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ON AN n-MANIFOLD IN Cn

NEAR AN ELLIPTIC COMPLEX TANGENT

XIAOJUN HUANG

§1. Introduction

In this paper, we will be concerned with the local biholomorphic properties of
a real n-manifold M in Cn. At a generic point, such a manifold basically has
the nature of the standard Rn in Cn. Near a complex tangent, however, the
consideration can be much more complicated and the manifold may acquire a non-
trivial local hull of holomorphy and many other biholomorphic invariants. The
study of such a problem was first carried out in a celebrated paper of E. Bishop
[BIS] where, for each sufficiently non-degenerate complex tangent, he attached a
biholomorphic invariant λ, called the Bishop invariant. When the complex tangent
is elliptic, i.e., when 0 ≤ λ < 1

2 (for a more precise definition, see §2), he showed
the existence of families of complex analytic disks with boundary on M that shrink
down to the locus of points in M with complex tangents. In particular, using
the well-known continuity principle, one sees that the image M̃ of such families is
contained in the holomorphic hull of the manifold. At the time, he asked whether
M̃ gives precisely the local holomorphic hull of M , as well as certain uniqueness
properties of the attached disks. He also proposed the problem of determining the
fine structure of M̃ near such complex tangents.

Later, there appeared a sequence of papers concerning the smooth character of
M̃ in case M ⊂ C2. Here we would like to mention, in particular, the famous theo-
rem proved by Kenig-Webster in their deep work [KW1] which states that the local
hull of holomorphy M̃ near an elliptic complex tangent is a smooth Levi flat hyper-
surface with M ⊂ C2 as part of its smooth boundary. In another important paper
of Moser-Webster [MW], a systematic normal form theory was employed for the un-
derstanding of the local biholomorphic invariants of M in case M is real analytic.
When the Bishop invariant λ 6= 0, their method works in any dimension and even
for some hyperbolic complex tangents; but it breaks down for complex tangents
with λ = 0. Among other things, they showed that M can be biholomorphically
mapped into the affine space

A = {(z1, z′, zn) ∈ C×Cn−2 ×C : Im(z′) = 0, Im(zn) = 0}

near an elliptic complex tangent with λ 6= 0. Therefore, it follows easily that M̃ is a
real analytic (n+ 1)-manifold with real analytic boundary M ⊂ Cn for λ 6= 0. For
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the exceptional case λ = 0, Moser [MOS] showed that if M is formally equivalent
to M0 = {(z1, z2) ∈ C2 : z2 = |z1|2}, then M is biholomorphically equivalent to
M0 and thus the holomorphic hull is real analytic up to the complex tangent point.
When M ⊂ C2, Krantz and the author [HK] were recently able to prove the real
analyticity of M̃ across the boundary M near any elliptic complex tangent, by
making use of the smoothness result of [KW1].

Efforts in [BG], [KW1], [MW], [MOS] and [HK] provide a fairly good under-
standing of the smooth and analytic structure of M̃ in case M ⊂ C2, though it is
still unknown how many biholomorphic invariants an analytic elliptic complex tan-
gent with λ = 0 can have (see [MW] and [MOS]). In the case of higher dimensions,
several features make the problem much more difficult. First, the situation that
the complex tangents are no longer isolated complicates the study of the attached
analytic disks. Also, the “expected hull” M̃ has real dimension only n + 1, and
therefore is far from being a hypersurface in Cn. This makes it difficult to prove
the uniqueness of the attached analytic disks and to verify that the object obtained
is precisely the holomorphic hull of M . In [KW2], Kenig-Webster showed that near
an elliptic complex tangent p under study, for each `, there is a real (n+1)-manifold
M̃` with a small neighborhood of p in M as part of its C`-smooth boundary, which
is foliated by families of analytic disks shrinking down to the complex tangents. But
it remained open whether all the M̃` coincide and give the local hull of holomorphy
of M .

In this work, we present a fairly complete description of the local hull of holo-
morphy M̃ for both smooth and real analytic M in Cn for any n ≥ 2. When M

is merely smooth, we will verify that all the Levi-flat submanifolds M̃` which were
constructed in the deep work of [KW2] are indeed the same near the elliptic com-
plex tangent p under study, and give the local holomorphic hull of M . In fact, we
will construct a suitable Stein neighborhood basis for a certain small neighborhood
of p in M̃` and prove the uniqueness property of the attached disks. This result
can be immediately applied with the work in [KW2] to prove that the local hull M̃
of M is smooth up to M , as was already known in the C2 case ([KW1]). When M
is real analytic, using the above mentioned smooth character of M̃ , we will show
that M̃ is real analytic across M , as was already known in the C2 case ([MW],
[MOS] and [HK]) or in the Cn case but with λ 6= 0 ([MW]). Equivalently, we show
that the formal process flattening M is indeed convergent even for the exceptional
case where the Bishop invariant λ vanishes at the point under study. Our approach
in this case is motivated by the one that appeared in [HU], [HK] for the study of
two-dimensional real analytic elliptic tangents.

We now proceed to present the main theorems of the paper, in whose statement
we will use some terminology which will be defined in §2. Here we only recall that,
for a subset E ⊂ Cn, the holomorphic hull of E is defined to be the intersection of
all pseudoconvex domains containing E. Write ∆ for the unit disk in C1. Let φ be
a holomorphic mapping from ∆ into Cn, which is continuous up to ∆. φ is said to
be a (complex) analytic disk attached to E, if φ(∂∆) ⊂ E.

Theorem. (A) Let M be a real analytic n-manifold in Cn with an elliptic complex
tangent at a point p. For a sufficiently small ε > 0 and near p, the holomorphic
hull of M ∩{z : |z−p| < ε} is then a real analytic (n+1)-submanifold with a small
neighborhood of p in M as part of its real analytic boundary. Moreover, M can be
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biholomorphically mapped into the affine space

A = {(z1, z′, zn) ∈ C×Cn−2 ×C : Im(z′) = 0, Im(zn) = 0}.
(B) When M is merely smooth, for a sufficient small ε > 0, the holomorphic hull

M̃ of M ∩ {z : |z − p| < ε} is a C∞-smooth Levi-flat (n+ 1)-submanifold near p,
which has a small neighborhood of p in M as part of its C∞ boundary. Near p, M̃ is
foliated by pairwise disjoint embedded complex analytic disks shrinking down to the
locus of points in M with complex tangents. Moreover, every complex analytic disk
attached to M and close to p has image inside M̃ , and is thus a reparametrization
of a leaf in M̃ .

Remark. We are only concerned with the so-called local hull of holomorphy M̃ of
M near p, which is defined in this paper as the intersection of all pseudoconvex
neighborhoods of M ∩ {z : |z − p| < ε} for a sufficiently small ε. Notice that we
did not claim in the theorems that the whole M̃ is exactly formed by the disjoint
union of the attached analytic disks. Instead, what we will prove is that a certain
sufficiently small neighborhood of p in M̃ is filled in by the images of the pairwise
disjoint complex analytic disks attached to M . Also, the regularity of the local hull
of holomorphy of M is understood as that in a sufficiently small neighborhood of p
in Cn.

Results obtained in the present paper, together with the previous work in [HW],
[BG], [KW1], [KW2], [MW], [MOS] and [HK], provide a complete solution to a
question originating in the work of Bishop [BIS].

Since Levi-flat manifolds can be viewed as manifolds with certain mean curvature
0, the existence and regularity problem of the non-trivial holomorphic hull M̃ of
M is also interpreted by some people as the local Plateau problem. Indeed, as is
well known, once one puts M in the right position, this problem can be described
by a certain degenerate second order elliptic equation, called the Levi equation (see
[DG], [BG], [ST], for example). Hence, Theorem (A) and Theorem (B) provide
immediately the existence and the boundary regularity for solutions of the Levi
equation near elliptic complex tangents.

The method used in this work is partially based on the analysis of complex an-
alytic disks attached to M . Indeed, after the work of Bishop [BIS], the method
of complex analytic disks has also been used in working on many other prob-
lems both in complex analysis and geometry. Besides the aforementioned work
in [KW1], [KW2], [MW], [HK], we also wish to mention the interesting work in
[ALX1], [ALX2], [BRT], [BG], [BK], [DS], [ELI], [FO1], [FO2], [GRO], [LE], [TR]
and [TU], to name a few.

A few words about the organization: In §2, we first set up some notation and
give some definition. Then we state a dependence result of Riemann mappings with
respect to certain parameters. In §3, we give a proof of Theorem (B), using the
construction result established in [KW2]. In §4, we prove Theorem (A), assuming
Proposition 4.1 concerning the existence of a family of nicely attached disks. In
§5, we give the proof of Proposition 4.1 and thus complete the proof of Theorem
(A). We also include two appendices in the paper. The first one is concerned with
the formal flattening of real analytic elliptic points. The second appendix is on the
application of our main theorems to the convergence proof of the formal solutions
of a useful functional equation.
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§2. Notations, definitions and preliminaries

In all that follows, we let M ⊂ Cn be a smooth submanifold of real dimension n
(n ≥ 2). We say that p ∈M is a totally real point if T(1,0)

p M = TpM ∩
√
−1TpM =

{0}, where we use TpM to denote the real tangent space ofM at p. According to the
polynomial approximation theorem of Hörmander-Wermer and Nirenberg-Wells, it
is known that the local hull of holomorphy of M near such a point contains no new
point. Also, in the real analytic case, M does not support any other biholomorphic
invariant here. Hence, we assume that p ∈ M is a point with complex tangent
T(1,0)

p M of complex dimension 1. Then, after a linear change of coordinates, we can
assume that p = 0 and the affine space {(z1, x2, · · · , xn−1, 0) ∈ Cn} is the tangent
space of M at 0. Here and in what follows, we use z = (z1, z′, zn) = x+

√
−1y for

the coordinates in Cn. (For instance, we write x′ for (x2, · · · , xn−1).) However, we
will write u for xn. Near 0, M can then be regarded as the graph of the following
functions:

zn = F (z1, z1, x′),

yα = fα(z1, z1, x′) = fα(z1, z1, x′),

where α has range from 2 to n− 1, and F and fα start with quadratic terms.
Write the quadratic term of F involving only z1 and z1 as

q∗0(z1, z1) = az2
1 + bz1z1 + cz2

1 ,

where a, b, c are constant. In case q∗0 6≡ 0, i.e., when the contact order of T(1,0)
0 M

with M is two, after a holomorphic change of coordinates, we can further assume
that a = c = λ ≥ 0 and b = 1 (when λ = ∞, q0 is understood as z2

1 +z2
1). According

to Bishop [BIS] or Moser-Webster [MW], 0 ∈M is called an elliptic complex tangent
point if λ < 1/2. λ is a biholomorphic invariant, called the Bishop invariant of M
at the origin.

