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Let M ⊂ C
n+1 (n ≥ 2) be a real analytic submanifold defined by an equation of the form:

w = |z|2 + O(|z|3), where we use (z, w) ∈ C
n × C for the coordinates of C

n+1. We first derive

a pseudonormal form for M near 0. We then use it to prove that (M, 0) is holomorphically

equivalent to the quadric (M∞ : w = |z|2, 0) if and only if it can be formally transformed

to (M∞, 0). We also use it to give a necessary and sufficient condition when (M, 0) can be

formally flattened. Our main theorem generalizes a classical result of Moser for the case

of n = 1.

1 Introduction

Let M ⊂ C
n+1 (n ≥ 1) be a submanifold. For a point p ∈ M, we define CR(p) to be the CR

dimension of M at p, namely, the complex dimension of the space T (0,1)
p M. A point p ∈ M

is called a CR point if CR(q) = C R(p) for q(∈ M) ≈ p. Otherwise, p is called a CR singular

point of M. When M is a real hypersurface, points on M are always CR points.

The local equivalence problem in several complex variables is to find a complete

set of holomorphic invariants of M near a fixed point p ∈ M. The investigation normally

has quite different nature in terms of whether p is a CR point or a CR singular point.
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The CR case was first considered by Poincaré and Cartan. A complete set of invariants

in the strongly pseudoconvex hypersurface case was give by Chern–Moser in [5]. (See the

survey articles [1, 12, 25] for many references along these lines). The first place but also

the most important place where one encounters (stable) CR singular points is when the

real dimension of M is the same as the complex dimension of the ambient space where M

is embedded. This, in the literature, is called the critical-dimensional case. The study for

the CR singular points first appeared in the article of Bishop [4]. The systematic inves-

tigations on the precise holomorphic structure of M near a nondegenerate CR singular

point, in the critical-dimensional case, can be found in the work of Moser–Webster [22],

Moser [21], Gong [9, 10], Huang–Yin [16]. (The reader can find many references in [12] on

this matter.)

Recently, there appeared several articles, in which CR singular points in the

non-critical-dimensional case were considered (see [6–8, 24], to name a few). In [24],

among other things, Stolovitch introduced a set of generalized Bishop invariants for

a nondegenerate general CR singular point, and established some of the results of

Moser–Webster [22] to the case of dimRM > dimCC
n+1. Coffman in [7] studied a class

of nonstable CR singular points in the noncritical-dimensional case. In [8], Dolbeault–

Tomassini–Zaitsev introduced the concept of the elliptic flat CR singular points and

studied global filling property by complex analytic varieties for a class of compact sub-

manifold of real codimension two in C
n+1 with exactly two elliptic flat CR singular

points.

In this article, we study the local holomorphic structure of a manifold M near a

CR singular point p, for which we can find a local holomorphic change of coordinates

such that in the new coordinates system, p = 0 and M near p is defined by an equation of

the form: w = |z|2 + O(|z|3). Here we use (z, w) ∈ C
n × C for the coordinates of C

n+1. Such

a nondegenerate CR singular point has an intriguing nature that its quadric model has

the largest possible symmetry. We will first derive a pseudonormal form for M near p

(see Theorem 2.3). As expected, the holomorphic structure of M near p is influenced not

only by the nature of the CR singularity, but also by the fact that (M, p) partially inherits

the property of strongly pseudoconvex CR structures for n > 1. Unfortunately, as in the

case of n = 1 first considered by Moser [21], our pseudonormal form is still subject to

the simplification of the complicated infinite-dimensional formal automorphism group

of the quadric aut0(M∞), where M∞ is defined by w = |z|2. Thus, our pseudonormal form

cannot be used to solve the local equivalence problem. However, with the rapid iteration

procedure, we will show in Section 4 that if all higher-order terms in our pseudonormal
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Codimension Two CR Singular Submanifold 2791

form vanish, then M is biholomorphically equivalent to the model M∞. Namely, we have

the following:

Theorem 1.1. Let M ⊂ C
n+1 (n ≥ 1) be a real analytic submanifold defined by an equa-

tion of the form: w = |z|2 + O(|z|3). Then (M, 0) is holomorphically equivalent to the

quadric (M∞, 0) if and only if it can be formally transformed to (M∞, 0). �

One of the differences of our consideration here from the case of n = 1 is that a

generic (M, 0) can not be formally mapped into the Levi-flat hypersurface Im(w) = 0. As

another application of the pseudonormal form to be obtained in Section 2, we will give

a necessary and sufficient condition when (M, 0) can be formally flattened (see Theorem

3.5).

Theorem 1.1, in the case of n = 1, is due to Moser [21]. Indeed, our proof of

Theorem 1.1 uses the approach of Moser in [21] and Gong in [10], which is based on the

rapidly convergent power series method. Convergence results along the lines of Theorem

1.1 near other type of CR singular points can be found in the earlier articles of Gong

[9] and Stolovitch [24]. The articles of Coffman [6, 7] also contain the rapid convergence

arguments in the setting of other CR singular cases.

2 A Formal Pseudonormal Form

We use (z, w) = (z1, . . . , zn, w) for the coordinates in C
n+1 with n ≥ 2 in all that follows.

We first present some notation and definitions, which were already encountered in the

previous articles of Stolovitch [24] and Dolbeault–Tomassini–Zaitsev [8].

Let (M, 0) be a formal submanifold of codimenion two in C
n+1 with 0 ∈ M as a CR

singular point and T (1,0)
0 M = {w = 0}. Then, M can be defined by a formal equation of the

form

w = q(z, z) + o(|z|2), (2.1)

where q(z, z) is a quadratic polynomial in (z, z). We say that 0 ∈ M is a not-completely

degenerate CR singular point if there is no change of coordinates in which we can make

q ≡ 0. We further say that 0 is a not-completely degenerate flat CR singular point if we

can make q real-valued after a linear change of variables.

Assume that 0 is a not-completely degenerate flat CR singular point with q(z, z) =
A(z, z) + B(z, z) ∈ R for each z. Here A(z, z) = ∑n

α,β=1 aαβzαzβ , B(z, z) = 2Re(
∑n

α,β=1 bαβzazβ ).
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Here, aαβ = aβα and bαβ = bβα. Then the assumption that A(z, z) is definite is independent

of the choice of the coordinates system. Suppose that A is definite. Then after a linear

change of coordinates, we can assume that A(z, z) = |z|2. Write B0 for the complex sym-

metric matrix (bjk)1≤ j,k≤n. Making use of the classical Takagi theorem [Corollary 4.4.4,

p. 204, 17], there is an n × n unitary matrix U such that U · B0 · Ut = diag(λ1, . . . , λn) with

0 ≤ λ1 ≤ λ2 ≤ · · · λn. Next, applying the transformation (z, w) → (z · U , w) and noticing that

the quadratic form |z|2 is invariant under this transformation, we see that, in the new

coordinates, in the defining equation for (M, 0) as in (2.1), q takes the following special

form:

q(z, z) =
n∑

α=1

{|zα|2 + λα

(
z2

α + zα
2)}, (2.2)

where 0 ≤ λα < ∞ with 0 ≤ λ1 ≤ · · · ≤ λn < ∞. The set of non-negative numbers 0 ≤ λ1

≤ · · · ≤ λn is the quadratic invariant for (M, 0). In terms of Stolovitch, we call {λ1, . . . , λn}
the set of generalized Bishop invariants. When 0 ≤ λα < 1/2 for all α, we say that 0 is an

elliptic CR singular point of M. Note that 0 ∈ M is an elliptic CR singular point if and

only if in a certain defining equation of M of the form as in (2.1), we can make q(z, z) > 0

for z �= 0. (Hence the definition coincides with the notion of elliptic flat complex points

in [8].) When λα > 1/2 for all α, we say 0 ∈ M is a hyperbolic CR singular point. Note that,

in the case other than elliptic and hyperbolic situations (but still with a normalization

as in (2.2)), one can always find a two-dimensional linear subspace of C
n+1 whose inter-

section with M has a parabolic complex tangent at 0. For a more general related notion

on ellipticity and hyperbolicity, we refer the reader to the article of Stolovitch [24].

In terms of the terminology above, the manifold in Theorem 1.1 has vanish-

ing generalized Bishop invariants at the CR singular point. In [9, 24] , one finds the

study on the related convergence problem in the different situations, where, among

other nondegeneracy conditions, all the generalized Bishop invariants are assumed to

be nonzero. However, the method of studying CR singular points with vanishing Bishop

invariants is different from that used in the nonvanishing Bishop invariants case (see

[10, 16, 21, 22, 24]).

We now return to the manifolds with only vanishing generalized Bishop

invariants.

Let E (z, z̄) (respectively, f (z, w)) be a formal power series in (z, z̄) (respec-

tively, in (z, w)) without constant term. We say Ord
(
E (z, z̄)

) ≥ k if E (tz, t z̄) =
O(tk). Similarly, we say Ordwt

(
f (z, w)

) ≥ k if f (tz, t2w) = O(tk). Set the weight of z, z̄ to be
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Codimension Two CR Singular Submanifold 2793

1 and that of w to be 2. For a polynomial h(z, w), we define its weighted degree, denoted by

degwth, to be the degree counted in terms the weighted system just given. Write E (t )(z, z̄)

and f (t )(z, w) for the sum of monomials with weighted degree t in the Taylor expansion

of E and f at 0, respectively.

Write uk = ∑k
i=1 |zi|2 for 1 ≤ k ≤ n and vk = ∑k−1

i=1 |zi|2 − |zk|2 for 2 ≤ k ≤ n. We

also write u = un = |z|2. In what follows, we make a convention that the sum
∑l

p= j ap is

defined to be 0 if j > l.

We start with the following elementary algebraic lemma:

Lemma 2.1. SpanC{|z1|2, . . . , |zn|2} = Span{u, v2, . . . , vn}. Moreover, for each index i with

1 ≤ i ≤ n, |zi|2 can be uniquely expressed as the following linear combination of

u, v2, . . . , vn: ⎧⎪⎪⎨⎪⎪⎩
|z1|2 = 21−n

(
u +

n∑
h=2

2n−hvh
)
,

|zi|2 = 2−(n+1−i)

(
u +

n∑
h=i+1

2n−hvh − 2n−ivi

)
for 2 ≤ i ≤ n.

(2.3)

�

Proof of Lemma 2.1. By a direct computation, we have

21−n

(
u +

n∑
h=2

2n−hvh

)
= 21−n

(
n∑

i=1

|zi|2 +
n∑

h=2

2n−h

(
h−1∑
i=1

|zi|2 − |zh|2
))

= 21−n

⎛⎝(
1 +

n∑
h=2

2n−h

)
|z1|2 +

n−1∑
j=2

⎛⎝1 +
n∑

h= j+1

2n−h − 2n− j

⎞⎠ |zj|2
⎞⎠

= 21−n(2n−1|z1|2) = |z1|2;

2−(n+1−i)

(
u +

n∑
h=i+1

2n−hvh − 2n−ivi

)

= 2−(n+1−i)

⎛⎝ n∑
i=1

|zi|2 +
n∑

h=i+1

2n−h

⎛⎝h−1∑
j=1

|zj|2 − |zh|2
⎞⎠ − 2n−i

⎛⎝ i−1∑
j=1

|zj|2 − |zi|2
⎞⎠⎞⎠

= 2−(n+1−i)

⎛⎝ i−1∑
j=1

(
1 +

n∑
h=i+1

2n−h − 2n−i

)
|zj|2 +

(
1 +

n∑
h=i+1

2n−h + 2n−i

)
|zi|2

+
n∑

j=i+1

⎛⎝1 +
n∑

h= j+1

2n−h − 2n− j

⎞⎠ |zj|2
⎞⎠ = |zi|2, for 2 ≤ i ≤ n.
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Hence, we see that spanC{|z1|2, . . . , |zn|2} = spanC{u, v2, . . . , vn}. The uniqueness assertion

in the lemma now is obvious. �

For a formal (or holomorphic) transformation f (z, w) of (Cn, 0) to itself, we write

{
f (z, w) = (

f1(z, w), . . . , fn(z, w)
)

,

fk(z, w) = ∑
(i1,...,in) fk,(I )(w)zI , I = (i1, . . . , in) and zI = zi1

1 . . . zin
n .

