10)

In the proof of Theorem 2.2, we set the following convention. For any
positive integer N, we define aN and bN to be as in Theorem 2.2 if N = ks+ j
with ks + j ≤ ns + j0, and to be 0 otherwise. For the rest of this section,
we will define a positive integer N0 as follows:

Suppose that there is a pair of positive integers ( j∗, k∗) such that
(s <)k∗s+ j∗(≤ ns+ j0) is the smallest number satisfying ak∗s+ j∗ �= bk∗s+ j∗.
We then define N0 = k∗s + j∗. Otherwise, we define N0 = sn + j0 + 1.
Here n, j0 are as in Theorem 2.2.

The proof of Theorem 2.2 is carried out in two steps, according to the
vanishing order of f being even or odd.

Step I of the proof of Theorem 2.2. In this step, we assume that either

Ord( f ) := Ord( f(z, zz)) (2.11)

is an even number denoted by 2t or f ≡ 0, where w(z, z) = zz + zs + zs +
E(z, z). Write

g(w) = clw
l + o(wl).

Denote by

N̂0 = min{N0, Ord( f ), sn + j0}.
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(When f ≡ 0, we define Ord( f ) = ∞.) Then (2.10) gives the following:

clz
lzl + O(|z|2l+1) = 2Re

[
(bN0 − aN0)z

N0
]+ O(|z|N̂0+1). (2.12)

Notice that the first term on the left hand side is a mixed term, while the
first term on the right hand side is a harmonic term. From this, we can easily
conclude the following:

(2.I) Suppose that 2t ≥ N0 and cl �= 0. Then 2l > min{N0, sn + j0} and
bN0 = aN0 . By our definition of N0, N0 must be ns + j0 + 1. Hence,
the theorem in this case readily follows. A similar argument can be
used when 2t ≥ N0 and Ord(g) = ∞.

(2.II) When 2t < N0, then 2l ≥ N̂0 +1 = min{2t +1, sn + j0 +1} = 2t +1
under the assumption that cl �= 0. Thus we either have Ord(g) = ∞
or we have l > t ≥ 1 when cl �= 0.

Suppose that N0 = 2t+1 in Case (2.II). Assuming that N0 < ns+ j0+1
and collecting terms with degree 2t + 1 in (2.10), we obtain

z f (2t)
nor (z, zz) + z f (2t)

nor (z, zz) + 2Re
(
(bN0 − aN0 )z

N0
) = 0. (2.13)

Notice that in the above, the first two are mixed terms, while the last term
is a harmonic term. This clearly forces that aN0 = bN0 . Thus, we must have
N0 = ns+ j0 +1 and Theorem 2.2 also follows easily in this setting. Hence,
we will assume, in what follows:

(2.III) N0 ≥ 2t + 2. (As a consequence, it also holds that g(w) = O(|w|l)
with l > t ≥ 1.)

Collecting terms with (the ordinary) degree 2t + 1 in (2.10), we get:

z f (2t)
nor (z, zz) + z f (2t)

nor (z, zz) = 0. (2.14)

Writing f (2t)
nor (z, w) = ∑

k+2l=2t
akl zkwl and substituting it back to (2.14), we

then get:
∑

k+2l=2t

akl z
k+l zl+1 +

∑
k′+2l′=2t

ak′l′ z
l′+1zl′+k′ = 0.

Since k +2l = 2t, k′ +2l′ = 2t, we get k+k′
2 = 2t − (l + l′). Now, for k > 2,

we have (k + l) − (l′ + 1) = 2t − (l + l′) − 1 > 0, or k + l > l′ + 1. Thus,
we conclude that akl = 0 for k > 2. In the other cases, we get a0l + a2l′ = 0
with l = t and l′ = t − 1. Let a = a0t . We get that

f (2t)
nor (z, w) = awt − az2wt−1 (2.15)

for a �= 0. Hence

f(z, w) = f (2t)
nor (z, w) + f2t+1(z, w) = awt − az2wt−1 + f2t+1(z, w).

(2.16)
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Next, a simple computation shows that wt(w) ≥ s, Ord(w(z, z)) ≥ 2,

wt( f (2t)
nor (z, w)) ≥ st + 2 − s, wt( f (2t)

nor (z, w)) ≥ st, g(w) = g2t+2(w),

wt( f2t+1(z, w)) ≥ st + s − 1. Also if l1 + l2 ≥ s with l2 > 1, or l1 + l2 > s
with l2 ≥ 1, then wt(zl1 f (2t)l2

nor (z, w)) ≥ l1+l2(ts+2−s) ≥ ts+2. Moreover,
wt(zl1 f (2t)l2

nor (z, w) f l3
2t+1(z, w)) ≥ s if l1 + l2 + l3 ≥ s − 1, l2

2 + l2
3 �= 0. Now

we can conclude that

wt
(∣∣ f (2t)

nor (z, w)
∣∣2) ≥ ts + 2, wt

(
f (2t)
nor (z, w) f2t+1(z, w)

) ≥ ts + 2t + 1,

wt
(

f (2t)
nor (z, w) f2t+1(z, w)

) ≥ (2 + (t − 1)s) + (ts + s − 1) ≥ ts + 2,

wt
(| f2t+1(z, w)|2) ≥ 2t + 1 + (ts + s − 1) ≥ ts + 2.

Hence, we have the following

| f(z, w)|2 = ∣∣ f (2t)
nor (z, w)

∣∣2 + 2Re
(

f (2t)
nor (z, w) f2t+1(z, w)

)+ | f2t+1(z, w)|2
= Θ2t+2

ts+2 .

Substituting (2.16) into (2.10) and making use of the estimates we just
presented, we get:

g2t+2(w) = 2Re{(z + szs−1) f } + | f(z, w)|2 + 2Re
{ s∑

l=2

clz
s−l f l

}

+ 2Re
( ∑

s<τ=ks+ j<N0

τ−1∑
l=0

blτ zl f τ−l
)

+ 2Re
(
(bN0 − aN0)z

N0
)

+ Θ
min{N0+1,ns+ j0+1}
min{N0+1,ns+ j0+1}

= 2Re
{
(z + szs−1) f (2t)

nor (z, w) + (z + szs−1) f2t+1(z, w)
}

+ 2Re
(
(bN0 − aN0)z

N0
)+ Θ2

s f2t+1(z, w) + Θ2
s f2t+1(z, w)

+ Θ2t+2
Ns

. (2.17)

Here cl, blτ are complex numbers, N0 is defined as before and

Ns := min{ts + 2, N0 + 1, ns + j0 + 1}. (2.18)

Notice that

2Re
{
(z + szs−1) f (2t)

nor (z, w)
}

= 2Re{z(awt − az2wt−1) + szs−1(awt − az2wt−1)}
= azwt − azz2wt−1 − aszs+1wt−1 + Θ2t+2

ts+2

= azwt−1(w − |z|2) − aszs+1wt−1 + Θ2t+2
ts+2

= (1 − s)azs+1wt−1 + Θ2t+2
ts+2 .

(2.19)
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Hence, we obtain, over M, the following:

g2t+2(w) = (1 − s)azs+1(zz + zs)t−1 + (z + szs−1 + Θ2
s

)
f2t+1(z, w)

+ 2Re
(
(bN0 − aN0)z

N0
)+ (z + szs−1 + Θ2

s

)
f2t+1(z, w)

+ Θ2t+2
Ns

. (2.20)

If t = 1, collecting terms of degree s + 1 in (2.20) and noticing that

w = zz + O(|z|s), N0 > s + 1

by the given condition, we get

∑
2 j

δs+1
2 j g(2 j )

nor (zz) = (1 − s)azs+1 + z f (s)
nor(z, zz) + z f (s)

nor(z, zz) + Ps+1
s+2.

(2.21)

Here δs+1
2 j takes value 1 when 2 j = s + 1, and 0 otherwise.

Since s + 2 > s + 1, Ps+1
s+2 = z A(z, z) with A(z, z) a polynomial. Thus

it follows easily that (1 − s)azs+1 is divisible by z. This is a contradiction
and thus the case of t = 1 is proved.

We next prove the following crucial lemma for the proof of Theorem 2.2:

Lemma 2.3. Assume the hypothesis and the notation in Theorem 2.2. Let
Ord( f(z, zz)) = 2t < ∞ and keep all the notation that we have set up
so far. Suppose that N0 ≥ 2t + 2. Assume that 2t + j(s − 2) + 2 ≤ m ≤
2t + ( j + 1)(s − 2) + 1 with 0 ≤ j ≤ t − 1 and m ≤ N0. Then, over M, we
have

gm(w) = a(1 − s) j+1z( j+1)s+1(zz + zs)t− j−1 + (z + szs−1 + Θ2
s

)
fm−1(z, w)

+ (z + szs−1 + Θ2
s

)
fm−1(z, w) + 2Re

(
(bN0 − aN0)z

N0
)+ Θm

Ns
.

(2.22)

Proof of Lemma 2.3. When m = ns + j0 +1, we have Ns ≤ m. Thus, (2.22)
holds trivially due to the presence of the term Θm

Ns
. Hence, in the proof of

the lemma, we always assume that m ≤ ns + j0 for the m in Lemma 2.3.
We also recall that Ns = min{ts +2, N0 +1, ns + j0 +1} with n, j0 defined
as in Theorem 2.2.

The argument presented above gives the proof of the lemma with m =
2t + 2. We complete the proof of the lemma in three steps.

Step I of the proof of Lemma 2.3. This step is not needed when s = 3.
Denote m0 = 2t + j(s − 2) + 2, where j is an integer with 0 ≤ j ≤ t − 1.
Suppose that m0 ≤ N0. We also assume that there is an integer m such that
m ≥ m0, m + 1 ≤ 2t + ( j + 1)(s − 2) + 1 (such an m certainly does not
exist if s = 3), m +1 ≤ N0 and moreover (2.22) holds for this m. Collecting
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terms of degree m in (2.22), we get

g(m)
nor (zz) = z f (m−1)

nor (z, zz) + z f (m−1)
nor (z, zz) + P̂m

Ns
. (2.23)

Since g(m)
nor (zz) is real-valued, the P̂m

Ns
here is real valued. Notice also that

g(m)
nor (zz) is of weight at least Ns . We can write

g(m)
nor (zz) − P̂m

Ns
=

∑
α+β=m

α+β(s−1)≥Ns

aαβzαzβ. (2.24)

Write

f (m−1)
nor (z, zz) = ∑

α̃+2β̃=m−1

bα̃β̃zα̃(zz)β̃ = ∑
α̃+2β̃=m−1

bα̃β̃zα̃+β̃zβ̃. (2.25)

Then
∑

α̃+2β̃=m−1

bα̃β̃zα̃+β̃zβ̃+1+
∑

α∗+2β∗=m−1

bα∗β∗ zα∗+β∗
zβ∗+1 =

∑
α+β=m

α+β(s−1)≥Ns

aαβzαzβ.

(2.26)

As in the discussion for (2.15), zα̃+β̃zβ̃+1 = zα∗+β∗
zβ∗+1 if and only if

ã+α∗ = 2. Notice also that the reality in (2.24) shows that β+α(s−1) ≥ Ns
for aαβ �= 0.

Now, if m is even, then

2bα̃β̃ = aαβ + ic with c ∈ R under the condition that

α = β = m

2
, α̃ = 1, β̃ = m

2
− 1.

(2.27)

The other relations are as follows:

bα̃β̃ = aαβ, if α̃ + β̃ = α,

α̃ + 2β̃ = m − 1, β̃ + 1 = β, α̃ �= 1, α + β = m.

Here α + (s − 1)β ≥ Ns, β + (s − 1)α ≥ Ns.

(2.28)

If m is odd, we still have the same relation as in (2.28) except when
α̃ = 0, β̃ = m−1

2 or when α̃ = 2, β̃ = m−3
2 .

Next, for m even and α̃ = 1, β̃ = m
2 − 1, letting α = β = m

2 , we also
have α = α̃ + β̃, β = β̃ + 1, α + β = m, α + (s − 1)β = β + (s − 1)α =
m
2 s ≥ (t + 1)s > Ns.

Assume that m is odd. (Thus m ≥ 2t + 3). When α̃ = 0, β̃ = m−1
2 , let

α = m−1
2 , β = m+1

2 . When α̃ = 2, β̃ = m−3
2 , let α = m+1

2 and β = m−1
2 . We

similarly have the relation as in (2.28): α = α̃ + β̃, β = β̃ + 1, α + β = m,
α + (s − 1)β ≥ Ns , β + (s − 1)α ≥ Ns . Thus for all the α, β uniquely
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determined by α̃ and β̃ as just discussed above, we always have:

α̃ + β̃ + (s − 1)β̃ = α + (s − 1)(β − 1)

= α + (s − 1)β − (s − 1) ≥ Ns − (s − 1).
(2.29)

From this, one easily sees that

wt
(

f (m−1)
nor (z, zz)

) ≥ min
α̃≥0

{̃α + β̃ + (s − 1)β̃}
= min

α
{α + (s − 1)β − s + 1} ≥ Ns − s + 1,

(2.30)

wt
(

f (m−1)
nor (z, w)

) ≥ Ns − s + 1, wt
(
g(m)

nor (z, zz)
)
, wt
(
g(m)

nor (z, w)
) ≥ Ns,

(2.31)

wt
{

f (m−1)
nor (z, zz) − f (m−1)

nor (z, w)
} ≥ Ns − s + 1, (2.32)

wt
(

f (m−1)
nor (z, zz)

) ≥ min
α̃≥0

{(s − 1)̃α + sβ̃}
= min

α
{(s − 1)(α − β + 1) + s(β − 1)} ≥ Ns − 1,

(2.33)

wt
{

f (m−1)
nor (z, zz) − f (m−1)

nor (z, w)
} ≥ Ns − 1. (2.34)

Substituting fm−1(z, w) = f (m−1)
nor (z, w)+ fm(z, w) into (2.22) and mak-

ing use of (2.23), (2.30)–(2.34), we get

gm+1(w)

= (1 − s) j+1az( j+1)s+1(zz + zs)t− j−1 + (z + szs−1 + Θ2
s

)
fm(z, w)

+ (z + szs−1 + Θ2
s

)
fm(z, w) + Θm+1

Ns
+ (szs−1 + Θ2

s

)
f (m−1)
nor (z, zz)

+ 2Re
(
(bN0 − aN0)z

N0
)+ (szs−1 + Θ2

s

)
f (m−1)
nor (z, zz). (2.35)

By (2.30) and (2.33), we get

(
szs−1 + Θ2

s

)
f (m−1)
nor (z, w) + (szs−1 + Θ2

s

)
f (m−1)
nor (z, w) = Θm+1

Ns
. (2.36)

Hence

gm+1(w)

= (1 − s)( j+1)az( j+1)s+1(zz + zs)t− j−1 + (z + szs−1 + Θ2
s

)
fm(z, w)

+ (z + szs−1 + Θ2
s

)
fm(z, w) + 2Re

(
(bN0 − aN0)z

N0
)+ Θm+1

Ns
.

(2.37)

By induction, we showed that if the lemma holds for m0 defined above, then
it holds for any m with m0 ≤ m ≤ 2t + ( j + 1)(s − 2) + 1 and m ≤ N0.
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Step II of the proof of Lemma 2.3. In this step, suppose that we know that
the lemma holds for m ∈ [2t + j(s − 2) + 2, 2t + ( j + 1)(s − 2) + 1] with
m ≤ N0, where j is a certain non-negative integer bounded by t−2. We then
proceed to prove that the lemma holds also for m ∈ [2t + ( j +1)(s−2)+2,
2t + ( j + 2)(s − 2) + 1], whenever m ≤ N0.