From now on, we always let 0 ∈M be an elliptic complex tangent point. Then,
after a holomorphic change of coordinates, we can further assume that the above
fα in the defining equations of M has vanishing order at least three at the origin
([BIS], [MW], etc.). Hence, one can assume in what follows that M is already
defined near 0 by equations of the following form:

zn = F (z1, z1, x′) = q0(z1, z1, x′) + F ∗(z1, z1, x′),

yα = fα(z1, z1, x′) = fα(z1, z1, x′),
(2.1)

where q0(z1, z1, x′) = z1z1 + (λ(x′)z2
1 + λ(x′)z2

1) with 0 ≤ |λ(x′)| < 1/2, λ(0) ∈
[0, 1/2), and fα, F

∗ = O(‖z‖3). We point out that λ(0) is the Bishop invariant of
M at 0.

Write P for the locus of complex tangent points in M near 0. Then P ⊂M is a
totally real submanifold of real dimension n− 2, which is defined by (2.1) and the
following equation ([KW2]):

∂
(
zn − F (z1, z1, x′), yα − fα(z1, z1, x′), zn − F (z1, z1, x′)

)
∂(z1, zα, zn)

= 0.

By the implicit function theorem, one sees that P is parametrized by

P(x′) = (P (x′), xα +
√
−1fα(P (x′), P (x′), x′), F (P (x′), P (x′), x′)).(2.2)
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Here P (x′) is a certain smooth function with P (0) = dP (0) = 0, and P (x′) is real
analytic when M is real analytic. We point out that any point in P is also an
elliptic point of M , once it is sufficiently close to 0.

In case M is real analytic, we notice that P can be extended holomorphically
to an open subset of 0 ∈ Cn. Moreover, we notice that the transformation in
Proposition 2.1 of [KW2] can be made biholomorphic near the origin. Hence, in
this case, the arguments in Proposition 2.1 of [KW2] can also be used to prove the
following (see Appendix I):

Proposition I.A. For each `� 1, there is a biholomorphic change of coordinates
preserving the origin such that in the new coordinates, M can be defined by an
equation of the form (2.1) but with the following extra properties:

(a) λ(x′) is real analytic in x′ for x′ ≈ 0;
(b) F ∗ = O(|z1|3); and
(c) fα = o(|z1|`−1), Im(F ∗) = o(|z1|`).
We next state a folklore lemma. To this aim, we need to set up some notation,

which will be used throughout the paper. Let M0 ⊂ A be an n-manifold defined by
equations of the form: u = F0(z1, z1, x′) = q0(z1, z1, x

′) + k(z1, z1, x′), yj = 0 for
j ≥ 2. Here q0 = |z1|2 + 2Re(λ(x′)z2

1) with λ(x′) smooth in x′, λ(0) ∈ [0, 1/2) and
the real-valued k(z1, z1, x′) = O(|z1|3) for |x′|, |z1| � 1. (Namely, |k(z1, z1, x′)| <∼
C(x′)|z1|3 for some constant C(x′) depending on x′.) Write Iε = (−ε, ε) ⊂ R and
I+
ε = (0, ε) with 1 � ε > 0. Let S1 denote the unit circle in C. For each fixed
r ∈ Iε and x′ ∈ O, a small neighborhood of 0 in Rn−2, we let D(x′,r) denote the
domain

D(x′,r) ≡ {z1 ∈ C1 : q0(z1, z1, x′) +
1
r2
k(rz1, rz1, x′) < 1}.

When |x′|, |r| are sufficiently small, by the ellipticity ofM0 at 0 (i.e., λ(0) ∈ [0, 1/2)),
it is easy to see that D(x′,r) is simply connected. Let σ(ξ, x′, r) be a conformal
mapping from ∆ to D(x′,r). Assume in advance that σ(0, x′, r) = 0 and σ′ξ(0, x

′, r) >
0 to make our choice of σ(ξ, x′, r) unique.

We remark that up to reparametrizations, all analytic disks attached to M0, near
(0, x′, 0), are given by

(rσ(ξ, x′, r), x′, r2)

which fill in the following domain in A and shrink down to {0}×O×{0} as r → 0:

M̃0 = {(z1, x′, u) ∈ A : |z1|, ‖x′‖ � 1, u ≥ q0(z1, z1, x
′) + k(z1, z1, x′)}.(2.3)

For convenience of notation, in all that follows, we use R to stand for a large
constant, which might be different in different contexts.

Lemma 2.1. Let M0 and σ(ξ, x′, r) be defined as above and write F0 = q0(z1, z1, x′)
+k(z1, z1, x′) as before. If λ(x′), k are real analytic in (z1, x′), then after shrinking
O and ε, σ(ξ, x′, r) is real analytic over ∆×O × Iε.

Proof of Lemma 2.1. The result seems standard in the literature. However, due to
the lack of a cogent reference, we sketch some details for the convenience of the
reader.

Write τ = (x′, r) and write σ−1(·, τ) for the inverse of σ(·, τ). We first notice
that σ(·, 0) is biholomorphic from ∆ to D0. Hence, by considering σ−1(σ(ξ, τ), 0)
instead of σ(ξ, τ), we can assume, without loss of generality, that Dτ is defined by
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an equation of the form: |ξ|2−1+ρ(ξ, ξ, τ) = 0. Here, ρ is real analytic near S1×{0}
and ρ = O(τ). Now, we seek the real-valued function U(ξ, τ), defined over S1 ×
{τ : ‖τ‖ � 1}, such that for ξ ∈ S1, σ(ξ, τ) = ξ (1 + U(ξ, τ) + iH(U(·, τ))(ξ)),
where H is the standard Hilbert transform. Then, it can be verified directly that
U(ξ, τ) satisfies an equation of the following form: U = F (τ, ξ, U,HU), where
F = O(‖τ‖ + |U2| + |HU |2) and F (·) is real analytic in its variables. Hence,
applying the analytic version of the implicit function theorem [Dei], say in the real-
valued function space C1/2(S1) with the standard Banach norm ‖ · ‖1/2, to solve
for U and then returning to σ, we can conclude that σ =

∑
α σα(ξ)τα with σα ∈

Hol(∆) ∩ C1/2(∆) and ‖σα‖1/2 ≡ supξ1,ξ2∈∂∆{|σα(ξ1)| + |σα(ξ1)−σα(ξ2)|
|ξ1−ξ2|1/2 } <

∼
R‖α‖.

Hence, it is clear that σ ∈ Cω(∆×O × Iε).
Next, fix a point ξ0 ∈ S1 and write q0 = σ(ξ0, 0). We like to show that σ is real

analytic over {ξ ∈ ∆ : |ξ− ξ0| < ε}× {τ : ‖τ‖ < ε}, after shrinking ε. This can be
done by applying the reflection principle as follows:

Write S = {(ξ, τ) ∈ C1 × Rn−1 : ξ ≈ q0, ξ ∈ ∂Dτ , ‖τ‖ � 1}. Then the
hypothesis indicates that S is a real analytic totally real submanifold of maximal
dimension in Cn. Therefore, there is a biholomorphic map ψ(ξ, z) taking an open
piece of S near (q0, 0) into Rn ⊂ Cn. For (ξ, τ) ≈ (ξ0, 0), write S′ = {(ξ, τ) :
ξ ∈ S1, τ ∈ Rn−1 }. Then it can be biholomorphically mapped into Rn by
φ(ξ, z) = (φ1(ξ), z), where φ1 is a conformal map from ∆ to the upper half plane
with φ1(ξ0) = 0.

Define Σ(ξ, z) = ψ(
∑

α σα(ξ)zα, z) for ξ(≈ ξ0) ∈ ∆ and ‖z‖ � 1. Then the
above obtained analytic dependence of σ on τ implies that by making ε sufficiently
small,

Σ ∈ Hol({ξ : ξ ∈ ∆, |ξ − ξ0| � 1} × {z ∈ Cn−1 : ‖z‖ < ε})
∩C({ξ : |ξ| ≤ 1, |ξ − ξ0| � 1} × {z ∈ Cn−1 : ‖z‖ < ε}).

For (ξ, z) ≈ 0, we define Σ∗(ξ, z) by Σ ◦ φ−1(ξ, z) for Im(ξ) > 0 (thus for Im(ξ) >
‖Im(z)‖); and by Σ ◦ φ−1((ξ, z)) for −Im(ξ) > 0 (thus also for −Im(ξ) > ‖Im(z)‖).
Then, it is easy to see, by the edge of the wedge theorem, that Σ∗ extends holo-
morphically to a neighborhood of (0, 0) ∈ Cn. The proof of Lemma 2.1 thus follows
easily, too.

§3. Uniqueness of the analytic disks attached to M—

Proof of Theorem (B)

In this section, we will present a proof of Theorem (B), which will be used in
the proof of Theorem (A). Let M be as given by (2.1). Our starting point is the
following deep result already proved in [KW2]. We mention that when M is real
analytic, this result also follows from our construction in §5 (see Remark 5.3):

Theorem 3.1 (Kenig-Webster). Let M be a smooth n-manifold as defined in (2.1)
with 0 being an elliptic complex tangent point. For each large integer `, there then
exists an n-manifold M0,` ⊂ A = {(z1, x′, u)} defined by equations of the form:
u = (q∗0 + h)(z1, z1, x′), yj = 0 (j ≥ 2), and there exists a mapping T` from
M̃0,` = {(z1, x′, u) ∈ A : |z| � 1, u ≥ (q∗0 + h)(z1, z1, x′)} into Cn such that the
following four properties hold (here q∗0 = |z1|2 + 2Re(λ∗(x′)z2

1) with |λ∗| < 1/2 and
λ∗(x′) smooth in x′, h(z1, z1, x′) = h(z1, z1, x′) ∈ O(|z1|2) ∩ o(‖z‖2) is smooth over
{z1 ∈ C1 : |z1| � 1} × O with O a certain small neighborhood of 0 in Rn−2):
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(a) T`(0, x′, 0) ∈ P where, as before, P is the locus of the complex tangent points
in M , and T` = id + o(‖z‖);

(b) T`(M0,`) ⊂M and T`(M0,`) contains an open subset (0 ∈) E of P;
(c) T` is a C`-smooth diffeomorphism from M̃0,` and C∞-smooth over M̃0,` \

{0, x′, 0};
(d) ∂z1T` ≡ 0.