(2.4)

Let E (z, z̄) be a formal power series with E (0) = 0. We next prove the following:

Lemma 2.2. E (z, z̄) has the following expansion:

E (z, z̄) =
∑

{ik · jk=0, k=1...,n}
E(I ,J)(u, v2, . . . , vn)zI zJ =

∑
{ik · jk=0, k=1,...,n}

E (K)
(I ,J)z

I zJuk1v2
k2 . . . vn

kn .

(2.5)

Here and in what follows, we write I = (i1, . . . , in), J = ( j1, . . . , jn), K = (k1, . . . , kn), zI =
zi1

1 . . . zin
n and zJ = zj1

1 . . . zjn
n . Moreover, the coefficients E (K)

(I ,J) are uniquely determined

by E . �

Proof of Lemma 2.2. Since {|zi|2}n
i=1 and {u, v2, . . . , vn} are the unique linear combina-

tions of each other by Lemma 2.1, one sees the existence of the expansion in (2.5). Also,

to complete the proof of Lemma 2.2, it suffices for us to prove the following statement:

∑
(I ,J,K)∈A(N,N∗)

E (K)
(I ,J)z

I zJ |z1|2k1 . . . |zn|2kn = 0 if and only if E (K)
(I ,J) ≡ 0.

Here, we define A(N, N∗) = {(I , J, K) ∈ Z
n × Z

n × Z
n, il · jl = 0, il , jl , kl ≥ 0 for 1 ≤ l ≤

n,
∑n

l=1(il + kl ) = N,
∑n

l=1( jl + kl ) = N∗}. Let P = (p1, . . . , pn) and Q = (q1, . . . , qn) with

p1, . . . , pn, q1, . . . , qn non-negative integers be such that |P | = N, |Q| = N∗. We de-

fine A(N, N∗; P , Q) = {(I , J, K) ∈ A(N, N∗) : il · jl = 0, il , jl , kl ≥ 0, il + kl = pl , jl + kl =
ql , for 1 ≤ l ≤ n}. Now, suppose that

∑
(I ,J,K)∈A(N,N∗) E (K)

(I ,J)z
I zJ |z1|2k1 . . . |zn|2kn = 0. We then

get

∑
(I ,J,K)∈A(N,N∗;P ,Q)

E (K)
(I ,J) ≡ 0 for each P , Q with |P | = N, |Q| = N∗.

We next claim that there is at most one element in A(N, N∗; P , Q). Indeed, (I , J, K) ∈
A(N, N∗; P , Q) if and only if il + kl = pl , jl + kl = ql , il · jl = 0, for 1 ≤ l ≤ n. Now, if il = 0,
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Codimension Two CR Singular Submanifold 2795

then kl = pl . Since jl = ql − pl ≥ 0, thus this happens only when ql ≥ pl . If jl = 0, then

kl = ql . Since il = pl − ql ≥ 0, we see that this can only happen when pl ≥ ql . Hence, we

see that il , jl are uniquely determined by pl and ql when pl �= ql . When pl = ql , it is easy

to see that il = jl = 0, kl = ql = pl . We thus conclude the argument for the claim. This

completes the proof of Lemma 2.2. �

We now let M ⊂ C
n+1 be a formal submanifold defined by

w = |z|2 + E (z, z̄), (2.6)

where E is a formal power series in (z, z̄) with Ord(E ) ≥ 3. We will subject (2.6) to the

following formal power series transformation in (z, w):

{
z′ = F = z + f (z, w), Ordwt ( f ) ≥ 2,

w′ = G = w + g(z, w), Ordwt (g) ≥ 3.
(2.7)

Write ej ∈ Z
n for the vector whose component is 1 at the jth position and is 0

elsewhere. We next give a formal pseudonormal form for (M, 0) in the following theorem.

Theorem 2.3. Given real valued formally power series hj(x) = O(x) in x ∈ R with

j = 2, . . . , n, there exits a unique formal transformation of the form in (2.7) with the

normalization

⎧⎪⎪⎪⎨⎪⎪⎪⎩
fi,(0)(w) = 0, 1 ≤ i ≤ n,

fi,(ej )(w) = 0 for 1 ≤ j < i ≤ n,

f1,(e1)(w) = 0, Im
(

fi,(ei )(w)
) = hi(w) for 2 ≤ i ≤ n and w real,

(2.8)

which transforms M to a formal submanifold defined in the following pseudonormal

form:

w′ = |z′|2 + ϕ(z′, z′). (2.9)

Here ϕ(z′, z′) = O(|z′|3) and in the following unique expansion:

ϕ(z′, z′) =
∑

ik · jk=0,1≤k≤n

ϕ(I ,J)(u, v2, . . . , vn)z′I z′J =
∑

ik · jk=0,1≤k≤n

ϕ(K)
(I ,J)z

′I z′Juk1v2
k2 . . . vn

kn , (2.10)
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we have, for any k ≥ 0, l ≥ 1 and τ ≥ 2, the following normalization condition:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ϕ
(τe1)
(0,0) = 0,

Re
(
ϕ

(le1+ei )
(0,0)

) = 0, for 2 ≤ i ≤ n,

ϕ
(le1)
(ei ,ej )

= 0, for i > j,

ϕ
(le1)
(I ,0) = ϕ

(le1)
(0,I ) = ϕ

(ke1+ej )
(0,I ) = 0, for |I | ≥ 1,

ϕ
(ke1)
(I ,eh) = 0, for h ≥ 1, |I | ≥ 2, ih = 0,

ϕ(0)
(0,I ) = ϕ(0)

(I ,0), |I | > 2.

(2.11)

�

Proof of Theorem 2.3. We need to prove that the following equation, with unknowns

in ( f , g, ϕ), can be uniquely solved under the normalization conditions in (2.8) and (2.11):

w + g(z, w) =
n∑

i=1
(zi + fi(z, w))(z̄i + fi(z, w)) + ϕ(z + f (z, w), z + f (z, w)), (2.12)

where w = |z|2 + E (z, z). Collecting terms of degree t in the above equation, we obtain for

each t ≥ 3 the following:

E (t )(z, z̄) + g(t )(z, u) = 2Re
(

n∑
i=1

(zi f (t−1)
i (z, u))

)
+ ϕ(t )(z, z̄) + I (t )(z, z̄), (2.13)

where I (t )(z, z̄) is a homogeneous polynomial of degree t depending only on g(σ ), f (σ−1),

ϕ(σ ) (and also E , hj) for σ < t . Then, by an induction argument, we need only to prove the

following proposition:

Proposition 2.4. Consider the following linear equation in ( f , g, ϕ):

�(z, z̄) + g(z, u) = 2Re

(
n∑

i=1

(
zi fi(z, u)

)) + ϕ(z, z̄), (2.14)

where ϕ satisfies the normalization in (2.11), f satisfies the normalization in (2.8), g(z, w) =
Owt (3), and � = O(|z|3). Here hj(x) = O(x) are given real-valued formal power series in

x ∈ R with j = 2, . . . , n. Then (2.14) has a unique solution ( f , g, ϕ) with Im( fj,(ej )(x)) = hj(x)

( j = 2, . . . , n). Moreover, g and ϕ are independent of the given formal real-valued functions

hj(x). �
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Codimension Two CR Singular Submanifold 2797

Assuming Proposition 2.4 for the moment, we start with (2.13) with t = 3, � = E (3).

We then get the unique solution ( f (2), g(3), ϕ(3)). Suppose that we have uniquely deter-

mined ( f (σ−1), g(σ ), ϕ(σ )) for σ < m. Now, consider (2.13) with σ = m. I (σ ) is now also

given. Hence, by Proposition 2.4, we can uniquely solve for f (m−1), g(m), ϕ(m). By an in-

duction argument, we obtain uniquely f (m−1), g(m), ϕ(m) for any m ≥ 3. Now, f (z, w) =∑∞
m=3 f (m−1)(z, w), g(z, w) = ∑∞

m=3 g(m)(z, w), ϕ(z, z) = ∑∞
m=3 ϕ(m)(z, z) are the unique solu-

tion to (2.11). Thus, to complete the proof of Theorem 2.3, it suffices for us to prove

Proposition 2.4. �

Proof of Proposition 2.4. Expand �, ϕ as in (2.5) and (2.10), respectively, and expand f ,

g as in (2.4). Then (2.14) takes the following form:∑
il · jl=0

�(I ,J)(u, v2, . . . , vn)zI zJ +
∑
|I |≥0

g(I )(u)zI −
∑

il · jl=0

ϕ(I ,J)(u, v2, . . . , vn)zI zJ

=
n∑

i=1

|zi|2 fi,(ei )(u) +
∑

1≤i≤n,|J|>0

|zi|2zJ fi,(ei+J)(u) +
∑

1≤i≤n,ki=0

ziz
K fi,(K)(u)

+
n∑

i=1

|zi|2 fi,(ei )(u) +
∑

1≤i≤n,|J|>0

|zi|2zJ fi,(ei+J)(u) +
∑

1≤i≤n,ki=0

ziz
K fi,(K)(u).

Comparing the coefficients of zI zJ with il · jl = 0, l = 1, . . . , n in the above equation, we

get the following system:

z0z0 : − g(0)(u) +
n∑

i=1

2Re
(|zi|2 fi,(ei )(u)

) + ϕ(0,0) = �(0,0), (2.15)

zj, zj :

⎧⎪⎪⎨⎪⎪⎩
−g(ej )(u) + fj,(0)(u) +

n∑
i=1

|zi|2 fi,(ei+ej )(u) + ϕ(ej ,0) = �(ej ,0)

fj,(0)(u) +
n∑

i=1
|zi|2 fi,(ei+ej )(u) + ϕ(0,ej ) = �(0,ej )

for 1 ≤ j ≤ n, (2.16)

zizj :

⎧⎨⎩ fj,(ei )(u) + fi,(ej )(u) + ϕ(ei ,ej ) = �(ei ,ej )

fj,(ei )(u) + fi,(ej )(u) + ϕ(ej ,ei ) = �(ej ,ei )

for i �= j, (2.17)

ziz
J , zJzi :

⎧⎨⎩ fi,(J)(u) + ϕ(ei ,J) = �(ei ,J)

fi,(J)(u) + ϕ(J,ei ) = �(J,ei )

for |J| ≥ 2, ji = 0, (2.18)

zI , zI :

⎧⎪⎪⎨⎪⎪⎩
−g(I )(u) +

n∑
i=1

(|zi|2 fi,(I+ei )(u)
) + ϕ(I ,0) = �(I ,0)

n∑
i=1

(|zi|2 fi,(I+ei )(u)
) + ϕ(0,I ) = �(0,I )

for |I | ≥ 2, (2.19)

zI zJ : ϕ(I ,J) = �(I ,J) for |I |, |J| ≥ 2, il · jl = 0, l = 1, . . . , n. (2.20)
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We first show how the system (2.19) is uniquely solved. Substituting (2.3) to (2.19)

and then collecting coefficients of the zeroth-order term, linear terms, and higher-order

terms in v2, . . . , vn, respectively, while taking u as a parameter, we obtain, by Lemma 2.2,

the following:

∑
k≥0

�
(ke1)
(I ,0) u

k = −g(I )(u) + 21−nuf1,(I+e1)(u) +
n∑

i=2

2i−1−nufi,(I+ei )(u) +
∑
k≥0

ϕ
(ke1)
(I ,0) u

k, (2.21)

∑
k≥0

�
(ke1+ej )
(I ,0) uk = 21− j f1,(I+e1)(u) +

j−1∑
i=2

2i−1− j fi,(I+ei )(u) − 2−1 fj,(I+ej )(u) +
∑
k≥0

ϕ
(ke1+ej )
(I ,0) uk, j ≥ 2,

(2.22)

ϕ
(k1e1+k2e2+···+knen)
(I ,0) = �

(k1e1+k2e2+···+knen)
(I ,0) , k2 + · · · + kn ≥ 2, (2.23)

∑
k≥0

�
(ke1)
(0,I ) u

k = 21−nu f1,(I+e1)(u) +
n∑

i=2

2i−1−nu fi,(I+ei )(u) +
∑
k≥0

ϕ
(ke1)
(0,I ) u

k, (2.24)

