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XIAOJUN HUANG

§0. Introduction

Let M1 and M2 be two real analytic hypersurfaces in Cn, which do not
contain any non-trivial complex analytic varieties. Let f be a continuous
CR-mapping from M1 into M2 (i.e, each component of f is annihilated, in
the sense of distributions, by the induced CR vector fields of M1). It has
been an open question of long standing whether f must be real analytic over
all of M1. In the present paper, we will give a solution to this question in
the case of complex dimension 2. More precisely, we will prove the following

Main Theorem. Let M1 and M2 be two real analytic hypersurfaces in C2,

which do not contain any non-trivial complex analytic variety. Let f be a

continuous CR mapping from M1 into M2. Then f is real analytic at each

point of M1.

This result seems new even under the additional assumption that f is
smooth over M1, or the hypersurfaces are pseudoconvex (see questions asked
in [7], [8], [13]). (However, see [35] in case the hypersurfaces are strongly
pseudoconvex).

Our approach is heavily based on some recently developed tools for per-
forming reflections for mappings between real analytic hypersurfaces ([38],
[39], [24], [1], [14], [6], [19], [22]). The question of holomorphic extensions for
CR mappings between real analytic hypersurfaces has attracted considerable
attention since the work of Fefferman [25]. For more recent work, see [31],
[34], [10], [3], [1], [6], [19], [14], [20], [35], [22], [4], [30], [23], and the references
therein, as well as the survey paper by Forstneric [26]. We note that, in the
papers cited above, there is always a certain kind of assumption requiring the
“biholomorphic” or “proper holomorphic” extension of the maps to one side,
or requiring some sort of unique continuation properties (or the Hopf lemma
property) for the maps under study. In the 2-dimensional case, studied in
this paper, we will deal with the general CR mappings. Recent work on the
existence of inner functions reveals that there are many L∞- CR mappings
between spheres in C2 which are not real analytic at any point. Also, it is
easy to construct a smooth but not real analytic CR mapping between real
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analytic hypersurfaces of infinite type. Hence, our result is optimal and can
be viewed as a natural extension of the classical Schwarz reflection principle
to the complex space of dimension 2.

We recall that a real analytic hypersurface, which does not contain any
non trivial complex analytic variety, is said to be of finite type in the sense
of D’Angelo [18], (or simply finite type in the sense of Kohn, in the C2 case).
We also recall a result proved in [9] and [36] which states that when the real
analytic hypersurface M is of D’Angelo finite type, a function over M is CR
if and only if it can be extended holomorphically to a certain side of M .
Hence our main theorem can be stated as follows. (In fact, it is in this form
that we will prove our Main Theorem.)

Theorem A. Let M1 and M2 be two real analytic hypersurfaces of finite

type in C2. Let D be a bounded domain in C2 such that D ∪M1 forms

a manifold with smooth boundary M1. Assume that f is a holomorphic

mapping from D into C2, that is continuous up to D ∪M1 and maps M1

into M2. Then f admits a holomorphic extension across M1. Moreover, when

f is not constant, then the extension of f is locally proper and preserves the

sides of the hypersurfaces (near M1).

We mention that one of the main features in Theorem A is that f is not
assumed apriori to be proper from D. As is known, it is always a difficult
problem to understand when a CR mapping can be realized as the boundary
value of a certain proper holomorphic map.

As an immediate application of Theorem A and some known results of
[20], we have the following

Corollary B. Let D1 and D2 be two bounded real analytic domains in C2.

Let f be a proper holomorphic mapping from D1 to D2, that is continuous up

to D1. Then f admits a holomorphic extension across D1. In addition, when

the boundaries of D1 and D2 are algebraic, the assumption of continuity of

f up to the boundary can be dropped.

The above corollary was obtained in the author’s previously circulated
preprint [29]. The proof of Corollary B presented in [29] is based on a reg-
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ularity result of holomorphic correspondences first proved in [29] (which is
our present Theorem D to be stated in §6), and is based on the construction
of holomorphic correspondences for proper holomorphic maps using some
ideas on the application of Bishop’s extension lemma as in [23]. When the
map f is biholomorphic, then Corollary B is studied in the work of [22] and
[23]. In [23], Diederich-Pinchuk showed that any biholomorphic mapping be-
tween bounded real analytic domains in C2 can be extended holomorphically
across the boundary. Their proof uses a regularity theorem of holomorphic
correspondences for biholomorphic maps proved in [20] and uses the Bishop
extension lemma to construct the desired correspondences. We also men-
tion that, when D1 and D2 are pseudoconvex, Corollary B was settled by
Baouendi-Bell-Rothschild in [1].

The organization of the paper is as follows: The paper is divided into
two major parts. Part I consists of §2 - §5. We will prove, in this part, the
main theorem assuming a regularity result of holomorphic correspondences
for general CR-mappings (i.e. Theorem C to be stated in §2). In §1, we
introduce some basic tools and notation which will be used throughout the
paper. In §2, we discuss our basic approaches and some known results which
will be used from §2 to §5. In §3, we prove holomorphic extension across
strongly pseudoconvex points. §4 is devoted to the extension across a large
piece of weakly pseudoconvex points. In §5, we extend the mapping along a
thin set and therefore complete the argument for Part I.

Part II is devoted to the proof of the above mentioned regularity result
for holomorphic correspondences (i.e, the proof of Theorem C). In fact, we
will prove Theorem D, to be stated in §6, which is slightly more general than
Theorem C. (A related version of this theorem was obtained in [20] in case the
map under study is a CR homeomorphism, by using a completely different
method). We first prove, in §7, the extension theorem for a reflection function
(see the related notion in [3] and [1]), by using the weak version of the edge
of the wedge theorem. In §8 and §9, we connect the branching locus of the
holomorphic correspondences, constructed from the assumption of Theorem
D, with the invariant varieties. In §10, we prove the Baouendi-Rothschild
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Hopf lemma in our setting, using ideas appearing in [7]. In §11, we complete
the proof of Theorem D by using the lemmas established in the preceding
sections and by applying an argument of Hartogs extension type.

Acknowledgment: The author is grateful to S. Baouendi, L. Rothschild,
and S. Webster for their constant help and encouragement during the prepa-
ration of this work. He thanks S. Li, S. Krantz, R. Narasimhan, Y. Pan, and
S. Pinchuk, for helpful discussions. Also, he is indebted to P. Ebenfelt for
his very careful reading and many comments, which greatly improved both
the exposition and the mathematics in the paper.

Note added February, 1996: This paper is the revised version of the au-
thor’s previously circulated preprint [29], whose main results included our
present Corollary B, the algebraic version of Theorem A, and, in particular,
Theorem D to be stated in §6 here. We would like to mention that this
paper owes certain ideas to the above cited work of Webster [39], Baouendi-
Bell-Rothschild [1], Baouendi-Rothschild [7], and Diederich-Fornaess-Ye [22].
The proper mapping version of the regularity result of holomorphic corre-
spondences (closely related to Theorem 1.1 in [29], or Theorem D in the
present version ) was also announced by Diederich-Pinchuk at MSRI in No-
vember, 1995. See also [23], where a different construction of holomorphic
correspondences for biholomorphisms was presented by using the known reg-
ularity theorem of holomorphic correspondences for biholomorphisms proved
in [20]. (However, we mention that the work in [23] does not seem to be
relevant and useful to the study of regularity problems of holomorphic cor-
respondences itself.)

§1. Preliminaries, Notation, and Definitions

Let M be a real analytic hypersurface of finite D’Angelo type in Cn+1.
For each point p ∈ M , there exist a small open neighborhood U (p) of p, a
real analytic function ρ(z,w) over U (p) × U (p) such that M = {z ∈ U (p) :
ρ(z, z) = 0} and dρ|M 6= 0. For each z ∈ U (p), as in [38], we call the analytic
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variety Qz = {w ∈ U (p) : ρ(w, z) = 0} the Segre variety of M , associated to
z. By shrinking U (p), we can choose two neighborhoods P̃ and P of p such
that the following holds (see [19] or [22]): (i) P ⊂⊂ P̃ ⊂⊂ U (p); (ii) for each
z ∈ P , Qz ∩ P̃ is a simply connected submanifold with smooth boundary,
and Qz is transversal to ∂P̃ ; (iii) P \M has two connected components,
homeomorphic to the ball. Here, for a subset A ⊂ Cn we write A for its
closure in Cn.

For each z ∈ P, write Az = {w ∈ P : Qw = Qz}. By the finite D’Angelo
type assumption of M and by shrinking U (p) if necessary, we can always
assume that #Az <∞ for each z ∈ P and Ap = {p} (see [3] and [24]).

Still letting p ∈ M , we can always find a biholomorphic change of coor-
dinates [3] such that p = 0 and M in U (p) is defined by an equation of the
following form :

(1.1) ρ(z, z) = zn+1 + zn+1 +
∑
j

φj(z′, z′)(Imzn+1)j

or

(1.2) ρ̃(z, z) = zn+1 + zn+1 +
∑
j

φ̃j(z′, z′)(zn+1)j ,

where z′ = (z1, · · · , zn), φj ’s and φ̃j ’s do not contain any harmonic terms,
and ρ is real-valued. In what follows, we will call such a coordinate system
normal for M near p = 0, and call ρ or ρ̃ the normalized defining equation of
M . Notice that in the normal coordinate system, (0′,−t) ∈ Q(0′,t) for each
t ∈ R near the origin. More generally, by varying the base point p, and by
noticing the smooth dependence of the normal coordinates with respect to
p ([3]), we can find a smooth conjugating operator R : P̃ → U (0) such that
R(z) ∈ Qz , R reverses the sides of M and R|M = id. (See ([22], pp 545) for
a similar notion). For more properties concerning Segre varieties, we refer
the reader to [19], [22].