We fix a sufficiently large `, and let M0,`, M̃0,`, and T` be constructed as above.
Write M̃` = T`(M̃0,`). Since T` is holomorphic when restricted to each analytic
disk attached to M0,`, we see that near 0, M̃` is also a C`-smooth Levi-flat (n +
1)-manifold foliated by embedded analytic disks shrinking down to the complex
tangents of M . Notice that M̃` is C∞ away from P , by Theorem 3.1 (c).

For 0 < δ1 � δ2 � δ3 � 1, M̃` ∩ {z : ‖z‖ < δ1} is clearly contained in the
holomorphic hull of M ∩ {z : ‖z‖ < δ2} (by the disk filling property of M̃` and the
continuity principle); and the holomorphic hull of M ∩ {z : ‖z‖ < δ2} is contained
in the holomorphic hull of M̃` ∩ {z : ‖z‖ ≤ δ3}. In terms of Theorem 3.1, to
complete the proof of Theorem (B), it therefore suffices for us to prove the following
uniqueness property of the attached disks and to show that M̃` ∩ {z : ‖z‖ < ε} is
holomorphically convex for ε� 1.

Indeed, assuming the following Theorem 3.2, we clearly only need to show that
M̃` is smooth near 0 to complete the proof of Theorem (B). By Theorem 3.1, it
suffices to verify that M̃` is smooth at any point z(≈ 0) ∈ P . Since we know that
z is also an elliptic complex tangent of M , for any large integer N , by Theorem
3.1, M bounds a Levi-flat CN -smooth (n+ 1)-manifold EN with M near z as part
of its CN -smooth boundary. Also, EN is foliated by holomorphic disks shrinking
down to P near z. Applying again the following Theorem 3.2, we see that EN must
coincide with M̃` near z. Thus we showed that M̃` is of class CN near z for any
N . Thus it is easy to see that M̃ is smooth at 0.

Theorem 3.2. There exists a certain small number ε0 such that for each bounded
non-constant holomorphic map φ from ∆ into Cn, if φ(∆) ⊂⊂ {‖z‖ < ε0} and
limτ→ξ∈∂∆ φ(τ) ⊂ M for all ξ ∈ ∂∆, then φ(∆) ⊂ M̃`. Therefore φ must be a
reparametrization of a leaf inside M̃`. Moreover, M̃`∩{‖z‖ ≤ ε0} is holomorphically
convex.

Notice that Theorem 3.2 also indicates that for any sufficiently small pseudocon-
vex neighborhood Ω of p in Cn, M̃` ∩ Ω is also holomorphically convex.

To prove Theorem 3.2, we would like to find a sequence of piecewise strongly
pseudoconvex neighborhood systems of M̃` with slow decay on its Levi eigenvalues,
so that its image under the ∂-flat extension of the CR mapping T` is also pseudo-
convex. We mention that in case n = 2, Theorem 3.2 was obtained in [KW1] and
[BG] (see, for example, Proposition 4.3 of [KW1]).

Proof of Theorem 3.2. Returning to the map T`(z1, x′, u), we can first easily con-
struct its C`-extension T e

` to a neighborhood of M̃0,`, which is ∂-flat to the order
of `− 1 along M̃0,`:
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Indeed, for each (z1, x′, u)(≈ 0) ∈ M̃0,`, we let

JβT` =
∂|β|T`

∂β1z1∂β2x′∂αu

(‖β‖ = ‖(β1, β2, α)‖ ≤ `) and

Tz0(T`) =
∑
‖β‖≤`

(z − z0)
β

β!
JβT`(z0), z = (z1, z′, zn), z0 ∈ M̃0,`.

Then, by noting T` ∈ C`(M̃0,`) and ∂z1T`(z1, x′, u) ≡ 0, it follows easily that

‖∂βTz0(T`)(z1) − JβT`(z1)‖ = o(‖z1 − z0‖)`−|β| and ‖Dγ∂
β∗
Tz0(T`)(z1) − 0‖ =

o(‖z − z0‖`−‖γ‖−1) (where ‖β∗‖ = 1), for any z1, z0 ∈ M̃0,`. Thus, by a standard
use of the Whitney extension theorem (see [Bog], for example), we can obtain a

C`-extension T e
` of T` to a neighborhood of M̃0,` in Cn with ‖Dγ

W∂
β∗

W T e
` (W )‖ =

o(δ`−|γ|−1
0 (W )) where ‖β∗‖ = 1 and we write δ0(W ) for the distance from W to

M̃0,`.
From Theorem 3.1 (a), it is clear that dT e

` |0 = id. Hence T e
` is a C` diffeomor-

phism near the origin. Moreover, ‖Dγ
W∂

β∗

W (T e
` )−1(W )‖ = o(δ`−|γ|−1

+1 (W )), where
‖β∗‖ = 1 and δ+1(W ) denotes the distance from W to M̃`.

For each small t, write T e
` = (φ1, · · · , φn) and (T e

` )−1 = (ψ1, · · · , ψn) = id +
o(|W |).

Now, for each small t > 0, let Ω∗t = {z ∈ Cn : ρ∗±j,t = ±(yj) + t(‖z‖2 − 1) <
0, j = 2, · · · , n, ρ∗1,t = −u+(q∗0 +h)(z1, z1, x′)+2(y2

2 + · · ·+y2
n)+ t(‖z‖2−1) < 0}.

Here, yj = Im(zj) and q∗0 + h is as in the statement of Theorem 3.1.
Write Ωt = T e

` (Ω∗t ). Then {Ωt}t is a decreasing continuous sequence as t→ 0+,
and for a sufficiently small ε > 0,

⋂
1�t>0 Ωt ∩{z : ‖z‖ < ε} = M̃` ∩{z : ‖z‖ < ε}.

Notice that for each t > 0, Ωt is defined by ρ±j,t(z) = ρ∗±j,t ◦ (T e
` )−1(z) < 0

(j = 2, · · · , n) and ρ1,t(z) = ρ∗1,t ◦(T e
` )−1(z) < 0. Also notice that for each W ∈ Ω∗t ,

δ0(W ) <
∼
O(t).

We now let z ∈ Ωt with ‖z‖ ≤ ε. It is then clear by our construction, that
δ+1(z) ≈ δ0((T e

` )−1(z)) <
∼
O(t). On the other hand, it is clear that for j ≥ 2,

∂∂ρ±j,t(z) = ∂∂(±Im(ψj) + t(‖ψ‖2 − 1))

= t

n∑
j=1

∂ψj(z) ∧ ∂ψj(z) +
∑
i,j

o(|δ+1(z)|`−2)dzi ∧ dzj .

Hence, using the fact that ∂ψj = dzj +
∑

k O(ε)dzk, we see that

∂∂ρ±j,t(z) = t

n∑
j=1

dzj ∧ dzj +
∑
i,j

(tO(ε) + o(|δ+1(z)|`−2))dzi ∧ dzj .

So, each eigenvalue of ∂∂ρ±j,t(z) is of the quantity (1 +O(ε))t + o(t) ≥ 1
2 t, once

` > 4, and ε, t are sufficiently small. Hence, we conclude that ρ±j,t(z) are strongly
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plurisubharmonic in Ωt ∩ {‖z‖ ≤ ε} . Similarly, a direct computation shows that

∂∂ρ1,t(z) =
∑

∂ψj ∧ ∂ψj +
∑
j,k

(O(ε+ t) + o(t`−2))dzj ∧ dzk

=
n∑

j=1

dzj ∧ dzj +
∑
j,k

(O(ε+ t) + o(t`−2))dzj ∧ dzk.

Therefore, when ε and t are sufficiently small, ρ1,t becomes strongly plurisubhar-
monic over Ωt ∩ {‖z‖ ≤ ε}, too. This implies that there are two small (fixed) posi-
tive numbers t0 and ε0 such that when 0 < t ≤ t0 and 0 < ε ≤ ε0, Ωt ∩ {‖z‖ < ε}
are pseudoconvex defined by functions {ρ±j,t, ρ1,t, ‖z‖2 − ε2}, which are strongly
plurisubharmonic over Ωt ∩ {‖z‖ ≤ ε}.

Thus, we proved that M̃`∩{z : ‖z‖ ≤ ε} is holomorphically convex for any ε ≤ ε0.
To see the uniqueness of the attached disks, we let φ be a bounded holomorphic map
from ∆ into Cn such that φ(∆) ⊂⊂ Ωt0 ∩ {z : ‖z‖ < ε0} and limξ→∂∆ φ(ξ) ⊂ M .
Then, if φ(∆) 6⊂ M̃`, there would be a t∗ < t0 and a certain ξ0 ∈ ∆ such that
φ(∆) ⊂ Ωt∗ and φ(ξ0) ∈ ∂Ωt∗ . By what we just proved and by applying the
maximum principle to ρ±j,t∗(φ(ξ)), ρ1,t∗(φ(ξ)), we see that either ρ±j,t∗(φ(ξ)) ≡ 0 for
a certain j or ρ1,t∗(φ(ξ)) ≡ 0. This is a contradiction; for φ is (almost) attached to
M . The proof of Theorem 3.2 is now complete.

To conclude this section, we remark that when M in Theorem (B) is merely
C` for some ` > 7, then the result of Kenig-Webster [KW2] and Theorem 3.2
shows that the holomorphic hull M̃ of M near p is at least in the smoothness class
C

`−7
3 . In [HU], it was shown that in case n = 2, M̃ is of C

`−2
2 near the elliptic

complex tangent p (see also Remark 5.3). The following example indicates that the
smoothness of M̃ can be only about half of that of the original manifold M :

Example. Let M = {(z, w) ∈ C2 : w = |z|2 + |z|z`}. Then M is of class C` near
the elliptic point 0 and the analytic disks φ(ξ, r) = (rξ, r2 + r`+1ξ`) are attached to
M . The holomorphic hull M̃ of M is the set {(z = x+

√
−1y, u+ iv)} with z = rξ,

u = r2 + rRe(z`), and v = rIm(z`). (Here ξ ∈ ∆ and 0 ≤ r � 1.) Now, regard M̃
as the graph of the function v = v(x, y, u) over π(M̃) and let ` ≡ 1 mod 4. Here
π is the projection to (z, u)-space. Then along x = 0, v(0, y, u) = u1/2y` for (y, u)
with u ≥ y2. Hence, we see that for k > `+1

2 , ∂kv(x,y,u)
∂uk |(x,y,u)=(0,y,y2) is unbounded

as y → 0. Therefore, we see that M̃ is at most C
`+1
2 near 0.