∑
k≥0

�
(ke1+ej )
(0,I ) uk = 21− j f1,(I+e1)(u) +

j−1∑
i=2

2i−1− j fi,(I+ei )(u) − 2−1 fj,(I+ej )(u) +
∑
k≥0

ϕ
(ke1+ej )
(0,I ) uk, j ≥ 2,

(2.25)

ϕ
(k1e1+k2e2+···+knen)
(0,I ) = �

(k1e1+k2e2+···+knen)
(0,I ) , k2 + · · · + kn ≥ 2. (2.26)

Using the normalization in ϕ and letting u = 0 in (2.21) and (2.24), we get �(0)
(I ,0) =

−g(I )(0) + ϕ(0)
(I ,0) and �(0)

(0,I ) = ϕ(0)
(0,I ). By the normalization ϕ(0)

(I ,0) = ϕ(0)
(0,I ), we get ϕ(0)

(I ,0) = �(0)
(0,I ) and

g(I )(0) = �(0)
(0,I ) − �(0)

(I ,0). (2.27)
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Summing up (2.25) with j = 2, . . . , n and then adding it to (2.24)/u, we get:

∑
k≥1

�
(ke1)
(0,I ) u

k−1 +
n∑

j=2

∑
k≥0

�
(ke1+ej )
(0,I ) uk =

⎛⎝21−n +
n∑

j=2

21− j

⎞⎠ f1,(I+e1)(u)

+
n∑

i=2

⎛⎝2i−1−n +
n∑

j=i+1

2i−1− j − 2−1

⎞⎠ fi,(I+ei )(u) +
∑
k≥1

ϕ
(ke1)
(0,I ) u

k−1 +
n∑

j=2

∑
k≥0

ϕ
(ke1+ej )
(0,I ) uk.

(2.28)

After an immediate simplification, (2.28) takes the form

∑
k≥1

�
(ke1)
(0,I ) u

k−1 +
n∑

j=2

∑
k≥0

�
(ke1+ej )
(0,I ) uk = f1,(I+e1)(u) +

∑
k≥1

ϕ
(ke1)
(0,I ) u

k−1 +
n∑

j=2

∑
k≥0

ϕ
(ke1+ej )
(0,I ) uk. (2.29)

By the the normalization condition ϕ
(le1)
(0,I ) = ϕ

(ke1+ej )
(0,I ) = 0 for k ≥ 0, l ≥ 1, we obtain

the following:

f1,(I+e1)(u) =
∑
k≥1

�
(ke1)
(0,I ) u

k−1 +
∑
k≥0

n∑
j=2

�
(ke1+ej )
(0,I ) uk. (2.30)

Back to Equation (2.25) with j = 2, we get

∑
k≥0

�
(ke1+e2)
(0,I ) uk = 2−1 f1,(I+e1)(u) − 2−1 f2,(I+e2)(u) +

∑
k≥0

ϕ
(ke1+e2)
(0,I ) uk.

By the normalization condition that ϕ
(ke1+e2)
(0,I ) = 0, we obtain

f2,(I+e2)(u) = f1,(I+e1)(u) − 2
∑
k≥0

�
(ke1+e2)
(0,I ) uk

=
∑
k≥1

�
(ke1)
(0,I ) u

k−1 +
∑
k≥0

(
n∑

i=3

�
(ke1+ei)

(0,I ) − �
(ke1+e2)
(0,I )

)
uk.

Next, we inductively prove

fj,(I+ej )(u) =
∑
k≥1

�
(ke1)
(0,I ) u

k−1 +
∑
k≥0

⎛⎝ n∑
i= j+1

�
(ke1+ei)

(0,I ) − �
(ke1+ej )
(0,I )

⎞⎠uk for 2 ≤ j ≤ n. (2.31)
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Suppose that (2.31) holds for i = 2, . . . , j − 1(< n). By (2.25) and the normalization condi-

tion ϕ
(ke1+ej )
(0,I ) = 0 for 2 ≤ j ≤ n and k ≥ 0, we get

fj,(I+ej )(u) = 22− j f1,(I+e1)(u) +
j−1∑
i=2

2i− j fi,(I+ei )(u) − 2
∑
k≥0

�
(ke1+ej )
(0,I ) uk

= 22− j

⎛⎝∑
k≥1

�
(ke1)
(0,I ) u

k−1 +
∑
k≥0

n∑
j=2

�
(ke1+ej )
(0,I ) uk

⎞⎠

+
j−1∑
i=2

2i− j

(∑
k≥1

�
(ke1)
(0,I ) u

k−1 +
∑
k≥0

(
n∑

h=i+1

�
(ke1+eh)

(0,I ) − �
(ke1+ei )
(0,I )

)
uk

)
− 2

∑
k≥0

�
(ke1+ej )
(0,I ) uk

=
(

22− j +
j−1∑
i=2

2i− j

)∑
k≥1

�
(ke1)
(0,I ) u

k−1 +
j−1∑
i=2

∑
k≥0

(
22− j +

i−1∑
h=2

2h− j − 2i− j

)
�

(ke1+ei )
(0,I ) uk

+
∑
k≥0

(
22− j +

j−1∑
h=2

2h− j − 2

)
�

(ke1+ej )
(0,I ) uk +

n∑
i= j+1

∑
k≥0

(
22− j +

j−1∑
h=2

2h− j

)
�

(ke1+ei )
(0,I ) uk

=
∑
k≥1

�
(ke1)
(0,I ) u

k−1 +
∑
k≥0

⎛⎝ n∑
i= j+1

�
(ke1+ei )
(0,I ) − �

(ke1+ej )
(0,I )

⎞⎠uk.

Subtracting the complex conjugate of (2.25) from (2.22) and making use of the

normalization condition ϕ
(ke1+ej )
(0,I ) = 0 for 2 ≤ j ≤ n and k ≥ 0, we obtain

ϕ
(ke1+ej )
(I ,0) = �

(ke1+ej )
(I ,0) − �

(ke1+ej )
(0,I ) , j ≥ 2, k ≥ 0. (2.32)

From (2.21), (2.24), and ϕ
(ke1)
(0,I ) = ϕ

(ke1)
(I ,0) = 0 for k ≥ 1 , we can similarly get

g(I )(u) =
∞∑

k=0

(
�

(ke1)
(0,I ) − �

(ke1)
(I ,0)

)
uk, |I | ≥ 2. (2.33)

Under the normalization condition fi,(0)(u) = 0, (2.16) can be solved exactly in the

same way as for (2.19). (The only difference is that the role of I is now played by ej.) We

obtain the following:

f1,(e1+ej )(u) =
∑
k≥1

�
(ke1)
(0,ej )

uk−1 +
∑
k≥0

n∑
i=2

�
(ke1+ei )
(0,ej )

uk, (2.34)
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fi,(ej+ei )(u) =
∑
k≥1

�
(ke1)
(0,ej )

uk−1 +
∑
k≥0

(
n∑

l=i+1

�
(ke1+el )
(0,ej )

− �
(ke1+ei )
(0,ej )

)
uk for 2 ≤ i ≤ n, (2.35)

g(ej )(u) =
∞∑

k=1

(
�

(ke1)
(0,ej )

− �
(ke1)
(ej ,0)

)
uk, (2.36)

ϕ
(ke1+el )
(ej ,0) = �

(ke1+el )
(ej ,0) − �

(ke1+el )
(0,ej )

, l ≥ 2, k ≥ 0, (2.37)

ϕ
(k1e1+k2e2+···+knen)
(ej ,0) = �

(k1e1+k2e2+···+knen)
(ej ,0) , k2 + · · · + kn ≥ 2, (2.38)

ϕ
(k1e1+k2e2+···+knen)
(0,ej )

= �
(k1e1+k2e2+···+knen)
(0,ej )

, k2 + · · · + kn ≥ 2. (2.39)

Now we proceed to solve (2.15). The procedure presented to solve (2.19) can now

be applied to get the following system, which is similar to (2.21) and (2.22):

∑
k≥2

�
(ke1)
(0,0) u

k = −g(0)(u) + 22−nuRe( f1,(e1)(u)) +
n∑

i=2

2i−nuRe( fi,(ei )(u)) +
∑
k≥2

ϕ
(ke1)
(0,0) u

k, (2.40)

∑
k≥1

�
(ke1+ej )
(0,0) uk =22− jRe( f1,(e1)(u)) +

j−1∑
i=2

2i− jRe( fi,(ei )(u)) − Re( fj,(ej )(u)) +
∑
k≥1

ϕ
(ke1+ej )
(0,0) uk, j ≥ 2.

(2.41)

By the normalization

f1,(e1) = 0, ϕ
(τe1)
(0,0) = Re

(
ϕ

(le1+ei )
(0,0)

) = 0 for τ ≥ 2, 2 ≤ i ≤ n, l ≥ 1, (2.42)

we can obtain the following solution:

g(0)(u) =
∑
k≥2

( − �
(ke1)
(0,0) u

k) − Re

⎛⎝ ∑
k≥1; j=2,...,n

�
(ke1+ej )
(0,0) uk+1

⎞⎠ , (2.43)

Re( fh,(eh))(u) = 1

2

∑
k≥1

⎛⎝−
h−1∑
j=2

Re
(
�

(ke1+ej )
(0,0) uk) − 2Re

(
�

(ke1+eh)
(0,0) uk)⎞⎠ , h ≥ 2, (2.44)

ϕ(0,0) = �(0,0) −
∑
k≥2

�
(ke1)
(0,0) u

k − Re

⎛⎝ ∑
k≥1, j=2,...,n

�
(ke1+ej )
(0,0) ukv j

⎞⎠ . (2.45)
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In fact, making use of (2.41) with j = 2, we get

Re
(

f1,(e1)
)
(u) − Re

(
f2,(e2)

)
(u) +

∑
k≥1

ϕ
(ke1+e2)
(0,0) uk =

∑
k≥1

�
(ke1+e2)
(0,0) uk.

Under the normalization in (2.42), we have

Re( f2,(e2))(u) = −Re
(
�

(ke1+e2)
(0,0)

)
uk, which satisfies (2.44) with h = 2.

Suppose that (2.44) holds for h = 2, . . . , j − 1. We can inductively solve Re( fj,(ej )) as follows:

Re( fj,(ej ))(u) =
j−1∑
i=2

2i− jRe( fi,(ei ))(u) −
∑
k≥1

Re
(
�

(ke1+ej )
(0,0) uk)

=
j−1∑
i=2

2i− j · 1

2

∑
k≥1

(
−

i−1∑
h=2

Re
(
�

(ke1+eh)
(0,0) uk) − 2Re

(
�

(ke1+ei )
(0,0) uk)) −

∑
k≥1

Re
(
�

(ke1+ej )
(0,0) uk)

= −
∑
k≥1

j−1∑
i=2

(
j−1∑

h=i+1

2h−1− j + 2 · 2i−1− j

)
· Re

(
�

(ke1+ei )
(0,0) uk) −

∑
k≥1

Re
(
�

(ke1+ej )
(0,0) uk)

= 1

2

∑
k≥1

(
−

j−1∑
h=2

Re
(
�

(ke1+eh)
(0,0) uk) − 2Re

(
�

(ke1+ej )
(0,0) uk)) .

This shows that (2.44) holds for 2 ≤ h ≤ n.

Back to (2.41), we get ϕ
(ke1+ej )
(0,0) = √−1Im(�

(ke1+ej )
(0,0) ). Summing up (2.41) with j =

2, . . . , n and adding it to (2.40)/u, we get

−g(0)(u) + 2Re
(

f1,(e1)
) +

∑
k≥2

ϕ
(ke1)
(0,0) u

k−1 +
∑
k≥1

n∑
j=2

ϕ
(ke1+ej )
(0,0) uk =

∑
k≥2

�
(ke1)
(0,0) u

k−1 +
∑
k≥1

n∑
j=2

�
(ke1+ej )
(0,0) uk.

This immediately gives (2.43).