Suppose that 2t + ( j + 1)(s − 2)+ 1 < N0. By the assumption, we have
over M

g2t+( j+1)(s−2)+1(w)

= a(1 − s) j+1z( j+1)s+1(zz + zs)t− j−1

+ (z + szs−1 + Θ2
s

)
f2t+( j+1)(s−2)(z, w)

+ (z + szs−1 + Θ2
s

)
f2t+( j+1)(s−2)(z, w) + 2Re

(
(bN0 − aN0)z

N0
)

+ Θ
2t+( j+1)(s−2)+1
Ns

. (2.38)

Collecting terms of degree 2t + ( j + 1)(s − 2) + 1 in (2.38), we get

g(2t+( j+1)(s−2)+1)
nor (zz) = a(1 − s) j+1z( j+1)s+1(zz)t− j−1 + P̂2t+( j+1)(s−2)+1

Ns

+ z f (2t+( j+1)(s−2))
nor (z, zz) + z f (2t+( j+1)(s−2))

nor (z, zz).
(2.39)

Here P̂2t+( j+1)(s−2)+1
Ns

is a certain homogeneous polynomial of degree 2t +
( j + 1)(s − 2) + 1 with weight at least Ns .

Now, we solve (2.39) as follows. Denote by Λ = 2t + ( j + 1)(s − 2).
Notice that

I := −P̂Λ+1
Ns

+ a(1 − s) j+1z( j+1)s+1(zz)t− j−1 + g(Λ+1)
nor (zz)

is real valued and I = PΛ+1
Ns

. Then (2.39) can be rewritten as

I = a(1 − s) j+1z( j+1)s+1(zz)t− j−1 + a(1 − s) j+1z( j+1)s+1(zz)t− j−1

+ z f (2t+( j+1)(s−2))
nor (z, zz) + z f (2t+( j+1)(s−2))

nor (z, zz). (2.40)

Write

I =
∑

α+β=Λ+1
α+(s−1)β≥Ns

aαβzαzβ.

Since aαβ = aβα, we also require that β + (s − 1)α ≥ Ns . We next have
the following general solution of (2.40):

f (2t+( j+1)(s−2))
nor (z, w) = f (Λ)

1 (z, w) + f (Λ)
2 (z, w) with

f (Λ)
1 (z, w) = −a(1 − s) j+1z( j+1)s+2wt− j−2,

f (Λ)
2 (z, w) =

∑

α̃+2β̃=Λ

hα̃β̃zα̃wβ̃,

(2.41)
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where hα̃β̃ are determined by the following:

∑

α̃+2β̃=Λ

hα̃β̃zα̃+β̃zβ̃+1 +
∑

α̃+2β̃=Λ

hα̃β̃zβ̃+1zα̃+β̃ =
∑

α+β=Λ+1
α+β(s−1)≥Ns

aαβzαzβ.

(2.42)

Now, (2.42) can be handled exactly in the same way as for (2.26). (The
only difference is that the role of m−1 is now played by Λ.) For convenience
of the reader, we repeat some details as follows:

First, we have similar relations as those in (2.27)–(2.29), etc. Next, we
can conclude the following:

wt
(

f (Λ)

2 (z, zz)
) ≥ min

α̃≥0
{̃α + β̃ + (s − 1)β̃}

= min
α

{α + (s − 1)β − s + 1} ≥ Ns − s + 1,
(2.43)

wt
{

f (Λ)
2 (z, w)

} ≥ Ns − s + 1,

wt{g(Λ+1)(z, w)}, wt{g(Λ+1)(z, zz)} ≥ Ns,
(2.44)

wt
{

f (Λ)

2 (z, w) − f (Λ)

2 (z, zz)
} ≥ Ns − s + 1, (2.45)

wt
{

f (Λ)
2 (z, w)

}
, wt
{

f (Λ)
2 (z, zz)

} ≥ Ns − 1, (2.46)
(
szs−1 + Θ2

s

)
f (Λ)
2 (z, zz) + (szs−1 + Θ2

s

)
f (Λ)
2 (z, zz) = ΘΛ+2

Ns
, (2.47)

(
szs−1 + Θ2

s

)
f (Λ)
2 (z, w) + (szs−1 + Θ2

s

)
f (Λ)
2 (z, w) = ΘΛ+2

Ns
, (2.48)

wt
{

f (Λ)
1 (z, zz)

} ≥ st − s + 2, wt
{

f (Λ)
1 (z, w)

}
, wt
{

f (Λ)
1 (z, zz)

} ≥ Ns.

(2.49)

For instance, to see (2.48), it suffices to notice that by (2.43)–(2.46), we
have

wt
{(

szs−1 + Θ2
s

)
f (Λ)

2 (z, w) + (szs−1 + Θ2
s

)
f (Λ)

2 (z, w)
}

≥ s − 1 + Ns − s + 1 = Ns.
(2.50)

Hence, from (2.38)–(2.49), we get

gΛ+2(w) + g(Λ+1)
nor (w)

= (z + szs−1 + Θ2
s

)
fΛ+1(z, w) + (z + szs−1 + Θ2

s

)
fΛ+1(z, w)

+ ΘΛ+2
Ns

+ P̂Λ+1
Ns

+ a(1 − s) j+1z( j+1)s+1(zz + zs)t− j−1

+ (z + szs−1 + Θ2
s

)
f (Λ)
nor (z, w) + (z + szs−1 + Θ2

s

)
f (Λ)
nor (z, w)

+ 2Re
(
(bN0 − aN0)z

N0
)
.

(2.51)
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Notice that

g(Λ+1)
nor (zz) = a(1 − s) j+1z( j+1)s+1(zz)t− j−1 + z f (Λ)

nor (z, zz)

+ z f (Λ)
nor (z, zz) + P̂Λ+1

Ns
.

(2.52)

Also,

wt
{

g(Λ+1)
nor (w)

}
, wt

{
g(Λ+1)

nor (zz)
} ≥ s(Λ + 1)

2

= ts + 1

2
s( j + 1)(s − 2) + s

2
≥ ts + 2.

Hence

g(Λ+1)
nor (w) − g(Λ+1)

nor (zz) ∈ ΘΛ+2
Ns

. (2.53)

Subtracting (2.52) from (2.51) and then making use of (2.53), we obtain

gΛ+2(w) = (z + szs−1 + Θ2
s

)
fΛ+1(z, w) + 2Re

(
(bN0 − aN0)z

N0
)

+ (z + szs−1 + Θ2
s

)
fΛ+1(z, w) + ΘΛ+2

Ns
+ J,

(2.54)

where

J = (z + szs−1 + Θ2
s

)
f (Λ)
nor (z, w) + (z + szs−1 + Θ2

s

)
f (Λ)
nor (z, w)

+ a(1 − s) j+1z( j+1)s+1(zz + zs)t− j−1 − a(1 − s) j+1z( j+1)s+1(zz)t− j−1

− (z f (Λ)
nor (z, zz) + z f (Λ)

nor (z, zz)
)
. (2.55)

Here, by (2.47)–(2.49)and the formula in (2.41) for f (Λ)
1 , we notice that

z f (Λ)
nor (z, w) + z f (Λ)

nor (z, w) − (z f (Λ)
nor (z, zz) + z f (Λ)

nor (z, zz)
)

+ a(1 − s) j+1z( j+1)s+1(zz + zs)t− j−1 − a(1 − s) j+1z( j+1)s+1(zz)t− j−1

= −a(1 − s) j+1z( j+1)s+1zz(zz + zs)t− j−2 + a(1 − s) j+1z( j+1)s+1(zz)t− j−1

+ a(1 − s) j+1z( j+1)s+1(zz + zs)t− j−1 − a(1 − s) j+1z( j+1)s+1(zz)t− j−1

+ ΘΛ+2
Ns

= −a(1 − s) j+1z( j+1)s+1(zz + zs)t− j−2(zz − (zz + zs)) + ΘΛ+2
Ns

= a(1 − s) j+1z( j+2)s+1(zz + zs)t− j−2 + ΘΛ+2
Ns

.

Hence by the formula in (2.41) for f (Λ)
1 and by (2.49), (2.50), we have

J = (szs−1 + Θ2
s

)
f (Λ)
1 (z, w) + (szs−1 + Θ2

s

)
f (Λ)
1 (z, w)

+ a(1 − s) j+1z( j+2)s+1(zz + zs)t− j−2 + ΘΛ+2
Ns

= a(1 − s) j+2z( j+2)s+1(zz + zs)t− j−2 + ΘΛ+2
Ns

.

(2.56)

This proves the lemma when m = 2t + ( j + 1)(s − 2) + 2. Now, the result
obtained in the previous step completes the proof of the claim in this step.
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Step III of the proof of Lemma 2.3. We now can complete the proof of the
lemma by inductively using results obtained in Steps I–II. Indeed, since we
know that the Lemma holds for m = 2t + 2, we see, by Step I, that the
lemma holds for any m ≤ N0 with m ∈ [2t + 2, 2t + (s − 2) + 1]. First
applying Step II and then applying Step I again, we see the lemma holds for
any m ≤ N0 with m ∈ [2t + j(s − 2)+ 2, 2t + ( j + 1)(s − 2)+ 1] and with
j = 1. Now, by an induction argument on j, we see the proof of the lemma.

��
Now we are ready to complete the proof of Theorem 2.2 in case

Ord( f ) = 2t. Since by (2.III), we need only to consider the situation
when N0 ≥ 2t + 2, it suffices for us to study the following two subcases:

Case I. If N0 > m = ts + 1, then m ∈ [2t + j(s − 2) + 2, 2t +
( j + 1)(s − 2) + 1] with j = t − 1. Also, notice in this setting that
Ns = ts +2. Applying Lemma 2.3 with m = ts +1 and j = t −1, we have:

gts+1(w) = a(1 − s)t zts+1 + Θts+1
ts+2 + (z + szs−1 + Θ2

s

)
fts(z, w)

+ (z + szs−1 + Θ2
s

)
fts(z, w).

Collecting terms of degree ts + 1 in the above equation, we obtain:

g(ts+1)
nor (zz) = a(1 − s)t zts+1 + Pts+1

ts+2 + z f (ts)
nor (z, zz) + z f (ts)

nor (z, zz).
(2.57)

Since ts + 2 > ts + 1, we can write Pts+1
ts+2 = z A(z, z) for some poly-

nomial function A. Hence, the equation is solvable only if a = 0, which is
a contradiction.

Case II. Suppose (2t + 1 <)N0 ≤ ts + 1.
Assume that N0 ≤ ns + j0. By the assumption that aks+1 = bks+1 for

ks + 1 ≤ ns + j0 and by the definition of N0, we notice that N0 �= ts + 1.
Hence, we must have 2t + 1 < N0 < ts + 1. Notice that Ns = N0 + 1
now. Assume that j is the integer such that 2t + j(s − 2) + 2 ≤ N0 ≤
2t + ( j + 1)(s − 2) + 1. By Lemma 2.3 and collecting terms of degree N0
in (2.22), we have

g(N0)
nor (zz) = 2Re

{
(bN0 − aN0)z

N0
}+ δ(1 − s) j+1az( j+1)s+1(zz)t− j−1

+z f (N0−1)
nor (z, zz) + z f (N0−1)

nor (z, zz) + Θ
N0
N0+1.

Here δ = 0 if N0 < 2t + ( j + 1)(s − 2) + 1 and δ = 1 if N0 = 2t +
( j + 1)(s − 2) + 1. Notice that when j = t − 1, 2t + ( j + 1)(s − 2) + 1 =
ts + 1 > N0. Hence, when δ = 1, we have t − j − 1 > 0. Now, since
2Re{(bN0 − aN0)z

N0} is the only non-mixed term, by the same argument as
above, we can see a contradiction too. Hence, to reach no contradiction, we
must have bN = aN for any N ≤ ns + j0, namely, N0 = ns + j0 + 1. Back
to the hypothesis in Case II, we obtain ts + 1 ≥ ns + j0 + 1. This finally
completes the proof.
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Step II of the proof of Theorem 2.2. In this step, we show that we also have
the result stated in Theorem 2.2 when Ord( f ) is a finite odd number by
applying the same argument as that in Step I. (See (2.11) for the definition
of Ord( f )). Since the argument is completely parallel to that in Step I, we
will be very brief.

Suppose that Ord( f ) = 2t + 1 < ∞, g(w) = clw
l + o(wl). And let

N̂0 = min{N0, Ord( f ), sn + j0} as in Step I. We then also have (2.12)
and the proof of the theorem in the case of 2t + 1 ≥ N0 can be similarly
achieved.

Assume that 2t + 1 < N0(≤ ns + j0 + 1). As before, we have 2l ≥
N̂0 + 1 = min{2t + 2, sn + j0 + 1} = 2t + 2 under the assumption that
cl �= 0. Thus we have l ≥ t + 1 when cl �= 0.

Suppose that N0 = 2t+2. Assuming that N0 < ns+ j0+1 and collecting
terms with degree 2t + 2 in (2.10), we obtain

−g(2t+2)
nor (zz) + z f (2t+1)

nor (z, zz) + z f (2t+1)
nor (z, zz)

+ 2Re
(
(bN0 − aN0)z

N0
) = 0.

(2.58)

Since the last term is harmonic and the others are divisible by zz, we see
that aN0 = bN0 . This is a contradiction. We thus have N0 = ns + j0 + 1 and
Theorem 2.2 also follows easily as before. Hence, it suffices to consider the
following case:

N0 ≥ 2t + 3. (Then g(w) = O(|w|l) with l ≥ t + 1.)

Collecting terms of degree 2t + 2 in (2.10), we get

g(2t+2)
nor (zz) = z f (2t+1)

nor (z, zz) + z f (2t+1)
nor (z, zz). (2.59)

Its solution is given by

f (2t+1)
nor (z, w) = bzwt, g(2t+2)

nor (w) = (b + b)wt+1, b �= 0. (2.60)

Similar to the definition of Ns , we set

N ′
s := min{ts + s + 1, N0 + 1, ns + j0 + 1}.

Then substituting (2.60) into (2.10) and letting A = (s − 1)b − b, we get
the following dual version of (2.20):

g2t+3(w) = Azs(zz + zs)t + (z + szs−1 + Θ2
s

)
f2t+2(z, w)

+ (z + szs−1 + Θ2
s

)
f2t+2(z, w)

+ 2Re
(
(bN0 − aN0)z

N0
)+ Θ2t+3

N′
s

.

(2.61)

Exactly the same argument as that in Lemma 2.3 (except a few obvious
and trivial changes to fit into the current situation that Ord( f ) is odd) can
be applied to prove the following corresponding lemma:

Lemma 2.4. Assume the hypothesis and the notation in Theorem 2.2. Let
Ord ( f(z, zz)) = 2t + 1 < ∞ and keep all the notation that we have set up
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so far. Suppose that N0 ≥ 2t + 3. Assume that 2t + j(s − 2) + 3 ≤ m ≤
2t + ( j + 1)(s − 2) + 2 with 0 ≤ j ≤ t and m ≤ N0. Then we have on M
the following:

gm(w) = A(1 − s) j z( j+1)s(zz + zs)t− j + (z + szs−1 + Θ2
s

)
fm−1(z, w)

+ (z + szs−1 + Θ2
s

)
fm−1(z, w) + 2Re

(
(bN0 − aN0)z

N0
)+ Θm

N′
s
.

(2.62)

We next proceed in the same way as before.

Case I. Assume N0 > m = ts + s. Let j = t and m = ts + s in (2.62).
Then we get N ′

s = ts + s + 1 and

gts+s(w) = A(1 − s)t zts+s + (z + szs−1 + Θ2
s

)
fts+s−1(z, w)

+ (z + szs−1 + Θ2
s

)
fts+s−1(z, w) + Θts+s

ts+s+1.
(2.63)

Collecting terms of degree ts + s in (2.63), we obtain:

g(ts+s)
nor (zz) = A(1 − s)t zts+s + Pts+s

ts+s+1 + z f (ts+s−1)
nor (z, zz)

+ z f (ts+s−1)
nor (z, zz).

(2.64)

As in Step I, it is solvable if and only if A = 0, and thus b = 0. This gives
a contradiction.