Now, we let M be in C2 and let Ω be a bounded domain such that Ω∪M

forms a manifold with smooth boundary M . From §2 to §5, we need the
following semi-analytic stratification for M as introduced in [22]:

M = Ms ∪Ma ∪C+
t ∪ C−t ∪C±t ∪Co.
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Here
(a) Ms (Ma) is the set of strongly pseudoconvex (strongly pseudoconcave,
respectively) boundary points of Ω ∪M ;
(b) C+

t (C−t ) is a locally finite union of 2-dimensional totally real analytic
submanifolds, where the vanishing order of the Levi form of M , as the bound-
ary of Ω∪M , is even, locally constant, and positive (negative, respectively).
Therefore, Ω is pseudoconvex near C+

t and pseudoconcave near C−t , and any
holomorphic function defined over Ω can be extended holomorphically across
each point of C−t ;
(c) C±t is a locally finite union of 2-dimensional totally real submanifolds,
where the vanishing order of the Levi form is odd and locally constant. It
is known (see [9], or [21], [2]) that any CR function defined near C±t can be
holomorphically extended to both sides of M near C±t ;

(d) Co is a locally finite union of one dimensional real analytic curves and
isolated points.

In what follows, we write WL(M) = M \ (Ms ∪Ma).

§2. Basic Approaches and Some Preliminary Facts

From now on until §5, we let M1 and M2 be two connected real analytic
hypersurfaces of finite type in C2. Let f be a non-constant continuous CR
mapping from M1 into M2. For a given point p ∈ M1, write D for the
side of M1 near p, into which any CR function near p (in particular, the
components of f) extends holomorphically. We notice that D (near p) can
be filled in by ‘small’ analytic disks attached to M1 ([9] [36]). Let q = f(p).
As introduced in §1, we have the following stratification for M1 with respect
to D: M1 = Ms

1 ∪Ma
1 ∪C+

t ∪ C−t ∪C±t ∪Co.
In all that follows, for convenience, we use the notation in §1 for M1 and

add ‘prime’ for those corresponding to M2.

For a point p ∈ M1 and a totally real analytic submanifold S ⊂ M1 of
real dimension 2 with p ∈ S, after a holomorphic change of coordinates, we
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can always assume that p = 0, S is a small open neighborhood of 0 ∈ R2,
and y2 = Imz2 is the outer normal direction of M1 at p = 0. Write Dc =
U (0) \ (D ∪M1), and W± = {(z1, z2) : ±Imz2 > |Imz1|} for the standard
wedges with edge S. Then near p = 0, W+ ∩ P ⊂ Dc, W− ∩ P ⊂ D.
Moreover, we can assume that W+ ∩ P is connected.

A closed subset E ⊂ W+ ∩ P is said to be negligible if W+ ∩ P \ E is a
connected open dense subset of W+ ∩ P and S \E is dense in S.

In the following, we always assume that P and P ′ are sufficiently small
neighborhoods of p = 0 q = 0, respectively.

We now introduce the following:

Definition 2.1. f is said to extend as a holomorphic correspondence to

(W+ ∩ P ;P ′) if for some negligible set E of P ∩ W+, there is a complex

analytic variety V ⊂ (P ∩W+ \E)×P ′ such that (i) the natural projection π

from V to P∩W+\E is finite to one; (ii) the restriction of π to each irreducible

component of V with complex dimension 2 is surjective; and (iii) there exists a

sequence {pj} ⊂ S, converging to p = 0, so that f extends biholomorphically

across each pj and V contains the graph of f over O(pj) ∩W+ ∩ P \E.

The starting point for the proof of our theorem is the following regularity
result of holomorphic correspondences, whose proof will be the main content
of Part II of this paper:

Theorem C. Let M1, M2, f , p = q = f(p) = 0, S, W+ be as above.

Suppose that for some sufficiently small P and P ′, f extends as a holomor-

phic correspondence to (W+ ∩ P ;P ′). Also suppose that f extends almost

everywhere across M1. Then f admits a holomorphic extension across p.

By the above Theorem C and a Hopf type lemma obtained in [7] (see the
following Lemma 2.2 (h)), to prove the Main Theorem, it suffices for us to
show the existence of the analytic variety V as in Definition 2.1. Indeed, this
will be our approach (see already related approaches in [39], [19], [22], [23]).

In the rest of this section, we describe briefly how V can be constructed.
Then we list some known facts to be used later.
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First, for each z ∈ P ∩ W+, we let Qc
z be the connected component of

Qz ∩D ∩ P̃ which contains z (see already [22] for some related notion). (In
the special coordinates where S = R2∩O(0), it is easy to see that z is indeed
in Qz ∩D). Here and in what follows, we use the notation O(a) to denote
a small open neighborhood of a, whose size might be different in different
contexts. Sometimes, we write Oz(a) for a small neighborhood of a in the
space where the z-coordinates are used.

For each point a ∈ Qz ∩ U (0), we will write aQz for the germ of Qz at a.
As usual, we denote by Jf the Jacobian of f . Write E0 = {z ∈ P ∩ W+ :
Jf(z) = 0}. Assume that E is a negligible set of P ∩W+. Motivated by the
invariant property of Segre varieties (see also related work in [39], and, in
particular, the work in [22]), we define

(2.1) V(E) = {(z,w) ∈
(
P ∩W+ \E

)
× P ′ : f(Qc

z ) ⊂ Q′w}.

Define π (π′, respectively) to be the natural projection from V(E) into (W+∩
P \E) (P ′, respectively). Write BihM1(f) for the collection of points in M1

where f extends biholomorphically.

In the following lemma, we collect some facts, most of which are, more
or less, implied in the existing work or can be proved easily. Also, in its
statement, we keep the previously established notation.

Lemma 2.2. Assume that BihM1(f) is dense in M1 and BihM1(f) ∩ S is

dense in S. Also assume that E contains E0 as defined above. Then the

following holds:

(a) π is finite to one.

(b) V(E) is a closed analytic variety of dimension at most 2.

(c) Let (z0, w0) ∈ V(E) and let (zj , wj) ⊂ V(E) be a sequence such that

lim(zj , wj) = (z0, w0). If V(E) has dimension 2 at each (zj , wj), then (z0, w0)
is also a point of dimension 2 of V(E).

(d) Suppose that p0 ∈ (S \E) ∩ BihM1(f). Then V(E) contains:

Γf |O(p0)∩W+∩P\E = {(z,w) ∈
(
O(p0) ∩W+ ∩ P \E

)
× P ′ : w = f(z)}.
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(Hence, V(E) is a complex analytic variety of dimension 2, by the hypothesis

and the statement in (b)).

(e) [22] Let E∗ = {z ∈ P∩W+\E0 : f(Qc
z ) ⊂ Q′w, w ∈WL(M2)}. Then E∗

is a locally real subanalytic set of real dimension at most 2 in W+ ∩P \E0.

Here, as before, WL(M2) is the set of points where the Levi form of M2

vanishes.

(f) Let p ∈ Ms
1 . After shrinking P and P̃, if necessary, then for each z ∈

P∩Dc, Qz∩P̃∩D = Qc
z . Moreover, Qc

z is simply connected and the diameter

of Qc
z goes to 0 when z → p.

(g) Let q = f(p) ∈ Ms
2 ∪Ma

2 . Then f maps D to the pseudoconvex side of

M2 near q. Also, Q′q ∩O(q) stays in the pseudoconcave side of M2.

(h)([7]) Assume that f extends holomorphically across p. Then f is locally

finite to one and proper near p. Moreover, the normal component of f has

non-vanishing derivative along the normal direction of M1 at p.

(i) Assume that for each small P ′, when P̃ is sufficiently small, π becomes

surjective. Then f extends as a holomorphic correspondence V(E) to (W+∩
P ;P ′) for some small P and P ′.

Proof of Lemma 2.2: First of all, since E ⊃ E0, we know that f is not
constant when restricted to Qc

z for each z ∈ P ∩ W+ \ E0. In particular,
by noting the finiteness of the set A′w, this implies that for each point z ∈
P∩W+\E0, there are only finitely many w′s so that f(Qc

z) ⊂ Q′w. (In fact, all
these points have the same associated Segre varieties; for they all have a piece
in common.) This proves that π is finite to one. Similarly, one can show that
π′ is also locally finite to one. (2.b) follows from a straightforward verification
(see [22]). (2.c) follows easily from (2.a), (2.b), and some basic properties
of analytic varieties. (2.d) is an easy corollary of the invariant property of
Segre varieties. (2.e) follows from the facts that E∗ = π

(
π
′−1(WL(M2)

)
,

π, π′ are locally finite to one, and WL(M2) is a real analytic subset of real
dimension at most 2 (see the related explanation in [22] and also [17]). (2.f)
was essentially proved in [39]. The first part of (2.g) is an easy application
of the maximum principle and the disk filling-in property of D. The last
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part of (2.g) also follows from the work of [39]. (2.h) is the content of the
Baouendi-Rothschild Hopf lemma [7]. (2.i) follows from the definition of
holomorphic correspondences and the above mentioned fact that all points
in π−1(z) correspond to the same Segre variety.

We next present an easy fact, whose statement, in particular, implies that
f extends holomorphically across an open dense subset of M1.

Lemma 2.3. Let p ∈Ms
1 . For any totally real analytic submanifold S ⊂M1

of dimension 2 through p, f admits a holomorphic extension across a dense

open subset of S near p.