From (2.17), we get

fi,(ej )(u) = ∑∞
k=1 �

(ke1)
(ej ,ei )

uk, i < j, (2.46)

ϕ
ke1
(ei ,ej )

= �
(ke1)
(ei ,ej )

− �
(ke1)
(ej ,ei )

, i < j, k ≥ 1, (2.47)

ϕ
(k1e1+k2e2+···+knen)
(ei ,ej )

= �
(k1e1+k2e2+···+knen)
(ei ,ej )

, for k2 + · · · + kn ≥ 1. (2.48)
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From (2.18), we obtain

fi,(J)(u) = ∑
k≥0 �

(ke1)
(J,ei )

uk, 1 ≤ i ≤ n, (2.49)

ϕ
(ke1)
(ei ,J) = �

(ke1)
(ei ,J) − �

(ke1)
(J,ei )

, 1 ≤ i ≤ n, k ≥ 0, (2.50)

ϕ
(k1e1+k2e2+···+knen)
(J,ei )

= �
(k1e1+k2e2+···+knen)
(J,ei )

for k2 + · · · + kn ≥ 1, (2.51)

ϕ
(k1e1+k2e2+···+knen)
(ei ,J) = �

(k1e1+k2e2+···+knen)
(ei ,J) for k2 + · · · + kn ≥ 1, (2.52)

where |J| ≥ 2 and ji = 0.

Summarizing the solutions just obtained, we have the following formula (one can

also directly verify that they are indeed the solutions of (2.14) with the normalization

conditions given in (2.8) and (2.11)):

F1(z, w) = z1 + f1(z, w) = z1 +
∑

k≥0, j1=0,|J|≥1

zJ�
(ke1)
(J,e1)w

k +
∑
|I |≥1

zI+e1 S(1)
I ,

F j(z, w) = zj + fj(z, w) = zj + 1

2
zj

∑
k≥1

(
−

j−1∑
l=2

Re
(
�

(ke1+el )
(0,0)

) − 2Re
(
�

(ke1+ej )
(0,0)

))
wk

+√−1zjh j(w) +
∑

k≥1,i> j

zi�
(ke1)
(ei ,ej )

wk +
∑

k≥0,i j=0,|I |≥2

zI �
(ke1)
(I ,ej )

wk +
∑
|I |≥1

zI+ej S( j)
I ,

G(z, w) = w + g(z, w) = w +
⎛⎝−

∑
k≥2

�
(ke1)
(0,0) w

k − Re

⎛⎝ ∑
k≥1, j=2,...,n

�
(ke1+ej )
(0,0)

⎞⎠wk+1

⎞⎠
+

∑
k≥0,|I |≥1

zI wk(�(ke1)
(0,I ) − �

(ke1)
(I ,0)

)
,

ϕ(z, z) = �(z, z̄) + g(z, u) − 2Re

(
n∑

i=1

(
zi fi(z, u)

))
, (2.53)

where 2 ≤ j ≤ n and

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

S(1)
I =

∑
k≥1

�
(ke1)
(0,I ) w

k−1 +
∑
k≥0

n∑
i=2

�
(ke1+ei )
(0,I ) wk,

S( j)
I =

∑
k≥1

�
(ke1)
(0,I ) w

k−1 +
⎛⎝∑

k≥0

n∑
i= j+1

�
(ke1+ei)

(0,I ) wk

⎞⎠ −
∑
k≥0

�
(ke1+ej )
(0,I ) wk, for 2 ≤ j ≤ n.

(2.54)

This completes the proof of Proposition 2.4 and thus the proof of Theorem 2.3. �
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Before proceeding further, we give the following definition:

Definition 2.5.

(1) We say a formal transformation H = (F , G) in (2.7) is well normalized or

satisfies the good normalization condition if H = (F , G) is of the form as in

(2.8) with hj = 0 for 2 ≤ j ≤ n.

(2) Let (M, 0) be as in (2.6). We say that (M∗, 0) is a formal pseudonormal form for

(M, 0) if (M∗, 0) is formally equivalent to (M, 0) and M∗ is defined by w = |z|2 + ϕ

with ϕ satisfying the normalization as in (2.11).

(3) We say that a formal submanifold (M, 0) ⊂ (Cn+1, 0) of real dimension 2n

defined by (2.6) can be formally flattened near 0 if there is a formal change of

coordinates (z′, w′) = H (z, w) with H (0) = 0 such that in the new coordinates,

(M, 0) is defined by a formal function of the form w′ = E∗(z′, z′) with E∗(z′, z′) =
E∗(z′, z′).

(4) We say a pseudonormal form of (M, 0) given by w = |z|2 + ϕ(z, z) with ϕ satis-

fying the normalizations in (2.11) is a flat pseudonormal form if ϕ is formally

real-valued. �

We now state an immediate corollary of Theorem 2.3, which will be used later:

Corollary 2.6.

(1) Let (M, 0) be as in (2.6). Then there exists a unique formal transformation

satisfying good normalization condition, that transforms M into a formal

pseudonormal form.

(2) A well-normalized formal transformation, which transforms a formal

pseudonormal form to another formal pseudonormal form, must be the

identity.

(3) Let (M, 0) be as in (2.6) with E (z, z) = E (z, z) and let G(z, w), ϕ be as in Theorem

2.3. Then g(z, w) = g(w) with G(w) = G(w) and ϕ is also real valued. �

Proof of Corollary 2.6. (1) is an immediate consequence of Theorem 2.3. To prove (2),

note that in (2.13), we have I (3) = 0, then by (2.53), we get ( f (2), g(3)) = 0 under the good

normalization condition (in (2.8) with hj = 0). By an inductive process, we can show that

I (t ) = 0 and ( f (t−1), g(t )) = 0 for all t ≥ 3. Hence the transformation must be the identity.

Now we turn to the proof of (3). In the normalized map H (z, w) = (F (z, w), G(z, w))

transforming M into its pseudonormal form in Theorem 2.3, the w-component G(z, w) can
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be inductively proved to be only a function in w and to be formally real-valued for real

w, by the formula in (2.53). This is due to the fact that the � in (2.53) obtained from each

induction stage in the process of the proof of Theorem 2.3 is formally real-valued. Hence,

we can conclude, by the last equation in (2.53), that the ϕ in the pseudonormalization of

M obtained in Theorem 2.3 is also formally real-valued. �

Remark 2.7. (A) The pseudonormal form obtained in Theorem 2.3 contains information

reflecting both the singular CR structure and partial strongly pseudoconvex CR structure

at the point under study. For instance, the following submanifold in C
3 is given in a

pseudonormal form:

M : w = |z|2 + 2Re
∑

j1+ j2≥3

(
aj1 j2 zj1

1 zj2
2

) +
∑

j1≥2, j2≥2

bj1 j2 zj1
1 z2

j2 . (2.55)

Here the harmonic terms Re
∑

j1+ j2≥3(aj1 j2 zj1
1 zj2

2 ) are presented due to the nature of CR

singularity of M at 0, which may be compared with the Moser pseudonormal form in

[21] in the pure CR singularity setting. Typical mixed terms like
∑

j1≥2, j2≥2 bj1 j2 zj1
1 z2

j2

are associated with the partial CR structure near 0, which can be compared with the

Chern–Moser normal form in the pure CR setting [5].

(B) The phenomenon in Corollary 2.6 (3) is different from the two-dimensional

case. In the two-dimensional case, (M, 0) can always be flattened. This is no longer true

for a general M when n + 1 > 2. Indeed, we will see in Theorem 3.5 that M can be

formally flattened if and only if its pseudonormal form is given by a formal real-valued

function. Also, note that pseudonormal forms of (M, 0) are far from being unique for a

given (M, 0). �

3 Normalization of Holomorphic Maps by Automorphisms of the Quadric and a
Formal Flattening Theorem

In this section, we first compute the isotropic automorphism group of the model space

M∞ ⊂ C
n+1 defined by the equation w = ∑n

i=1 |zi|2. Write Aut0(M∞) for the set of biholo-

morphic self-maps of (M∞, 0). We have the following:

Proposition 3.1. Aut0(M∞) consists of the transformations given in the following (3.1)

or (3.2): ⎧⎨⎩ z′ = b(w)
wa(w)− 〈z,ā(w)〉

〈a(w),ā(w)〉 a(w)+√
1−wa(w)ā(w)

(
z− 〈z,ā(w)〉

〈a(w),ā(w)〉 a(w)
)

1−〈z,ā(w)〉 U (w)

w′ = b(w)b̄(w)w
(3.1)
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(z′, w′) = (b(w)zU (w), b(w)b̄(w)w), (3.2)

where a = (a1, · · · , an),
∑n

j=1 aj(0)ā j(0) < 1, 〈z, ā〉 = ∑n
i=1 āizi, b(0) �= 0, a(0) �= 0, U (Re(w))

is a unitary matrix and a(w), b(w), U (w) are holomorphic in w near 0. �

Proof of Proposition 3.1. Write w = x + √−1y. Let (F , G) ∈ Aut0(M∞). Then Im(G(z, |
z|2)) ≡ 0 for z ≈ 0. Since M∞ bounds a family of balls near 0 defined by

Br = {(z, w) ∈ C
n+1 : w = x + √−1y, y = 0, x = r2 ≥ |z2|}.

We see that Im(G(z, x)) ≡ 0 for z ≈ 0 and x(∈ R) ≈ 0. Therefore, G(z, w) = G(w) = cw + o(w)

(c > 0) is independent of z and takes real value when w = x is real. Now F (z, r2) must

be a biholomorphic map from |z|2 < r2 to |z|2 < G(r2) for any sufficiently small positive

r. Using the explicit expression for automorphisms of the unit ball (see [23]), we obtain

either:

F (z, r2) =
√

G(r2)
a(r) − 〈 z

r ,ā(r)〉
〈a(r),ā(r)〉a(r) + v

(
z
r − 〈 z

r ,ā(r)〉
〈a(r),ā(r)〉a(r)

)
1 − 〈 z

r , ā(r)〉 U (r), (3.3)

where U (r) is a unitary matrix and v = √
1 − a(r)ā(r), a(r) �= 0; or we have

F (z, r2) =
√

G(r2)
(z

r

)
U (r). (3.4)

Write G(x) = xb(x)b(x) with b(0) �= 0 and b(w) holomorphic in w. In the case of (3.4), F (z, x) =
b(x)zU (r)e

√−1θ (x) is real analytic, where θ (x) is real-valued real analytic function in x.

Hence, b(x)U (r)e
√−1θ (x) is the Jacobian matrix of F in z. Since both e

√−1θ (x) and b(x)( �= 0)

are real analytic for x ≈ 0, we conclude that U (r) is real analytic in x. Still, write U (x) for

U (r)eiθ (x). Then, U (w) is also holomorphic in w. We see the proof of Proposition 3.1 in the

case of (3.2).

Suppose that a �= 0. Still, write G(w) = wb(w)b(w) with b(0) �= 0. We have

F (z, r2) = b(r2)
ra(r) − 〈z,ā(r)〉

〈a(r),ā(r)〉a(r) + v
(

z − 〈z,ā(w)〉
〈a(r),ā(r)〉a(r)

)
1 − 〈

z, ā(r)
r

〉 eiθU (r).

Since f (z, w) is holomorphic in (z, w) and f (0, w) = b(w)
√

wa(
√

w)U ∗(
√

w) with U ∗ = eiθU ,

we see that
√

wa(
√

w)U ∗(
√

w) is holomorphic in w. In particular, |a(
√

w)|2 is real analytic
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in w. Moreover,

∂F

∂zi
(0, w) = b(w)

( |a|2 − v − 1

|a|2 āia + vei

)
U ∗(

√
w)

is holomorphic in w. Since
√

wa(
√

w)U ∗(
√

w) is real analytic in w, we see that

( |a|2 − v − 1

|a|2 āia + vei

)
U ∗(

√
w)U ∗(

√
w)

t
a(

√
w)

t
r = ((|a|2 − v − 1) + v)rāi

is real analytic in w, too. Here (·)t denotes the matrix transpose. Since (|a|2 − v − 1) + v =
|a|2 − 1 is real analytic, we conclude that both rai and ai/r are real analytic in w. Since

both
√

wa(
√

w)U ∗(
√

w) and rai are real analytic, we see that U ∗(
√

w) is real analytic in w.