Case II. Suppose (2t + 3 ≤)N0 ≤ ts + s. Assume that N0 ≤ ns + j0. By
the assumption that aks = bks for k ≤ n and by the definition of N0, we
must have N0 �= ts + s. This gives that 2t + 3 ≤ N0 < ts + s. Suppose
that j is the integer satisfying 2t + j(s − 2) + 3 ≤ N0 = k0s + j0 ≤
2t + ( j +1)(s −2)+2. Collecting terms of degree N0 in (2.62) and making
use of Lemma 2.4, we get

g(N0)
nor (zz) = 2Re

{
(bN0 − aN0)z

N0
}+ δA(1 − s) j z( j+1)s(zz)t− j

+ z f (N0−1)
nor (z, zz) + z f (N0−1)

nor (z, zz) + Θ
N0
N0+1.

Here δ is 0 when N0 < 2t + ( j + 1)(s − 2) + 2, and δ = 1 when N0 =
2t + ( j + 1)(s − 2) + 2. Notice that when j = t, ( j + 1)s + 2(t − j) =
ts + s > N0. Hence, when δ = 1, we have t − j > 0. As before, we can
easily reach a contradiction by considering the divisibility by z. Hence, we
have bN = aN for any N ≤ ns + j0, that is, N0 = ns + j0 + 1. This is
a contradiction. Hence ts + s ≥ ns + j0 + 1 by the assumption in Case II,
which gives immediately Theorem 2.2 (II). This also completes the proof
of Theorem 2.2 when ord( f ) = 2t + 1. The proof of Theorem 2.2 is finally
complete. ��

The following is a combination of Theorem 2.2 and Lemma 2.1 (ii), (iii):

Corollary 2.5. Suppose that the origin preserving formal equivalence map

(z′, w′) = (F(z, w), G(z, w))
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transforms the formal Bishop surface M defined by

w = zz + 2Re
(

zs +
∑

j=2,...,s−1
ks+ j≤N

aks+ j z
ks+ j
)

+ o(|z|N )

to the formal Bishop surface defined by

w′ = z′z′ + 2Re
(

z′s +
∑

j=2,...,s−1
ks+ j≤N

bks+ j z
′ks+ j

)
+ o(|z′|N ),

where N(>s) = ns + j0 with a certain j0 ∈ [2, s − 1], aks+ j , bks+ j are
complex numbers. Then there is a constant θ with e

√−1sθ = 1 such that
(F, G) = (e

√−1θz+ f(z, w),w+g(z, w)). Moreover, we have the following
conclusions stated in (I), (II) and (III), respectively:

(I) When Ord( f ) = 2t, it holds that st + 1 > N; and when Ord( f ) =
2t + 1, it holds that st + s > N.

(II) g(z, w) = g(w)+gerro(z, w) with g(w) = g(w), wtnor(gerro(z, w))>N
and

wtnor(g(w)) ≥ min{N, wtnor( f(z, w)) + 1}.
(III) aks+ j = e j

√−1θbks+ j for ks + j ≤ N.

3 A complete set of formal invariants, proofs of Theorem 1.1,
Theorem 1.3 and Corollary 1.4

In this section, we will establish a formal normal form for the formal surface
defined in (2.2), by applying a formal transformation preserving the origin.
This will give a complete classification of germs of formal surfaces (M, 0)
with λ = 0, s < ∞ in the formal setting, which, in particular, can be used
to answer an open question raised by J. Moser in 1985 ([21, p. 399]).

As another application of our complete set of formal invariants, we
show that a generic Bishop surface with the Bishop invariant vanishing
is not equivalent to an algebraic surface, by applying a Baire category
argument similar to the study in the CR setting. (See the nice paper of
Forstneric [8].) Notice that this phenomenon is strikingly different from
the theory for elliptic Bishop surfaces with non-vanishing Bishop invari-
ants, where Moser–Webster proved their celebrated theorem, that states that
any elliptic Bishop surface with a non-vanishing Bishop invariant has an
algebraic normal form.

Let M be a formal Bishop surface in C2 defined by

w = H(z, z) = zz + 2Re
{ N∑

j=s

aj z
j
}

+ EN+1(z, z), (3.1)
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where s ≥ 3 is a positive integer and EN+1 is a formal power series in (z, z)
with Ord(EN+1) ≥ N + 1. Moreover, as = 1 and for m > s, m ≤ N,

am = 0 if m = 0, 1 mod s.

Our first result of this section is the following normalization theorem:

Theorem 3.1. With the above notation, there is a polynomial map
{

z′ = z + f(z, w), f(z, w) = O(|w| + |z|2),
w′ = w + g(z, w), g(z, w) = O(|w|2 + |z|3 + |zw|), (3.2)

that transforms the formal Bishop surface M defined in (3.1) to the formal
Bishop surface defined by

w′ = H∗(z′, z′) = z′z′ + 2Re
{ N+1∑

j=s

bj z
′ j
}

+ E∗
N+2(z

′, z′). (3.3)

Here E∗
N+2 = O(|z|N+2), aj = bj for s ≤ j ≤ N and

bN+1 = 0 if N + 1 = 0, 1 mod s.

Moreover, we have the following conclusions:

(I) When N + 1 �= 0, 1 mod s, then wtnor( f ) ≥ N and wtnor(g) ≥ N + 1.
(II) When N = ts, then wtnor( f ) ≥ 2t and wtnor(g) ≥ 2t + 1.
(III) When N = ts − 1, then wtnor( f ) ≥ 2t − 1 and wtnor(g) ≥ 2t.

Before proceeding to the proof, we recall a result of Moser, which
will be used for our consideration here. For any m ≥ 4 and holomorphic
polynomials

f (m−1)
nor (z, w), g(m)

nor (z, w), φ(m)(z),

we define an operator, which we call the Moser operator L, as follows:

L
(

f (m−1)
nor (z, w), g(m)

nor (z, w), φ(m)(z)
)

:= g(m)
nor (z, zz) − 2Re

{
z f (m−1)

nor (z, zz) + φ(m)(z)
}
.

The following lemma is an immediate consequence of [21, Proposition 2.1]
and [21, (2.10), p. 401]:

Lemma 3.2. Let G(z, z) be a homogeneous polynomial of degree m. Then

L
(

f (m−1)
nor (z, w), g(m)

nor (z, w), φ(m)(z)
) = G(z, z)

has a unique solution { f (m−1)
nor (z, w), g(m)

nor (z, w), φ(m)(z)} under the normal-
ization condition: f (m−1)

nor = z2 f ∗ with f ∗ a holomorphic polynomial. In
case G(z, z) is real-valued, then we have the reality property for g(m)

nor :
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g(m)
nor (z, w) = g(m)

nor (w), g(m)
nor (w) = g(m)

nor (w). Moreover, when G has no har-
monic terms, then L( f (m−1)

nor (z, w), g(m)
nor (z, w), 0) = G(z, z) has a unique

solution { f (m−1)
nor (z, w), g(m)

nor (z, w)} under the same normalization condition
just mentioned. (When G is further assumed to be real-valued, we then also
have the same reality property for g(w).)

The proof of Theorem 3.1 follows from a similar induction argument
that we used in the previous section.

Proof of Theorem 3.1. We complete the proof in three steps.

Step 1. We first show that there is a polynomial map: z′ = z + f (N)
nor (z, w),

w′ = w+g(N+1)
nor (z, w), which maps M to a surface defined by the following

equation:

w = zz + 2Re
{N+1∑

j=s

bj z
j
}

+ ẼN+2(z, z) (3.4)

with bj = aj for s ≤ j ≤ N and bN+1 to be determined. Substituting
the map into (3.4) and collecting terms of degree N + 1, we see that the
existence of the map is equivalent to the existence of the solution of the
following functional equation:

L
(

f (N)
nor (z, w), g(N+1)

nor (z, w), bN+1zN+1
) = −E(N+1)

N+1 (z, z). (3.5)

By Lemma 3.2, we know that (3.5) is indeed solvable and is uniquely
solvable under the normalization condition as in Lemma 3.2.

For the rest of the proof of the theorem, we can assume that EN+1 =
2Re{bN+1zN+1} + o(|z|N+1).

Step 2. We now assume that M is defined by (3.4). In this step, we assume
that N+1 = 1 mod s. Write N = ts. We then show that there is a polynomial
map of the form:

z′ = z +
N−2t∑
l=0

{
f (2t+l)
nor (z, w)

}
,

w′ = w +
N+1−2t−2∑

τ=0

{
g(2t+2+τ)

nor (w)
}
,

(3.6)

such that under this transformation, M is mapped to a formal surface M′

defined by (3.3) with bN+1 = 0, where g( j )
nor(u) = g( j )

nor(u) for u ∈ R, j ≤
N +1. The map is also uniquely determined by imposing the normalization
condition as in Lemma 3.2 for f ( j )

nor(z, w) with 2t < j ≤ N.
As in Step I, this amounts to studying a series of normally weighted

homogeneous functional equations with the normally weighted degree
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running from 2t + 1 to N + 1. Substituting (3.6) into (3.3), over w =
zz + 2Re{∑N+1

j=s bj z j} + ẼN+2(z, z), we get the following:

w +
N+1−2t−2∑

τ=0

g(2t+2+τ)
nor (w)

=
(

z +
N−2t∑
l=0

f (2t+l)
nor (z, w)

)(
z +

N−2t∑
l=0

f (2t+l)
nor (z, w)

)

+ 2Re
{ N∑

j=s

bj

(
z +

N−2t∑
l=0

f (2t+l)
nor (z, w)

) j}+ E∗
N+2(z

′, z′).

(3.7)

With an immediate simplification, (3.7) takes the following form:
N+1−2t−2∑

τ=0

g(2t+2+τ)
nor (w)

= z
( N−2t∑

l=0

f (2t+l)
nor (z, w)

)
+ z
( N−2t∑

l=0

f (2t+l)
nor (z, w)

)

+
( N−2t∑

l=0

f (2t+l)
nor (z, w)

)
·
( N−2t∑

l=0

f (2t+l)
nor (z, w)

)
− 2Re

(
bN+1zN+1

)

+ 2Re
{ N∑

j=s

bj

((
z +

N−2t∑
l=0

f (2t+l)
nor (z, w)

) j − z j
)}

+ O(|z|N+2),

w = zz + 2Re
{N+1∑

j=s

bj z
j
}

+ ẼN+2(z, z).

(3.8)

We need to inductively solve the above equation up to order N+1. Collecting
terms of degree 2t + 1 in (z, z), we obtain (2.14), which can be solved as:

f (2t)
nor (z, w) = awt − az2wt−1

with a to be (uniquely) determined later.
Now, suppose we are able to solve f (2t+l)

nor , g(2t+1+l)
nor for 2t + l =

2t, . . . , m − 1 ≤ st − 1, by making use of (3.8) up to the level of de-
gree m ≤ st. Also, suppose that g( j )

nor(zz) is real-valued for j ≤ m. By
arguing exactly in the same way as in the proof of Lemma 2.3, we obtain
from (3.8) the following equation in our setting:

gm+1(w) = a(1 − s) j+1z( j+1)s+1(zz + zs)t− j−1 + (z + szs−1 + Θ2
s

)
fm(z, w)

+ (z + szs−1 + Θ2
s

)
fm(z, w) − 2Re

(
bts+1zts+1

)+ Θm+1
ts+2 ,

for m ≤ ts = N, (3.9)
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where 2t+ j(s−2)+2 ≤ m+1 ≤ 2t+( j +1)(s−2)+1 with 0 ≤ j ≤ t−1.
Suppose that m−1 < st−1. Collecting terms of degree m+1 in (3.9), we get

g(m+1)
nor (zz) = z f (m)

nor (z, zz) + z f (m)
nor (z, zz) + P̂m+1

ts+2

+ δm+1
2t+( j+1)(s−2)+1a(1 − s) j+1z( j+1)s+1(zz)t− j−1.

(3.10)

Here δm+1
2t+( j+1)(s−2)+1 takes value 1 when m + 1 = 2t + ( j + 1)(s − 2) + 1

for some integer j ∈ [0, t − 2], and 0 otherwise. Notice that g( j )
nor(zz) is

real-valued for j ≤ m. Since w(z, z) and the right hand side of (3.8) are
also real valued at each homogeneous level of degree up to N +1, we easily
see that the sum of the last two terms in (3.10) must be real valued. Here
P̂

m+1
ts+2 is uniquely determined by the known data such as M and f (2t+l)

nor ,
g(2t+1+l)

nor for 2t + l = 2t, . . . , m − 1 ≤ st − 1. Since m + 1 < ts + 1, this
equation, in terms of the Moser operator, can be rewritten as:

L
(

f (m)
nor (z, zz), g(m+1)

nor (zz), 0
)

= P̂m+1
ts+2 + δm+1

2t+( j+1)(s−2)+1a(1 − s) j+1z( j+1)s+1(zz)t− j−1.
(3.11)

Here δm+1
2t+( j+1)(s−2)+1 is defined as in (3.10). Since

P̂
m+1
ts+2 + δm+1

2t+( j+1)(s−2)+1a(1 − s) j+1z( j+1)s+1(zz)t− j−1

is real-valued and divisible by z, it does not contain any harmonic terms.
By Lemma 3.2, it can be solved, and can be uniquely solved under the
normalization condition as in Lemma 3.2. Also g(m+1)

nor (zz) is real-valued.
By induction, we can uniquely obtain f (m)

nor , g(m+1)
nor for m ≤ ts − 1 with

the reality property for g(m+1)
nor . Collecting terms of degree m + 1 = ts + 1

in (3.9), we obtain an equation similar to (2.57), which can be rewritten as:

L
(
g(ts+1)

nor (zz), f (ts)
nor (z, zz), 0

)

= 2Re{a(1 − s)t zts+1} + P̂ts+1
ts+2 − a(1 − s)t zts+1 − 2Re

(
bts+1zts+1). (3.12)

As argued above and as in the proof of Theorem 2.2, the real-valued
homogeneous polynomial P̂ts+1

ts+2 − a(1 − s)t zts+1 has a z factor and thus has
no harmonic terms. Hence, if we choose a = bts+1/(1 − s)t , then (3.12) is
uniquely solvable, under the normalization condition in Lemma 3.2, with
g(ts+1)

nor (zz) real-valued. This completes the proof of the claim in this step.

Step 3. In this step, we assume that N+1 = 0 mod s. Write N = (t+1)s−1.
We then show that there is a unique polynomial map of the form:

z′ = z +
N−1−2t∑

l=0

{
f (2t+l+1)
nor (z, w)

}
, w′ = w +

N+1−2t−2∑
τ=0

{
g(2t+2+τ)

nor (w)
}
,

(3.13)
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such that under this transformation, M is mapped to a formal surface M′
defined by (3.3) with bN+1 = 0. Here f (m)

nor satisfies the normalization

condition in Lemma 3.2 for m �= 2t + 1, and g( j )
nor(u) = g( j )

nor(u) for u real
and j ≤ N + 1.

The argument for this step is the same as that for Step 2. We first have
to choose

f (2t+1)
nor (z, w) = bzwt, g(2t+2)

nor (w) = (b + b)wt+1

with b to be uniquely determined later. Arguing exactly in the same way as in
Step 2, we can inductively find the unique solution (under the normalization
condition) for f (2t+l)

nor , g(2t+1+l)
nor with 2t + l = 2t + 2, . . . ,< st + s − 1 with

the reality property for g(2t+1+l)
nor . At the level with degree ts + s, we have

the following equation:

2Re
(
bN+1zN+1)+ g(ts+s)

nor (zz) = ((s − 1)b − b)(1 − s)t zts+s + P̂ts+s
ts+s+1

+ z f (ts+s−1)
nor (z, zz) + z f (ts+s−1)

nor (z, zz).
(3.14)

Now, arguing in the same way as in Step 2, (3.14) is uniquely solvable
by choosing b such that ((s − 1)b − b)(1 − s)t = bN+1 and by imposing the
normalization condition as in Lemma 3.2 to f (ts+s−1)

nor . The reality for g(ts+s)
nor

follows in the same way.