§4. Proof of Theorem (A)— Assuming Proposition 4.1

In this and the next sections, we further letM be real analytic near 0. As pointed
out in §2 (Proposition I.A), we can assume that M is defined by (2.1) with fα =
o(|z1|m), F ∗ = O(|z1|3), Im(F ∗) = o(|z1|m) and λ(x′) being real analytic. Here
m > 10 is a certain fixed large integer. We will give a detailed proof that the local
hull of holomorphy of M is real analytic near 0 and M can be biholomorphically
transformed into A. We will employ ideas from [HK] or [HU].

Still let π be the natural projection from Cn into A, which sends each point
(z1, z′, zn) to (z1, x′, u). Write M0 = π(M), whose defining function clearly has
the properties described in §2. Let M̃0 be as defined in (2.3). As in §2, we write
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all the analytic disks attached to M0 as (rσ(ξ, x′, r), x′, r2) (up to reparametriza-
tions), where by Lemma 2.1, σ(ξ, x′, r) depends real analytically on (ξ, x′, r) and
holomorphically on ξ. We recall that σ(0, x′, r) = 0 and σ′ξ(0, x

′, r) > 0.
Our starting point is the following result, whose proof is the content of §5:

Proposition 4.1. There exists a family of analytic disks

φ(ξ, x′, r) =
(
rσ(ξ, x′, r)(1 + ψ∗1(ξ, x′, r)), xα + ψ∗α(ξ, x′, r), r2 + ψ∗n(ξ, x′, r)

)
,

which are attached to M (i.e., φ(∂∆, x′, r) ⊂M) such that the following hold:
(I) After shrinking O and ε, φ(ξ, x′, r) ∈ Cm(∆ × O × Iε). (Here and in the

following, the fixed integer m (> 10) is as mentioned above.)
(II) For each j and for (x′, r) ≈ (o, 0), ξ ∈ ∆, ψ∗j (ξ, x′, r) depends real analytically

on (ξ, x′, r), holomorphically on ξ. Moreover ψ∗j = o(|r|m−2).

Next, write M̃m =
⋃

0≤r�1,x′∈O φ(∆, x′, r). Define Φ : M̃0 → M̃m by Φ(0, x′, 0)
= (0, x′, 0) and by

Φ(z1, x′, u) = φ(ξ(z1, x′, u), x′, u
1
2 )(4.1)

for u > 0, where ξ is uniquely determined by the equations: z1 = rσ(ξ, x′, r); r =
u

1
2 .

Lemma 4.2. Φ ∈ C2(M̃0) ∩ Cω(M̃0 \M0). Also Φ = id + o(‖z‖).

Proof of Lemma 4.2. First, from the definition, Φ is obviously continuous over M̃0.
Let (z1, x′, u) ∈ M̃0 \M0. Then u > 0. Moreover, Φ(z1, x′, u) = φ(ξ(z1, x′, u), x′, u),
where ξ = σ−1( z1

r , x
′, r) and r =

√
u. (Here, as before, we write σ−1(·, x′, r) for the

inverse of σ(·, x′, r).) Using Proposition 4.1, one sees that Φ(z1, x′, u) = (z1, x′, u)+
u

m
2 −1Φ∗(ξ( z1√

u
, x′,

√
u), x′,

√
u), where Φ∗ is a certain function holomorphic in ξ and

Cm in (ξ, x′, r) ∈ ∆×O × Iε. Since m > 10, it is easy to see that DαΦ(z1, x′, u) is
uniformly bounded for ‖α‖ ≤ 3 and for (z1, x′, u) ∈ M̃0 \M0 near 0. Hence, Φ is
twice differentiable near 0. Clearly, Φ is real analytic away from points in M0 by
Proposition 4.1 (II).

Since M̃m is the image of M̃0 under the twice differentiable diffeomorphism Φ, it
is also a twice differentiable (n+ 1)-manifold with a small open piece of 0 in M as
part of its boundary. Also we mention that Lemma 4.2 indicates that M̃m\M is real
analytic. Notice that M̃m is foliated by a continuous family of the analytic disks
shrinking down to the complex tangents, and notice that M̃m occupies an open
piece of M containing 0. By Theorem 3.2, we easily see that M̃m coincides with
the local hull of holomorphy of M near 0. Thus it is smooth near 0, by Theorem
(B). In the following, we write M̃ for M̃m to simplify the notation.

Notice that M̃ is tangent to M̃0 at 0 by Lemma 4.2. From the simple fact that
π(M) = M0 and π(M̃) ∩ M̃0 \M0 6= ∅, it follows easily that π(M̃ ) = M̃0 and thus
π|

M̃
is a diffeomorphism from M̃ to M̃0. Therefore, M̃ can thus be written as the

graph of certain functions {vα, v} over M̃0. Namely,

M̃ =
{(
z1, xα + ivα(z1, x′, u), u+ iv(z1, x′, u)

)
: (z1, x′, u) ∈ M̃0

}
.

Using the smooth character of M̃ , it is clear that vα(z1, x′, u), v(z1, x′, u) ∈
C∞(M̃0). Also, by Lemma 4.2 they are analytic over M̃0 \M . We will show in the
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following that vα(z1, x′, u) and v(z1, x′, u) have convergent Taylor series expansions
near the origin. Namely, vα(z1, x′, u) and v(z1, x′, u) are real analytic near 0. This
will complete the proof of Theorem (A).

Proof of Theorem (A). We let

z = (z1, zα, zn) = (z1, xα + ivα(z1, x′, u), u+ iv(z1, x′, u)) ∈ M̃ \M.

We first note, by Lemma 4.2 and the definition of Φ, that there is a unique (ξ, x′, r) ∈
∆×O × I+

ε such that

z1 = φ1(ξ, x′, r), zα = φα(ξ, x′, r), u+ iv = φn(ξ, x′, r).

Hence,

z1 = rσ(ξ, x′, r)
(
1 + ψ∗1

)
;(4.2)

zα = xα + ψ∗α(ξ, x′, r);(4.3)

u = Reφn = r2 + Reψ∗n(ξ, x′, r) = r2(1 + o(r));(4.4)

v = Imφn = Imψ∗n(ξ, x′, r), vα = Imψ∗α(ξ, x′, r).(4.5)

Here we mention again, by Proposition 4.1, that ψ∗j (ξ, x′, r) are holomorphic in
ξ ∈ ∆ and real analytic in (ξ, x′, r). From (4.4), it is clear that u > 0. Our next
goal is to solve vα and v as functions of (z1, x′, u) from the above equations:

Lemma 4.3. There exist certain functions hj(η1, η2, x′) (j = 2, · · · , n), which are
real analytic in (η1, η2, x′) near the origin, such that when π(z) (∈ M̃0 \M0) stays
in the region

{(z1, x′, u) ∈ A :
√
u, ‖x′‖, |z1/

√
u| are sufficiently small},

then v(z1, x′, u) = hn(
√
u, z1/

√
u, x′) and vα(z1, x′, u) = hα(

√
u, z1/

√
u, x′) (α <

n).

Proof of Lemma 4.3. From (4.4), Proposition 4.1 (II) and noting u > 0, we obtain

u
1
2 = r + r3h(ξ, x′, r),(4.5)′

where h(ξ, x′, r) is a certain function jointly real analytic in (ξ, x′, r) for (ξ, x′, r)
near the origin. When |r| � 1 and ‖x′‖ � 1, applying the implicit function theorem
to (4.5)′, we see that there exists a certain function g(η1, ξ, x′) which is real analytic
near the origin and g = o(|η1|) such that

r = η1 · (1 + g(η1, ξ, x′)) ≡ g̃(η1, ξ, x′),

where η1 is identified with u1/2. Thus by (4.2), we see that

z1 = η1(1 + g(η1, ξ, x′))σ(ξ, x′, g̃(η1, ξ, x′))(1 + ψ∗1(ξ, x
′, g̃(η1, ξ, x′))),

with η1 =
√
u. Write η2 = z1/η1 = z1/u

1
2 . We then have

η2 = (1 + g(η1, ξ, x′))σ(ξ, x′, g̃(η1, ξ, x′))(1 + ψ∗1(ξ, x
′, g̃(η1, ξ, x′))).(4.6)

Regard the right hand side of the above as a function η2(η1, ξ, x′) in (η1, ξ, x′).
Then, we notice that when η1, ξ, x

′ ≈ 0, we have (a) η2(η1, ξ, x′) is real analytic
in ξ, x′ and η1; (b) η2(0, 0, 0) = 0; (c) g(η1, ξ, x′)|0, ψ∗1(ξ, x′, g̃(η1, ξ, x′))|0 = 0;
dξ(1 + g(η1, ξ, x′))|0, dξψ

∗
1(ξ, x′, g̃(η1, ξ, x′))|0 = 0; and (d) σ(ξ, x′, g̃(η1, ξ, x′)) =

cξ + o(|ξ|) +O(|x′|+ |η1|) with c a certain positive constant (as (ξ, η1, x′) → 0).
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Hence, the implicit function theorem can be easily applied again to (4.6) to
conclude that for |η1|, |ξ|, ‖x′‖, |η2| � 1,

ξ = f̂(η1, η2, x′)(4.7)

where f̂ is a certain real analytic function defined near 0 with f̂ |0 = 0, and η1 and
η2 are identified with

√
u and z1/

√
u, respectively. Hence, we have that

r = g̃(η1, f̂(η1, η2, x′), x′) ≡ ĝ(η1, η2, x′),(4.8)

where ĝ is also real analytic in (η1, η2, x′) near 0, η1 =
√
u and η2 = z1/

√
u.

Letting

hn(η1, η2, x′) = Imφn(f̂(η1, η2, x′), x′, ĝ(η1, η2, x′)),

we then see from (4.5), (4.7) and (4.8) that when
√
u, ‖x′‖, |z1/

√
u| � 1,

v(z1, x′, u) = hn(
√
u, z1/

√
u, x′),

where hn is clearly real analytic in (η1, η2, x′) for (η1, η2, x′) close to the origin.
Similarly, for each α ∈ [2, n − 1], we can find a certain real analytic function

hα(η1, η2, x′) in (η1, η2, x′) defined near the origin such that vα = hα(
√
u, z1/

√
u, x′).