Still, write a for a/r. We further obtain the following with the given properties stated in

the proposition:

⎧⎨⎩ F (z, w) = b(w)
wa(w)− 〈z,ā(w)〉

〈a(w),ā(w)〉 a(w)+√
1−wa(w)ā(w)(z− 〈z,ā(w)〉

〈a(w),ā(w)〉 a(w))

1−〈z,ā(w)〉 U ∗(w)

G(w) = b(w)b̄(w)w.
.

This completes the proof of Proposition 3.1. �

Remark 3.2. In Proposition 3.1, if we let a(w), b(w), U (w) be formal power series in w

with a(0), b(0) �= 0 and 〈a(0), a(0)〉 < 1, U (x) · U (x)
t = I , then (3.1) and (3.2) give formal

automorphisms of M∞, which are not convergent. Write the set of automorphisms ob-

tained in this way as aut0(M∞). One may prove that aut0(M∞) consists of all the formal

automorphisms of (M∞, 0). �

We now suppose that H = (F , G) is a formal equivalence self-map of (Cn+1, 0),

mapping a formal submanifold of the form w = |z|2 + O(|z|3) to a submanifold of the

form w = |z|2 + O(|z|3). The following lemma shows that we can always normalize H

by composing it from the left with an element from aut0(M∞) to get a well-normalized

mapping. This fact will be used in the proof of Theorem 1.1. In what follows, we set

v(g, a) = √
1 − g · a(g) · ā(g).

Lemma 3.3. There exists a unique automorphism T ∈ aut0(M∞) such that T ◦ H satisfies

the good normalization condition (as in (2.8) with hj = 0). When H is biholomorphic,

T ∈ Aut0(M∞). �
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Proof of Lemma 3.3. First, it is easy to see that by composing an automorphism of

the form w′ = |c|2w, z′ = czU , we can assume that F = z + Owt (2) and G = w + Owt (3) (see

[12]). Here c is a nonzero constant and U is a certain n × n-unitary matrix.

Let b(w) = 1, aj = α j(w), a1 = · · · = aj−1 = aj+1 = · · · = an = 0, and U = I in (3.1).

We get the following automorphism of M∞:

Tj =
(

v(w, α j)z1

1 − ᾱ jz j
, · · · ,

v(w, α j)zj−1

1 − ᾱ jz j
,

zj − wα j

1 − ᾱ jz j
,
v(w, α j)zj+1

1 − ᾱ jz j
, · · · ,

v(w, α j)zn

1 − ᾱ jz j
, w

)
.

Write

{
Hj = (

( j) F ,( j) G
) = Tj ◦ Tj−1 ◦ · · · ◦ T1 ◦ H , H0 = H ;

α j = ( j−1) F j,(0)(u)

( j−1)G (0)(u) ◦ (( j−1)G (0)(u)
)−1

.
(3.5)

Then a direct computation shows that (( j) F )i,(0)(u) = 0 for 1 ≤ i ≤ j. In particular, we have

((n) F )i,(0)(u) = 0 for all 1 ≤ i ≤ n.

Still, write H for Hn. Next, for i < j, let b(w) = 1, a = 0, and let

Ui
j =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

I 0 0 0 0

0 cos(θ i
j) 0 − sin(θ i

j) 0

0 0 I 0 0

0 sin(θ i
j) 0 cos(θ i

j) 0

0 0 0 0 I

⎞⎟⎟⎟⎟⎟⎟⎟⎠

in (3.1), where cos(θ i
j) is at the ith row and the jth column. Then we get an automorphism

Ti
j . Set

Hi
j = (i

j F ,ij G
) = Ti

j ◦ · · · ◦ Ti
i+1 ◦ Ti−1

n ◦ · · · Ti−1
i ◦ · · · ◦ T1

n ◦ · · · ◦ T1
2 ◦ H ,

θ i
j =

⎧⎪⎨⎪⎩
tan−1

(
(i−1
n F ) j,(ei )

(i−1
n F )i,(ei )

)
◦ (i−1

n G (0)(w)
)−1

, i = j − 1,

tan−1
(

(ij−1 F ) j,(ei )

(ij−1 F )i,(ei )

)
◦
(

i
j−1G (0)(w)

)−1
, 1 ≤ i < j − 1.

(3.6)

Then we can inductively prove that Hi
j satisfies

(i
j F

)
(0) = 0 ,

(i
j F

)
k,(el )

= 0 for l = i, i + 1 ≤ k ≤ j or l < i, l + 1 ≤ k ≤ n.
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Codimension Two CR Singular Submanifold 2809

In particular, we see that Hn−1
n satisfies (n−1

n F )(0) = 0 , (n−1
n F )i,(ej ) = 0 for 1 ≤ j < i ≤ n.

Still, write H for Hn−1
n and set H ′ = T ◦ H = (F ′, G ′) with

T = (d(w)z, d(w)d̄(w)w), d = 1

F1,(e1) (w)
◦ (G (0)(w)

)−1
.

Then H ′ satisfies

(F ′)(0) = 0, (F ′)1,(e1) = 1, (F ′)i,(ej ) = 0 for 1 ≤ j < i ≤ n.

At last, a composition from the left with the rotation map as follows:

T̂ = (z1, β2z2, · · · , βnzn, w), βi = (F̄ ′)i,(ei )(w)√
(F ′)i,(ei )(w) · (F̄ ′)i,(ei )(w)

◦ (G ′
(0)(w)

)−1

makes H ′ satisfy the good normalization condition. This proves the existence part of the

lemma.

Next, suppose that both H = (F , G) = (z + Owt (2), w + Owt (3)) and Ĥ = (F̂ , Ĝ) =
T ◦ H = (z + Owt (2), w + Owt (3)) satisfy the good normalization condition. Here T is an

automorphism of M∞. Then T must be of the form in (3.2), for T (0, w) = 0. Hence,

T = (b(w)zU (w), b(w)b̄(w)w).

By the good normalization condition (2.8) on H , Ĥ , we have

⎛⎜⎜⎜⎜⎜⎜⎝
1 0 . . . 0

F̂1,(e2) F̂2,(e2)
. . .

...
...

...
. . . 0

F̂1,(en) F̂2,(en) . . . F̂n,(en)

⎞⎟⎟⎟⎟⎟⎟⎠ = b
(
G (0)(w)

)
⎛⎜⎜⎜⎜⎜⎜⎝

1 0 · 0

F1,(e2) F2,(e2)
. . .

...
...

...
. . . 0

F1,(en) F2,(en) . . . Fn,(en)

⎞⎟⎟⎟⎟⎟⎟⎠U (G0(w)) (3.7)

with U (x) unitary and Im(F̂i,(ei )(0, u)) = Im(Fi,(ei )(0, u)) = 0. Considering the norm of the first

row of the right-hand side, we get b(G (0)(w)) · b(G (0)(w)) = 1 in case G (0)(w) = G (0)(w). Since
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G0(w) = w + o(w), this implies that b(w)b(w) ≡ 1 and thus T = (b(w)zU (w), w). Write

b(w)U (w) = Ũ (w) =

⎛⎜⎜⎝
u11 . . . unn

...
. . .

...

un1 . . . unn

⎞⎟⎟⎠ .

We note that Ũ is a lower triangular matrix and is unitary when w = x. Thus we have

uii(w)uii(w) = 1 and uij = 0 for i �= j. Note that

u11 ≡ 1, F̂i,(ei )(w) = uii(w) · Fi,(ei )(w) for 2 ≤ i ≤ n.

Since F̂i,(ei )(x), Fi,(ei )(x) = 1 + O(x) are real, we get uii(x) = 1. This proves the uniqueness

part of the lemma. �

Lemma 3.4. Suppose that H with H (0) = 0 is an equivalence map from w = |z|2 + ϕ(z, z̄)

to w′ = |z′|2 + ϕ′(z′, z̄′). Here ϕ and ϕ′ are normalized as in (2.11). Let s, s′ be the lowest

order of vanishing in ϕ and ϕ′, respectively. Then s = s′. �

Proof of Lemma 3.4. We seek for a contradiction if s �= s′. Assume, for instance, that

s < s′. Let T be an automorphism of M∞ with T ◦ H being well normalized. Suppose that T

transforms w′ = |z′|2 + ϕ′(z′, z̄′) to w′′ = |z′′|2 + ϕ′′(z′′, z′′) with s′′ the lowest vanishing order

for ϕ′′. (Note that ϕ′′ does not necessarily satisfy the normalization (2.11).) We claim that

s′ = s′′. To see this, we assume, without loss of generality, that s′, s′′ �= ∞. Since T is an

automorphism of M∞, by Proposition 3.1, we can write

(z′′, w′′) = (p(z′, w′), q(w′)) = (z′B + O(|z′|2 + |w′|), dw′ + O(|w′|2))

with B ∈ GL(n, C), d �= 0 and q(u′) = |p(z′, u′)|2. Here u′ = |z′|2. Note that

p(z′, w′) = p(z′, u′) + O(|z|s′
), q(w′) = q(u′) + d · ϕ′(s′)(z′, z′) + O(|z′|s′+1).

This immediately gives the following:

q(w′) = |z′′|2 + ϕ′′(z′′, z′′)

= |p(z′, u′) + O(|z′|s′
)|2 + ϕ′′(s′′)(z′B, z′B) + O(|z′|s′′+1)

= |p(z′, u′)|2 + O(|z′|s′+1) + ϕ′′(s′′)(z′B, z′B) + O(|z′|s′′+1).
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Hence

d · ϕ′(s′)(z′, z′) + O(|z′|s′+1) = q(w′) − q(u′) = O(|z′|s′+1) + ϕ′′(s′′)(z′B, z′B) + O(|z′|s′′+1).

This shows that s′ = s′′.

Now, T ◦ H transforms w = |z|2 + ϕ to w′′ = |z′′|2 + ϕ′′ with T ◦ H being well nor-

malized and ϕ being normalized as in (2.11). Also, s < s′′. We see that T ◦ H transforms

w = |z|2 + ϕ(s) to w = |z|2, moduling O(|(z1, . . . , zn)|s+1). This will create a contradiction to

the uniqueness part of Proposition 2.4 with hj = 0, when we apply an induction argu-

ment. The proof of Lemma 3.4 is complete. �

An immediate application of Lemma 3.3 and Corollary 2.6 is that if (M, 0) has a

flat pseudonormal form, then all of its other pseudonormal forms are flat. Indeed, we

will show in the following that any pseudonormal form of (M, 0) is flat if (M, 0) can be

flattened:

Suppose that (M, 0) can be flattened. For a given pseudonormal form of (M, 0),

there is a formal equivalence map H mapping it into Imw = 0. Now, by Lemma 3.3,

we can compose H with an element T of aut0(M∞) such that T ◦ H := (FT , GT ) satisfies

the good normalization condition in (2.8) with hj = 0. Next, since T maps any flattened

submanifold to a flattened submanifold, there is a formal transformation H∗ := (F∗, G∗)

satisfying the normalizations in (2.8) with hj to be determined later such that H∗ ◦ T ◦
H := (FH , G H ) maps the pseudonormal form given at the beginning to a flat pseudonormal

form. Since both T ◦ H and H∗ satisfy the normalizations in (2.8), we have

(FH )1 = (FT )1 + O((FT )2, . . . , (FT )n) + O(|(FT )1, . . . , (FT )n|2)

= z1 + O(z2, . . . , zn) + O
(
(z1, . . . , zn)2

)
,

(FH )i = (FT )i · (F∗)i,(ei )(GT ) + O((FT )i+1, . . . , (FT )n) + O(|(FT )1, . . . , (FT )n|2)

= zi · (FT )i,(ei )(w) · (F∗)i,(ei )((GT )(0)(w)) + O(zi+1, . . . , zn) + O(|(z1, . . . , zn)|2).

Here 2 ≤ i ≤ n.