Now, the map in Theorem 3.1 can be chosen as the map in Step 1 if
N + 1 �= 0, 1 mod s. When N + 1 = 0, or 1 mod s, the map in The-
orem 3.1 can be defined by composing the map in Step 2 or that in Step 3,
respectively, with the map in Step 1. We see the proof of Theorem 3.1.
Moreover, with such fixed procedures and normalizations described in
the above steps, for k + 2l ≤ N and j + 2τ ≤ N + 1 there are poly-
nomials {Pkl(aαβ, aαβ)1≤α+β≤N+1} and {Q jτ(aαβ, aαβ)1≤α+β≤N+1} (depend-
ing only on s and N) such that the coefficients of the map (z′, w′) =
(z, w)+ ( f, g) = (z, w)+ (

∑
k+2l≥2 bkl zkwl,

∑
j+2τ≥3 c jτ z jwτ) in Theorem

3.1 are determined by

bkl = Pkl(aαβ, aαβ), c jτ = Q jτ(aαβ, aαβ) with 1 ≤ α + β ≤ N + 1,
(3.15)

where k + 2l ≤ N, j + 2τ ≤ N + 1 and H =∑α+β≥2 aαβzαzβ.

The rest of the proof of Theorem 3.1 follows from the procedures that
we used to prove the existence part. ��

We next choose the map z′ = z + f, w′ = w + g in Theorem 3.1
such that its coefficients are determined by (3.15). Let z = z′ + f ∗(z′, w′)
and w = w′ + g∗(z′, w′) be its inverse transformation. Notice that the
coefficients of ( f ∗, g∗) in its Taylor expansion up to degree, say m, are
universal polynomial functions of the coefficients of ( f, g) up to degree m
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for any m. Hence we have the defining equation of M∗, the image of M, as
follows:

w′ + g∗(z′, w′) = H(z′ + f ∗(z′, w′), z′ + f ∗(z′, w′)).

Applying an implicit function theorem to solve for w′ and making use of the
uniqueness of the graph function, we see that the coefficients in the Taylor
expansion of H∗ up to degree m must also be (possibly non-holomorphic)
polynomial functions of the coefficients of H of degree not exceeding m in
its Taylor expansion. Repeating such a normalization procedure that we did
for M to M∗ and by an induction argument, we get the following theorem:
(The uniqueness part follows from Lemma 2.1 and Theorem 2.2.)

Theorem 3.3. Let M be a formal Bishop surface defined by

w = H(z, z) = zz + zs + zs + E(z, z), (3.16)

where s ≥ 3 is a positive integer and E(z, z) = ∑
α+β≥s+1 aαβzαzβ. Then

there is a unique formal transformation of the form:
{

z′ = z + f(z, w), f(z, w) = O(|w| + |z|2),
w′ = w + g(z, w), g(z, w) = O(|w|2 + |z|3 + |zw|), (3.17)

that transforms M to the formal Bishop surface defined by

w′ = H∗(z′, z′) = z′z′ + z′s + z′s + 2Re
{ ∞∑

j=2,...,s−1
k≥1

λks+ j z
′ks+ j

}
. (3.18)

The normal form in (3.18), up to a transformation of the form z′′ = eiθ z′,
w′′ = w with eisθ = 1, uniquely determines the formal equivalence class
of M. Moreover, there are a set of universal polynomial functions

{Λks+ j(Zαβ, Zαβ)s+1≤α+β≤ks+ j} j=2,...,s−1; k≥1

depending only on s, such that:

λks+ j = Λks+ j(aαβ, aαβ)s+1≤α+β≤ks+ j; j=2,...,s−1; k≥1. (3.19)

Proof of Theorem 1.1 and Corollary 1.4. Theorem 1.1 follows immediately
from Theorem 3.3 and Lemma 2.1 (ii), (iii).

The proof of Corollary 1.4 (a), (b), (d) also follows easily from The-
orem 3.3. To see Corollary 1.4 (c), we let G be a proper subgroup of Zs.
Define JG := { j : 2 ≤ j ≤ s − 1, eiθ j = 1, for any (eiθ z, w) ∈ G}. Let MG
be defined by

w = zz + zs + zs + 2Re
{∑

j∈JG

as+ j z
s+ j
}
,
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with as+ j �= 0. Then we will verify that aut0(MG ) = G. To this aim, write
G∗ to be the collection of ξ ′s with (z, w) → (ξz, w) belonging to G. By
Corollary 1.3 (a), we need only to show that if ξ∗s = 1 and ξ∗ j = 1 for any
j ∈ JG , then ξ∗ ∈ G∗. Write k = |G∗|. Then s = km with m(∈ N) > 1. For
any ξ(∈ G∗) �= 1, since the order of ξ must be divisible by k, we see that
ξk = 1. Therefore, G∗ forms a complete set of the solutions of zk = 1. Now,
it is clear that JG = {k, . . . , (m − 1)k}. Hence, we see that ξ∗k = 1. Thus,
ξ∗ ∈ G∗. This completes the proof of Corollary 1.4 (c).

Now, by Corollary 1.4 (a), we see that for M as in Corollary 1.4 (e), M
must be formally equivalent to Ms. Assuming Theorem 1.5, which we will
prove in the next section, we also conclude that M is biholomorphically
equivalent to Ms. Corollary 1.4 (f) is a simple consequence of the results
in (a) and (e). ��
Corollary 3.4. Let M be a real analytic Bishop surface defined by an
equation of the form:

w = H(z, z) = zz + 2Re
{

zs +
∑
k≥1

j=2,...,s−1

aks+ j z
ks+ j
}

with infinitely many aks+ j �= 0.

Then for any N > s, M is not equivalent to the Bishop surface MN defined
by

w = H(N+1)(z, z) = zz + 2Re
{

zs +
ks+ j≤N∑

k≥1
j=2,...,s−1

aks+ j z
ks+ j
}
.

Here H(N+1) is the Nth-truncation from the Taylor expansion of H at 0. In
fact, M(N+1) is equivalent to M(N′+1) with N ′ > N if and only if aks+ j = 0
for any N < ks + j ≤ N ′.

Corollary 3.4 answers, in the negative, the second problem that J. Moser
asked in his paper ([21, p. 399]).

As a less obvious application of Theorem 3.3, we next show that a generic
Bishop surface with the Bishop invariant vanishing at 0 and with s < ∞
is not even formally equivalent to any algebraic surface in C2. For this
purpose, we borrow the idea used in the CR setting based on the Baire
category argument. For the consideration in the CR setting by using the
Baire category theorem, the reader is referred to the paper of Forstneric [8].

Write Ms for the collection of all formal Bishop surfaces defined as
in (3.16):

w = H(z, z) = zz + 2Re(zs) +
∑

α+β≥s+1

aαβzαzβ. (3.20)
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Write F := { �a = (a1, . . . , an, . . . ) : aj ∈ C}, equipped with the usual
distance function:

dist( �a, �b) =
∞∑
j=1

|aj − bj |
2 j(1 + |aj − bj |) .

We know that F is a Fréchet space. There is a one-to-one correspondence
between Ms and F , which assigns each M ∈ Ms to an element: �M =
(aαβ) ∈ F labeled in the lexicographical order. Therefore, we can, in what
follows, identify Ms as a Fréchet space. We define the operator J such that
it sends any M ∈ Ms to (λks+ j) j �=0,1;k≥1, where (λsk+ j) is described as in
Theorem 3.3. By (3.19), we easily see that J is a continuous map from Ms
to F .

(M, p) in C2 is called the germ of an algebraic surface if M near p
possesses a real polynomial defining equation. If p ∈ M is a point with
an elliptic complex tangent, whose Bishop invariant is 0 and whose Moser
invariant is s < ∞, then there is a change of coordinates (see [13], for
instance) such that p = 0 and M near 0 is defined by an equation of the
form:

w = zz + B(z, z, w,w), B(z, z, w, w) =
∑

3≤α+β+2γ+2τ

cαβγτ zαzβwγwτ,

(3.21)

where B is a polynomial in its variables. By using the implicit function
theorem and using the argument in the Step 1 of the proof of Theorem 3.1,
it is not hard to see that there is a fixed procedure to transform (3.21) into
a surface defined by an equation as in (3.20), in which aαβ are presented by
polynomials of cαβγτ and H(z, z) becomes what we call a Nash algebraic
function to be defined as follows:

We call a real analytic function h(z, z) near 0 a Nash algebraic function
if either h ≡ 0 or there is an irreducible polynomial P(z, z; X) in X with
polynomial coefficients in (z, z) such that P(z, z; h(z, z)) ≡ 0. Certainly,
we can always assume that the coefficients of (z, ξ, X) (in P(z, ξ, X)) of
terms with highest power in X have maximum value 1. The degree of h is
defined as the total degree of P in (z, z, X).

For d, n, m ≥ 1, we define Ad
B(n, m) ⊂ Ms to be the subset of Bishop

surfaces defined in (3.20), where H(z, z)′s are Nash algebraic functions
derived from the B′s in (3.21) by the procedure described above with the
degree of B′s bounded by d, that further satisfy the following properties:

Cond (1) H(z, ξ)′s are holomorphic over |z|2 + |ξ|2 < 1/m2;
Cond (2) max(|z|2+|ξ|2)<1/m2 |H(z, ξ)| ≤ n and |cαβγτ | ≤ n.

Write Ad
B =⋃∞

n,m=1 Ad
B(n, m) and AB =⋃∞

d=1 Ad
B. It is a consequence

of Theorem 3.3 that M, defined in (3.16), is formally equivalent to an
algebraic surface if and only if J(M) ∈ J(AB). (Therefore, M defined
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in (3.16) is not formally equivalent to an algebraic surface if and only if
J(M) �∈ J(AB).)

Now, for any sequence {Mj} ⊂ Ad
B(n, m) with Mj : w = h j(z, z) =

zz + zs + zs + o(|z|s), by a normal family argument and by passing to
a subsequence, we can assume that h j(z, ξ) → H0(z, ξ) over any compact
subset of {|z|2 +|ξ|2 < 1/m2}. If follows easily that M0 defined by w = H0

is also in Ad
B(n, m). Moreover, Dα

z Dβ

ξ h j(0) → Dα
z Dβ

ξ H0(0) for any (α, β).
By (3.19), J(Mj) → J(M0) in the topology of F . Therefore, we easily see
that J(AB) is a subset of F of the first category.

Next, for any R > 0, we let

SR :=
{�λ = (λsk+ j)k≥1; j=2,...,s−1 : ‖�λ‖R :=

∑
ks+ j

|λks+ j |Rks+ j < ∞
}
.

It can be verified that SR is a Banach space under the above defined
‖ · ‖R-norm. (In fact, it reduces to the standard l1-space when R = 1.) We
now claim that Kd

B, defined as the closure of J(Ad
B(n, m))∩SR in SR in its

Banach norm, has no interior point.
Suppose, to the contrary, that a certain ε-ball B of

�a0 = (λ0
sk+ j

)
k≥1; j=2,...,s−1

in SR is contained in Kd
B. We must then have B ⊂ J(Ad

B(n, m)) ∩ SR.
Indeed, for any �a ∈ B, let J(Mj) → �a with Mj ∈ Ad

B(n, m). By the
argument in the above paragraph, we can assume, without loss of gener-
ality, that Mj → M0 ∈ Ad

B(n, m) in the F -norm. By (3.19), we see that
J(M0) = �a. Choose �a = {λks+ j} such that |λks+ j − λ0

ks+ j | · (2R)ks+ j < ε

for any ks + j. For any N ≥ 1, then we see that there is a certain
H = zz + zs + zs +∑s+1≤α+β aαβzαzβ Nash algebraic near 0 such that

λks+ j = Λks+ j (aαβ, aαβ), N ≥ ks + j ≥ s + 1,

α + β ≤ ks + j, Λ = (Λks+ j )s+1≤ks+ j≤N .
(3.22)

Here H is obtained from B in (3.21) with degree of B bounded by d. Since
aαβ are polynomial functions of cαβγτ , we can conclude a contradiction
from (3.22). Indeed, since the variables on the right hand side of (3.22)
are polynomially parametrized by less than (2d)8 free variables (cαβγτ ), the
image of (3.22) can not fill in an open subset of RN−s as N � 1.

Therefore, we proved that AB = ⋃∞
d,n,m=1 Ad

B(n, m) is a set of the
first category in SR. By the Baire category theorem, we conclude that
most elements in SR are not from J (AB ∩ SR). For any �a = (λsk+ j)
(∈ SR) �∈ J (AB ∩ SR), the Bishop surface defined by: w = zz + zs +
zs + 2Re(

∑
k≥1;2≤ j≤s−1 λks+ j zks+ j) is not equivalent to any algebraic sur-

face in C2. When R varies, we complete a proof of Theorem 1.3. ��
A real analytic surface inC2 is called a Nash algebraic surface if it can be

defined by a Nash algebraic function. By the same token, we can similarly
prove the following:
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Theorem 3.5. Most real analytic elliptic Bishop surfaces with the Bishop
invariant λ = 0 and the Moser invariant s < ∞ at 0 are not equivalent to
Nash algebraic surfaces in C2.

Proof of Theorem 3.5. To prove Theorem 3.5, we define Ad
B(n, m) in the

same way as before except that we now only require that H(z, z) = zz+zs+
zs+∑α+β≥s+1 aαβzαzβ is a general Nash algebraic function with total degree
bounded by d and with the same conditions described as in Cond (1) and the
first part of Cond (2). The last part of Cond (2) is replaced by the condition
that |bαβγ | ≤ n, where P(z, z, X) = ∑

bj(z, z)X j = ∑
αβγ bαβγ zαzβ Xγ is

a minimal polynomial of H with the same coefficient restriction as imposed
before.

We fix an H0 and its minimal polynomial P0(z, z; X). (We will fix
a certain coefficient of P in the top degree terms of X to be 1 to make
the minimal polynomial P0 unique). Let Ad

B(n, m; H0, δ) be a subset of
Ad

B(n, m), where M = {w = H(z, z)} ∈ Ad
B(n, m; H0, δ) if and only if

|bαβγ − b0
αβγ | ≤ δ. Here P =∑ bαβγ zαzβ Xγ and P0 = ∑ b0

αβγ zαzβ Xγ are
the minimal polynomials of H and H0, respectively. We assume that P is
normalized in the same manner as for P0. (Certainly, we can always do this
if δ � 1.)

Consider an H and its minimal polynomial P associated with an element
from Ad

B(n, m; H0, δ). Let R be the resultant of P and P′
X with respect to X.

We know that R is a non-zero polynomial of (z, z) of degree bounded by
C1(d), a constant depending only on d. Write H = H∗

(N) + H∗∗
N with H∗

(N)

the Taylor polynomial of H up to order N − 1 and H∗∗
N the remainder. Then

from P(z, z, H∗
(N) + H∗∗

N ) = 0, we obtain

P∗∗(z, z, X∗∗) = 0 with X∗∗ = H∗∗
N . (3.23)

Here P∗∗ is a polynomial of total degree bounded by C2(d, N), a constant
depending only on d and N, and its coefficients are determined polynomially
by the coefficients of P and H∗

(N). Notice that DX∗∗ (P∗∗(z, z, X∗∗)) |X∗∗=0 =
DX (P(z, z, X))X=H∗

(N )
. Since there are polynomials G1 and G2 such that

G1 P + G2 P′
X = R and since P(z, z, H∗

(N)) = o(|z|N ), we conclude that
the degree k0 of the lowest non-vanishing order term of P′

X(z, z, H∗
(N)) is

bounded by C1(d), depending only on d.
Choose an N > C1(d) and a sufficiently small positive number δ. We can

apply a comparing coefficient method to (3.23) to conclude that each aα0β0

with α0+β0 ≥ N is determined by bαβγ and aαβ with α+β ≤ N−1 through
rational functions in aαβ (α + β ≤ N − 1) and bαβγ (α + β + γ ≤ d) with
at most C(k0, d, N) variables, here C(k0, d, N) depends only on k0, d, N.
Now, (3.22) can be used in the same manner to show that the interior of the
closure of J(Ad

B(n, m; H0, δ)) ∩ SR in SR is empty. It is easy to see that
J(AB) can be written as a countable union of these sets. We see that J(AB)
is a set of the first category in SR. This completes the proof of Theorem 3.5.