Now, for η1 real, expand

hn(η1, η2, x′) = Imφn(f̂(η1, η2, x′), x′, ĝ(η1, η2, x′)) =
∑

i,j,s≥0,α

aijs,αη
i
1η

j
2η

s
2x
′α

with |aijs,α| <∼ Ri+j+s+‖α‖.

Notice that when 0 < u < ε2, ‖x′‖ < ε and |z1|/u
1
2 < ε with 0 < ε� 1, it can be

easily seen that (z1, x′, u) ∈ M̃0 \M0. Therefore, in terms of Lemma 4.3, we have
that

v(z1, x′, u) = hn(
√
u, z1/

√
u, x′) =

∑
i,j,s,α

aijs,αu
1
2 (i−j−s)zj

1z1
sx′α.

However since v(z1, x′, u) is C∞ near the origin, we see, in particular, that

∂j+s+‖α‖v(z1, x′, u)
∂zj

1∂z1
s∂x′α

∣∣
(0,x′,u)

is C∞ in (x′, u), as long as 0 ≤ u� 1 and x′ ≈ 0.
Meanwhile, for 0 < u� 1, one clearly has

∂j+s+‖α‖v(z1, x′, u)
∂zj

1∂z1
s∂x′α

∣∣∣∣
(0,0,u)

=
∞∑

i=0

j!s!α!aijs,αu
1
2 (i−j−s) .

This implies that aijs,α = 0 when (1/2)(i− j − s) is not a non-negative integer; for
the left hand side of the above is smooth when 0 ≤ u� 1. Thus

v(z1, x′, u) =
∑

i,j,s,α

aijs,αu
1
2 (i−j−s)zj

1z1
sx′α =

∑
τ,j,s,‖α‖≥0

a2τ+j+s,j,s,αu
τzj

1z1
sx′α

when 0 < u < ε2, ‖x′‖ < ε, and |z1| < εu
1
2 .

On the other hand,

|a2τ+j+s,j,s,α| <∼ R2τ+j+s+j+s+‖α‖ <
∼

(R2)τ+j+s+‖α‖.
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Thus we conclude that

ṽ(z1, x, u) =
∑

τ,j,s,α

a2τ+j+s,j,s,αu
τzj

1z1
sx′α

is a real analytic function in (z1, u, x′) near the origin. Also ṽ(z1, x′, u) ≡ v(z1, x′, u)
when 0 < u < ε2, ‖x′‖ < ε, and |z1| < εu1/2. Notice that v(z1, x′, u) is real
analytic on M̃0 \M0 and is C∞ on M̃0. By the unique continuation property of real
analytic functions, it follows that ṽ(z1, x′, u) ≡ v(z1, x′, u) for all z, x′, u ≈ 0 with
(z1, x′, u) ∈ M̃0. Similarly, we can prove that vα are real analytic near 0, too.

At last, we see that M̃ is a real analytic submanifold across part of its real
analytic boundary M near 0.

Moreover, using the graph of the real analytic extension of the map

(z1, x′ +
√
−1vα, u+

√
−1v(z1, x′, u)) near 0,

we obtain a real analytic (n+ 1)-submanifold E containing M̃ . One can see easily
that E is a generic submanifold with real analytic CR-subbundle T (1,0)E of real
dimension two. Now, after choosing suitable analytic coordinates, we can define the
Levi-form L of E near 0 which is also real analytic (see [Bog] for related concepts).
Noting that M̃ is foliated by analytic disks, we see that L vanishes identically on
M̃ and thus L vanishes identically on a neighborhood of 0. That is, E is a Levi-flat
generic submanifold of real codimension n− 1. Applying the Frobinus theorem, we
see that M near 0 can be holomorphically transformed into the affine space A. The
proof of Theorem (A) is complete, assuming Proposition 4.1.

§5. Singular Bishop equations— Proof of Proposition 4.1

In this section, we still assume that M is real analytic. We will present a proof
of Proposition 4.1. This leads us to the study of the singular Bishop equation near
0. We would like to mention that by using the Hilbert transform along a variable
curve and by using a much refined Picard iteration technique appearing in [KW1],
[KW2], one can prove the existence of the family of analytic disks attached to M .
Then, by applying the implicit function theorem around each fixed disk as was done
in [KW1], [KW2], one can see the nice dependence on the real parameter (x′, r) for
0 < r � 1. (See, for example, [KW1, Propositions 3.3, 3.4].) However, Proposition
4.1 requires the analytic dependence of the disks with respect to (x′, r) for r in a
neighborhood of r = 0. Our idea to do this is to use a perturbation method. (See
[HU] or [HK] for certain related arguments in the case of complex dimension two.)
As mentioned in §4, for the fixed integer m > 10, we can assume that M is defined
by (2.1) but with the following extra properties:

(a) F ∗ = k(z1, z1, x′) +
√
−1h(z1, z1, x′) = O(|z1|3), λ(x′), and fα are real

analytic functions;
(b) h = Im(F ∗(z1, z1, x′)) = o(|z1|m), and fα(z1, z1, x′) = o(|z1|m). Here, |z1| �

1 and x′ ∈ O.
As in §2, we write

M0 = {(z1, x′, u) ∈ A : u = q0(z1, z1, x′) + k(z1, z1, x′)}
and

M̃0 = {(z1, x′, u) ∈ A : u > q0(z1, z1, x′) + k(z1, z1, x′)}.
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Also, we know that (rσ(ξ, x′, r), x′, r2) forms a family of analytic disks attached to
M0.

Proof of Proposition 4.1. We will seek a suitable family of functions

{F1(ξ, x′, r), · · · ,Fn(ξ, x′, r)}

from ∆×O× Iε to Cn, which are holomorphic in ξ ∈ ∆ for each fixed r and x′, so
that

Φ(ξ, x′, r) = (rσ(ξ, x′, r)(1 + F1(ξ, x′, r)),Fα(ξ, x′, r),Fn(ξ, x′, r))

provides the desired family of analytic disks attached to M , as in Proposition 4.1.
Therefore, we need to solve the following system of equations:

Fn(ξ, x′, r) = q0(F∗1 (ξ, x′, r),F∗1 (ξ, x′, r),Re(F(ξ, x′, r))) + k(F∗1 ,F
∗
1,Re(F))

+
√
−1h(F∗1 ,F∗1 ,Re(F)),

(5.1)

Im(Fα) = fα(F∗1 ,F∗1 ,Re(F)).(5.2)

Here F∗1 = rσ(ξ, x′, r)(1 + F1(ξ, x′, r)) and F = (F2, · · · ,Fn−1). In what follows,
we write X = Re(F) and Y = Im(F). We also notice that (5.2) is a normal Bishop
equation, while (5.1) becomes degenerate when r → 0. LetN be a certain fixed large
integer. Write (EN,k, ‖·‖N,1/2) for the real-valued function space CN,1/2(S1)×· · ·×
CN,1/2(S1) equipped with the standard Banach norm ‖ · ‖N,1/2, where the product
takes k times. For simplicity, we write ‖ · ‖N for ‖ · ‖N,1/2, in what follows. And for
a complex-valued function g, ‖g‖N :=

√
‖Reg‖2N + ‖Img‖2N .

We impose a normalization condition on F such that the harmonic extension
(in ξ-variable) of X to ∆ takes the value x′ at the origin. Then (5.2) reduces to
the equation: X = −H(Y) + x′, and thus X = −H(f(F∗1 ,F∗1 ,X )) + x′. Notice
that F∗1 = rσ(ξ, x′, r)(1 + F1) and f(z1, z1, x′) = o(|z1|m). We see that there
is a real-valued vector function G = (G2, · · · , Gn−1), which is real analytic in
(A1, B

′; ξ, x′, r) ∈ U∗ × Ũ × S1 × O × Iε, such that equation (5.2) can be further
reduced to the following form:

X − x′ = rmH(G(F1,X ; ξ, x′, r)).(5.3)

Here U∗ is a certain small open subset in C1 containing 0 and Ũ is a certain small
open neighborhood of 0 in Rn−2. Here and in what follows, for a function g over
S1 with parameter (x′, r), H(g(ξ, r, x′)) := (H(g(·, r, x′)))(ξ).

We next simplify equation (5.1). Dividing it by r2, we get

1
r2
Fn(ξ, x′, r) = q0(σ(1 + F1), σ(1 + F1),X )

+
1
r2
k(F∗1 ,F∗1 ,X ) +

√
−1
r2

h(F∗1 ,F∗1 ,X ).
(5.3)′

Linearizing the right hand side of (5.3)′ at the point (F1,X , r) = (o, x′, r), one
obtains

1
r2
Fn = Ω0 + Ω1 + Ω2.
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Here Ω0, Ω1 are given by

Ω0 = q0(σ, σ, x′) +
1
r2
k(rσ, rσ, x′) = 1,

Ω1 = 2Re
(

(σ
∂q0
∂z1

(σ, σ, x′) +
σ

r

∂k

∂z1
(rσ, rσ, x′))F1

)
;

and Ω2 is the right hand side of (5.3)′ with Ω0 and Ω1 being taken away. By Lemma
2.1, there clearly exists a Cω-function Λ0 in (ξ, x′, r;A1, B

′) ∈ S1 ×O × Iε × U∗ ×
Ũ such that Ω2(F1,X ;x′, r)(ξ) = Λ0(ξ, x′, r;F1,X ), where Λ0(ξ, x′, r;A1, B

′) =∑n−1
α=2 aα(ξ, x′, r)(Bα−xα)+Λ∗0(ξ, x

′, r;A1, B
′) with Λ∗0 = o(‖B′−x′‖)+ o(|A1|)+

o(|r|m−2) and aα(ξ, x′, r) certain real analytic functions in (ξ, x′, r). Here, U∗ is a
certain small neighborhood of 0 in C1 and Ũ is a small neighborhood of 0 in Rn−2.
Since (5.3)′ is coupled with (5.3), making use of (5.3), we get

∑
α

aα(ξ, x′, r)(Xα − xα) = rm
n−1∑
α=2

aα(ξ, x′, r)H(Gα(F1,X ; ξ, x′, r)).