Proof of Lemma 2.3: First, by applying a result of Pinchuk-Tsyganov [35]
and by applying the reflection principle, we know that f extends across each
open subset of S, whose image is contained in either Ms

2 ∪Ma
2 or some totally

real analytic piece of WL(M2) of dimension 2. Also notice that any open
subset of S cannot be mapped into any one dimensional arc in C ′o, by using
the reflection principle and by noting the fact that the Jacobian of f is not
zero on a dense open subset of S (see [8]). Meanwhile, it is easy to see that
any open piece of S cannot be mapped into isolated points in C ′o; for f is
not constant. Hence, the proof is complete.

Before leaving this section, we mention that the construction of holo-
morphic correspondences by using Segre varieties was implied in the work of
Webster [39], where a simple proof of Fefferman’s extension theorem was pre-
sented in the real analytic category and a continuity method was employed
to obtain the required correspondence. Related approaches were further ex-
plored in the work [19], [20], [22], [23] (see, in particular, the work in [22]).
Our construction of V(E), though largely motivated by the above mentioned
work of [39] and [22], is different in many aspects from the existing con-
structions and seems, in particular, suitable for the study of general CR
mappings.
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Part I. Proof of the Main Theorem

Assuming Theorem C

In this part, we assume Theorem C and give a complete proof of our
Main Theorem (in the form of Theorem A). Our approach is, as described
above, to construct the variety V as in Definition (2.1). We first observe
that f already admits holomorphic extension across the pseudoconcave part
C−t ∪C±t ∪Ma

1 of M1, by the discussions in §1.

§3. Extension across Ms
1

We keep the notation which we have set up so far. We will prove the
following result in this section:

Lemma 3.1. f extends holomorphically across Ms
1 .

Proof of Lemma 3.1: Let p = 0 ∈ Ms
1 . Choose S and its wedges W± as

before. Also, we let E = E0∪E∗, where E∗ is the same as defined in Lemma
2.2 (e). E \E0 is locally a real subanalytic subset of real dimension at most
2. Moreover, by using Lemma 2.3 and the work in [8], one can easily show
that S \ E is dense in S. Hence, one can easily verify that E is a negligible
set of W+ ∩ P .

Define V(E) as in (2.1). Then, by Lemma 2.3, Theorem C, and Lemma
2.2 (i), we need only to show that for a small neighborhood P ′ of q = 0, after
making P̃ sufficiently small, then π is surjective.

Seeking a contradiction, suppose not. Let p0 ∈ (S \ E) ∩ BihM1(f) be
sufficiently close to 0.

Write Vp0(E) for the 2-dimensional component of V(E), which contains
the graph of f over O(p0)∩W+ ∩ P \E. By our assumption, π : Vp0(E)→
W+∩P\E is not surjective either. On the other hand, we notice that π|Vp0 (E)

is an open mapping, for it is a local analytic covering map. Hence, we can
find a curve γ : (0, 1]→W+ ∩P \E starting from p0 (i.e, p0 = limt→0+ γ(t))
such that γ(1) 6∈ π(Vp0), and γ((0, 1)) ⊂ π(Vp0). Moreover, after perturbing
slightly γ(t) to avoid the branch locus of Vp0(E), we can assume that there is
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a unique lift of γ(t) to γ̃(t) ⊂ Vp0 (t ∈ (0, 1)) such that γ̃(0) = (p0, f(p0)) and
γ̃(t) = (γ(t), w(t)) for t ∈ (0, 1). Therefore, f(Qc

γ(t)) ⊂ Q′w(t) for t ∈ (0, 1).
Meanwhile, by Lemma 2.2 (d), we have for each small t, R′(w(t)) ∈ f(Qc

γ(t)).
For simplicity, we write w∗(t) = R′(w(t)) in what follows:

Claim 3.2. w∗(t) ∈ f(Qc
γ(t)) for t ∈ (0, 1).

Assume the claim for the moment. Then, for each t, we can find some
ξ(t) ∈ Qc

γ(t) such that f(ξ(t)) = w∗(t) (= R′(w(t)). Notice that |f(ξ(t))| ≤
maxw∈f(∂Qc

γ(t))
|w|, by the maximum principle. After shrinking P , we can

assume that w∗(t) ∈ P ′∗, where P ′∗ ⊂⊂ P ′ and R′(P ′∗) ⊂⊂ P ′ . By passing
to the limit, we see that all limit points of w(t) as t→ 1− stay in P ′∗.

On the other hand, for each limit point, say w(1), of w(t) as t→ 1−, one
sees that f(Qc

γ(1)) ⊂ Q′w(1). Hence (z(1), w(1)) ∈ V(E). By Lemma 2.2 (c),
it follows that (z(1), w(1)) ∈ Vp0. This is a contradiction.

Therefore, to complete the proof of Lemma 3.1, we need only prove Claim
3.2:

Let δ = max{τ ∈ (0, 1] : for t ∈ (0, τ ), w∗(t) ∈ f(Qc
γ(t))}. Then δ > 0 by

the above observation. Suppose that δ < 1. Then there exists a point ξ(t) ∈
Qc
γ(t) for each t ∈ (0, τ ), such that f(ξ(t)) = w∗(t). Now, we have two cases

to study: (i) limtj→δ− ξ(tj) = ξ0 ∈ M1; and (ii) limtj→δ− ξ(tj) = ξ0 6∈ M1

for some subsequence {tj} converging to δ.

In Case (i), we have w(δ) = w∗(δ) = f(ξ0) ∈ M2. Hence, f(Qc
γ(δ) ∩

O(ξ0)) ⊂ Q′w(δ) ∩ O(w(δ)). Since, by our choice of E, f is not constant on
Qc
γ(δ) and w(δ) 6∈WL(M2), we can easily reach a contradiction by applying

the maximum principle and Lemma 2.2(g).
Therefore, Case (ii) is the only possibility. After taking a limit, it then

holds that w∗(δ) ∈ f(Qc
γ(δ)).

Next, since δ < 1, there exists a sequence tj → δ+ such that w∗(tj) 6∈
f(Qc

γ(tj )). Now, for t sufficiently close to δ and some small ε (ε′, respectively),
we can easily find a conformal mapping φt (ψt, respectively), depending
continuously on t, from the unit disk ∆ to Qc

γ(t) ∩ Bε(ξ0) (from Q′w(t) ∩
Bε′(w∗(δ)) to ∆, respectively). Here, ε is suitably smaller than ε′ and Ba(b)



XIAOJUN HUANG

denotes the ball centered at b with radius a. Since ψδ ◦f ◦φδ is not constant,
by the Hurwitz theorem and by noticing that ψtj ◦ f ◦φtj −ψtj (w

∗(tj)) 6= 0,
it follows that w∗(δ) 6∈ f(Qc

γ(δ) ∩Bε(ξ0)). This is a contradiction. The proof
of Claim 3.2 and, thus the proof of Lemma 3.1, is complete.

§4. Extension across C+
t

We now use Lemma 3.1 to construct the holomorphic extension across C+
t .

Our proof depends strongly on the fact that V(E) is spread over the wedge
W+, which avoids the difficulty arising from the points close to strongly
pseudoconvex pieces of M1.

Lemma 4.1. Let p ∈ M1. Assume that the following holds: (i) f admits

an extension across Qp ∩M1 ∩ P̃ \ {p} and (ii) f(p) ∈ Ms
2 ∪Ma

2 . Then f

admits a holomorphic extension across p.

We mention here that the importance of having a nice property similar to
f ∈ Cω(Qp ∩M1 ∩ P̃ \ {p}) to start with was first showed up in the work of
[22].

Proof of Lemma 4.1: In the proof of this lemma, we let E = E0 = {z ∈
W+ ∩ P : Jf(z) = 0} and let S be an edge with S ∩Ms

1 open dense in S.
After shrinking P̃ , we can assume, by the hypothesis, the existence of a small
ε, such that f extends holomorphically to the union of the balls Bε(pj) of
radius ε with center at pj ∈ Qp ∩ ∂P̃ ∩D, where {pj} is a finite set obtained
from the open covering lemma (or, an empty set in case Qp ∩D ∩ ∂P̃ = ∅).

By the continuity principle, we can assume that Qp \ {p} 6⊂ D near p;
for otherwise, f extends automatically across p. By Lemma 2.2 (h) and the
choice of the balls Bε(pj), it thus follows easily that f is not constant when
restricted to each Bε(pj) ∩Qp (provided it is not an empty set).

As before, we still denote by π the natural projection from V(E) to
W+ ∩ P \ E. Suppose that π is not surjective, no matter how we shrink
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the size of P . Then for each small δ, it is clear that there exists a se-
quence {(zj(δ), wj(δ))} ∈ V(E) such that zj(δ) → p, |wj(δ)| = δ, and
limwj(δ) = w(δ) for some point w(δ) with |w(δ)| = δ.

By making P̃ sufficiently small, we have f(P̃ ∩D) ⊂⊂ P ′∗ ⊂⊂ Bδ(0) ⊂⊂
P ′, where Bδ(0) is the ball with center 0 and radius δ. Then we claim that
Qc
zj
∩∂P̃ 6= ∅ for j >> 1. Suppose not. Notice that f |Qczj is a locally proper

map from Qc
zj into Q′wj(δ). We can then conclude that f(Qc

zj ) will contain
the connected piece of Q′wj(δ) which stays in the pseudoconvex side of M2,
by Lemma 2.2 (g). Therefore, by Lemma 2.2 (f), w∗j (δ) ∈ f(Qc

zj ) and thus
w∗j (δ) ∈ P

′∗. This gives a contradiction, once we make P ′∗ sufficiently small
so that R′(P ′∗) ⊂⊂ Bδ(0).