��
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Remark 3.6. (A) The crucial point for Theorem 3.5 to hold is that the modu-
lar space of surfaces with a vanishing Bishop invariant and s < ∞ is
parameterized by an infinitely dimensional space. Hence, any subclass
of Ms, that is represented by a countable union of finite dimensional
subspaces of Ms, is a thin set of Ms under the equivalence relation.
This idea, that the infinite dimensionality of the modular space would
generally have the consequence of the generic non-algebraicity for its
elements, dates back to the early work of Poincaré [23]. In the CR
setting, Forstneric in [8] has used the infinitely dimensional modular
space of CR manifolds and the Baire category argument to give a short
and quick proof that a generic CR submanifold in a complex space is
not holomorphically equivalent to any algebraic manifold. Some earl-
ier studies related to non-algebraicity for CR manifolds can be found,
for instance, in [2,14,17]. However, by a result of the first author with
Krantz [16] and a result of the first author in [15], a Bishop surface
with an elliptic complex tangent can always be holomoirphically trans-
formed into the algebraic Levi-flat hypersurface C × R and also into
the Heisenberg hypersurface in C2.

(B) In the normal form (3.18), the condition that λks+ j = 0 for j =
0, 1, k = 1, 2, . . . can be compared with the Cartan–Chern–Moser
chain condition in the case of strongly pseudoconvex hypersurfaces
(see [6]). In the hypersurface case, the chain condition is also described
by a finite system of differential equations. It would be very interest-
ing to know if, in our setting here, there also exist similar equations
describing our chain condition.

4 Surface hyperbolic geometry and a convergence argument

In this section, we study the convergence problem for the formal consider-
ation in the previous section. Our starting point is the flattening theorem of
Huang–Krantz [16], which says that an elliptic Bishop surface with a van-
ishing Bishop invariant can be holomorphically mapped into C× R.

Hence, to study the convergence problem, we can restrict ourselves to
a real analytic Bishop surface M defined by

w = zz + zs + zs + E(z, z), E(z, z) = E(z, z) = o(|z|s),
z ≈ 0, 3 ≤ s < ∞.

(4.1)

Here E is real analytic.
For the rest of this section, we assume that all Bishop surfaces (which

we will denote by M, M′, Mnor, M′
nor, . . . ) are real analytic and are holo-

morphically flattened. (Namely, they are defined by real analytic equations
of the form as in (4.1)). Thus the second-component (denoted by (w +
g(z, w))) of any map (formal or holomorphic) between such surfaces has
the reality property: (See Lemma 2.1 (iii))

g(z, w) = g(w), g(w) = g(w). (4.2)
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Recall that the Moser–Webster complexificationM of M is the complex
surface near 0 ∈ C4 defined by:

{
w = zζ + zs + ζ s + E(z, ζ),
η = zζ + zs + ζ s + E(z, ζ).

(4.3)

We define the projection π : M → C
2 by sending (z, ζ,w, η) ∈ M

to (z, w). Then π is generically s to 1. Write B for the branching locus
of π near the origin. Namely, (z, w) ∈ B if and only if ∃(ζ0, η0) such that
(z, ζ0, w, η0) ∈ M and π is not biholomorphic near (z, ζ0, w, η0). Write
B = π−1(B). Then

(z, w) ∈ B
⇐⇒ ∃ζ such that w = zζ + zs + ζ s + E(z, ζ) and

z + sζ s−1 + Eζ (z, ζ) = 0,

⇐⇒ �{π−1(z, w)} < s.

It is easy to see that near 0, B is a holomorphic curve passing through
the origin.

Now, suppose M′ is defined by

w′ = z′z′ + z′s + z′s + E∗(z′, z′),

E∗(z′, z′) = E∗(z′, z′) = o(|z′|s) for z′ ≈ 0.
(4.4)

Write M′ for the complexification of M′. Suppose that F : (M, 0) →
(M′, 0) is a biholomorphic map. Then F induces a biholomorphic map F
from (M, 0) to (M′, 0) such that π ′ ◦ F = F ◦ π. From this, it follows that
F(B) = B′, where B′ is the branching locus of π ′ near the origin.

We next give the precise defining equation of B near 0. From the equation
z + sζ s−1 + Eζ (z, ζ) = 0, we can solve, by the implicit function theorem,
that

z = h1(ζ) = −sζ s−1 + o(ζ s−1), (4.5)

where h1(ζ) is holomorphic near 0. Substituting (4.5) into (4.3), we get

w = h2(ζ) = (1 − s)ζ s + o(ζ s). (4.6)

From (4.6), we get

− w

s − 1
= (h3(ζ))

s with h3(ζ) = ζ + o(ζ). (4.7)

Hence, we get

ζ = h−1
3

((
− w

s − 1

) 1
s
)

= (−1)
1
s

(
1

s − 1

) 1
s

w
1
s + o(w

1
s ),

z = h1 ◦ h−1
3

((
− w

s − 1

) 1
s
)

= h1

(
(−1)

1
s

(
w

s − 1

) 1
s

+ o(w
1
s )

)

= s(−1)− 1
s w

s−1
s · (s − 1)

1−s
s + o(w

s−1
s ).

(4.8)
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Here, h ′
j s are holomorphic functions near 0. B is now defined by the second

(multiple-valued) function in (4.8).
Next, let w = u ≥ 0 and we define

Aj(u) = h1 ◦ h−1
3

(
e− (2 j+1)π

√−1
s

(
u

s − 1

)1/s)

= se
(1+2 j )π

√−1
s u

s−1
s · (s − 1)

1−s
s + o(u

s−1
s ), j = 0, 1, . . . , s − 1.

(4.9)

Then Aj (u) is a well-defined function for 0 ≤ u � 1 and has a con-
vergent power series expansion in u1/s.

The following immediate fact will be crucial for this section:

Lemma 4.1. (a) For any u with 0 < u � 1, Aj (u) ∈ D(u). Here

D(u) = {z ∈ C1 : w = zz + zs + zs + E(z, z) < u}. (4.10)

(b) {(Aj(u), u)}s−1
j=0 = B ∩ {w = u} and Aj (u) has a convergent power

series expansion in u1/s for each fixed j ∈ [0, s − 1].
Proof of Lemma 4.1. The proof of Lemma 4.1 (a) follows clearly from the
following estimate:

|Aj (u)|2 + Re
{
2As

j (u) + E(Aj (u), Aj(u))
} = O(u

2(s−1)
s ) � u

as far as 0 < u � 1 and s ≥ 3.
Lemma 4.1 (b) follows from the way Aj(u)′s were defined and the result

in Lemma 4.1 (a). ��
We remark that (4.1)–(4.9) also hold in the formal sense, when M is just

assumed to be a formal Bishop surface with a vanishing Bishop invariant.
Consider a surface (M, p) in C2. We say that M near p is defined

by a complex-valued function ρ, if M near p is precisely the zero set
of ρ and {Re(ρ), Im(ρ)} has constant rank two near p as functions in
(x, y, u, v). For a surface (M, p) defined by ρ and a biholomorphic map F
from a neighborhood of p to a neighborhood of p′, we say that F(M)
approximates (M∗, p′) defined by ρ∗ = 0 to the order m at p′ if there
are smooth functions h1 and h2 with |h1|2 − |h2|2 �= 0 at p such that
ρ∗ ◦ F(Z) = h1 · ρ(Z) + h2 · ρ(Z) + o(|Z − p|m). It is easy to check that
this notion is independent of the choices of ρ and ρ∗.

Lemma 4.2. Let M, M′ be Bishop surfaces near 0 defined by (4.1) and
(4.4), respectively. Suppose that F(M) approximates M′ to the order Ñ =
Ns + s − 1 at 0 with N > 1. Then
∣∣ f̃ (Aj(u), u) − A∗

j (u
′)
∣∣ � |u|N−1, for j = 0, . . . , s − 1, 0 < u � 1,
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where A∗
j (u) is the function associated with M′ defined as in (4.9). Here

F = ( f̃ , g̃ ) = (z + f, w + g) is assumed to be a holomorphic map with
f = O(|w| + |z|2), g(z, w) = g(w) = O(w2), g(w) = g(w) and u′ =
u + g(u).

Remark 4.3. In Lemma 4.2, since it is not assumed that F(M) ⊂ M′, the
reality of g is not automatic from the property that F(M) approximates M′
to a high order.

Proof of Lemma 4.2. Let Φ1 be a biholomorphic map, which maps M into
MN

nor defined by

w = zz + 2Re
{

zs +
N∑

k=1

s−1∑
j=2

aks+ j z
ks+ j
}

+ R(z, z), (4.11)

and let Φ2 be a biholomorphic map from M′ to M′N
nor with M′N

nor defined by

w′ = z′z′ + 2Re
{

z′s +
N∑

k=1

s−1∑
j=2

a′
ks+ j z

′ks+ j
}

+ R′(z′, z′). (4.12)

Here R(z, z) = R(z, z) = o(|z|sN+s−1) and R′(z, z) = R′(z, z) =
o(|z|sN+s−1). Define Φ� = Φ2 ◦ F ◦ Φ−1

1 . Here we assume Φ1, Φ2 satisfy
the normalization as in Theorem 3.1 at the origin. (Notice that the second
components of Φ1,Φ2 have the reality property as mentioned before). Then
Φ�(MN

nor) approximates M′N
nor up to order Ñ .

By Theorem 2.2 (I), (II), we conclude that

aks+ j = a′
ks+ j for ks + j ≤ Ñ and Φ� = Id + O(|(z, w)|N),

with Ñ = Ns + s − 1.
(4.13)

In what follows, we write Aj (u), A∗
j (u), Anor

j (u), A∗nor
j (u) ( j = 0, . . . , s−1)

for those functions in u for 0 < u � 1, defined as in (4.9), corresponding to
M, M′, MN

nor, M′N
nor, respectively. Notice that they have convergent power

series expansions in u1/s with the same first nonzero term Cs−2, ju
s−1

s , where

Cs−2, j = se
(1+2 j )π

√−1
s · (s − 1)

1−s
s . (4.14)

Write hnor
j (ζ) and h∗nor

j (ζ) ( j = 1, 2, 3) for those holomorphic functions,
defined as in (4.5)–(4.7), corresponding to MN

nor and M′N
nor, respectively.

Then from the way these functions were constructed, we have

hnor
j (ζ) = h∗nor

j (ζ) + O(|ζ |Ñ−s) for j = 1, 2, 3.

Thus,
(
hnor

3

)−1
(ζ) = (h∗nor

3

)−1
(ζ) + O(|ζ |Ñ−s), and

hnor
1 ◦ (hnor

3

)−1
(ζ) = h∗nor

1 ◦ (h∗nor
3

)−1
(ζ) + O(|ζ |Ñ−s).
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Hence, from the way Aj and A∗
j were defined, we have

Anor
j (u) = A∗nor

j (u) + O(uN−1). (4.15)

Write Φ j(z, w) = (φ j(z, w),ψ j(w)) with ψ j(u) = ψ j(u) for j = 1, 2.
By the invariant property that we mentioned above, we have, for 0 <

u � 1 and 0 ≤ j ≤ s − 1,

Φ1(Aj(u), u) = (Anor
j (ψ1(u)), ψ1(u)

)
,

Φ2(A∗
j (u), u) = (A∗nor

j (ψ2(u)), ψ2(u)
)
.

Since F = Φ−1
2 ◦ Φ� ◦ Φ1 and Φ� = Id + O(|(z, w)|N ), we see that

u + g(u) = ψ−1
2 (ψ1(u)) + O(uN ).

This immediately gives the following:

F(Aj (u), u) = Φ−1
2 ◦ Φ� ◦ Φ1(Aj(u), u)

= Φ−1
2 ◦ Φ�

(
Anor

j (ψ1(u)), ψ1(u)
)

= Φ−1
2 ◦ Φ�

(
A∗nor

j (ψ1(u)), ψ1(u)
)+ O(uN−1)

= Φ−1
2

(
A∗nor

j (ψ1(u)), ψ1(u)
)+ O(uN−1)

= (A∗
j

(
ψ−1

2 (ψ1(u))
)
, ψ−1

2 (ψ1(u))
)+ O(uN−1)

= (A∗
j (u + g(u)), u + g(u)) + O(uN−1). (4.16)

The proof of Lemma 4.2 follows. ��
We now state the following proposition, whose first part is the content

of Lemma 4.2.

Proposition 4.4. (1) Suppose that there is a holomorphic map F from
(C2, 0) to (C2, 0) such that F(M) approximates M′ up to order Ñ =
Ns + s − 1 > 2s − 1 at 0. Then

A∗
j (u + g(u)) = f̃ (Aj (u), u) + O(uN−1),

j = 0, 1, . . . , s − 1, for 0 < u � 1.
(4.17)

Here we assume that F = ( f̃ (z, w), g̃(z, w)) = (z+ f(z, w),w+g(w))

with f(z, w) = O(|w| + |z|2), g(w) = O(w2) and g(w) = g(w).
(2) Suppose that there is a formal holomorphic map F : M → M′, where

we write F = ( f̃ (z, w), g̃(z, w)) = (z + f(z, w),w + g(w)) with
f(z, w) = O(|w| + |z|2) and g(w) = O(w2). For an N > 1, write,
for the rest of this paper, f̃(Ñ+1)(z, w), g̃(Ñ+1)(z, w) for the (Taylor)
polynomials consisting of terms of degree ≤ Ñ in the Taylor expansions
at the origin of f̃ and g̃, respectively, with Ñ = Ns + s − 1. Then

A∗
j (u + g(Ñ+1)(u)) − f̃(Ñ+1)(Aj(u), u) = O(uN−1), as u → 0+. (4.18)
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Remark 4.5. Proposition 4.4 (2) is the first place in this section, in which
we use the truncation to deal with formal power series. We give a little more
detailed explanation in this remark.

(A) We emphasize that A∗
j is a function in its variable over the domain

(0, ε0) with 0 < ε0 � 1. Hence, for any other function h(u) > 0 with
0 < u < u0, if limu→0 h(u) = 0, then A∗

j ◦ h := A∗
j (h(u)) is also

a well defined function for 0 < u � 1. In Proposition 4.4 (2), since
h(u) = u + g(Ñ+1)(u) > 0 for 0 < u � 1 and limu→0+ h(u) = 0, A∗

j ◦
h(u) = A∗

j (u + g(Ñ+1)(u)) is a well-defined function for 0 < u � 1.
As a point in the complex plane, A∗

j (h(u)) ∈ D∗(h(u)) for each 0 <

u � 1. (See, for example, (4.20) for the notation of D∗(u).) Of course,
since f̃(Ñ+1)(z, w) is a polynomial in (z, w), f̃(Ñ+1)(Aj(u), u) is a well
defined function in u for 0 < u � 1. The precise meaning of (4.18) is
that

∣∣∣∣∣
A∗

j (u + g(Ñ+1)(u)) − f̃(Ñ+1)(Aj(u), u)

uN−1

∣∣∣∣∣ ≤ C

for a certain constant C when 0 < u < ε1 with ε1 a sufficiently small
positive number. In what follows, the same explanation applies in the
similar situations.

(B) Let m be a positive integer and let n be an integer. Let h1(u) =∑∞
k=n aku

k
m and h2(u) =∑∞

k=n bku
k
m be formal Laurent series in u1/m

with at most finitely many negative power terms in u1/s . In what follows,
we say that h1(u) = h2(u) in the formal sense if ak = bk for any k ≥ n.
Now, in Proposition 4.4 (2), since u + g(u) is a formal power series
without constant term and A∗

j (u) admits a power series expansion
in u1/s, A∗

j (u + g(u)) = Cs−2, ju(s−1)/s + . . . also has a formal power
series expansion in u1/s. Similarly, f̃ (Aj(u), u) admits a formal power
series expansion in u1/s. Then it follows from (4.18) that

A∗
j (u + g(u)) = f̃ (Aj(u), u) in the formal sense, (4.19)

which is all we need for our later application of Proposition 4.4 (2).
Namely, the precise estimate for the error term O(|z|N−1) in (4.18)
is not crucial for our application. All we need is that there is an N ′,
depending only on N with N ′ → ∞ as N → ∞, such that the right
hand side of (4.18) is O(|z|N′

). (There are many similar situations in
the later discussions where what is important is the error term of order
O(|z|N′

) with N ′ → ∞ as N → ∞.) Indeed, to see (4.19), write

A∗
j (u + g(u)) =

∞∑
k=s−1

akuk/s, and f̃ (Aj(u), u) =
∞∑

k=s−1

bkuk/s.
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Then by (4.18), we have

s(N−1)−1∑
k=s−1

bkuk/s =
s(N−1)−1∑

k=s−1

akuk/s + O(uN−1).