We claim that we can make (F∗)i,(ei )
(
(GT )(0)(x)

)
real for x ∈ R by suitably choosing

h′
js. Once the claim is proved, we see that (FH )i,(ei )(x) is real for x ∈ R. Hence H∗ ◦ T ◦ H

also has the good normalization (as in (2.8) with hj = 0). By Corollary 2.6 (2), we see that

H∗ ◦ T ◦ H = id and two pseudonormal forms are the same. Thus, the pseudonormal at

the beginning is also a flattened one.
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Now we prove the claim. Set

(F∗)i,(ei )(y) = h̃i(y) + √−1hi(y) =
∞∑

k=1

aik yk + √−1
∞∑

k=1

bik yk,

(GT )(0)(x) = x + α(x) + √−1β(x), α(x) = O(x2), β(x) = O(x2).

Here aik, bik ∈ R for 1 ≤ k < ∞ and h̃i(x), hi(x), α(x), β(x) are all real-valued for x ∈ R.

With these notations, the claim is equivalent to solving the following equation

with (bik)∞k=1 as its unknowns:

Im

( ∞∑
k=1

(aik + √−1bik) · (x + α(x) + √−1β(x))k
)

= 0, (3.8)

with aik, α(x), β(x) given and x ∈ R.

Collecting terms of degree 1 in (3.8), we get bi1 = 0. Suppose that we can find bij

with j = 2, . . . , k − 1 such that (3.8) holds up to degree ≤ k − 1. Then collecting terms of

degree k in (3.8), we get

�(k)(x) + bikxk = 0.

Here �(k)(x) is a monomial of degree k determined by bij with j = 1, . . . , k − 1 and other

known data. Hence (3.8) can be (uniquely) solved. The claim follows.

Summarizing the above, we have proved the following.

Theorem 3.5. Let (M, 0) be a formal submanifold defined by an equation of the form:

w = |z|2 + E (z, z) with E = O(|z|3). Then the following statements are equivalent:

(1) (M, 0) can be flattened.

(2) (M, 0) has a flat pseudonormal form. Namely, M has a pseudonormal form

given by an equation of the form: w′ = |z′|2 + ϕ(z′, z′) with ϕ satisfying the

normalizations in (2.11) and the reality condition ϕ(z′, z′) = ϕ(z′, z′).

(3) Any pseudonormal form of (M, 0) is flat. �

Corollary 3.6. M defined in (2.55) can be formally flattened if and only if bi j = bji for

all i, j. �
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For a real analytic manifold M in C
n of real dimension n, it was proved in Moser–

Webster [22] and in a article of the first author [13] that M can always be flattened near a

point with an elliptic complex tangency. (See also the articles [15, 18, 19].) However, this

is no longer the case, as in Corollary 3.6, for a codimension two real analytic manifold

M ⊂ C
n+1 near an elliptic complex tangent when n + 1 ≥ 3. For a codimension two real

analytic manifold M ⊂ C
n+1 with an elliptic complex tangent point p0 ∈ M, one can

easily show that any other point p( �= p0) ∈ M is a CR point. If M can be holomorphically

flattened, or, if M can be holomorphically mapped into C
n × R, for any p( �= p0) ∈ M, there

is obviously a CR submanifold in M of CR dimension n − 1 passing through p. Namely, p

is not a CR minimal point in the sense of Tumanov (see [2], for instance, for the definition).

We conjecture this is also the sufficient condition for M being able to be holomorphically

flattened near an elliptic complex tangent point. At this point, the first author would like

to use this opportunity to correct some typos in [13]:

The x′ on [13, p. 679, lines 6–15] and the xα on [13, p. 679, line 11] should be

changed to x̃′ and x̃α, respectively. The first x′ in σ and ψ∗
1 on [13, p. 679, lines 31–37],

and also the second x′ in φn on [13, p. 680, lines 9, 16] should be changed to x̃′. (The first

author also uses this opportunity to remark that the following trivial fact was implicitly

used in [14, (4.5)′]: Since xα = x̃α + Re(ψ∗
α (ξ , x̃′, r)), hence x̃α = x̃α(x′, ξ , r) = xα + o(r2).)

4 Proof of Theorem 1.1

We now give a proof of Theorem 1.1 by using the rapidly convergent power series method.

We let M ⊂ C
n+1(n ≥ 2) be defined by

w = �(z, z̄) = |z|2 + E (z, z̄), (4.1)

where E (z, ξ ) is holomorphic near z = ξ = 0 with vanishing order ≥ 3. Assume that H =
(F , G) = (z + f , w + g) is a formal map satisfying the normalization condition in (2.7). We

define

R = (r1, r2, . . . , rn) = (
2

2−n
2 r, 2

2−n
2 r, 2

3−n
2 r . . . , 2− 1

2 r, r
)
. (4.2)

Then |R|2 = 2(2−n)r2 + ∑n
i=2(2

i−n
2 r)2 = 2r2. Define the domains:

�r = {(z, w) : |zi| < ri, |w| < 2r2},
Dr = {(z, ξ ) : |zi| < ri, |ξi| < ri for 1 ≤ i ≤ n}. (4.3)
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When E (z, ξ ) is defined over Dr, we set the norm of E (z, ξ ) on Dr by

‖E‖r = sup
(z,ξ )∈Dr

|E (z, ξ )|. (4.4)

Also, for a holomorphic map h(z, w) defined on �r, we define

|h|r = sup
(z,w)∈�r

|h(z, w)|. (4.5)

After a scaling transformation (z, ξ , w) −→ (az, aξ , a2w), we may assume that E is

holomorphic on D1 with |E |1 ≤ η for a given small η > 0.

Let M be a manifold with the following defining function:

w = |z|2 + E (z, z) with Ord(E ) ≥ d. (4.6)

We want to find a polynomial change of coordinates

z′ = z + f̂ (z, w), w′ = w + ĝ(z, w) with Ordwt ( f̂ ) ≥ d − 1, Ordwt (ĝ) ≥ d, f̂ (t−1) = ĝ(t ) = 0

for t ≥ 2d − 2 (4.7)

such that in the new coordinates, M is defined by

w′ = |z′|2 + ϕ̂(z′, z′) + E ′(z′, z′) with Ord(E ′) ≥ 2d − 2, (4.8)

where ϕ̂(z′, z′) with deg(ϕ̂(z′, z′)) ≥ d is either identical 0 or has degree deg(ϕ̂) ≤ 2d − 3,

and ϕ̂ also satisfies the normalization in (2.11).

Applying (4.8), this amounts to solving the following equation:

w + ĝ(z, w) = |z + f̂ (z, w)|2 + ϕ̂(z + f̂ (z, w), z + f̂ (z, w)) + E ′(z + f̂ (z, w), z + f̂ (z, w)), (4.9)

with w = |z|2 + E (z, z). Instead of solving the nonlinear equation (4.9), we consider the

following linear equation with ( f̂ , ĝ, ϕ̂) as its unknowns:

J2d−3 E (z, z̄) = −ĝ(z, u) + 2Re

(
n∑

i=1

z̄i f̂i(z, u)

)
+ ϕ̂(z, z̄), (4.10)
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where J2d−3 E (z, z̄) = ∑
i≤2d−3 E (i)(z, z̄). Suppose we are able to solve (4.10). Define

F̂ = z + f̂ , Ĝ = w + ĝ, Ĥ = (F̂ , Ĝ).

We can verify that under such a transformation, E ′ indeed satisfies the vanishing condi-

tion in (4.8). (See the proof in Lemma (4.1) for a detailed proof on this).

By Proposition 2.4, we can indeed uniquely solve (4.10) under the normalizations

in (2.8) with hj = 0 and under the assumption that ϕ̂(z, z) satisfies the normalization in

(2.11). By (2.53), its solution is given by the following:

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

F̂1(z, w) = z1 + A1 + A2 + A3,

F̂h(z, w) = zh + Bh1 + Bh2 + Bh3 + Bh4 + Bh5, for 2 ≤ h ≤ n,

Ĝ(z, w) = w + C1 + C2 + C3,

ϕ̂(z, z) = J2d−3 E (z, z̄) + ĝ(z, u) − 2Re

(
n∑

i=1

(zi f̂i(z, u))

)
,

(4.11)

where

A1 =
∑

j1=0,|J|≥1,d−1≤|J|+2k≤2d−4

E (ke1)
(J,e1)z

Jwk, A2 =
∑

|I |≥1,k≥1,d−1≤|I |+2k−1≤2d−4

E (ke1)
(0,I ) zI+e1wk−1,

A3 =
∑

|I |≥1,d−1≤|I |+2k+1≤2d−4

n∑
i=2

E (ke1+ei )
(0,I ) zI+e1wk,

Bh1 =
∑

k≥1,d−1≤1+2k≤2d−4

1

2

⎛⎝−
h−1∑
j=2

Re
(
E

(ke1+ej )
(0,0)

) − 2Re
(
E (ke1+eh)

(0,0)

)⎞⎠ zhwk,

Bh2 =
∑

i>h,d−1≤1+2k≤2d−4

E (ke1)
(ei ,eh)ziw

k, Bh3 =
∑

jh=0,|J|≥2,d−1≤|J|+2k≤2d−4

E (ke1)
(J,eh)z

Jwk,

Bh4 =
∑

|I |≥1,k≥1,d−1≤|I |+2k−1≤2d−4

E (ke1)
(0,I ) zI+ehwk−1,

Bh5 =
∑

|I |≥1,d−1≤|I |+2k+1≤2d−4

(
n∑

i=h+1

E (ke1+ei)

(0,I ) − E (ke1+eh)
(0,I )

)
zI+ehwk,

C1 = −
∑

d≤2k≤2d−3

E (ke1)
(0,0) w

k, C2 = −
∑

d≤2k+2≤2d−3

Re

⎛⎝ n∑
j=2

E
(ke1+ej )
(0,0)

⎞⎠wk+1,

C3 =
∑

d≤|I |+2k≤2d−3,|I |≥1

(
E (ke1)

(0,I ) − E (ke1)
(I ,0)

)
zI wk.
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As in the article of Moser [21], the following lemma will be fundamental for

applying the rapid iteration procedure of Moser to prove Theorem 1.1.

Lemma 4.1. Let M : w = |z|2 + E (z, z̄) be defined as in (4.1). Suppose that Ord(E ) ≥ d.

Let Ĥ and E ′ be defined above. Then Ord(E ′) ≥ 2d − 2. Moreover, if (M, 0) is formally

equivalent to the quadric (M∞, 0) as in Theorem 1.1, then ϕ̂ ≡ 0. �

Proof of Lemma 4.1. Making use of (4.9) and (4.10), we have

E ′(z′, z′) = (
ĝ(z, �) − ĝ(z, u)

) − 2Re

(
n∑

i=1

zi
(

f̂i(z, �) − f̂i(z, u)
)) − | f̂ (z, �)|2

−(
ϕ̂(F̂ , F̂ ) − ϕ̂(z, z)

) + (
E (z, z̄) − J2d−3 E (z, z̄)

)
. (4.12)

Since Ordwt ( f̂ ) ≥ d − 1, Ordwt (ĝ) ≥ d, Ord(ϕ̂) ≥ d, we have

Ord(ĝ(z, �) − ĝ(z, u)) ≥ min{(d − 1) + d, 2d − 2} = 2d − 2,

Ord( f̂i(z, �) − f̂i(z, u)) ≥ min{(d − 2) + d, 2d − 3} = 2d − 3,

Ord(| f̂ (z, �)|2) ≥ 2(d − 1) = 2d − 2,

Ord(ϕ̂(F̂ , F̂ ) − ϕ̂(z, z)) ≥ min{(d − 1) + d, 2d − 2} = 2d − 2.

Thus Ord (E ′) ≥ 2d − 2.

Now, assume that (M, 0) is formally equivalent to the quadric w = |z|2. By Lemma

3.3, we have ϕ̂ ≡ 0. The lemma follows. �

In all that follows, we assume that M is as in Theorem 1.1.