Hence, we can find ξj ∈ Qc
zj ∩ ∂P̃ with ξj → ξ0 ∈ ∂P̃ ∩Qp ∩D as j →∞.

Thus we have f(O(ξ0) ∩ Qp) ⊂ Q′w(δ). Notice that f is not constant when
restricted to each of Qp ∩Bε(pj)′s, by the above observation. It thus follows
that Q′w(δ) is uniquely determined by the ball Bε(pj) which contains ξ0.
Hence, there are only finitely many choices of such Q′w(δ)’s. This, together
with the finiteness of A′w for w ∈ P ′, contradicts the infinitely many choices
of such w(δ) ′s.

Lemma 4.2. Assume that f admits a holomorphic extension across an open

dense subset of C+
t . Then f extends holomorphically across each point in

C+
t .

Proof of Lemma 4.2: Let p ∈ C+
t and let S = C+

t ∩O(p). As before, after
a holomorphic change of coordinates, we assume that p = 0, S = R2∩O(0).
Let E = E0. Then the assumption in the lemma indicates that E is a
negligible set of W+ ∩ P and V(E) is an analytic variety of dimension 2.
Hence, as before, to finish the proof of Lemma 4.2, it suffices for us to show
that π is surjective after making P sufficiently small.

If this is not the case, as in Lemma 4.1, for each small δ > 0, there is a
sequence zj(δ) ⊂ π(P∩W+\E) such that zj(δ)→ p and f(Qc

zj (δ)) ⊂ Q′wj(δ),
where {wj(δ)} is a certain sequence converging to w(δ) and with |wj(δ)| = δ.
We will show that this is impossible by proving the following:
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Claim 4.3. For each {zj} ⊂ W+ ∩ P such that zj → p, there is a real

analytic ray γ0 ⊂ Qp ∩D with p as its starting point, such that f |γ0 6≡ const

and limj→∞Qc
zj
⊃ γ0.

Assume Claim 4.3 for the moment. Then for the sequence {zj(δ)} as
chosen above, we have f(γ0) ⊂ Q′w(δ). Thus, by the non constancy of f

along γ0, it follows that there are only finitely many choices of such Q′w(δ)’s.
This contradicts the finiteness assumption of A′w for each small w. Hence,
to complete the proof of Lemma 4.2, we need only to prove Claim 4.3.

Proof of Claim 4.3: By the definition of C+
t and the special choice of our

coordinates, we see that M1 near p = 0 is given by an equation of the form:
ρ = 2y2 + (2y1)2mg(z, z) with g(0, 0) > 0. Here m is a positive integer.
Let w = (b1 + iτ1, b2 + iτ2) ∈ W+ with τ2 > |τ1|. Then Qw is defined by
the following equation: z2 = b2 − iτ2 − i(−1)m(z1 − b1 + iτ1)2mg(z,w). For
z ∈ Qw,

ρ(z, z) = 2
(
−τ2 + (−1)m+1Re

(
(z1 − b1 + iτ1)2mg(z,w)

))
+ (2y1)2mg(z,w).

Notice that for w ∈ W+ as above, we can write g(z,w) = l(b1, b2) + O(τ2 +
|z − (b1, b2)|) with l(b1, b2) greater than some fixed positive constant. Also,
write z1 = b1 − iτ1 + ξ = b1 − iτ1 + reiθ with r ≥ 0. Then, for z ∈ Qw,
g(z,w) = l(b1, b2) + O(τ2 + r) and

ρ(z, z) = −2τ2 + (−1)m+12Reξ2m(l(b1, b2) + O(τ2 + r))+

+(2(−τ1 + Imξ))2m(l(b1, b2) + O(τ2 + r)).

Hence, z ∈ Qw ∩D if

−2τ2 + 2(−1)m+1Reξ2m(l(b1, b2) + O(τ2 + r))+

(2(−τ1 + Imξ))2m(l(b1, b2) + O(τ2 + r)) < 0;

or if

(4.1) (−1)m+12Reξ2m(1 + O(τ2 + r)) + (2(Imξ))2m(1 + O(τ2 + r)) < 0.
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Now, it is easy to see that the left hand side of the above inequality can
be written as

(4.2) (−1)m+12r2mcos(2mθ + φ(w, z)) + (1 + ε(w, z))r2m(2sinθ)2m ,

where φ(w, z), ε(w, z) → 0 as r, τ2 → 0.
When m is even, the left hand side of (4.2) is not greater than −0.5r2m

for θ = 0 and for τ2, r sufficiently close to 0. When m > 1 is odd, we let
2mθ = π. Then the left hand side of (4.2) can be written in the following
form:(
−2 + (2sin

π

2m
)2m + O(τ2 + r)

)
r2m ≤

(
−2 + (

π

m
)2m + O(τ2 + r)

)
r2m ≤

≤
(
−2 + (

π

3
)6 + O(τ2 + r)

)
r2m ≤ −0.4r2m,

when m ≥ 3 and when τ2, r are sufficiently small.
Also notice that w = (b1 − iτ1, b2 − iτ2). Write the defining equation

of Qw as z2 = h(z1, w) for w ∈ W+ with |w| sufficiently small. Then
the above discussion indicates that for some fixed (small) r0 > 0, Qc

w ⊃
γw = {(r, h(r, w)) : r0 > r ≥ 0} in case m is even; and Qc

w ⊃ γw =
{(rei π2m , h(rei

π
2m , w)) : r0 > r ≥ 0} in case m is odd. Moreover, it is also clear

that (limw(∈W+)→0 Qc
w) ∩D ⊃ γ0 = {(r, h(r, 0)) : r0 ≥ r > 0} in case m is

even; and (limw(∈W+)→0 Qc
w) ∩D ⊃ γ0 = {(rei π2m , h(rei

π
2m , 0)) : r0 ≥ r > 0}

in case m is odd.
Since Qp\{p} cannot stay completely inside D, by the pseudoconvexity of

C+
t near p = 0. Thus each connected component of Qp∩D∩P̃ intersects M1

along some one dimensional real analytic subset. On the other hand, by a
simple and direct computation, one can easily verify that P̃ ∩C+

t ∩Q0 = {0}
after making P̃ small. (We would like to mention that this fact was already
observed in the work of Diederich-Pinchuk [23].) Hence, by Lemma 2.2 (h)
and Lemma 3.1, we see that f |γ0 is not constant. The proof of Claim 4.3 is
complete now.

Lemma 4.4. f extends across each point in C+
t .

Proof of Lemma 4.4: By Lemma 4.2, it suffices for us to show that f

extends almost everywhere across C+
t . This can be similarly done by using
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Lemma 4.1 and the argument in Lemma 2.3, taking into account the above
mentioned simple fact (first due to [23]) that C+

t ∩Qp ∩O(p) = {p}, for each
p ∈ C+

t .

§5. Completion of the Proof of the Main Theorem

— Assuming Theorem C

By now, we have shown that f extends holomorphically across M1 \ Co.

Lemma 5.1. Let p ∈ M1 and let C be a real analytic arc in M1. Suppose

that Qp ∩ P̃ ∩C = {p}. Also, suppose that f ∈ Cω(M1 \C). Then f admits

a holomorphic extension across p.

We first assume Lemma 5.1 and see how the proof of the Main Theorem
follows:
Let C∗ = {z ∈ Co : either dimR Qz ∩Co = 1 or z is a singular point of Co}.
We first notice, by the finiteness of Az for each z ∈ P , that C∗ is a discrete
set in M1 (see [22]). Now Lemma 5.1 indicates that f ∈ Cω(M1 \ C∗). On
the other hand, once we know that f extends across M1 \ C∗, then for each
point p ∈ C∗, we can easily construct an arc as in Lemma 5.1. Therefore,
we see that f also extends holomorphically across C∗. This completes the
proof of our main Theorem assuming Theorem C.

We next present the proof of Lemma 5.1, which will be divided, for clarity,
into several steps. The main idea is similar to that which appeared in the
proof of Lemma 3.1.

We also would like to mention that the above lemma was obtained in the
work of Diederich-Fornaess-Ye [22] in case f is a CR homeomorphism.

Proof of Lemma 5.1:
STEP I: After making P small, we can assume that for each z ∈ Dc ∩P ,

Qz ∩ C is a finite set. Moreover, we claim that we can also assume that
Qz ∩ P̃ ∩M1 is a one dimensional real analytic subset for each z ∈ Dc ∩ P .
Hence by Lemma 2.2 (h) and the hypothesis, we conclude for each z ∈
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P ∩Dc, that f is not constant when restricted to each connected component
of Qz ∩ P̃ ∩D.

Indeed, suppose that there is a sequence zj(∈ Dc) → p, Qzj ∩ P̃ ∩M1 is
a finite set, then Qzj ∩ P̃ ∩ D is connected and its boundary is contained
in Qzj ∩ ∂P̃ ∩ D ∪ {a finite set}. (In particular, by letting j → ∞, one
sees that Qp ∩ D ∩ ∂P̃ 6= ∅.) From the continuity principle, it follows that
f extends holomorphically across any point in Qzj ∩ P̃ ∩ D. Now, notice
that the hypothesis indicates that f extends to a fixed neighborhood of
Qp∩∂P̃∩D. Thus a standard application of the maximum principle indicates
that the convergence radius of f at each point in Qzj ∩ P̃ ∩ D is greater
than the smallest convergence radius of f along Qzj ∩ ∂P̃ ∩ D, which is
greater than some positive constant for j sufficiently large (see, for example,
[5] for a related argument). Hence it follows, in particular, that f extends
holomorphically across p = 0. Thus, we are done in this case.