Hence, we have ak = bk for any s − 1 ≤ k ≤ s(N − 1) − 1. Since N is
arbitrary, we see ak = bk for k ≥ s − 1.

(C) In what follows, we often use the following simple fact without men-
tioning specifically: Let B(u) be a formal power series in u1/m and
χ j(u) = cjun + . . . be a formal power series in u without constant
term for j = 1, 2. If χ1(u) = χ2(u) + O(uN ), then B(χ1(u)) =
B(χ2(u)) + O(uN−n+n/m ) = B(χ2(u)) + O(uN−n).

(D) We emphasize again that since the real analytic surfaces M, M′ are
assumed to be holomorphically flattened, the formal reality for g in
Proposition 4.4 (2) follows from Lemma 2.1 (iii), as mentioned before.
However, the reality for g in Proposition 4.4 (1) has to be taken as part
of the hypothesis there. The same remark applies in the other similar
situations.

(E) Fix an M. Notice that for any u with 0 < u � 1, {(z, u) : z ∈ D(u)},
with D(u) being defined in (4.10), is a simply connected Riemann sur-
face attached to M, whose Euclidean diameter d(u) is of the quantity
2
√

u + o(u1/2). We notice that the Euclidean distance from Aj(u) to
the boundary of D(u) divided by the diameter of D(u) approaches
to 1/2 as u → 0+. This roughly says that Aj(u)′s are close to the
the center of D(u). More precisely, when we scale both D(u) and
Aj (u), for each 0 < u � 1, by the factor 1√

u
, 1√

u
D(u) uniformly

approaches to the unit disk in the sense that for any 0 < δ � 1,
when u > 0 is sufficiently small, ∆1−δ ⊂ 1√

u
D(u) ⊂ ∆1+δ; while

1√
u

Aj(u) → 0, the center of ∆. Here for any R > 0, ∆R := {ξ ∈ C :
|ξ| < R}.

Proof of Proposition 4.4. We need only to prove the second part of the
proposition. We fix 0 ≤ j ≤ s − 1. Let the polynomial map F(Ñ+1) =
( f̃(Ñ+1), g̃(Ñ+1)) be the Taylor polynomial of F of order Ñ at the origin,
namely, polynomial consisting of terms in the Taylor expansion of F at the
origin of degree ≤ Ñ . Then F(Ñ+1)(M) approximates M′ up to order Ñ . By
the first part of the proposition, (see Remark 4.5 (D) for the explanation for
the formal reality of g), we have

A∗
j (u + g(Ñ+1)(u)) = f̃(Ñ+1)(Aj (u), u) + O(uN−1), 0 < u � 1,

which is precisely (4.18). ��
Let z = rσ(τ, r) with u = r2 and r > 0 be the uniquely determined

conformal map from the unit disk ∆ := {τ ∈ C : |τ| < 1} to D(u) with
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σ(0, r) = 0, σ ′
τ (0, r) > 0. Here, as defined before,

D(u) = {z ∈ C1 : zz + zs + zs + E(z, z) < u = r2}.

Then φ(τ) = (rσ(τ, r), r2) is a holomorphic disk attached to M.
Similarly, let z = rσ∗(τ∗, r) with u = r2 and r > 0 be the conformal

map from the disk ∆ to D∗(u) with σ∗(0, r) = 0, σ∗′
τ∗(0, r) > 0. Here,

D∗(u) = {z ∈ C1 : zz + zs + zs + E∗(z, z) < u = r2}, (4.20)

with M′ being defined by w = zz + zs + zs + E∗(z, z) as before. Then we
know that

σ(τ, r) = τ(1 + O(r)) and
σ extends to a real analytic function in (τ, r) over ∆1+ε × (−ε, ε)

(4.21)

with 0 < ε � 1. (See [15, Lemma 2.1]). Similar properties also hold for σ∗.
For each j ∈ [0, s − 1], we will write, in what follows, τ j(u) ∈ ∆ for

the point such that rσ(τ j(u), r) = Aj (u). Then

τ j(u) = σ−1

(
Aj(u)

u
1
2

,
√

u

)
= Aj (u)

u
1
2

(1 + O(
√

u))

= Cs−2, ju
s−2
2s + o(u

s−2
2s ), 0 ≤ j ≤ s − 1.

(4.22)

Here σ−1(·, r) denotes the inverse of σ(·, r). In particular, as a function
of u with 0 < u � 1, we have the following property for τ j(u) for each
j ∈ [0, s − 1]:
Lemma 4.6. When u → 0+, τ j(u) approaches to the origin.

Remark 4.7. By (4.22) and (4.14), for each 0 < u � 1, {τ0(u), . . . ,
τs−1(u)}, as points in ∆, are approximately equally distributed on the circle
with radius equal to s · (s − 1)

1−s
s u

1
2 − 1

s . {τ0, . . . , τs−1} are labeled counter-

clock-wisely along the circle starting with τ0(u) = se
π
√−1

s ·(s−1)
1−s

s u
1
2 − 1

s +
o(u1/2−1/s). For 0 < u � 1, {A0(u), . . . , As−1(u)}, as points in D(u), are
approximately equally distributed counter-clock-wisely on the circle cen-
tered at the origin with radius equal to s · (s − 1)

1−s
s u

s−1
s , while D(u) is

approximately a disk centered at the origin with radius approximately equal

to
√

u � u
s−1

s . Notice that the ratio of the Euclidean distance from Aj(u) to
∂D(u) with the Euclidean distance from Aj (u) to the origin is approximately
of the quantity C0u

2−s
2s (→ ∞, as u → 0) with the constant C0 �= 0.
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Notice that τ j(u) has a convergent power series expansion in u1/(2s): (Or,
we will simply say that τ j(u) is analytic in u

1
2s )

τ j(u) =
∞∑

l=s−2

Cl, ju
l

2s .

Here, as before,

Cs−2, j = s(s − 1)
1−s

s e
π
√−1(1+2 j )

s , 0 ≤ j ≤ s − 1. (4.23)

Recall that for any 0 ≤ j, l ≤ s − 1 and any u with 0 < u � 1,
Aj(u), Al(u) ∈ D(u). We define the hyperbolic distance between Aj (u)
and Al(u), as points in D(u), to be the distance determined through the
metric pulled back, by a conformal map, the classical Poincaré metric
d2s = 4dzdz

(1−|z|2)2 over the unit disk ∆. Now, the hyperbolic distance between
Aj(u) and Al(u) as points in D(u) is the same as the classical hyperbolic
distance between τ j(u) and τl(u) as points in ∆ with respect to the Poincaré
metric d2s = 4dzdz

(1−|z|2)2 . Write dhyp(τ j(u), τl(u)) for the classical hyperbolic
distance between τ j(u) and τl(u) as points in ∆.

Write L1( j+1)(u) = edhyp(τ0,τ j )−1, which is a function in u for 0 < u � 1
and for each j ∈ [1, s − 1]. In particular, L12(u) = edhyp(τ0,τ1) − 1. Since

dhyp(τ0, τ1) = ln

(
1 + ∣∣ τ0−τ1

1−τ0τ1

∣∣
1 − ∣∣ τ0−τ1

1−τ0τ1

∣∣
)

, we have

L12(u) = 2s(s − 1)
1−s

s |e
√−1π

s − e
3
√−1π

s |u s−2
2s + o(u

s−2
2s ).

Also, L12(u) has a convergent power series expansion in u
1
2s .

Next, suppose that F : M → M′ is a biholomorphic map with F =
( f̃ , g̃ ) = (z, w) + (O(|w| + |z|2), O(w2)). Then f̃ (z, u) = z + f(z, u) is
a conformal map from D(u) to D∗(u′) with u′ = u + g(u) for each u with
0 < u � 1. Hence the hyperbolic distance between A0(u) to A1(u) is the
same as the hyperbolic distance from A∗

0(u
′) to A∗

1(u
′) with respect to the

hyperbolic metric in D∗(u′); for f̃ (Aj(u), u) = A∗
j (u + g(u)) as mentioned

at the beginning of this section. Similarly, we can define functions L∗
1( j+1)

associated with M′. We have the following:

Lemma 4.8. Suppose that F is a biholomorphic map with

F = ( f̃ (z, w), g̃(w)) = (z + f(z, w),w + g(w))

= (z, w) + (O(|w| + |z|2), O(w2))

such that F(M) approximates M′ at 0 up to order Ñ = Ns+s−1 > 2s−1.
Assume that g(w) = g(w). Then, we have

L∗
12(u + g(u)) − L12(u) = O(uN−2) as u → 0+.
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Proof of Lemma 4.8. We first assume that M, M′ are already normalized
up to order Ñ . Then, by Theorem 2.2, we see that F = Id + O(|(z, w)|N),

M is defined by w = zz + 2Re{ϕ0(z)} + o(|z|Ñ), M is defined by w =
zz + 2Re{ϕ0(z)} + o(|z|Ñ), where ϕ0(z) = zs + o(zs), u′ = u + g(u) =
u + O(|u|N) and ϕ

(sk+ j )
0 (0) = 0 for j = 0, 1 mod s.

Since u′ = u + g(u) = u + O(uN ) and u = r2, u′ = r ′2, we have
r ′ = r + O(uN−1). From the way σ and σ∗ were constructed, we claim that
there is a constant C independent of τ and u such that for 0 < u � 1, we
have the following:

|σ∗(τ, r ′) − σ(τ, r)| ≤ C|τ|uN−1 for τ ∈ ∆. (4.24)

Indeed, by the way σ∗(·, r) was constructed, we can write σ∗(τ, r) =
τ(1 + χ(τ, r)), where χ(τ, r) extends to a real analytic function over ∆ ×
(−ε0, ε0). (See [15, Lemma 2.1] or the following lemma.) We see that

σ∗(τ, r ′) − σ∗(τ, r) = τO(uN−1). (4.25)

Hence, (4.24) follows from (4.25) and the following more general result:

Lemma 4.9. Let σ(ξ, r) = ξ · (1 + O(r)) and σ∗(ξ, r) = ξ · (1 + O(r)) be
the biholomorphic map from the unit disk ∆ to

D(r) := {ξ ∈ C(≈ ∆) : |ξ|2 + rF1(r, ξ, ξ) < 1
}
,

D∗(r) := {ξ ∈ C(≈ ∆) : |ξ|2 + rF1(r, ξ, ξ) + rm F2(r, ξ, ξ) < 1
}
,

(4.26)

respectively. Here Fj(r, ξ, ξ) are real-valued real analytic functions in
a neighborhood of {0}×∆×∆. Then there is a constant C, depending only
on F1, F2, such that

|σ∗(ξ, r) − σ(ξ, r)| ≤ C|ξ|rm, ξ ∈ ∆.

Proof of Lemma 4.9. From the way σ and σ∗ were constructed (see [15,
Lemma 2.1]), there are U, U∗ ∈ Cω(∂∆× (−ε0, ε0)) with 0 < ε0 � 1 such
that

σ(ξ, r) = ξ (1 + U(ξ, r) + H(U(·, r))) ,

σ∗(ξ, r) = ξ(1 + U∗(ξ, r) + H(U∗(·, r))), ξ ∈ ∂∆.

Here H is the standard Hilbert transform and U, U∗ satisfy the following
equations:

U = G1(r, ξ, U,H(U)),

U∗ = G1(r, ξ, U∗,H(U∗)) + rmG2(r, ξ, U∗,H(U∗)),
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where G j(r, ξ, x, y) are real analytic in (r, ξ, x, y) with |G j | � |r| +
|x|2 + |y|2. Notice by the implicit function (see [15, Lemma 2.1]), ‖U‖1/2,
‖U∗‖1/2 ≤ C1|r| with ‖ · ‖1/2 the Hölder-1

2 norm in ξ ∈ ∂∆. Next, we have

U∗ − U =
∫ 1

0

∂G1

∂x
(r, ξ, τU∗ + (1 − τ)U,

τH(U∗) + (1 − τ)H(U))(U∗ − U)dτ

+
∫ 1

0

∂G1

∂y
(r, ξ, τU∗ + (1 − τ)U,

τH(U∗) + (1 − τ)H(U))(H(U∗) − H(U))dτ

+ rm G2(r, ξ, U∗,H(U∗)). (4.27)

By noticing that the Hilbert transform is bounded acting on the Hölder space,
we easily conclude that when 0 < u � 1, it holds that ‖U∗ − U‖1/2 ≤ Crm

for a certain constant C. The result in the lemma follows accordingly for
0 < r � 1. ��

Now, recall that u′ = u + g(u) = u + O(uN ), r = √
u, r ′ = √

u′ and
r ′ = r + O(uN−1). Notice that A∗

j (u
′) = Aj(u) + O(uN−1) as a function

of u with u → 0+, by Proposition 4.4 (1). Hence

A∗
j (u

′)
r ′ − Aj(u)

r
= A∗

j (u
′)

r
− Aj (u)

r
+ O(uN−2) = O(uN−2). (4.28)

By the definition of τ j(u) and τ∗
j (u

′), we have

Aj(u) = rσ(τ j(u), r) and A∗
j (u

′) = r ′σ∗(τ∗
j (u

′), r ′). (4.29)

Recall that, by Lemma 4.6, we have

τ j(u), τ∗
j (u

′) are inside ∆, and approach to 0 as u → 0+. (4.30)

Now, from (4.28), (4.29), we get the following

σ∗(τ∗
j (u

′), r ′)− σ(τ j(u), r) = O(uN−2). (4.31)

On the other hand,

σ∗(τ∗
j (u

′), r ′)− σ(τ j(u), r)

= (σ∗(τ∗
j (u

′), r ′)− σ
(
τ∗

j (u
′), r
))+ (σ(τ∗

j (u
′), r
)− σ(τ j(u), r)

)
.

(4.32)

Notice that σ(ξ, r) = ξ(1 + O(r)). Also, notice that | ∂{σ(ξ,r)−ξ}
∂ξ

| ≤ r · C for
|ξ| < 1/2 with C a constant independent of r. (This can be seen immediately
from the Cauchy estimate, for instance; or it can be easily derived by the
property of σ(τ, r) itself.) Hence for 0 < u � 1, by (4.30) and the estimate
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just mentioned, we have

σ
(
τ∗

j (u
′), r
)− σ(τ j(u), r) = (τ∗

j (u
′) − τ j(u)

) · (1 + o(1)). (4.33)

Now, it follows from (4.32), (4.31), (4.24) and (4.33) that

O(uN−2) = σ∗(τ∗
j (u

′), r ′)− σ(τ j(u), r)

= O(uN−2) + (τ∗
j (u

′) − τ j(u)
) · (1 + o(1)).

This immediately gives

τ∗
j (u

′) − τ j(u) = O(uN−2) as u → 0+. (4.34)

Here, we mention again that, as in Remark 4.5 (A), τ∗
j (u

′) is understood as
a well defined composition function of τ∗

j with u′ = u + g(u). Hence, we
have
∣∣L∗

12(u
′) − L12(u)

∣∣ = |edhyp(τ∗
0 (u′),τ∗

1 (u′)) − edhyp(τ0(u),τ1(u))|
= 2
∣∣|τ∗

0 (u′) − τ∗
1 (u′)| − |τ0(u) − τ1(u)|∣∣ · (1 + o(1))

≤ 2
(∣∣(τ∗

0 (u′) − τ0(u)
)+ (τ1(u) − τ∗

1 (u′)
)∣∣) · (1 + o(1))

= O(uN−2).

We thus obtain

L∗
12(u + g(u)) = L12(u) + O(uN−2), as u → 0+.