Hence, we can reformulate (without changing the solutions to the system (5.3),
(5.3)′) Ω2, the non-linear operator with variables in (F1,X ;x′, r) and with value in
the complex-valued CN,1/2(S1)-space, by

Ω2(F1,X ;x′, r)(ξ) = rm
n−1∑
α=2

aα(ξ, x′, r)H(Gα(F1,X ; ξ, x′, r))

+ Λ∗0(F1,X ; ξ, x′, r).

(5.3)′∗

Apparently, for each fixed x′ ≈ 0, as ‖F1‖N , |r|, ‖X − x′‖N → 0, making use of
the boundedness of the Hilbert transform acting on the Banach space CN,1/2 with
the standard norm, the right hand side of (5.3)′∗ gives the following asymptotic
property of Ω2:

Ω2 = o(‖X − x′‖N ) + o(‖F1‖N ) + o(|r|m−2).(5.3)′′

Write

c(ξ, x′, r) = 2σ(ξ, x′, r)
(
∂q0
∂z1

+
1
r

∂k

∂z1
(rσ, rσ, x′)

)
.

Hence, to solve the system (5.1), (5.2), it suffices to solve (5.3) coupled with the
following:

Re (c(ξ, x′, r)F1) + Ω2(F1,X ;x′, r)(ξ) + 1 =
1
r2
Fn(ξ, x′, r).

Here and in what follows, Ω2 is given by (5.3)′∗. Notice that 1
r2Fn is only required

to be holomorphic in ξ. The solutions of (5.3) and the following equation (5.4)
easily yield solutions for the system (5.1), (5.2):

Re(c(ξ, x′, r)F1) + Re(Ω2(F1,X ;x′, r)(ξ)) = −H(ImΩ2(F1,X ;x′, r))(ξ).(5.4)

Remark that the high order vanishing property of h implies that ‖Im(Ω2)‖N <
∼

rm−2, after the existence and dependence property of the solution (F1,X ) is estab-
lished.
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Lemma 5.1. With the above notation, one has c(ξ, x′, r) 6= 0 and IndS1c(ξ, x′, r) =
0 for |r| � 1, ξ ∈ S1 and x′ ∈ O. Hence, there exists a positive function
d(ξ, x′, r) ∈ Cω(S1 ×O × Iε) such that d∗(ξ, x′, r) = d(ξ, x′, r)c(ξ, x′, r) has a holo-
morphic extension to ∆ for each fixed r and x′ ∈ O. Moreover, d∗(ξ, x′, r) is real
analytic in (ξ, x′, r).

Proof of Lemma 5.1. We first see that

Rec(ξ, x′, r) = 2Re
(
σ(ξ, x′, r)

∂q0
∂z1

(σ, σ, x′) +
σ

r

∂k(rσ, rσ, x′)
∂z1

)
= 2Re

(
|σ|2 + 2λ(x′)σ2 +O(|r|‖σ‖2)

)
> 0,

when r is sufficiently small.
Now we can simply let d(ξ, x′, r) = 1

|c|e
H(i log c

|c| (ξ,x′,r)) and d∗(ξ, x′, r) = d · c.
Then d and d∗ possess the properties as imposed in the lemma.

Returning to equation (5.4), we have

Re (d∗(ξ, x′, r)F1) = −d(ξ, x′, r)ReΩ2(F1,X ;x′, r)

− d(ξ, x′, r)H(Im(Ω2(F1,X ;x′, r))).

Let F̃1 = d∗(r, ξ)F1 ≡ U(ξ, x′, r) +
√
−1H(U(ξ, x′, r)). Then we obtain

U(ξ, x′, r) = −d(ξ, x′, r)Re
(

Ω2

(
U +

√
−1H(U)

d∗(ξ, x′, r)
,X ;x′, r

))

− d(ξ, x′, r)H
(

Im
(

Ω2

(
U +

√
−1HU

d∗(ξ, x′, r)
,X ;x′, r

)))
.

(5.4)′

We will now solve ~U(x′, r) = (U(x′, r),X (x′, r) − x′) from equation (5.3) and
equation (5.4)′. To this aim, we let

Λ1(~U ;x′, r) = (−d(ξ, x′, r)ReΩ2(F1,X ;x′, r), 0) ;

Λ2(~U ;x′, r) = −d(ξ, x′, r) (H (ImΩ2(F1,X ;x′, r)) , 0) ;

Λ3(~U ;x′, r) = −rm (0,H(G(F1,X ; ξ, x′, r))) .

Here, as defined before, F1 = (U +
√
−1H(U))/d∗. Then we obtain

~U = Λ1(~U ;x′, r) + Λ2(~U ;x′, r) + Λ3(~U ;x′, r).(5.5)

We are going to apply the implicit function theorem to (5.5) to obtain a solution
~U that is Cω in the variable (x′, r). To this end, we write N for the same index as
before.

Write

B
N,1/2
ε,k = {φ ∈ EN,k : ‖φ‖N < ε}.

Consider the operator

Λ : BN,1/2
ε,n−1 ×O × Iε → EN,n−1,

Λ(~U ;x′, r) = Λ1(~U ;x′, r) + Λ2(~U ;x′, r) + Λ3(~U ;x′, r).

By the boundedness of the Hilbert transform acting on the Banach space EN,1,
we easily see that Λ is a well-defined smooth operator when ε� 1. In fact, we have
(see [Dei] for the definition of the related concept):
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Lemma 5.2. For sufficiently small ε, O and r, Λ is an analytic map from B
N,1/2
ε,n−1×

O × Iε into EN,n−1(S1).

Proof of Lemma 5.2. First notice that the Hilbert transform is bounded, linear
and hence analytic. It is self-evident that Λ must be real analytic, because it is
formed from the compositions and other basic operations of real analytic func-
tions and mappings between Banach spaces [Dei]. Indeed, Λ(~U ;x′, r) is clearly
a finite sum of non-linear operators of the following forms: F1(ξ, x′, r; ~U,H(~U)),
c1(ξ, x′, r)H(F3(ξ, x′, r; ~U,H(~U))), and c2H(c3H(F4(ξ, x′, r; ~U,H(~U)))), where Fj

and cj are real-valued real analytic vector or scale functions in their arguments.

We notice that Λ(0) = 0. Meanwhile, since ‖F1‖N ≈ ‖U‖N , from (5.3), (5.3)′′,
as well as the definition of Λ, it follows quite clearly that Λ′~U |0 = 0. Thus, from the
real analytic version of the implicit function theorem in Banach spaces (see [Dei]),
(5.5) can be uniquely solved. Moreover, the solution ~U(x′, r) depends Cω on the
parameter (x′, r) ≈ 0; i.e., ~U(x′, r) =

∑
α,j

~Uα,jx
′αrj with ~Uα,j ∈ CN,1/2(S1) and

‖~Uα,j‖N <
∼
R‖α‖+j . Hence, ~U(ξ, x′, r) = ~U(x′, r)(ξ) belongs to CN,1/2(S1×O×Iε).

Also, by (5.3)′′, (5.4)′, (5.3) (which now indicates that ‖X − x′‖N <
∼
rm) and the

previously mentioned fact ‖Im(Ω)‖N <
∼
rm−2, it holds that

‖U(ξ, x′, r)‖N ≤ ε‖U‖N +O(rm−2), and hence ‖U(ξ, x′, r)‖N ≤ C · 1
1− ε

rm−2.

Having obtained (U,X ), we can then get F1 and F by holomorphically extending
to ∆ in ξ-variable the functions (U +

√
−1H(U))/d∗(ξ, x′, r) and X +

√
−1H(X )

(by the Cauchy integral), respectively. From the ways equations (5.4)′ and (5.3)
were derived, it is self-evident that the (F1,F) constructed in such a manner yields
a solution to the system (5.1), (5.2). Namely, after substituting the just obtained
(F1,F) into (5.1) and (5.2), (5.2) becomes the identity and the right hand side of
(5.1), apriori defined for ξ ∈ S1, extends to the holomorphic function Fn over ∆ in
ξ.

Next, by the maximum principle, we easily see that |F1| <∼ rm−2 and |F − x′| <
rm hold over ∆ uniformly for (x′, r) sufficiently close to (o, 0).

Lastly, for ξ ∈ ∆, let

(φ1, φα, φn)(ξ) = (rσ(ξ, x′, r)(1 + F1(ξ, x′, r)),Fα(ξ, x′, r),Fn(ξ, x′, r)) .

Then, one has:

φ1(ξ, x′, r) = rσ(ξ, x′, r)(1 + ψ∗1(ξ, x′, r)), φα(ξ, x′, r) = x′ + ψ∗α(ξ, x′, r)

with ψ∗1(ξ, x′, r) = O(rm−2) and ψ∗α(ξ, x′, r) = O(rm). Also write φn = r2 +
ψ∗n(ξ, x′, r). Notice that q0 + k

∣∣
(rσ,rσ,x′) = r2 and

F
(
rσ(ξ, x′, r)(1 + F1), rσ(ξ, x′, r)(1 + F1),Re(F)

)
= F (rσ(ξ, x′, r), rσ(ξ, x′, r), x′) +O(|r2σF1|) +O(‖X − x′‖)
= r2 + h(rσ(ξ, x′, r), rσ(ξ, x′, r), x′) +O(|r|m) = r2 +O(rm),

where F = q0 + k +
√
−1h. We also see that ψ∗n(ξ, x′, r) = O(rm).
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Moreover, from the analytic dependence of ~U(x′, r) on (x′, r), some standard
properties of the Hilbert transform, and the Cauchy estimates for holomorphic func-
tions, it is quite easy to conclude that ψ∗j ’s depend real analytically on (ξ, x′, r) ∈
∆×O× Iε and CN,1/2 over ∆×O× Iε when O and ε are sufficiently small. There-
fore, the family φ just obtained satisfies the property as in Proposition 4.1, if we
take N > m. The proof of Proposition 4.1 is finally complete.

Remark 5.3. Let φ be obtained as above, and let Φ be defined as in (4.1). It can be
further shown that Φ ∈ C m−2

2 (M̃0) ∩Cω(M̃0 \ {(0, x′, 0)}). Also Φ = (id + o(‖z‖))
is holomorphic in z1.

Appendix I: Formal flattening of M

In this appendix, we will show that a real analytic non-degenerate elliptic point
can be flattened to any order, which was used in the proof of Theorem (A). This
result follows implicitly from the work of Kenig-Webster [KW2]. However, due to
its importance to this paper and for convenience of the reader, we include a detailed
proof.