STEP II: This step can be skipped if for some choice of P̃,

(Qp ∩D ∩ ∂P̃) = ∅.

Assume that for any choice of P̃ , (Qp∩D∩∂P̃) 6= ∅. Then as in the beginning
of Lemma 4.2, there are a small ε > 0 and a finite set {pj}Nj=1 ⊂ Qp∩D∩∂P̃
such that f extends to the union of the balls B2ε(pj) with (Qp ∩D ∩ ∂P̃) ⊂
∪jBε(pj) and p 6∈ B2ε(pj). Arguing in the same way as in Lemma 4.2 and
by using the result established in Step I, we can assume that f is finite to
one when restricted to each Bε(pj)∩Qp. Now, it is clear that there are only
finitely many {w}’s in P ′ such that f(Qp ∩Bε(pl)) ⊂ Q′w for some l. Hence,
there are only finitely many ξ’s in ∪j(Bε(pj)∩Qp), which can be mapped to
the set {R′(w)}. Therefore, after shrinking P̃ slightly, if necessary, we can
assume, in the following, that the above mention ξ’s do not meet ∂P̃ .

STEP III: After the above preparation, we now are ready to use the idea
that appeared in the proof of Lemma 3.1 to finish the proof of Lemma 5.1.
First, we fix a small P ′ and then choose a sufficiently small P̃ such that (i)
the property in Step II holds, (ii) R′(f(P̃ ∩D)) ⊂⊂ P ′.
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Still choose S such that S ∩ (Ms
1 ∪Ma

1 ) is dense in S. Pick p0 ∈ S ∩
(Ms

1 ∪Ma
1 ) ∩ BihM1(f) \ E which is sufficiently close to p = 0; and write

Vp0(E) for the 2-dimensional component of V(E), which contains the graph
of f over O(p0) ∩W+ ∩ P \ E. Here E = E0 ∪ E∗. As before, we will seek
a contradiction suppose that π : Vp0(E) → W+ ∩ P \ E is not surjective.
Then, we can find a curve γ : (0, 1] → W+ ∩ P \ E such that γ(0) = p0,
γ(1) 6∈ π(Vp0), and γ((0, 1)) ⊂ π(Vp0

1 ). Moreover, we can assume that there is
a unique lift of γ(t) to γ̃(t) ⊂ Vp0

1 (for t ∈ (0, 1)) such that γ̃(0) = (p0, f(p0)),
γ̃(t) = (γ(t), w(t)) for some continuous function w(t) (t ∈ [0, 1)), and π is
locally biholomorphic at each γ̃(t) for t ∈ (0, 1). We have f(Qc

γ(t)) ⊂ Q′w(t)

for t ∈ (0, 1). Meanwhile, for each small t, there is a ξ(t) ∈ Qc
γ(t) such that

f(ξ(t)) = w∗(t).
Let δ be the maximal value of τ which has the following property: For

each t ∈ (0, τ ), there is a ξ(t) ∈ Qγ(t) ∩D ∩ P̃ such that f(ξ(t)) = w∗(t) and
the germ V∗(γ(t)) of the complex analytic variety, which is defined near γ̃(t)
by the holomorphic conditions:

f(Qz ∩O(ξ(t)) ⊂ Q′w and f(Qc
z ) ⊂ Q′w,

is of dimension 2 at γ̃(t).
Then δ > 0 by the above observation. Since limt→1− Qc

γ(t) ⊃ Qc
γ(1), as

in the proof of Lemma 3.1, we then need only to show that δ = 1 to get
a contradiction. Indeed, if δ = 1, then for any limit point w(1) of w(t) as
t→ 1−, since f(Qc

γ(1)) ⊂ Q′w(1) and w∗(1) ∈ f(P̃ ∩D), we can conclude that
(γ(1), w(1)) ∈ Vp0(E) and thus reach a contradiction.

Suppose that δ < 1. For t < δ, let ξ(t) be chosen as above. Then we have
three cases to study. (i) limtj→δ− ξ(t) = ξ0 ∈ ∂P̃ \M1, (ii) limtj→δ− ξ(t) =
ξ0 ∈M1; and (iii) limtj→δ− = ξ0 ∈ D ∩ P̃ for some subsequence {tj}.

We first claim that Case (i) can be excluded if we make P small. In-
deed, suppose that this is not the case. Then there are sequences {zj},
{wj(zj)}(⊂ P ′), and {ξj(zj)} ⊂ ∂P̃ ∩ D such that zj(∈ W+ \ E) → p,
f(ξj (zj)Qzj ) ⊂ Q′wj(zj), and f(ξj(zj)) = w∗j (zj). By passing to the limit, we

see a contradiction to our special arrangement of P̃ as in Step II.
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We next show that Case (ii) can be excluded, too. Also, suppose not. Then
after taking the limit, we get f(ξ0) = w∗(δ) = w(δ) ∈ M2, and f(Qc

γ(δ)) ⊂
Q′w(δ). By our choice of E, it follows that w(δ) 6∈ WL(M2). Therefore,
Lemma 4.1 indicates that f extends holomorphically across ξ0. In particular,
we have both f(Qγ(δ) ∩ O(ξ0)) ⊂ Q′w(δ) and f(Qξ0 ∩ O(ξ0)) ⊂ Q′w(δ). On
the other hand, the following claim says that γ(δ) ∈ Aξ0 . Then, an easy fact
shows that γ(δ) ∈M1 (see [19], for example). This gives us a contradiction.

Claim 5.2. With the above notation and assumptions, it then holds that

γ(δ) ∈ Aξ0 .

Proof of Claim 5.2: Let ρ and ρ′ be the defining functions of M1 and M2

near ξ0 and f(ξ0)(= w(δ)), respectively. Then we notice that ρ′(f(ξ), f(η)) =
ρ(ξ, η)h(ξ, η) for ξ, η ∈ Ω and h 6= 0 by Lemma 2.2 (h). Here Ω and Ω′ are
small open neighborhoods near ξ0 and f(ξ0), respectively; and f is proper
from Ω to Ω′.

For each ω ∈ Ω′, let f |−1
Ω (ω) = {σj(ω)}. For ξ ∈ ∪kj=1σj(f(Qξ0∩Ω)), there

is a point ξ̃ ∈ Qξ0 ∩ Ω such that f(ξ) = f(ξ̃). Now, from ρ′(f(ξ), f(ξ0))) =
ρ(ξ, ξ0)h(ξ, ξ0) and ρ′(f(ξ̃), f(ξ0)) = ρ(ξ̃, ξ0)h(ξ̃, ξ0) = 0, it follows that
ρ(ξ, ξ0) = 0. Thus, we conclude that ξ ∈ Qξ0 . On the other hand, using the
properness of f near ξ0, we notice that f(Qξ0 ∩ O(ξ0)) ⊃ Q′w(δ) ∩ O(w(δ)).
The hypothesis in Claim 5.2 then indicates that Qγ(δ)∩O(ξ0) ⊂ ∪jσj(f(Qξ0∩
O(ξ0))). We thus conclude that Qγ(δ) and Qξ0 have a piece near O(ξ0) in
common. Therefore, we see that Qξ0 ∩ P̃ = Qγ(δ) ∩ P̃ . That is, γ(δ) ∈ Aξ0 .
The proof of Claim 5.2 is complete.

Hence, Case (iii) is the only possibility to study. Now, by passing to the
limit, we conclude that f(Qγ(δ) ∩O(ξ0)) ⊂ Q′w(δ) with f(ξ0) = w∗(δ).

Still, we let V∗(γ̃(δ)) be the germ of the complex analytic variety near
(γ(δ), w(δ)) which is defined by the holomorphic conditions f(Qz ∩O(ξ0)) ⊂
Q′w and f(Qc

z) ⊂ Q′w. We notice that it is contained in the germ of Vp0(E)
at γ̃(δ). Also, by using a similar fact as in Lemma 2.2 (c), one sees that
V∗(γ̃(δ)) must be of dimension 2 at γ̃(δ).

On the other hand, we assumed that Vp0 is smooth at γ̃(δ). It thus
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follows that V∗(γ̃(δ)) is the same as the germ of Vp0 at γ̃(δ). Thus, for
z ≈ γ(δ) and (z,w) ∈ Vp0 ∩ O(γ̃(δ)), f(Qz ∩ O(ξ0)) ⊂ Q′w. By Step I, we
notice that f is not constant along Qz ∩ O(ξ0). As in Lemma 3.1, one can
then apply the Hurwitz theorem to conclude that for z sufficiently close to
γ(δ), w∗(z) ∈ f(Qz ∩ O(ξ0)), where (z,w(z)) ∈ O(γ(δ)) ∩ Vp0. This clearly
contradicts the maximality of our δ.

Finally, the proof of Lemma 5.1 is complete.

Part II: Regularity of Holomorphic Correspondences

—–Proof of Theorem C

§6. Statement of Theorem D and Related Notation

Part II of this paper is devoted to the proof of Theorem C stated in §2,
which has been one of the key ingredients in the proof of our Main Theorem.
In fact, Theorem C will be a special case of the following Theorem D.

In this part, except in §11, we always let M1 and M2 be two connected
hypersurfaces of finite D’Angelo type in Cn+1, and let f be a non-constant
continuous CR mapping from M1 into M2, which maps p = 0 ∈ M1 to
q = 0 ∈M2. Assume that f extends holomorphically to the side D of M1.

We will always choose normal coordinates for M2 near q = 0 in what
follows.