This completes the proof of Lemma 4.8.
For the general M and M′, using the invariant property for the hyperbolic

distance function under a conformal transformation, we can proceed in
exactly the same way as in the proof of Lemma 4.2 to reduce the proof of
Lemma 4.9 to the case when M and M′ are already normalized up to order
Ñ = Ns + s − 1. For convenience of the reader, we say a few words as
follows:

Let MN
nor, M′N

nor, Φ1 = (φ1, ψ1), Φ2 = (φ2, ψ2),Φ
� be defined as in

the proof of Lemma 4.2. For 0 < u � 1, define Lnor
12 (u) and L∗nor

12 (u)

in a similar way as for L12. Since Φ�(MN
nor) approximates M′N

nor up to
order Ñ and since Φ�(z, w) = (z, w) + O(|(z, w)|N ), by what we have
obtained and Remark 4.5 (C), we have L∗nor

12 (u) = Lnor
12 (u) + O(uN−2) for

0 < u � 1. Recall that u + g(u) = ψ−1
2 ◦ ψ1(u) + O(uN ). Also by the

invariant property of hyperbolic distances, we have Lnor
12 (ψ1(u)) = L12(u)

and L∗nor
12 (ψ2(u)) = L∗

12(u). Therefore, we obtain the following:

L∗
12(u + g(u)) = L∗

12

(
ψ−1

2 ◦ ψ1(u)
)+ O(uN−1)

= L∗nor
12 (ψ1(u)) + O(uN−1)

= Lnor
12 (ψ1(u)) + O(uN−2)

= L12(u) + O(uN−2).

(4.35)

��
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Now, let F : M → M′ be a formal equivalence map with F := ( f̃ , g̃ ) =
(z, w) + (O(|w| + |z|2), O(w2)) and let the polynomial map F(Ñ+1) be the
Taylor polynomial of F of order Ñ , as before. Here Ñ = Ns + s − 1. Then
F(Ñ+1)(M) approximates M′ up to order Ñ . Applying Lemma 4.8, we get

L∗
12(g̃(Ñ+1)(u)) = L12(u) + O(uN−2). (4.36)

Here, as before, the polynomial g̃(Ñ+1)(u) is the Taylor polynomial of g̃(u)

at the origin of order Ñ . We mention again that if φ is a formal power series
in u

1
2s and h(u) is a formal power series in u without constant term, then

φ ◦ h gives a formal power series in u
1
2s . Now, since N is arbitrary, we get

from (4.36) the following:

L∗
12(g̃(u)) = L12(u) in the formal sense. (4.37)

Namely, the right hand side and left hand side of (4.37) have the same formal
power series expansion in u1/(2s) . (See Remark 4.5 (B) for the related notion.)

Since L12(u) is a well-defined function of u for 0 < u � 1, (4.37)
shows that L∗

12(g̃(u)) also gives a function in u even though we do not know
yet the convergence of g̃(u). This fact will be one of the crucial points for
our convergence argument.

Making use of (4.37), we next prove the following:

Lemma 4.10. Let F : M → M′ be a formal equivalence map such that

F(z, w) := ( f̃ (z, w), g̃(w)) = (z + f(z, w),w + g(w))

with f(z, w) = O(|w| + |z|2) and g(w) = O(w2). Then g̃ is convergent.

Proof of Lemma 4.10. We remark again that the reality property of g follows
from Lemma 2.1 (iii).

Notice that we already proved (see (4.37)) that

L∗
12(g̃(u)) = L12(u) in the formal sense.

Write u = V 2s. Define U = (g̃(u))1/(2s) = u1/(2s) + . . . , which has
a formal power series expansion in u

1
2s and thus can be regarded as a formal

power series in V .
Then

L∗
12(U

2s(V )) = L12(V 2s)

in the formal sense. Notice that L∗
12(t

∗2s) and L12(t2s) have convergent
power series expansions in t∗ and t, respectively. Moreover,

L∗
12(t

∗2s) = (ψ∗(t∗))s−2, L12(t
2s) = (ψ(t))s−2
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with ψ, ψ∗ invertible holomorphic map of (C, 0) to itself, and with ψ′(0) =
ψ∗′(0)(= |2(Cs−2,0 − Cs−2,1)| 1

s−2 ). Hence, we get

U = ψ∗−1 ◦ ψ(u
1
2s ) and g̃(u) = U2s = (ψ∗−1 ◦ ψ(u

1
2s ))2s.

The above are regarded as equalities as formal power series in u
1
2s . Notice

that (ψ∗−1 ◦ ψ(z
1
2s ))2s defines a multiple valued holomorphic function near

the origin. By the Puiseux expansion, we get

(ψ∗−1 ◦ ψ(u
1
2s ))2s =

∞∑
j=2s

cju
j

2s .

Here |cj | � R j for some R � 1. However, (ψ∗−1 ◦ ψ(u
1
2s ))2s = g̃ in the

formal sense and the latter has a formal power series expansion in u. We
conclude that cj = 0 if 2s does not divide j. This proves the convergence
of g̃(u). ��

We next prove the following theorem:

Theorem 4.11. Let M and M′ be real analytic Bishop surfaces near 0 de-
fined by (4.1) and (4.4), respectively. Suppose that F = ( f̃ , g̃ ) : (M, 0) →
(M′, 0) is a formal equivalence map. Then F is biholomorphic near 0.

Proof of Theorem 4.11. We can assume that f̃ = z+ f with wtnor( f ) ≥ 2 and
g̃ = w + g(w) with wtnor(g) ≥ 4. We can also assume that M and M′ have
been normalized to a certain high order, say, to the order of 2s2, such that
F = (z, w)+ O(|(z, w)|s+1). Then F0(M′) is still defined by an equation of
the form as in (4.4), where F0(z, w) = (z, (g̃ )−1(w)). By Lemma 4.10 and
by considering F0 ◦ F, F0(M′) instead of F and M′, we can assume, without
loss of generality, that g̃ = w. We will prove the convergence of f̃ by the
hyperbolic geometry associated to the surface discussed above.

By Proposition 4.4 (2), we first notice that f̃(Ñ+1)(Aj(u), u) = A∗
j (u) +

O(uN−1) for Ñ = Ns+s−1 > 2s−1. Here, f̃(Ñ+1) is the Taylor polynomial
of order Ñth in the Taylor expansion of f at 0, as defined before.

Write M̃ and M̃′ for the local holomorphic hull of M and M′ near the
origin, respectively. We next construct a holomorphic map from M̃ \ M to
M̃′ \ M′ as follows:

Let Ψ(·, r) be the biholomorphic map from ∆ to itself such that
Ψ(τ j(u), r) = τ∗

j (u) for j = 0, 1. Since τ j(u), τ∗
j (u) ∈ ∆, to see the exis-

tence and uniqueness of Ψ(·, r), it suffices for us to explain that
dhyp(τ0(u), τ1(u)) = dhyp(τ

∗
0 (u), τ∗

1 (u)). But, this readily follows from
(4.37) with g̃(u) = u; for once we know that (4.37) holds in the formal
sense and when both sides are well defined analytic functions in u1/(2s),
then (4.37) holds for 0 < u � 1 as functions in u.
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For a non-zero complex number z, its principal argument arg(z) is set
such that 0 ≤ arg(z) < 2π. Now, for τ ∈ ∆, 0 < r = √

u � 1 and
j ∈ [1, s − 1], write

θ j(r) = arg

{
τ j(u) − τ0(u)

1 − τ0(u)τ j(u)

1

u
s−2
2s

}
, θ∗

j (r) = arg

{
τ∗

j (u) − τ∗
0 (u)

1 − τ∗
0 (u)τ∗

j (u)

1

u
s−2
2s

}
.

Then, by (4.22) and (4.23), we get θ j(r) = (π
2 + (1+ j )π

s ) + O(u1/(2s)),
θ∗

j (r) = (π
2 + (1+ j )π

s ) + O(u1/(2s)), for 0 < u � 1, which also have
convergent power series expansion in u1/(2s). Write

Ψ1(τ, r) = τ − τ0(u)

1 − τ0(u)τ
, Ψ∗

1(τ, r) = τ − τ∗
0 (u)

1 − τ∗
0 (u)τ

,

R(τ, r) = e−iθ1(r)+iθ∗
1 (r)τ.

Then

Ψ(·, r) = Ψ∗−1
1 (·, r) ◦ R(·, r) ◦ Ψ1(·, r). (4.38)

It is clear that there is a real analytic function Ψext(τ, ν) in (τ, ν) ∈ ∆1+ε0 ×
(−ε0, ε0) with 0 < ε0 � 1 such that Ψ(τ, r) = Ψext(τ, u

1
2s ) for 0 < u =

r2 � 1. For simplicity of notation, we shall simply say, in what follows,
that Ψ(τ, r) has a real analytic extension in (τ, u1/(2s)) to ∆1+ε0 × (−ε0, ε0).

We notice that when f is a priori known to be convergent, we then have,
by the uniqueness property of the conformal transformation, that

f̃ (rσ(ξ, r), r2) = rσ∗(Ψ(ξ, r), r). (4.39)

The idea for the proof of the theorem is actually to find a way to make sense
of (4.39) even in the formal case.

Write, for each 0 < u � 1, Θj(u) ( j = 2, . . . , s − 1) for the (counter-
clockwise) angle from the hyperbolic geodesic (in ∆) connecting τ0(u)
to τ1(u) to the hyperbolic geodesic (in ∆) connecting τ0 to τ j at their
intersection τ0(u). As a function of u (or r = √

u) for 0 < u � 1, we
have the following, which can also be taken as the definition of Θj(u),
j = 2, . . . , s − 1:

Θj(u) = arg

{
τ j(u) − τ0(u)

τ1(u) − τ0(u)
· 1 − τ0(u)τ1(u)

1 − τ0(u)τ j(u)

}

= arg

{
Cs−2, j − Cs−2,0

Cs−2,1 − Cs−2,0

}
+ O(u1/(2s)).

(4.40)

Remark 4.12. We remark that Θj(u) = θ j(u) − θ1(u) = j−1
s π + O(u

1
2s )

for j ∈ [2, s − 1], as far as 0 < u � 1. A geometric way to see Θj(u) is
as follows: Find an automorphism χ of ∆ to transform τ0(u) to the origin
and τ1(u) to the positive real axis. Then the principal argument of χ(τ j(u))
is Θj(u).
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We can similarly define Θ∗
j for M′. Then the same argument, which we

used to show that L12(u) = L∗
12(u), can be used to prove that

Θj(u) = Θ∗
j(u) and L1( j+1)(u) = L∗

1( j+1)(u), 2 ≤ j ≤ s − 1 (4.41)

first in the formal sense and thus also hold as functions of u.
Now, we can use an automorphism of ∆ to map τ0 to the origin and τ1

to a point in the positive real line. Then we easily see that Θj and L1( j+1)

uniquely determine τ j(u).
Recall Ψ(·, τ) is an automorphism of ∆ and thus is an isometry with

respect to the Poincaré metric, that maps τ j(u) to τ∗
j (u) for j = 0, 1. Write

τ̃ j(u) = Ψ(τ j(u), r) ∈ ∆ for each j ∈ [2, s − 1]. Then the hyperbolic
distance between τ̃ j(u) and τ∗

0 (u) = Ψ(τ0(u), r) equals to that between
τ j(u) and τ0(u), that is L1( j+1)(u) and thus is also the same as L∗

1( j+1)(u).
Moreover, the angle between the hyperbolic geodesic (in ∆) connecting
τ∗

0 (u) to τ∗
1 (u) and the hyperbolic geodesic (in ∆) connecting τ∗

0 to τ̃ j at
their intersection τ∗

0 (u) equals, first, to Θj(u) and thus also equals to Θ∗
j(u).

Hence, we see that τ̃ j(u) = τ∗
j (u). Namely, we proved the following:

Lemma 4.13. Ψ(τ j(u), r) = τ∗
j (u) for j = 0, . . . , s − 1.

Now, for (z, u) ∈ M̃ \ M close to the origin, we define

f ∗(z, u) = √
uσ∗

(
Ψ

(
σ−1

(
z√
u

,
√

u

)
,
√

u

)
,
√

u

)
. (4.42)

Here, we recall that σ−1(·, r) denotes the inverse of σ(·, r). Then f ∗(z, u)
is analytic in M̃ \ M. Our crucial point is to show that f ∗(z, u) is actually
the same as f̃ (z, u) in a certain sense. For this purpose, we next prove the
following lemma:

Lemma 4.14. Let α be a non-negative integer. Let Ñ = Ns + s − 1 � 1.
Still write f̃(Ñ+1) for the polynomial consisting of terms of degree ≤ Ñ in
the Taylor expansion of f̃ at 0. Then we have

∣∣∣∣∣
∂α f ∗

∂zα
(0, u) − ∂α f̃(Ñ+1)

∂zα
(0, u)

∣∣∣∣∣ ≤ CuN′
, for 0 < u � 1. (4.43)

Here C is a constant independent of u, N ′ is an integer depending only
on N and α such that N ′ → ∞ when N → ∞. (Indeed, we can take
N ′ = [ 2

3 N] − α − 3.)

Proof of Lemma 4.14. Let S(u) be the hyperbolic polygon in D(u) with ver-
tices Aj(u)( j = 0, 1, . . . , s − 1), whose boundary consists of the geodesic
segment connecting Aj (u) to Aj+1(u) for j = 0, . . . , s −2 and the geodesic
segment connecting As−1(u) to A0(u). Let S∗(u) be the one corresponding
to M′. For any points P, Q ∈ ∆, we define the following curve, whose
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image is precisely the geodesic segment connecting P to Q:

γ∆
P,Q(t) =

t Q−P
1−Q P

+ P

1 + t P · Q−P
1−Q P

, 0 ≤ t ≤ 1. (4.44)

For a more general bounded simply connected domain D and P, Q ∈ D,
let σD be a conformal map from D to ∆ with σD(P) = 0. We then define
γ D

P,Q(t) to be σ−1
D (tσD(Q)) for 0 ≤ t ≤ 1.

γ D
P,Q(t) is independent of the choice of σD, by the fact that γ D

P,Q(t)
is sitting on the hyperbolic geodesic (with respect to the hyperbolic metric
in D) connecting P to Q with the hyperbolic distance from P to γ D

P,Q(t) being

ln
(1 − t) + (1 + t)el

(1 + t) + (1 − t)el
,

where l is the hyperbolic distance from P to Q (with respect to the Poincaré
metric over D). γ D

P,Q(t) coincides with (4.44) when D = ∆.
Next, we have

Lemma 4.15. For P ∈ ∂S(u) and 0 < u � 1, it holds that

f ∗(P, u) = f̃(Ñ+1)(P, u) + Error(P, u), (4.45)

where |Error(P, u)| ≤ Cu
2
3 N−2 with C a constant independent of P ∈ ∂S(u)

and u.

Proof of Lemma 4.15. This can be done by the same argument used in the
proof of Lemma 4.2 and by making use of the property that f̃ (Aj(u), u) =
A∗

j (u) (in the formal sense) as a formal power series in u1/s. In detail, we
argue as follows:

Let u > 0 be sufficiently small. Without loss of generality, we just
explain how to obtain (4.45) for points sitting on the hyperbolic geodesic
segment in D(u) connecting A0(u) to A1(u).

Write P(t, u) := γ
D(u)

A0(u),A1(u)(t) and P∗(t, u) := γ
D∗(u)

A∗
0(u),A∗

1(u)
(t) for t ∈

[0, 1]. Here, as before, D∗(u), A∗
0(u), A∗

1(u) denote, respectively, the simi-
larly defined objects (but associated with M′) as D(u), A0(u), A1(u).

Notice that F(Ñ+1)(M) approximates M′ up to order Ñ = Ns + s − 1,
where F(Ñ+1) = ( f̃(Ñ+1)(z, w),w) is defined as before. As in the proof
of Lemma 4.2, we have biholomorphic maps Φ1 and Φ2 satisfying the
normalization in Theorem 3.1, such that Φ1(M) = MN

nor, Φ2(M′) = M′N
nor.