Choose r′, σ , �, r to be such that

1
2 < r′ < σ < � < r ≤ 1, � = 1

3 (2r′ + r), σ = 1
3 (2r′ + �). (4.13)

Before proceeding to the estimates of the solution given in (4.11), we need the

following lemma:

Lemma 4.2. If E is holomorphic in Dr, then we have

∣∣E (ke1)
(I ,T )

∣∣ ≤ (k + 2)n‖E‖r

RI+T · (2r2)k
,

∣∣E (ke1+ej )
(I ,T )

∣∣ ≤ 2n(k + 2)n‖E‖r

RI+T (2r2)k+1
. �

Proof of Lemma 4.2. We here give the estimates for |E (ke1)
(0,I ) |, |E (ke1+ej )

(0,I ) |. The others can

be done in exactly the same way. Suppose that E = ∑
ai1...in j1... jn zi1

1 . . . zin
n z j1

1 . . . zjn
n . Then by
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(2.3), we have

E(0,I ) =
∑

J

a j1... jn(i1+ j1)...(in+ jn)|z1|2 j1 . . . |zn|2 jn

=
∑

J

aJ(I+J)

(
21−n

(
u +

n∑
i=2

2n−ivi

)) j1

·
n∏

h=2

(
2h−n−1

(
u +

n∑
i=h+1

2n−ivi − 2n−hvh

)) jh

=
∑

J

aJ(I+J) · 2−((n−1) j1+∑n
h=2(n−h+1) jh) ·

(
u|J| +

n∑
k=2

2n−k

(
k−1∑
h=1

jh − jk

)
u|J|−1vk

)
+O(|(v2, . . . , vn)|2).

Thus we obtain

E (ke1)
(0,I ) =

∑
|J|=k

aJ(I+J) · 2−((n−1) j1+∑n
h=2(n−h+1) jh),

E (ke1+el )
(0,I ) =

∑
|J|=k+1

aJ(I+J) · 2−((n−1) j1+∑n
h=2(n−h+1) jh) · 2n−l ·

(
l−1∑
h=1

jh − jl

)
. (4.14)

By the Cauchy estimates, we get

∣∣E (ke1)
(0,I )

∣∣ =
∣∣∣∣∣∣
∑
|J|=k

aJ(I+J) · 2−((n−1) j1+∑n
h=2(n−h+1) jh)

∣∣∣∣∣∣
≤

∑
|J|=k

‖E‖r

RI+2J
· 2−

(
(n−1) j1+∑n

h=2(n−h+1) jh
)

=
∑
|J|=k

‖E‖r

RI

2−((n−1) j1+(n−1) j2+···+ jn)

(22−nr2) j1 · (22−nr2) j2 · · · (r2) jn

≤ (k + 1)n−1‖E‖r

RI · (2r2)k
.

∣∣E (ke1+el )
(0,I )

∣∣ =
∣∣∣∣∣∣
∑

|J|=k+1

aJ(I+J)2
−((n−1) j1+∑n

h=2(n−h+1) jh)2n−l

(
l−1∑
h=1

jh − jl

)∣∣∣∣∣∣
≤

∑
|J|=k+1

‖E‖r

RI+2J
· 2−((n−1) j1+∑n

h=2(n−h+1) jh) · 2n−l

∣∣∣∣∣
l−1∑
h=1

jh − jl

∣∣∣∣∣
≤

∑
|J|=k+1

‖E‖r

RI · (2r2)k+1
· 2n(k + 1)

= 2n(k + 2)n‖E‖r

RI · (2r2)k+1
.
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Here we have used the fact that

�{( j1, j2, . . . , jn) ∈ Z
n : jh ≥ 0 for 1 ≤ h ≤ n, j1 + j2 + · · · + jn = k} ≤ (k + 1)n−1.

This completes the proof of Lemma 4.2. �

To carry out the rapid iteration procedure, we need the following estimates of

the solution given by (4.11) for the Equation (4.10).

Proposition 4.3. Suppose that w = |z|2 + E (z, z̄) is formally equivalent to M∞ with E

holomorphic over Dr and Ord(E ) ≥ d. Then the solution given in (4.11) satisfies the

following estimates:

| f̂h|�, |ĝ|� ≤C (n)(2d)2n‖E‖r

r − �

(�

r

)d−1
,

|∇ f̂h|�, |∇ ĝ|� ≤C (n)(2d)2n‖E‖r

(r − �)2

(�

r

) d−1
2

,

‖E (z, ξ ) − J2d−3 E (z, ξ )‖� ≤ (2d)2n‖E‖r

(r − �)2n

(�

r

)2d−2
,

(4.15)

where C (n) is a constant depending only on n and �, r satisfy (4.13). (Indeed, we can take

C (n) = 32n(n + 1)22n+3.) �

Proof of Proposition 4.3. For Bh1, we have

|Bh1|� =
∣∣∣∣∣∣

∑
k≥1,d−1≤1+2k≤2d−4

1

2

⎛⎝−
h−1∑
j=2

Re
(
E

(ke1+ej )
(0,0)

) − 2Re
(
E (ke1+eh)

(0,0)

)⎞⎠ zhwk

∣∣∣∣∣∣
�

≤
∑

k≥1,d−1≤1+2k≤2d−4

1

2

⎛⎝h−1∑
j=2

2n(k + 2)n‖E‖r

(2r2)k+1
+ 2

2n(k + 2)n‖E‖r

(2r2)k+1

⎞⎠ · 2− n−h
2 � · (2�2)k

≤
∑

k≥1,d−1≤1+2k≤2d−4

1

2
· n2n(k + 2)n‖E‖r

(2r2)k+1
· 2k�2k+1

≤
∑

k≥1,d−1≤1+2k≤2d−4

n2n(2d)n‖E‖r

(�

r

)2k+1

≤
∑

k≥1,d−1≤1+2k≤2d−4

n2n(2d)n‖E‖r · r

r − �

(�

r

)d−1

≤ n2n(2d)2n‖E‖r

r − �
·
(�

r

)d−1
.
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For Bh5, we have

|Bh5|� =
∣∣∣∣∣∣

∑
|I |≥1,d−1≤|I |+2k+1≤2d−4

(
n∑

i=h+1

E (ke1+ei)

(0,I ) − E (ke1+eh)
(0,I )

)
zI+ehwk

∣∣∣∣∣∣
�

≤
∑

|I |≥1,d−1≤|I |+2k+1≤2d−4

(R′)I+eh (2�2)k · n
2n(k + 2)n‖E‖r

RI · (2r2)k+1

≤
∑

|I |≥1,d−1≤|I |+2k+1≤2d−4

n2n(k + 2)n‖E‖r

2r

(�

r

)|I |+2k+1

≤ n2n(2d)2n‖E‖r

r − �

(�

r

)d−1
.

Here and in what follows, we write R′ = (2
2−n

2 �, 2
2−n

2 �, 2
3−n

2 � . . . , 2− 1
2 �, �). We have also used

the fact that

�{(i1, i2, . . . , in, k) ∈ Z
n+1 : ih, k ≥ 0 for 1 ≤ h ≤ n,

n∑
h=1

ih + 2k = 2d − 1} ≤ (2d)n.

Similarly, we have

|Bh2|�, |Bh3|�, |Bh4|� ≤ n2n(2d)2n‖E‖r

r − �

(�

r

)d−1
.

Hence we get

| f̂h|� ≤ n · 2n+3(2d)2n‖E‖r

r − �

(�

r

)d−1
.

Now letting τ = r+2�

3 and using the Cauchy estimates, we have the following

estimate of the derivatives of f̂h:

∣∣∣∣∣∂ f̂h

∂z1

∣∣∣∣∣
�

≤ | f̂h|τ
2

2−n
2 (τ − �)

≤ 2n · n2n+3(2d)2n‖E‖r

(τ − �)(r − τ )

(τ

r

)d−1
≤ 32n · 22n+3(2d)2n‖E‖r

(r − �)2

(�

r

) d−1
2

,∣∣∣∣∣∂ f̂h

∂zi

∣∣∣∣∣
�

≤ | f̂h|τ
2

i−n
2 (τ − �)

≤ 32n · 22n+3(2d)2n‖E‖r

(r − �)2

(�

r

) d−1
2

, for 2 ≤ i ≤ n,∣∣∣∣∣∂ f̂h

∂w

∣∣∣∣∣
�

≤ | f̂h|τ
2τ 2 − 2�2

≤ 32n · 2n+3(2d)2n‖E‖r

(r − �)2

(�

r

) d−1
2

. (4.16)
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Here we have used the fact that

(τ

r

)2
≤ �

r
for

1

2
< � < τ < r ≤ 1, τ = r + 2�

3
. (4.17)

The inequality (4.16) shows that

|∇ f̂h|� ≤ 32n(n + 1) · 22n+3(2d)2n‖E‖r

(r − �)2

(�

r

) d−1
2

.

The corresponding estimates on f̂1 and ĝ can be achieved similarly.

We next estimate E (z, ξ ) − J2d−3 E (z, ξ ).

‖E (z, ξ ) − J2d−3 E (z, ξ )‖�

=
∥∥∥∥∥∥

∑
|I |+|J|≥2d−2

ai1···in j1··· jn zi1
1 · · · zin

n ξ1
j1 · · · ξn

jn

∥∥∥∥∥∥
�

≤
∑

|I |+|J|≥2d−2

‖E‖r

(
R′

R

)I+J

≤
∑

|I |+|J|=2d−2,|K|,|L|≥0

‖E‖r

(�

r

)|I |+|J|
·
(�

r

)k1 · · ·
(�

r

)kn ·
(�

r

)l1 · · ·
(�

r

)ln

≤
∑

|I |+|J|=2d−2

‖E‖r

(�

r

)2d−2
·
(

1

1 − �

r

)2n

≤ (2d)2n‖E‖r

(r − �)2n

(�

r

)2d−2
.

Here we have used the fact that

�{(i1, · · · , in, j1, · · · , jn) ∈ Z
2n : ih, jh ≥ 0 for 1 ≤ h ≤ n,

n∑
h=1

(ih + jh) = k} ≤ (k + 1)2n.

This finishes the proof of Proposition 4.3. �

Proposition 4.4. Let E , C (n) be as in Proposition 4.3 and let r′, σ , �, r be as in (4.13). Then

there exists a small constant δ0(n) > 0 depending only on n (but independent of r, r′, E )

such that for

C (n)(2d)2n‖E‖r

(r − �)2

(�

r

) d−1
2

< δ0(n), (4.18)
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and

‖E‖r

(r − �)2
< δ0(n), (4.19)

we have �(z′, w′) := Ĥ−1(z′, w′) is well defined in �σ . Moreover, it holds that �(�r′ ) ⊂ �σ ,

�(�σ ) ⊂ ��, E ′(z, ξ ) is holomorphic in �σ and

‖E ′‖r′ ≤ Cd‖E‖2
r + C̃d‖E‖r . (4.20)

Here

Cd = (2n + 1) · 32C (n)(2d)2n

(r − r′)2

(
r′

r

) d−1
4

+
(

r′

r

)d−1

n ·
(

3C (n)(2d)2n

r − r′

)2

,

C̃d = 32n · (2d)2n

(r − r′)2n

(
r′

r

)d−1

. �

Proof of Proposition 4.4. We need to show that for each (z′, w′) ∈ �σ , we can uniquely

solve the system:

{
z′ = z + f̂ (z, w),

w′ = w + ĝ(z, w)
(4.21)

with (z, w) ∈ ��. By (4.15) and (4.18), we can choose a fixed sufficiently small constant

δ0(n) depending only on n (and independent of r, r′, E ) such that

|∇ f̂ |� + |∇ ĝ|� <
1

2
and | f̂ |� + |ĝ|� < 2

2−n
2 −1 · min(� − σ , σ − r′) = 2

2−n
2 −1(σ − r′). (4.22)

Here |∇ f̂ |� = ∑n
i=1 |∇ f̂i|�. Define (z[1], w[1]) = (z′, w′) ∈ �σ and (z[ j], w[ j]) inductively by

{
z[ j+1] = z′ − f̂

(
z[ j], w[ j]

)
w[ j+1] = w′ − ĝ

(
z[ j], w[ j]

)
.

We next use the standard Picard iteration procedure to find a (z, w) ∈ �� satisfying

Ĥ (z, w) = (z′, w′).