Let ρ2 and ρ̃2 be the normalized defining equations of M2 near 0, as
introduced in (1.1) and (1.2), respectively. Then, for example, ρ̃2 takes the
following form:

ρ̃2(w,w) = wn+1 + wn+1 +
∞∑
j=0

ψ̃j(w′, w′)(wn+1)j ,

where ψ̃j contain no harmonic terms and w′ = (w1, · · · , wn).
Similar to the notion introduced in [3] and [1], we define the reflection

function G(f, λ) as follows:

G(f(z), λ) = −fn+1(z)−
∞∑
j=0

ψ̃j(f∗(z), λ)(fn+1(z))j ,
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where f∗ = (f1, · · · , fn).
Also, after a holomorphic change of variables, we let S = Rn+1 ∩O(0) ⊂

M1 be a totally real submanifold containing 0. Still write W± for the stan-
dard wedges with edge S near 0, similar to what was introduced in §2.
We recall the notion of the holomorphic correspondence extension of f to
(W+∩P ;P ′), as defined in Definition 2.1 in the 2 dimensional case. That is,
f extends as a holomorphic correspondence to (W+∩P ;P ′) if there is a neg-
ligible set E ⊂W+∩P and a complex analytic variety V ⊂ (W+∩P\E)×P ′

of dimension n + 1 such that the first natural projection π is finite to one,
and is surjective when restricted to each irreducible component of dimension
n + 1. Moreover V contains the graph of f over W+ ∩P ∩O(pj) \E, where
{pj} is a certain sequence converging to 0 and pj ∈ (S \E) ∩ BihM1(f).

Write V(n+1)(E) for the union of all n + 1 dimensional irreducible com-
ponents. Then π will be an analytic cover from V(n+1) to W+ ∩ P \ E, by
the above assumption. For each z ∈ W+ ∩ P \ E, write π′(π|−1

Vn+1(E)(z)) =
{w(1)(z), · · · , w(N)(z)}, where π′ is the natural projection of V to P ′. Here N

is independent of z. Then any symmetric function of {w(1)(z), · · · , w(N)(z)}
is holomorphic over W+ ∩ P \E.

Part II is devoted to proving the following result, whose last statement is
the content of Theorem C:

Theorem D. Let M1, M2, S, W±, f , and p = q = f(p) = 0, be as above.

Assume that f admits a holomorphic extension across an open dense subset

of M1. Also, assume that for sufficiently small P and P ′, f extends as a

holomorphic correspondence to (W+ ∩ P ;P ′). Then

(a) G(f(z), λ) extends as a holomorphic function to Oz(0)×Oλ(0).
(b) After shrinking D suitably, f extends as a proper holomorphic mapping

from D to its image.

(c) In case n = 1, f admits a holomorphic extension across p = 0.

We next describe the main ideas for the proof of Theorem D: The proof
of Theorem D (a) will be crucial to the whole argument, which is based on
the weak version of the edge of the wedge theorem. This assertion essentially
tells that f extends as a multi-valued map F across M1 near p = 0. The
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next major step toward the proof of Theorem D is to connect the branching
locus of F with the Segre varieties of M1 and M2. After achieving these,
we can obtain the Baouendi-Rothschild Hopf lemma in our setting, from
which Theorem D (b) follows easily. Finally, all these facts, together with an
application of the Hartogs extension theorem, complete the proof of Theorem
D (c), i.e, the proof of Theorem C.

§7: Extension of G(f, λ)—Proof of Theorem D (a)

From now on, we always keep the assumption in the statement of Theorem
D. Also we keep the previously established notation. In this section, we prove
the following lemma, which is the content of Theorem D (a).

Lemma 7.1. Under the above notation and assumptions, G(f(z), λ) ex-

tends holomorphically to Oz(0)×Oλ(0).

The proof we present here is to take the differentiation along the boundary.
Comparing to the study of smooth CR-mappings as in [31], [34], [3], [1], etc,
there is an essential difference here. That is, our map is not assumed to
be smooth. So, we can only do it almost everywhere. To reach the bad
points, we jump into the domain and use the hypothesis to control the rate
of blowing-up so that we can apply the edge of the wedge theorem (see also
Chapter 2 of [28]).

Proof of Lemma 7.1: First, we notice that G(f(z), λ) is holomorphic over
D × Oλ(0) and continuous over (D ∪ M1) × Oλ(0). By the definition of
G(f(z), λ) and using the assumption that f(M1) ⊂M2, we have

(7.1) fn+1(z) = G(f(z), f∗(z)) for z ∈M1.

Shrinking the size of M1 if necessary, we can choose a basis {Lj}nj=1 for
the complex tangent subbundle T(1,0)M1 of M1, whose coefficients are real
analytic in z. Applying Lj to (7.1), we obtain

(7.2) Ljfn+1(z) =
n∑
l=1

∂G

∂λl
Ljf l, for z ∈ BihM1(f).
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Here the notation BihM1(f) is the same as before . By our non-constancy
assumption of f and a result in [8], BihM1(f) is a dense open subset in M1.
Let J = det(Ljfl)1≤j,l≤n and let J be the matrix (Ljfl)1≤j,l≤n , which are
well-defined over BihM1(f). Then, we claim that J 6= 0 on Bih(M1). Indeed,
for each z ∈ Bih(M1), the rank of the vectors {J1(z), · · · ,Jn(z)} is n, where
Jj(z) = (Ljf1, · · · ,Ljfn,Ljfn+1). Write J̃j(z) = (Ljf1, · · · ,Ljfn). Then,
(7.2) indicates that the rank of {J̃1(z), · · · , J̃n(z)} is also n. Hence, J(z) 6= 0.

For z ∈ Bih(M1), we now have

(7.3)
(

∂G

∂λ1
, · · · , ∂G

∂λn

)t
= J−1(z, z,Df)(L1fn+1, · · · ,Lnfn+1)

t.

Writing (7.3) as n scalar equations, applying Lj to each of them, and pro-
ceeding in this manner, we see, by induction, that for each multi-index
α = (α1, · · · , αn), there are two holomorphic functions g

(1)
α and g

(2)
α in the

arguments (z, z, f , · · · ,Dkf, · · · ,D|α|f) ( where k ≤ |α|)) such that for each
z ∈ Bih(M1), one has g

(2)
α (z, z, · · · ,D|α|f) 6= 0 and

Dα
λG(f, f∗(z)) =

g
(1)
α (z, z, · · · ,D|α|f)

g
(2)
α (z, z, · · · ,D|α|f)

.

Here Dk denotes the vector formed by all derivatives of f with order k. We
remark that g

(j)
α is actually a polynomial in (Df, · · · ,D|α|f) (j = 1, 2) with

coefficients real analytic in z for z close to M1. By passing to the limit,
we see that the function g(1)

α

g
(2)
α

has a continuous extension to M1, which we

will denote by hα(z, z, · · · ,D|α|f). Notice also that for ‖w‖, ‖λ‖ � 1, there
exists a large constant R so that |Dα

λG(w,λ)| <
∼

α!R|α|.

Denote by ηj,l(z) (j = 1, · · · , n + 1, l = 1, · · · ,N) the jth-component of
w(l)(z), where π′(π|−1

Vn+1(E)(z)) = {w(1)(z), · · · , wN (z)}.
Consider the following equation in X:∏
l1,··· ,ln+1

(
X − 1

α!
(Dα

λG(η1,l1(z), · · · , ηn+1,ln+1(z), f1(z), · · · , fn(z))
)

= XN∗ +
∑
j<N∗

cj(z)Xj = 0,
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where lj runs from 1 to N for each j ≤ n + 1, and N∗ = Nn+1. cj(z)′s can
be seen to be the symmetric functions of w(j)(z)’s and hence can be seen to
be holomorphic and bounded over O(0)∩W+ \E. Moreover, one can obtain
the Cauchy estimates |cj(z)| <

∼
RN∗|α|. In particular, each cj(z) has a limit

up to Rn+1 ∩O(0) in the distribution sense (see [3], for example). Now, one
can easily verify that

h̃α(z) =
1
α!

hα(z, z, · · · ,D|α|f(z))

satisfies the above equation when z is in a certain open subset of Rn+1 near 0.
Meanwhile, h̃α(z) clearly extends to a meromorphic function to W+∩Oz(0);
for f is holomorphic overW−(⊂ D). Thus, by the uniqueness of holomorphic
functions (see for example, [33]), it follows that

(h̃α(z))N
∗

+
∑
j<N∗

cj(z)(h̃α(z))j = 0,

for

z ∈ W+ ∩Oz(0) \
(
{the singular set of h̃α in W+ ∩Oz(0)} ∪E

)
.

In particular, we see that h̃α(z) is bounded. Using the Riemann extension
theorem, we conclude that h̃α extends holomorphically toW+∩Oz(0). More-
over, we have |h̃α(z)| <

∼
RN∗|α| for z ∈ W+ ∩ Oz(0); for its coefficients have

the same sort of estimates. Also, since they have boundary values which are
continuous over S, we see that h̃α extends continuously to W+ ∪ S.

Next, fix a small open subset U containing 0. Let

φ+
α (z) =

1
α!

Dα
λ

∑
β

h̃β(z)
(
λ − f∗(z)

)β
λ=0

for z ∈ W+ ∩ U and let φ−α (z) = 1
α!D

α
λG(f(z), λ)|λ=0 for z ∈ W− ∩ U .