Moreover, MN
nor and M′N

nor are defined by equations of the form as in
(4.11) and (4.12), respectively. Write (znor, wnor) = Φ1(z, w) and write
(z∗

nor, w
∗
nor) = Φ2(z′, w′). As in Lemma 4.2, we have

Φ� = (φ̃�, ψ̃�) = (z∗
nor(znor, wnor),w

∗
nor(wnor))

:= Φ2 ◦ F(Ñ+1) ◦ Φ−1
1 (znor, wnor)

= (znor, wnor) + O
(|(znor, wnor)|N

)
.

(4.46)
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Define Dnor(u) and D∗nor(u), associated with MN
nor and M′N

nor, respect-
ively, in a similar way as for D(u). Let rnor · σnor(·, rnor) be the conformal
map from ∆ to Dnor(unor), where σnor(·, rnor) has the same normalization
at the origin as that for σ(τ, r). (Notice that unor = r2

nor.) Then τnor
j (unor) is

defined such that Anor
j (unor) = rnor · σnor(τ

nor
j (unor), rnor). Similarly, we can

define σ∗
nor(τ, r∗

nor), τ∗nor
j .

Notice that Φ�(Mnor) approximates M∗nor to the order Ñ = Ns + s − 1
and the defining equation of M∗nor given in the form of (4.12) coincides
with that of Mnor given in the form of (4.11) up to order Ñ . As in (4.13),
(4.15) and (4.34), we obtain

A∗nor
j (u∗

nor) = Anor
j (unor) + O

(
uN−1

nor

)
and

τ∗nor
j (u∗

nor) − τnor
j (unor) = O

(
(unor)

N−2), as unor → 0+.
(4.47)

Write Pnor(t, unor) = γ
Dnor(u)

Anor
0 (unor),Anor

1 (unor)
(t) and

P∗
nor(t, u∗

nor) = γ
D∗nor(u)

A∗nor
0 (u∗

nor),A∗nor
1 (u∗

nor)
(t)

for t ∈ [0, 1].
Define, for |X|, |Y | < 1,

Ξ(t, X, Y ) := t Y−X
1−XY

+ X

1 + t X · Y−X
1−Y X

. (4.48)

And define for 0 < u � 1,

β∗
nor(t, u) := Ξ

(
t, τ∗nor

0 (u), τ∗nor
1 (u)

)
, βnor(t, u) := Ξ

(
t, τnor

0 (u), τnor
1 (u)

)
.

We then have, for a certain constant C, the following

|β∗
nor(t, u∗

nor)|, |β∗
nor(t, unor)|, |βnor(t, unor)| ≤ C|unor| s−2

2s

(→ 0, as unor → 0+).

Notice that ∣∣∣∣
∂Ξ

∂X
(t, X, Y )

∣∣∣∣ ,
∣∣∣∣
∂Ξ

∂Y
(t, X, Y )

∣∣∣∣
are uniformly bounded when |X|, |Y | < 1/2. Together with (4.47), we thus
obtain the following estimate:

β∗
nor(t, u∗

nor)

= (β∗
nor(t, u∗

nor) − βnor(t, unor)) + βnor(t, unor)

= βnor(t, unor) +
∫ 1

0

(
∂Ξ

∂X

(
t, ζτ∗nor

0 (u∗
nor) + (1 − ζ)τnor

0 (unor),

ζτ∗nor
1 (u∗

nor) + (1 − ζ)τnor
1 (unor)

)(
τ∗nor

0 (u∗
nor) − τnor

0 (unor)
))

dζ
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+
∫ 1

0

(
∂Ξ

∂Y

(
t, τ∗nor

0 (u∗
nor)ζ + (1 − ζ)τnor

0 (unor),

ζτ∗nor
1 (u∗

nor) + (1 − ζ)τnor
1 (unor)

)(
τ∗nor

1 (u∗
nor) − τnor

1 (unor)
))

dζ

= βnor(t, unor) + O(uN−2). (4.49)

Let χ(τ, τ0(u)) = τ−τ0(u)

1−τ0(u)τ
. Then χ−1(τ, τ0(u)) = τ+τ0(u)

1+τ0(u)τ
. Write

σDnor(unor)(z) := χ

(
(σnor)

−1

(
z√
unor

,
√

unor

)
, τnor

0 (unor)

)
,

which is a conformal map from Dnor(u) to ∆, mapping Anor
0 (unor) to the

origin. By the definition,

Pnor(t, unor) = (σDnor(unor)

)−1(
tσDnor(unor)

(
Anor

1 (unor)
))

= √
unorσnor (βnor(t, unor) ,

√
unor).

(4.50)

Similarly, we have

P∗
nor(t, u∗

nor) = √u∗
norσ

∗
nor(β

∗
nor(t, u∗

nor),
√

u∗
nor).

Applying Lemma 4.9 and (4.49), arguing as before, we arrive at the follow-
ing estimate:

|Pnor(t, unor) − P∗
nor(t, u∗

nor)|
≤ √

unor|σnor(βnor(t, unor),
√

unor) − σ∗
nor(β

∗
nor(t, u∗

nor),
√

u∗
nor)|

+ ∣∣O(uN−1
nor

)∣∣
≤ ∣∣O(uN−2

nor

)+ σnor(βnor(t, unor),
√

unor) − σ∗
nor(βnor(t, unor),

√
u∗

nor)
∣∣

≤ ∣∣O(uN−2
nor

)+ σnor(βnor(t, unor),
√

unor) − σ∗
nor(βnor(t, unor),

√
unor)

∣∣
≤ CuN−2

nor , (4.51)

for a certain constant C independent of t and for 0 < unor � 1.
By (4.46), we have

F(Ñ+1) ◦ Φ−1
1 (znor, wnor) = Φ−1

2

(
(znor, wnor) + O

(|(znor, wnor)|N
))

.

(4.52)

Letting (znor, wnor) = (Pnor(t, unor), unor) in (4.52) and making use of
(4.51), we have

F(Ñ+1) ◦ Φ−1
1 (Pnor(t, unor), unor)

= Φ−1
2 (P∗

nor(t, u∗
nor), u∗

nor) + O
(|(Pnor(t, unor), unor)|N + uN−2

nor

)
.
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Since we clearly have |Pnor(t, unor)| � (unor)
s−1

s (see (4.56), for instance)
and since P(t, u) = Φ−1

1 (Pnor(t, unor), unor),

P∗(t, u∗) = Φ−1
2 (P∗

nor(t, u∗
nor), u∗

nor),

we get

f̃(Ñ+1)(P(t, u), u) = P∗(t, u) + O(u
s−1

s N) + O(uN−2)

= f ∗(P(t, u), u) + O(u
2
3 N−2),

uniformly on t. This completes the proof of Lemma 4.15. ��
We next claim that for a certain constant C � 1, it holds that

if z ∈ ∂S(u), then C−1u
s−1

s ≤ |z| ≤ Cu
s−1

s ,

and thus

∣∣∣∣
1

z

∣∣∣∣ � u−1 for 0 < u � 1.
(4.53)

Assume the claim for the moment.
First, we mention that by the observation in Remark 4.7, one can easily

see that 0 ∈ S(u). (Indeed, this is equivalent to the fact that the origin is
inside the hyperbolic polygon S̃(u) with vertices τ0(u), . . . , τs−1(u) in ∆.
To see this, using the asymptotic expansion for τ j(u) in (4.22) and using the
geodesic segment formula in (4.44), one concludes easily that the boundary
of S̃(u) can be deformed, in ∆ \ {0}, to the circle centered at the origin
with radius s · (s − 1)

1−s
s u

s−1
2s . Hence, 0 is an interior point of the hyperbolic

polygon S̃(u).)
Now, by the Cauchy formula, it holds that

∂α f ∗

∂zα
(0, u) = α!

2π
√−1

∮
∂S(u)

f ∗(ζ, u)

ζα+1
dζ

and

∂α f̃(Ñ+1)

∂zα
(0, u) = α!

2π
√−1

∮
∂S(u)

f̃(Ñ+1)

ζα+1
dζ.

Hence, it follows that
∣∣∣∣∣
∂α f ∗

∂zα
(0, u) − ∂α f̃(Ñ+1)

∂zα
(0, u)

∣∣∣∣∣ ≤ Cu
2
3 N−α−3. (4.54)

Here, we used the obvious fact that the Euclidean length of ∂S(u) is bounded
by a constant. Hence, to complete the proof of Lemma 4.14, we need only
to explain (4.53). Assume that z is on the hyperbolic geodesic segment in
D(u) connecting Aj(u) to Aj+1(u) for a certain j ∈ [0, s − 1]. (Here, we
write As(u) = A0(u) and τs(u) = τ0(u).)
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Then, as in (4.50), it holds that

z = z(u, t) = √
uσ(Ξ(t, τ j(u), τ j+1(u)),

√
u)

= √
uσ

⎛
⎝

τ j+1(u)−τ j (u)

1−τ j (u)τ j+1(u)
t + τ j(u)

1 + τ j(u)
τ j+1(u)−τ j (u)

1−τ j (u)τ j+1(u)
t
,
√

u

⎞
⎠ (4.55)

for a certain t ∈ [0, 1]. By (4.21), (4.22), we get

|z(u, t)| = s · (s − 1)
1−s

s |1 + t(e
2π

√−1
s − 1)|u s−1

s + o(u
s−1

s ).

Since

min
0≤t≤1

|1 + t(e
2π

√−1
s − 1)| ≥

√
1

2

(
1 + cos

(
2π

s

))
> 0,

we get that

8u
s−1

s s · (s − 1)
1−s

s ≥ |z(u, t)| ≥
√

1

4

(
1 + cos

(
2π

s

))
u

s−1
s s · (s − 1)

1−s
s

(4.56)

for 0 < u � 1. This completes the proof of the claim and thus also the
proof of Lemma 4.14. ��

We continue our proof of Theorem 4.11 as follows. We notice that

(i) σ∗(ζ,
√

u) has a convergent power series expansion in (ζ,
√

u) near
(0, 0),

(ii) Ψ(τ,
√

u) has a convergent power series expansion in τ and u
1
2s and,

(iii) σ−1( z√
u
,
√

u) has a convergent power series expansion in ( z√
u
,
√

u),
too.

Write

Ψ(τ,
√

u) =
∞∑

α,β=0

aαβτ
αu

β
2s and Ψ̃(τ, Y1) =

∞∑
α,β=0

aαβτ
αYβ

1 .

Then

H(X, Y1, Y2) = Y2σ
∗(Ψ̃(σ−1(X, Y2), Y1

)
, Y2
)

(4.57)

is analytic in X, Y1, Y2 near 0. Write

H(X, Y1, Y2) =
∞∑

α,β,γ=0

bαβγ XαYβ

1 Y γ

2 . (4.58)
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Then there is an ε0 with 0 < ε0 � 1 such that when |X|, |Y1|, |Y2| < ε0,
(4.58) and the following power series in (4.59) converge uniformly for
|X|, |Y1|, |Y2| < ε0:

∂αH

∂Xα
(0, Y1, Y2) =

∞∑
β,γ=0

bαβγα!Yβ

1 Y γ

2 . (4.59)

Hence, we have

|bαβγ | ≤ C0 · Rα+β+γ for a certain positive number C0

and a certain R � 1.
(4.60)

Next, for the above ε0, choose (z, u) such that | z√
u
|<ε0 and 0 < u1/(2s) < ε0,

we get from (4.42), (4.57), (4.58) the following:

f ∗(z, u) = H

(
z√
u
, u

1
2s ,

√
u

)
=

∞∑
α,β,γ=0

bαβγ zαu
γ−α

2 + β
2s

and from (4.59), we get

u
α
2
∂α f ∗

∂zα
(0, u) = ∂αH

∂Xα
(0, u

1
2s ,

√
u) =

∞∑
β,γ=0

bαβγα!u γ
2 + β

2s .

(4.61)

Here, making use of the Cauchy estimates for bαβγ (4.60), the second series
in (4.61) can be easily shown to be uniformly convergent (in its variable u)
over [0, b] for b � 1. (Indeed, let R be as in (4.60). We can then simply
take b = ( 1

2R )2s.) We thus see that for any m > 1

∞∑
β
2s + γ

2 ≥m

bαβγα!u γ
2 + β

2s = O(um) as u → 0+.

On the other hand, for each fixed α ≥ 0, m � 1, ∂α f̃
∂zα (0, u) also has

a formal power series expansion in u and thus in u1/(2s). By Lemma 4.14,
for each fixed integer α ≥ 0 and Ñ = sN + s − 1, we have
∣∣∣∣
∂α f̃(Ñ+1)

∂zα
(0, u) −

∑

0≤ β
2s + γ

2 ≤m

bαβγα!u γ−α
2 + β

2s

∣∣∣∣

≤ C(uN′ + um− α
2 ), 0 < u � 1,

where C, N ′ are independent of u and N ′ → ∞ as N → ∞. We thus have,
for each fixed α ≥ 0, that

∂α f̃

∂zα
(0, u) =

∞∑
β,γ=0

bαβγα!u γ−α
2 + β

2s (4.62)
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in the formal sense as formal Laurent series in u
1
2s with only finitely many

negative power terms. (See Remark 4.5 (B) for the definition.) It thus follows
that if β′ = γ−α

2 + β

2s is not a non-negative integer, then the finite sum∑
β,γ ; γ−α

2 + β
2s =β′ bαβγ = 0. Hence for | z√

u
| < ε0 and 0 < u1/(2s) < ε0, we

have

f ∗(z, u) =
∞∑

α,β,γ=0

bαβγ zαuβ′ =
∞∑

α,β′=0

b′
αβ′zαuβ′

, (4.63)

where β′ = γ−α

2 + β

2s ∈ {0, 1, 2, . . . } and b′
αβ′ = ∑

β,γ ;β′= γ−α
2 + β

2s
bαβγ .

Now, by (4.60), we conclude that, for each fixed α and for any β, γ with
β′ = γ−α

2 + β

2s , it holds that |bαβγ | ≤ C0 · R2sα+2sβ′ ≤ C0 · (R2s)α+β′
. Thus,

|b′
αβ′ | ≤ C0 ·(2s(α + β′) + 1

)
R2sα+2sβ′ ≤ C0(1+ R)4s(α+β′). Since f ∗(z, u)

is real analytic over M̃, we conclude that f ∗(z, u) extends to a analytic
function in (z, u) near 0 through the power series in the right hand side of
(4.63). Since (4.62) holds for each α ≥ 0, we see that f̃ (z, u) = f ∗(z, u) in
the formal sense. Hence, f̃ (z, u) is also given by a convergent power series.
The proof of Theorem 4.11 is finally complete. ��
Proof of Theorems 1.5 and 1.2. Theorems 1.5 and 4.11 have the same
content. Theorem 1.2 follows from Theorems 1.1 and 1.5. ��

We finish off the paper by presenting two more corollaries:

Corollary 4.16. Let (M, 0) be a real analytic elliptic Bishop surface with
the Bishop invariant vanishing and the Moser invariant s < ∞ at 0. Then
any element in aut0(M) is a holomorphic automorphism of (M, 0).

Corollary 4.17. Let M be defined by a real analytic function of the follow-
ing form:

w = zz + zs + zs +
∞∑

k,l≥0; k+l>s
k−l=0 mod s

akl z
kzl.

Then M is biholomorphically equivalent to its normal form

w = zz + zs + zs.

Corollary 4.16 is an immediate consequence of Theorem 4.11. Corol-
lary 4.17 is a consequence of Corollary 1.4 (d) and (e); for (z, w) →
(eiθ z, w) is an automorphism of (M, 0) whenever eisθ = 1. Notice that
Corollary 1.4 (e) is an application of Theorem 1.1 and the convergence
result in Theorem 4.11.

Example 4.18. Let M be defined by w = zz + z3 + z3 + z6 + z6, which is in
the Moser pseudo-normal form. Then by Corollary 4.17 and Theorem 1.1,
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M can be transformed to the model surface defined by w = zz + z3 + z3

through a unique transformation of the form F = (z, w) + O(|(z, w)|2).
By Theorem 4.11, F is convergent. However, if just working on the formal
power series without using the hyperbolic geometry from the attached holo-
morphic disks, we do not see how to achieve a convergence proof for F.
Also, without using the characterization of the model by its automorphism
group, it does not seem to be easy to see that the normal form of M is
w = zz + z3 + z3.
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