We first inductively show that (z[ j], w[ j]) ∈ �� for all j ≥ 1. Note that we already

have (z[1], w[1]) = (z′, w′) ∈ �σ ⊂ ��. Suppose that (z[i], w[i]) ∈ �� for 1 ≤ i ≤ j. Then we have
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for all 2 ≤ k ≤ n,

∣∣(z[ j+1])
1

∣∣ ≤ |z′
1| + ∣∣ f̂1

(
z[ j], w[ j])∣∣ ≤ 2

2−n
2 σ + 2

2−n
2 −1(� − σ ) ≤ 2

2−n
2 −1(σ + �) < 2

2−n
2 �,∣∣(z[ j+1])

k

∣∣ ≤ |z′
k| + ∣∣ f̂k

(
z[ j], w[ j])∣∣ ≤ 2

k−n
2 σ + 2

2−n
2 −1(� − σ ) ≤ 2

k−n
2 −1(σ + �) < 2

k−n
2 �,∣∣w[ j+1]

∣∣ ≤ |w′| + ∣∣ĝ(z[ j], w[ j])∣∣ < 2σ 2 + 2
2−n

2 −1(� − σ ) < 2σ 2 + 2(�2 − σ 2) = 2�2.

Next, for t ∈ [0, 1], let Pti = t (z[ j])i + (1 − t )(z[ j−1])i, Qt = tw[ j] + (1 − t )w[ j−1]. Then (Pti, Qt ) ∈
��. Hence we have

∣∣z[ j+1] − z[ j]
∣∣ + ∣∣w[ j+1] − w[ j]

∣∣
= ∣∣ f̂

(
z[ j], w[ j]) − f̂

(
z[ j−1], w[ j−1])∣∣ + ∣∣ĝ(z[ j], w[ j]) − ĝ

(
z[ j−1], w[ j−1])∣∣

=
n∑

h,i=1

∫ 1

0

(∣∣∣∣∣∂ f̂h

∂zi
(Pti, Qt )

∣∣∣∣∣ · ∣∣(z[ j])
i − (

z[ j−1])
i

∣∣ + ∣∣∣∣∣∂ f̂h

∂w
(Pti, Qt )

∣∣∣∣∣ · ∣∣w[ j] − w[ j−1]
∣∣)dt

+
n∑

i=1

∫ 1

0

(∣∣∣∣ ∂ ĝ

∂zi
(Pti, Qt )

∣∣∣∣ · ∣∣(z[ j])
i − (

z[ j−1])
i

∣∣ + ∣∣∣∣ ∂ ĝ

∂w
(Pti, Qt )

∣∣∣∣ · ∣∣w[ j] − w[ j−1]
∣∣)dt

≤ (|∇ f̂ |� + |∇ ĝ|�) · (∣∣z[ j] − z[ j−1]
∣∣ + ∣∣w[ j] − w[ j−1]

∣∣)
≤ 1

2

(∣∣z[ j] − z[ j−1]
∣∣ + ∣∣w[ j] − w[ j−1]

∣∣).
By the fixed point theorem, we can solve (4.21) with (z, w) ∈ ��. The uniqueness of the

solution of (4.21) also follows, in a standard way, from the gradient estimate in (4.22).

Similarly, choosing a fixed small constant δ0(n) (independent of r, r′, E ) such

that (4.22) holds, then �(�r′ ) ⊂ �σ . Hence we conclude that E ′ is holomorphic in �σ .

Moreover,

‖E ′(z′, ξ ′)‖r′ ≤ ‖Q‖σ , (4.23)

where

Q = (ĝ(z, �̃) − ĝ(z, ũ)) −
n∑

i=1

ξi( f̂i(z, �̃) − f̂i(z, ũ)) −
n∑

i=1

zi( f̂i(ξ , �̂) − f̂i(ξ , ũ))

−
n∑

i=1

f̂i(z, �̃) · f̂i(ξ , �̂) + (E − J2d−3 E )(z, ξ ), with �̃ = �(z, ξ ), �̂ = �(ξ , z), ũ =
n∑

i=1

ziξi.

(4.24)
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By (4.19), we can choose δ0 such that ‖E‖r < 2(�2 − σ 2). Note that for (z, ξ ) ∈ Dσ , we have

|�̃| = |�(z, ξ )| ≤
n∑

i=1

|ziξi| + |E (z, ξ )| < 2σ 2 + 2(�2 − σ 2) = 2�2.

This implies that (z, �̃) ∈ ��. Moreover, for t ∈ [0, 1], the line segment (z, tũ + (1 − t )�̃) ∈
��; for �� is convex. Similarly, we have (ξ , �̂) ∈ ��, (ξ , tũ + (1 − t )�̂) ∈ ��. Hence

|ĝ(z, �̃) − ĝ(z, ũ)|σ ≤|∇ ĝ|� · ‖E‖r ≤ C (n)(2d)2n‖E‖2
r

(r − �)2

(�

r

) d−1
2

≤32C (n)(2d)2n‖E‖2
r

(r − r′)2

(
r′

r

) d−1
4

.

(4.25)

Here we have used the fact that ( �

r )2 < r′
r . (This can be achieved by the same token as for

(4.17).) Similarly, we have

| f̂i(z, �̃) − f̂i(z, ũ)|σ , | f̂i(ξ , �̂) − f̂i(ξ , û)|σ ≤ 32C (n)(2d)2n‖E‖2
r

(r − r′)2

(
r′

r

) d−1
4

for 1 ≤ i ≤ n. (4.26)

We also have

∣∣∣∣∣
n∑

i=1

f̂i(z, �̃) · f̂i(ξ , �̂)

∣∣∣∣∣
σ

≤ | f̂ |2� ≤ n ·
(

C (n)(2d)2n‖E‖r

r − �

(�

r

)d−1
)2

≤ n ·
(

3C (n)(2d)2n‖E‖r

r − r′

)2

·
(

r′

r

)d−1

,

‖(E − J2d−3 E )(z, ξ )‖σ ≤ (2d)2n‖E‖r

(r − σ )2n

(σ

r

)2d−2
≤ 32n(2d)2n‖E‖r

(r − r′)2n
·
(

r′

r

)d−1

.

(4.27)

By (4.24)–(4.27), we obtain:

‖E ′‖r′ ≤
{

(2n + 1) · 32C (n)(2d)2n

(r − r′)2

(
r′

r

) d−1
4

+
(

r′

r

)d−1

n ·
(

3C (n)(2d)2n

r − r′

)2
}

‖E‖2
r

+ 32n · (2d)2n

(r − r′)2n

(
r′

r

)d−1

‖E‖r .

This completes the proof of Proposition 4.4. �
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Now we turn to the proof of Theorem 1.1. Set rυ , �υ , συ as follows:

rυ = 1

2

(
1 + 1

υ + 1

)
, �υ = 1

3
(2rυ + rυ+1), συ = 1

3
(2rυ + �υ ).

We will apply the previous estimates with r = rυ , � = �υ , σ = συ , r′ = rυ+1, � = �v, . . . ,

with v = 0, 1, . . . , . Then we have the following (see [21, (4.5)]):

(rυ − rυ+1)−1 = 2(υ + 1)(υ + 2),
rυ+1

rυ

= 1 − 1

(υ + 2)2
. (4.28)

Define a sequence of real analytic submanifolds:

Mk : w = |z|2 + Ek(z, z̄)

by M0 = M, Mυ+1 = �−1
υ (Mυ ) for all υ = 0, 1, 2, . . ., where �υ is the biholomorphic mapping

taking �συ
into ��υ

. And let

dυ = Ord(Eυ ), �υ = �0 ◦ �1 ◦ · · · ◦ �υ.

Since s = ∞, we find that

Ord(Eυ ) = dυ ≥ 2υ + 2 for υ ≥ 0.

We next state the following elementary fact.

Lemma 4.5. Suppose that there is a constant C > 0 and number a > 1 such that dv ≥
C av. Then for any integer m1, m2, m3 > 0,

lim
v→∞ vm3dm1

v

(
1 − 1

vm2

)dv

= 0. �

Now we are in a position to verify that the hypothesis in (4.18) and (4.19) holds

for all υ ≥ 0, by choosing η∗
0 = ‖E0‖r0 sufficiently small. Indeed, we can even have

‖Eυ‖rυ

(rυ − �υ )2
≤ ε · 2−υ and

C (n)(2dυ )2n‖Eυ‖rυ

(rυ − �υ )2

(
�υ

rυ

) dυ −1
2

≤ ε · 2−υ

for all υ ≥ 0 and any given 0 < ε < 1.
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Set

ευ = ‖Eυ‖rυ

(rυ − �υ )2
, C ∗

dυ
= Cdυ

· (rυ − �υ )4

(rυ+1 − �υ+1)2
,

C̃ ∗
dυ

= C̃dυ
·
(

rυ − �υ

rυ+1 − �υ+1

)2

, Ĉ ∗
dυ

= C (n) · (2dυ )2n ·
(

�υ

rυ

) dυ −1
2

.

One sees, by using (4.28) and Lemma 4.5, that

lim
υ→∞ C ∗

dυ
= 0 , lim

υ→∞ C̃ ∗
dυ

= 0, lim
υ→∞ Ĉ ∗

dυ
= 0.

Hence C ∗
dυ

, C̃ ∗
dυ

, and Ĉ ∗
dυ

are bounded. Assume that C ∗
dυ

, C̃ ∗
dυ

, Ĉ ∗
dυ

< C , where C is a fixed

positive constant. Choose N large enough such that C ∗
dυ

, C̃ ∗
dυ

≤ 1
4 when υ ≥ N. Suppose

C > 1 and choose E0 such that

ε0 = ‖E0‖r0

(r0 − �0)2
≤ ε(2C )−2N < 1.

Next we inductively prove that if

ευ ≤ ε · 2−υ , ευ · Ĉ ∗
dυ

≤ ε′ · 2−υ , with ε′ = C · ε, (4.29)

then we also have

ευ+1 ≤ ε · 2−υ−1, ευ+1 · Ĉ ∗
dυ+1

≤ ε′ · 2−υ−1, with ε′ = C · ε.

First, we get by (4.29) and Proposition 4.4 that

‖Eυ+1‖rυ+1 ≤ Cdυ
· ‖Eυ‖2

rυ
+ C̃dυ

· ‖Eυ‖rυ
,

which is obviously equivalent to

ευ+1 ≤ C ∗
dυ

· ε2
υ + C̃ ∗

dυ
· ευ.

(1) When υ < N, we have

ευ+1 ≤ C (ευ + 1)ευ ≤ 2C · ευ ≤ (2C )υ+1ε0 ≤ ε(2C )υ−2N+1 ≤ ε2−N ,

Ĉ ∗
dυ+1

· ευ+1 ≤ C ευ+1 ≤ C ε2−N = ε′2−N .

 at R
utgers U

niversity on M
ay 15, 2011

im
rn.oxfordjournals.org

D
ow

nloaded from
 

http://imrn.oxfordjournals.org/


2826 X. Huang and W. Yin

(2) When υ ≥ N, we have

ευ+1 ≤ 1

4

(
ευ + ε2

υ

) ≤ 1

4
· 2 · ευ ≤ (

1

2
)υ−N+1εN ≤ ε2−υ−1,

Ĉ ∗
dυ+1

· ευ+1 ≤ C ευ+1 ≤ C ε2−υ−1 ≤ ε′2−N .

Now, choose ε sufficiently small. Then it follows from (4.15) and Proposition 4.4

that 1 − C0ε2−υ ≤ ‖d�−1
υ ‖��υ

≤ 1 + C0ευ ≤ 1 + C0ε2−υ for some constant C0. Note that �υ

maps �συ
into ��υ

. By Cramer’s rule, we have 1 − εC ′
02−υ ≤ ‖d�υ‖�συ

≤ 1 + εC ′
02−υ for

some constant C ′
0. Now the convergence of �υ in � 1

2
follows from the fact that �v(0) = 0

and

0 <

∞∏
υ=0

(1 − εC ′
02−υ ) ≤

∞∏
υ=0

‖d�υ‖�συ
≤

∞∏
υ=0

(1 + εC ′
02−υ ) < ∞,

which completes the proof of Theorem 1.1. �

Remark 4.6. We note that formal maps in Theorem 1.1 sending (M, 0) to its quadric

(M∞, 0) may not be convergent as aut0(M∞) contains many nonconvergent elements. This

is quite different from the setting for CR manifolds, where formal maps are always

convergent under certain not too degenerate assumptions. We refer the reader to the

survey article [1] for discussions and references on this matter. �
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