Then it can be seen that |φ+
α (z)|, |φ−α (z)| <

∼
R′|α| for some large constant R′,

where z stays in their defining regions, respectively. Notice that φ+
α matches
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up with φ−α over U ∩ Rn+1. The classic edge of the wedge theorem then
indicates that φ−α extends to a holomorphic function φα defined over some
sufficiently small neighborhood U ′ of 0, whose size depends only on the size
of the wedges where φ±α are defined, and therefore is independent of α (see
[37] or [4], for example). Moreover, U ′ can be filled in by analytic disks with
boundary staying in the closure of (W+ ∪W−) ∩ U ([37]). So, the maximal
principle tells that φα has the same kind of Cauchy estimates as φ+

α and φ−α

do. Now, (
∑

α φαλα) clearly gives the holomorphic extension for G(f(z), λ)
to Oz(0)×Oλ(0). The proof of Lemma 7.1 is now complete.

As an immediate application of Lemma 7.1, we let λ = 0 and conclude
that fn+1 admits a holomorphic extension to a neighborhood of 0. Also,
by the Nullstellensatz (see [6]), one sees from the holomorphic property of
G(f, λ), that each fj satisfies an irreducible polynomial equation, with lead-
ing coefficient 1 and other coefficients holomorphic near 0.

In what follows, we denote, by V ⊂ Oz(0)× Ow(0) ⊂ Cn+1 ×Cn+1, the
irreducible analytic variety of dimension n + 1, which contains the graph
of f over D near p = 0 and is extended to a neighborhood of the origin
by the above mentioned equations annihilating fj ’s. Use π and π′ for the
natural projections to the first and second copies of Cn+1, respectively. Write
F(z) = π′(π−1(z)), which can be regarded as the multiple-valued extension
of f |D to a neighborhood U (0) of 0 ∈ Cn+1. Clearly, F(0) = {0} and, near
the origin, limzj→z F(zj) = F(z) and G(F(z), λ) is single valued.

We notice that V is an analytic cover over Oz(0). Write E for the union
of the branch locus of the irreducible polynomial equation annihilating fj

(j = 1, · · · , n). Near the origin, π is then a covering mapping from V\π−1(E)
to its image.

Write (Y, σ,V) for the standard normalization of V (see [40], Chapter
8). We remark that after making V small, σ−1(0) is a single point. Write
E0 = π ◦ σ(Sing), where

Sing = {x ∈ Y : either x is singular or x is smooth but dxσ is singular}.

Write Sing0 = (π ◦ σ)−1(π ◦ σ)(Sing). Then π ◦ σ is a local biholomorphic
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mapping from Y \ Sing0 to its image and gives a finitely sheeted covering
mapping away from the singular set. (see [40], Chapter 8 and [27], pp 108).
Therefore, if V is singular at 0, i.e, f is not holomorphic at 0, then E0 =
π ◦ σ(Sing) is a non-trivial analytic variety. We call E0 the genuine branch
locus of F or V . By the basic fact concerning branched covering spaces, it is
known that E0 is of codimension 1 everywhere. Also, it is easy to see that for
each z ∈ E0, there is a sequence {zj} → z such that #π−1(z) < #π−1(zj) for
each j. Moreover, for each z 6∈ E0, F can be split into several holomorphic
branches near z.

§8. Branches of F and Segre Varieties

We now start to study the connection between F and the Segre varieties
of M1 and M2. Our basic tool will be the reflection function introduced in
Theorem D (a). We first prove the following

Lemma 8.1. After shrinking P , if necessary, then for each z ∈ P , it holds

that F(z) ⊂ A′
gf(z)

and F(Qz) ⊂ Q′
gf(z)

for any f̃(z) ∈ F(z).

Proof of Lemma 8.1: We mention that by a simple unique continuation
argument and by using the invariant property of Segre varieties, one can
easily show that for each “nice” branch f̃ with f̃ |D = f , it holds that f̃(Qz) ⊂
Q′
gf(z)

. The main idea of the proof of the lemma is to use the fact that

ρ̃2(F(z), f̃∗(ω)) is single-valued for each fixed ω, by the above established
reflection function.

We let z ∈ P ∩D, and assume that z, z∗ 6∈ E. Here, as before, we use z∗

to denote the reflection point of z, i.e, z∗ = R(z). We also choose a simply
connected smooth curve γ : [0, 1]→ U (0) with γ ⊂ P \D \ E, γ(1) = z∗, and
γ ∩M1 = {γ(0)}. Here, when there is no confusion arising, we also use the
letter γ to denote its image set. Moreover, we assume that γ intersects M1

transversally at γ(0). Let γ̃ = R(γ) ∪ γ. Then γ̃ is still a simply connected
curve in P̃ . Thickening γ̃ suitably, we can then obtain a simply connected
domain, which we will denote by O(⊂ P̃). Now, we can define a holomorphic
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map f̂ from O, which coincides with f on O ∩ D. For a subset A, write
conj(A) = {z : z ∈ A}. Let Mc = {(z, ω) ∈ U (0)× conj(U (0)) : ρ1(z, ω) = 0}
and consider M∗c = Mc ∩{O× conj(O)}, where ρ1 is the defining equation of
M1 near 0. Now, by Lemma 7.1, the following function is well-defined and
holomorphic over M∗c :

Ξ(z, ω) = fn+1(ω)−G(F(z), f̂∗(ω))
(
= ρ̃2(F(z), f̂∗(ω))

)
which vanishes on M∗ = {(a, a) : a ∈ M1 ∩ U (0)}. Notice that M∗ is
a totally real subset in M∗c of maximal dimension, we conclude from the
uniqueness property of holomorphic functions [33] that Ξ(z, ω) ≡ 0 in the
union, denoted by M∗∗c , of the connected components of M∗c which have non-
empty intersections with M∗. By our choice of γ̃, we see that (z, z∗), (z∗, z) ∈
M∗∗c ; for (γ(t),R(γ(t)))(∈ M∗c ) (R(γ(t)), γ(t))(∈ M∗1c) (t ∈ [0, 1]) connect
them to M∗, respectively. Therefore,

(z,Conj(Qz ∩O(z∗))) ⊂M∗c , (z∗,Conj(Qz∗ ∩O(z))) ⊂M∗c

by the definition of Segre varieties. This implies that G(F(z), f̂∗(ω)) =
fn+1(ω) for ω ∈ Qz ∩O(z∗); and G(F(z∗), f̂∗(ω)) = fn+1(ω) for ω ∈ Qz∗ ∩
O(z). Equivalently, we have ρ̃2(F(z), f̂∗(ω)) = 0 for ω ∈ Qz ∩ O(z∗); and
ρ̃2(F(z∗), f̂∗(ω)) = 0 for ω ∈ Qz∗∩O(z). From a basic fact of Segre varieties:
w ∈ Qz if and only if z ∈ Qw; it now follows that f̂(Qz ∩ O(z∗)) ⊂ ∩Q′

gf(z)

with f̃(z) ∈ F(z); and f̂(Qz∗ ∩O(z)) ⊂ ∩Q′
ef(z∗)

with f̃(z∗) ∈ F(z∗).
By slightly perturbing z if necessary, we assume momentarily that Jf̂ 6= 0

near z∗. Now, since f̂(Qz ∩ O(z∗)) ⊂ Q′
ef(z)

for any f̃(z) ∈ F(z), and since

each of them is a connected complex submanifold of dimension n near f̂(z∗),
all these submanifolds therefore coincide near f̂(z∗). Hence, it follows easily
that all Q′

ef(z)
∩P̃ are the same. So, F(z) ⊂ A′

ef(z)
for any given f̃(z) ∈ F(z).

Assume also that Jf(z) 6= 0. In a similar manner, we then also see that
F(z∗) ⊂ A′

ef(z∗)
for any given f̃(z∗) ∈ F(z∗).

Next, we note that ρ̃2(F(z), f̂∗(ω)) = 0 if and only if ρ2(F(z), f̂ (ω)) =
0. Let q = (q′, qn+1) ∈ F(z). Then, by what we just obtained and by
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the reality of ρ2, we have ρ2(f̂(ω), q) = 0 and therefore, ρ̃2(f̂(ω), q′) = 0
for ω ∈ Qz ∩ O(z∗). Now, since Lemma 7.1 indicates that ρ̃2(F(ω), q′) is
well defined and holomorphic for ω ∈ U (0), we conclude, in particular, that
ρ̃2(F(ω), q′) = 0 for ω ∈ P̃ ∩Qz . This implies that F(Qz) ⊂ Q′q.

In a similar manner, we can also show that F(Qz∗) ⊂ Q′q∗ for any q∗ ∈
F(z∗).

Finally, we can complete the proof of Lemma 8.1 by passing to the limit.

Let z be close to 0 such that either z ∈ E ∪ R(E) ∪M1, or Jf (z) = 0, or
Jf(z∗) = 0. By what we did above, we can find a sequence {zj} with zj → z

so that F(zj) ⊂ A′
ef(zj)

for any f̃(zj) ∈ F(zj). In the other words, Q′
ef(zj)

=

Q′
f̂(zj)

for any f̃(zj), f̂(zj) ∈ F(zj). It then follows that Q′
ef(z)

= Q′
f̂(z)

for

any f̃(z), f̂ (z) ∈ F(z), i.e, F(z) ∈ Q′
ef(z)

for any f̃(z) ∈ F(z). Similarly, we

also have F(Qz) ⊂ Q′
ef(z)

for any f̃(z) ∈ F(z).

Hence, after shrinking P one more time if necessary, we see the proof of
Lemma 8.1.

Remark 8.2 (a) By Lemma 8.1, we can now define Q′F(z) to be Q′q
and A′F(z) = A′q for some q ∈ F(z). Then Lemma 8.1 can be written as
F(z) ⊂ A′F(z) and F(Qz) ⊂ Q′F(z).