Proposition I.A. Let M ⊂ Cn be a real analytic n-submanifold and let p ∈M be
a non-degenerate elliptic point. Then, for any positive integer `, there is a biholo-
morphic change of coordinates sending p to 0 such that, in the new coordinates, M
can be defined by an equation of the form as in (2.1) but with the following extra
properties:

(a) λ(x′) is real analytic in x′;
(b) F ∗ = O(|z1|3); and
(c) fα = O(|z1|`−1), Im(F ∗) = o(|z1|`).

Proof of Proposition I.A. As mentioned in §2, after a holomorphic change of coor-
dinates, we can assume that p = 0 and, near 0, M is given by an equation of the
following form:

zn = F = q0(z1, z1, x′) + F ∗(z1, z1, x′),

yα = fα(z1, z1, x′) = fα(z1, z1, x′),
(I.1)

where q0 = z1z1 + λ(x′)z2
1 + λ(x′)z2

1 , |λ(x′)| < 1/2, 0 ≤ λ(0) < 1/2, F ∗ =
k(z1, z1, x′) +

√
−1h(z1, z1, x

′), and fα(z1, z1, x′) have vanishing order at least 3
at 0.

Let P be the locus of complex tangents of M near 0, as introduced in (2.2).
Then P is real analytic in x′ ≈ 0. In particular, we see that P can be extended
holomorphically to an open subset of 0 ∈ Cn. We now let:

z1 = z1
∗ + P (z′∗), z′ = z′∗ +

√
−1f(P (z′∗), P (z′∗), z′∗),

zn = z∗n + F (P (z′∗), P (z′∗), z′∗).

Applying the inverse of the above transform to M , then in the new coordinates, P is
given by the x′∗-(affine) space; and M is given by an equation of the form: z∗n = F
and y∗α = fα with F = b1(x′

∗)z∗1 +O(|z∗1 |2) and fα = O(|z∗1 |). In what follows, when
there is no risk of causing confusion, we still write z for z∗. Write F = b1(x′)z1 +
b21(x′)z2

1 + b12(x′)z12 + b11(x′)z1z1 +O(|z1|3) and f = Im(c0(x′)z1)+ o(|z1|), where



ON AN n-MANIFOLD IN Cn NEAR AN ELLIPTIC COMPLEX TANGENT 687

bij(x′) are real analytic in x′. We now make another change of variables:

z∗1 = z1, z
′∗ = z′ − c1(z′)z1, and z∗n = zn − b1(z′)z1.

Then in the new coordinates, we see that M is now given by an equation of the
form: zn = F and yα = fα with F = b21(x′)z2

1 + b12(x′)z12 + b11(x′)z1z1 +O(|z1|3)
and f = O(|z1|2). By the ellipticity, we have b11(0) 6= 0. Applying the transforma-
tion (z∗1 , z

′∗, z∗n) = (z1, z′, zn

b11(z′) −
b21(z′)
b11(z′)z

2
1 + (b12(z′)/b11(z′))z2

1), we can see that

in the new coordinates, zn = F = q0 + k + ih = |z1|2 + (λ(x′)z2
1 + λ(x′)z2

1) +
O(|z1|3) with q0 = |z1|2 + (λ(x′)z2

1 + λ(x′)z2
1), and yα = fα = O(|z1|2), where

λ(x′) = b12(x′)/b11(x′) is real analytic near 0. Moreover, by applying the transform
(z1, z′, zn) → (cz1, z′, |c|2zn) with a suitable non-zero constant c, we can further as-
sume, without loss of generality, that λ(0) ≥ 0. (By the ellipticity, λ(0) < 1/2.)
This completes the proofs of (a) and (b) in Proposition I.A.

Next, we will show that for any given ` > 3, we can further find a biholomorphic
mapping defined near the origin, which will send M to a submanifold defined by
an equation of the form zn = F = q0 + k+ ih = z1z1 + 2Re(λ(x′)z2

1) +F ∗, yα = fα

with the following properties described as in Proposition I.A: fα = O(|z1|`−1) and
h = Im(F ∗) = o(|z1|`). Here λ(x′) is as obtained above and F ∗ = O(|z1|3).

To this aim, we will seek the required transformation given in the following way:

z∗1 = z1, z′∗ = z′ +
`−1∑
j=2

C(j)(z1, zn; z′), and z∗n = zn +
∑̀
j=3

B(j)(z1, zn; z′),(I.2)

where C(j) and B(j) are weighted homogeneous polynomials in z1 and zn of de-
gree j with coefficients in the germs of holomorphic functions defined near a small
neighborhood O of 0 ∈ Rn−2. Here, we assign the weights 1 and 2 to z1 and zn,
respectively. Namely, a polynomial of the form zi

1z
j
n has weighted degree i+ 2j.

Also, we impose the following normalization condition:

ReC(j)(0, u;x′) = ReB(j)(0, u;x′) = 0.(I.2)′

We of course expect that after the above change of variables, M is mapped to a
submanifold given as follows:

z∗n = q0(z∗1 , z∗1 , x
′∗) + k∗(z∗1 , z∗1 , x

′∗) +
√
−1h∗(z∗1 , z∗1 , x

′∗),

y∗α = f∗α(z∗1 , z∗1 , x
′∗) = fα

∗
(z∗1 , z

∗
1 , x

′∗),
(I.3)

where k∗ = O(|z∗1 |3), h∗(z∗1 , z∗1 , x′∗) = o(|z∗1 |`) and f∗(z∗1 , z∗1 , x
′∗) = o(|z∗1 |`−1).

Substituting (I.2) into (I.3) and collecting terms of weighted degree k, we see
that we only need to solve the following functional equations for k ≤ `:

ImB(k)(z1, q0(z1, z1, x′), x′) = −h(k)(z1, z1;x′) +G
(k)
1 (z1, z1;x′),

ImC(k−1)(z1, q0(z1, z1, x′), x′) = −f (k−1)(z1, z1, x′) +G
(k−1)
2 (z1, z1;x′),

(I.4)

where h =
∑

k≥3 h
(k)(z1, z1, x′), f =

∑
k≥2 f

(k)(z1, z1, x′) with h(k) and f (k) being
weighted homogeneous polynomials in z1 and z1 of degree k, whose coefficients
are real analytic in x′ ∈ O. G(k)

1 and G
(k−1)
2 are finitely contributed by B(σ) and

C(σ−1) for σ ≤ k − 1. Notice that when k = 3, we have the initial condition
that G(k)

1 = G
(k−1)
2 = 0. Indeed, by the following Lemma I.B, we can inductively

and uniquely solve (I.4) with the normalization condition (I.2)′. This obviously
completes the proof the proposition.
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Lemma I.B. For any homogeneous polynomial G(s)(z1, z1, x′) of degree s ≥ 1 in
(z1, z1) with coefficients real analytic in x′ ∈ O, a small open neighborhood of 0
in Rn−2, there exists a unique weighted homogeneous polynomial X(s)(z1, u, x′) in
(z1, u) with coefficients real analytic in x′ ∈ O such that

ImX(s)(z1, q0(z1, z1, x′), x′) = G(s)(z1, z1, x′), ReX(s)(0, u, x′) ≡ 0.(I.5)

Proof of Lemma I.B. The proof of this lemma is similar to that in [KW2, Proposi-
tion 1.1].

Write R(O) for the ring of real analytic functions in x′ ∈ O. Let

D(s)
1 = {G(z1, z1, x′) : G(z1, z1, x′) =

∑
i+j=s

aij(x′)zi
1z

j
1},

where aij(x′) = aji(x′) ∈ R(O) are real analytic functions in x′ ∈ O; and let

D(s)
2 = {F (z1, u, x′) : F (z1, u, x′) =

∑
i+2j=s

aij(x′)zi
1u

j},

where the function
√
−1a0s/2(x′) ∈ R(O) takes the real value when s is even.

Then, denote the subsets ofD(s)
1 andD(s)

2 , whose coefficients aij(x′) are constant,
by D(s)

1 (0) and D(s)
2 (0), respectively. Then, they can be viewed as R-vector spaces.

Moreover, dimRD
(s)
1 (0) = dimRD

(s)
2 (0) = s+1. Meanwhile, by using the maximum

principle and noting that the level set of q0(z1, z1, x′) = r2 for each fixed x′ ∈ O is
the boundary of an analytic disk, one sees that g(z1, zn) ≡ 0 if

Img(z1, q0(z1, z1, x′)) ≡ 0.

Here g ∈ D(s)
2 (0) and Reg(0, u) = 0. In fact, if the last condition holds, then for each

r, one sees that Img(rσ0(ξ, x′, r), r2) ≡ 0 for every ξ ∈ ∂∆. Here we use σ0 to denote
the conformal mapping from ∆ to the domain D0 = {ξ ∈ C1 : q0(ξ, ξ, x′) < 1}.
Thus, it follows that g(z1, r2) ≡ 0 for (z1, x′, r2) ∈ M̃0. Hence one obtains g ≡ 0.

Therefore, for each fixed x′ ≈ 0, we can conclude that the R-linear operator
I(x′) : D(s)

2 (0) → D(s)
1 (0), which sends each g ∈ D(s)

2 (0) to Im(g(z1, q0(z1, z1, x′))),
is one-to-one. Since the two vector spaces over R involved here have the same finite
dimension, it therefore follows that I(x′) is an R-linear isomorphism.

Now, we can use this fact to show that the map I : D(s)
2 → D(s)

1 , which sends
each g ∈ D(s)

2 to I(g) = Im(g(z1, q0(z1, z1, x′), x′)), is onto. Notice that I is linear
over the ring of real-valued real analytic functions in x′.

Indeed, we can explain it as follows: Write z1 = x1 +
√
−1y1. Then D(s)

1 is
actually the collection of functions of the form: h =

∑
i+j=s aij(x′)xi

1y
j
1 with aij(x′)

real-valued and real analytic in x′ ∈ O. Set ej = xj−1
1 ys−j+1

1 for j = 1, · · · , s + 1.
Then {ej} gives a basis for D(s)

1 . We can also choose a basis {ẽ1, · · · , ẽs+1} of
D(s)

2 , which has constant coefficients. Say, when s is even, we let ẽ1 =
√
−1us/2,

ẽ2 = z2
1u

s/2−1, ẽ3 =
√
−1z2

1u
s/2−1, · · · , ẽs+1 =

√
−1zs

1. Notice that these basis
are also the vector space basis of R-vector spaces D(s)

1 (0) and D(s)
2 (0), respectively.

Clearly, for each element g in D(s)
1 , there is a unique decomposition g =

∑
gj(x′)ej

with gj(x′) real-valued. Also, for an element φ ∈ D
(s)
2 , we have φ =

∑
φj(x′)ẽj

with φj(x′) real-valued. Write I(ẽi) =
∑

j bij(x
′)ej , where bij(x′) are real-valued

real analytic functions in x′. Then, since for each fixed x′, I(x′) (defined as above)
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is an R-linear isomorphism from the R-vector space D(s)
2 (0) to the R-vector space

D(s)
1 (0), its matrix with respect to the above mentioned basis, which is obviously

given by (bij(x′)), must be invertible. Now, for any g =
∑
gjej ∈ D(s)

1 , let φ =
(g1, · · · , gs+1)(bij(x′))−1(ẽ1, · · · , ẽs+1)t. Since gj, bij are real-valued, one verifies
easily that φ ∈ D(s)

2 and I(φ) = g. The proof of Lemma I.B is now complete.

Appendix II. A functional equation along M

In this appendix, we present an application of Theorem (A) to the convergence
proof of a formal power series coming from a certain functional equation, which
may be useful in certain other studies (see, for example, Corollary II.B).

Theorem II.A. Let M be a real analytic n-manifold in Cn. Let p ∈ M be an
elliptic complex tangent point. For any given real-valued real analytic function
G(z, z) near p, there is a holomorphic function X(z) near p such that

Im(X(z)) = G(z, z), for z ∈M.(II.1)

Proof of Theorem II.A. By Theorem (A), we can clearly assume that M is already
flattened. Namely, we can assume that p = 0 and M is defined by an equation of
the form

u = q0(z1, z1, x′) + k(z1, z1, x′), yj = 0, j ≥ 2,

where k = o(‖z1‖2). Also, we impose the normalization condition

Re(X(0, u, x′)) ≡ 0(II.1)′

so that (II.1) will be uniquely solved. We may assume that G(0) = 0.
Assign the weights 1 and 2 to z1 and u, respectively, and write G(z1, z1, x′) =

G((z1, x′, q0+k), (z1, x′, q0 + k)). Write X(s)(z1, u, x′) (respectively, G(s)(z1, z1, x′))
for the weighted homogeneous polynomial in (z1, u) (respectively, in (z1, z1)) of
degree s in the expansion of X(z1, u, x′) (respectively, G(z1, z1, x′)) near the origin.
Then collecting terms in (II.1) of weighted degree s, we obtain

Im(X(s)(z1, q0(z1, z1, x′), x′)) = G(s)(z1, z1, x′) +G∗(s)(z1, z1, x′),(II.2)

where G∗(s) is contributed by X(τ) and G(τ−1) with τ ≤ s− 1. When s = 0, we see
that X(0) = iG(0, 0, x′), and when s = 1, we have the initial condition G∗(s) = 0.

Now, applying Lemma I.B to (II.2) with the normalization (II.1)′, one sees that
X(s) can be inductively and uniquely solved, and completely determined by X(τ)

and G(τ+1) for τ < s. However, this dependence is very complicated and does not
seem to be directly usable to get the Cauchy estimates for {X(s)}. Our method to
prove the convergence is to get the Cauchy estimates by showing the sequence of
the finite expansions of X oscillates to a well-defined function. See also [MW] and
[MOS] for some other methods to handle the convergence when λ 6= 0.

To this aim, we write Xk(z1, u;x′) =
∑k

s=0X
(s)(z1, u, x′). Then for z ∈M ,

ImXk(z1, u;x′) = G(z1, z1, x′) +O(|z1|k+1).(II.3)

Let σ(ξ, x′, r) be as before. Consider the following equation:

ImX̃(z1, u; z′) = G(z1, z1, x′), (z1, x′, u) ∈M,(II.4)

with the normalization condition ReX̃(0, u;x′) = 0. Here, X̃ is only required to
be defined over M̃0 and holomorphic along each analytic disk φ = (φ1, · · · , φn) =
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(rσ, x′, r2) attached to M , i.e., X̃ ◦ φ(ξ, x′, r) is holomorphic in ξ for each given
(x′, r). Then

ImX̃(φ(ξ, x′, r)) = G(φ1(ξ, x′, r), φ1(ξ, x′, r), x′)

for ξ ∈ ∂∆. Thus, X̃ (φ(ξ, x′, r)) = S(G(φ1(·, r, x′), φ1(·, x′, r), x′))(ξ) for ξ ∈ ∆.
Here S =

√
−1(id +

√
−1H) is the Schwartz transform. Let

X∗(ξ, r, x′) = S
(
G(φ1(·, x′, r), φ1(·, x′, r), x′)

)
(ξ).

Then X∗(ξ, r, x′) is holomorphic in ξ on ∆. Also, by Lemma 2.1 and some basic
properties of the Hilbert transform, it follows easily that X∗(ξ, r, x′) is jointly real
analytic in (ξ, r, x′). Hence

X∗ =
∑

i,j,‖α‖≥0

aijαx
′αξirj

for |r|, |ξ|, ‖x′‖ � 1.
Now, for r = u1/2 and ξ = σ−1(z1/

√
u, x′,

√
u), we obtain the following expan-

sion:

X̃(z1, u;x′) = X∗
(
σ−1(

z1√
u
, x′,

√
u),

√
u, x′

)
=

∑
i,j,‖α‖≥0

ãijα(z1/
√
u)i
√
u

j
x′α

with |ãijα| <∼ Ri+j+‖α‖, where |z1/
√
u|, |

√
u|, ‖x′‖ < ε0 � 1.

On the other hand, by (II.3), we notice that on M ,

ImXk(z1, u;x′) = G(z1, z1, x′) +O(|z1|k+1).

Hence, for (z1, x, u) ∈M , Im
(
Xk(z1, u;x′)− X̃(z1, u;x′)

)
= O(|z1|k+1).

Thus, by the same argument as above, involving the use of the Schwartz trans-
formation formula, we see that for (ξ, r, x′) ∈ ∆× Iε ×O,

Xk(φ(ξ, x′, r)) − X̃(φ(ξ, x′, r)) = r(k+1)g∗(ξ, x′, r) + Ck(x′, r),

where g∗ is real analytic, holomorphic in ξ for |ξ| < 1, and Re(g∗(0, x′, r)) ≡ 0.
Here, Ck(x′, r) = Re

(
Xk(φ(0, r, x′))− X̃(φ(0, x′, r))

)
= Re(Xk(0, r;x′)) ≡ 0,

by the previously mentioned normalization condition. Notice that (ξ, x′, r) =
(σ−1(z1/

√
u, x′,

√
u), x′,

√
u) := ψ(z1/

√
u, x′,

√
u). Therefore, when

|z1/
√
u|, |

√
u|, ‖x′‖ � 1,

we obtain

Xk(z1, u;x′) =
∑

ij,‖α‖≥0

ãijα(z1/
√
u)i
√
u

j
x′α + u

k+1
2 g∗∗k (ψ(z1/

√
u, x′, u))

=
∑

ji,‖α‖≥0

ãijαx
′αzi

1u
j−i
2 + u

k+1
2 g∗∗k (ψ(z1/

√
u, x′, u)),

for some holomorphic function g∗∗k depending on k.
Now, we have for each k0 � k that

∂k0Xk

∂zk0
1

|z1=0 =
∑
jα

k0!ãk0jα(x′)αu(j−k0)/2 + o(u(k−k0)/2).
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Also notice that Xk is a polynomial in (z1, u) with coefficients analytic in x′. Thus,
the following can be easily verified:

(i) when j < k0, ãk0jα = 0; and
(ii) for k > j > k0, if j − k0 is not even, then ãk0jα = 0.
Since k can be made arbitrarily large, we conclude that at least formally, we

have

X =
∑

i,j(=2`+i),α

ãi,j(=2`+i),αx
′αzi

1u
`.

Notice that |ãi,j(=2`+i),α| <∼ Ri+2`+i+‖α‖ <
∼

(R2)i+`+j . We see that the above is

actually a convergent power series in (z1, x′, u). Hence, (II.1) with the normalization
condition in (II.1)′ has a unique convergent solution. The proof of Theorem II.A is
complete.

To conclude, we give the following, which also follows from the Moser-Webster
[MW] normal form in case λ 6= 0:

Corollary II.B. Let M be a real analytic n-manifold in Cn. Let p be an elliptic
complex tangent. Then M near p can be biholomorphically mapped into the semi-
Heisenberg submanifold H0 = {(z1, · · · , zn) ∈ Cn : Re(zn) = |z1|2, Im(zj) = 0, j =
2, · · · , n− 1}.

Proof of Corollary II.B. By Theorem (A), we can assume that p = 0 and M near
0 is defined by

u = z1z1 + ReF0(z1, x′) + F (z1, z1, x′), yα = 0, yn = 0.(II.5)

Here F0(z1, x′)=O(‖z1‖2) and F (z1, z1, x′)=
∑

i+j≥3;i,j 6=0 aij(x′)zi
1z1

j with aij(x′)
= aji(x′).

We will seek a real analytic function f(z1, u, x′) which is holomorphic in z1 with
f(z1, u, x) =

∑∞
l=1 fl(z1, x′)ul = o(‖z‖2) such that

u− ReF0(z1, x′) + Ref(z1, u, x′) = |z1|2.(II.6)

Therefore, if we set z∗1 = z1, z∗α = zα and z∗n = zn − F0(z1, z′) + f(z1, zn, z
′), then

the holomorphic transformation z → z∗ maps M into H0. Substituting (II.5) into
(II.6), we see that to obtain f , it suffices to solve the functional equation:

Im(if(z1, u, x′)) = −F (z1, z1, x′),

where u is given in (II.5). Applying Theorem II.A, we see the proof of the Corollary.
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surface réele de la classe C2 dans Cn, Invent Math. 83 (1986), 583-592. MR 87f:32035

[TU] A. Tumanov, Extension of CR functions into a wedge from a manifold of finite type,
Mat. Sb. 136 (1988) 128-139; English transl. in Math. USSR-Sb. 64 (1989), 129-140. MR
89m:32027

Department of Mathematics, Rutgers University, New Brunswick, New Jersey 08903

E-mail address: huangx@math.rutgers.edu