(b) As an application of Lemma 8.1, we conclude that when A′w is just a
single point for w ≈ 0, then f extends holomorphically near 0. This is the
case when the target point is a Levi non-degenerate point or has some special
bi-type property. Define A′ by sending each point w to A′w. One can see
that if f does not allow holomorphic extension, then A′ branches at 0 (we
will make this more precise later). It is this fact that links the branch points
of F with the singular points of A′, which will be one the key observations
for the proof of Theorem D (c).

For example, let D1 = {(z1, z2) : |z1|2 + |z2|2 < 1} and D2 = {(z1, z2) :
|z1|4 + |z2|2 < 1}. Let G = (

√
z1, z2) be the multiple-valued map from

D1 to D2. Then the branch locus of G is given by Z = {(0, z2)}, and
G(Z) = {(0, z2)}. We observe that G(Z) is exactly the branch locus of the
A′-map of ∂D2.
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Lemma 8.3. (i) Let M2 be given in the normal coordinates with a nor-

malized real-valued defining equation ρ2 (see (1.1)). Let Ω± be defined by

±ρ2 < 0 respectively. Write n̂± = {b = (0′, bn+1) : ±bn+1 < 0} with |bn+1|
small. For b ∈ n̂+ (b ∈ n̂−, respectively) then A′b ⊂ Ω+, (A′b ⊂ Ω−, respec-

tively).

(ii) If for some q ∈ F(z), it holds that q ∈ M2, then F(z) ⊂ M2. Hence,

F(M1 ∩ P) ⊂M2.

(iii) fn+1(z) = zkn+1g(z) for some holomorphic function g(z) defined near 0
and for some positive integer k.

(iv) After shrinking P̃ , it holds that {F−1(0)}∩P̃ = {0}, i.e, f̃(z) 6= 0 for any

z(∈ P̃) 6= 0 and for any f̃(z) ∈ F(z). Moreover F−1(w)∩P̃ is a finite set for

any w ≈ 0; and for any analytic variety V passing through 0 ∈ P , F(V ) also

gives the germ of an analytic variety at 0 ∈ P ′ with dim0 V = dim0(F(V )).
(v) After shrinking P if necessary, then for any z ∈ P , either F(z) ⊂ Ω+, or

F(z) ⊂ Ω−, or F(z) ⊂M2.

Proof of Lemma 8.3: (i). Let b = (0, bn+1) be as in Part (i) of Lemma 8.3.
Let η = (η′, ηn+1) ∈ A′b, i.e, Q′η ∩ P̃ ′ = Q′b ∩ P̃ ′. We see that

{(w′, wn+1) ∈ P̃ ′ : wn+1 + ηn+1 + ρ∗2(w
′, η′,

wn+1 − ηn+1

2i
) = 0}

= {(w′, wn+1) ∈ P̃ ′ : wn+1 + bn+1 = 0},

where ρ∗2 =
∑

j≥0 ψj(w′, w′)(Imwn+1)j . Letting w′ = 0, we see that ηn+1 =
bn+1. Meanwhile, since {(w′,−ηn+1) : w′ ∈ Cn} ∩ P̃ ′ = Q′η , it follows that
ρ∗2(w

′, η′, iηn+1) = 0 for w′ with (w′, bn+1) ∈ P̃ ′. We see, in particular, that
ρ∗2(η′, η′, iηn+1) = 0. Therefore, ψ0(η′, η′) = −

∑∞
j>0 ψj(η′, η′)(iηn+1)j =

O(|η′|2|ηn+1|). Now, ρ2(η, η) = 2ηn+1 + ρ∗2(η′, η′, 0) = 2ηn+1 + ψ0(η′, η′) +
O(|η′|2|ηn+1|) = 2ηn+1 + O(|η′|2ηn+1), which is positive when bn+1 = ηn+1

is positive and small; and is negative when bn+1 < 0. This gives the proof of
part (i).

(ii). Let q ∈M2∩F(z). Then q ∈ Q′q = Q′
ef(z)

for each f̃(z) ∈ F(z). Thus

f̃(z) ∈ Q′q = Q′
ef(z)

, by Lemma 8.1. So, f̃(z) ∈M2 (see [19]).
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(iii). By Lemma 8.1, it follows that F(Q0) ⊂ Q′F(0) = Q′0. Thus, we see
that fn+1(z′, 0) ≡ 0. Since fn+1 is holomorphic near 0, we conclude that
fn+1(z′, zn+1) = zkn+1g(z) for some holomorphic function g near 0 and some
positive integer k.

(iv). Let V be as at the end of §7. In the following discussion, we let U

be such that P̃ ⊃ U ⊃ P and restrict π to π−1(U).
Notice that it holds that F−1(0)∩U = π(π′−1(0)∩π−1(U)). Thus, if 0 is

an accumulation point of Y = F−1(0), then Y ∩ U is an analytic variety of
U and it would have positive dimension at 0. We will assume this and seek
a contradiction.

Then, Y ∩ U contains some holomorphic curve Y ∗ ⊂ P parametrized by
z′ = φ(t), zn+1 = ψ(t), (t ∈ ∆, the unit disk in C1) with φ(0) = ψ(0) = 0,
‖dφ‖+‖dψ‖ 6= 0 for t 6= 0. For each z ∈ Y ∩P , F(Qz) ⊂ Q′0, by Lemma 8.1.
We claim that ∪Qz with z ∈ Y ∗ fills in an open subset in Cn+1. This then
gives us a contradiction; for we assumed that Jf 6≡ 0 and Q′0 is a complex
hypersurface.

To see the size of U∗ = ∪Qz with z ∈ Y ∗, we choose the normal coordi-
nates for M1 near p = 0 with the normalized defining equation ρ̃1(z, z) = 0
as in (1.2). Therefore, it can be seen that Qz can be parametrized by

zn+1 = −ψ(t)−
∞∑
j=0

φ̃j(φ(t), z′)ψ(t)
j ≡ g(z′, t).

Here and in what follows, we use the notation h(z) for the function h(z). So,
U∗ can be parametrized by the map

T (z′, t) : Cn ×∆→ Cn+1

T (z′, t) = (z′,−ψ(t) −
∑∞

j=0 φ̃j(φ(t), z′)ψ(t)
j
). To see that T (z′, t) is a bi-

holomorphism at a certain point (z′, t)(≈ (0, 0)), it suffices to show that
∂g
∂t
6= 0 at (z′, t). Indeed, this can be argued as follows: When ψ(t) 6≡ 0, we

can simply choose (0′, t) for some t with ψ′(t) 6= 0; when ψ ≡ 0, if ∂g
∂t
≡ 0,

then for any given z′ with |z′| small, φ̃0(φ(t), z′) is independent of t. Hence
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it has to be 0; for φ(0) = 0 and thus φ̃0(φ(0), z′) = 0. Letting z′ = φ(t), it

follows that φ̃0(φ(t), φ(t)) ≡ 0. This contradicts the finite type assumption
on M1; for it implies that Y ∗ = (φ(t), 0) stays inside M1. So, by making P̃
small, it holds that F−1(0) ∩ P̃ = {0}.

Therefore, we conclude that 0 is an isolated point of π′
−1(0). Hence, π′ is

locally finite near 0. Moreover, F−1, when restricted as a map from O(0) to
P̃ , maps a small neighborhood 0 ∈ P̃ ′ into a small neighborhood of 0 ∈ P .

Now, shrinking P̃ if necessary, we assume that q ≈ 0, F−1(q) ∩ P̃ =
π(π′−1(q)) is finite. By the elimination theorem ([16], Theorem 1 of pp122),
there exists an open neighborhood U ′ of 0 such that π′ is proper from
π′−1(U ′) to U ′; and away from a proper analytic set, π′ gives a sheeted
covering map. In particular, π′ is an open mapping.

In the following discussion, we make F(U) ⊂ U ′, and we restrict π′ to
π′−1(U ′). By the above discussion, we also observe the fact: π−1(U) ⊂
π′−1(U ′).

Using again the elimination theorem and noting that π, π′ are local ana-
lytic covering maps, it follows that for any analytic variety V ⊂ U , F(V ) ∩
π′(π−1(U)) = π′(π−1(V ) ∩ (π−1(U))) is an analytic variety in π′(π−1(U))
with the same dimension at the origin (see for example, Theorem 11 E pp
68 of [40]; or Theorem 1, pp122, of [16]). This completes the proof of (iv).

(v) Since π is proper, it is also closed. Also, both are open mappings; for
they are local analytic covering mappings, too.

For any closed subset B of U ′, we first notice that

F−1(B) ∩ U = π
(
π′
−1(B) ∩ π−1(U)

)
.

Since π′−1(B) is closed in π′−1(B)∩π′−1(U ′), it is closed in π′−1(B)∩π−1(U)
by the above arrangement. By using the fact that π is closed, it follows that
F−1(B) is closed in U . In particular, we see that F−1(M2 ∩U ′), denoted by
M̃1, is closed in U . Clearly, F(M̃1) ⊂M2 by part (ii) of this lemma.

Now, let U0 = U \ M̃1. Then it is open. We notice that ∂U0 is contained
in ∂U ∪ M̃1. Since F = π′ ◦ π−1, the openness of π′ implies the openness
of F from U as a multiple-valued map. Therefore it sends interior points to
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interior points. On the other hand, using the continuity of F , one sees that F
maps the closure of U0 to the closure of F(U0). Hence, a simple topological
argument shows that the boundary of F(U0) is contained in F(∂U) ∪M2.
Since F−1(0)∩P̃ = {0}, it follows easily that 0 is not contained in the closure
of F(∂U). Hence, we see that there is a small ball, denoted by B0, centered
at the origin such that B0 ∩ F(∂U) = ∅. Let U∗ be a small neighborhood
of 0 such that F(U∗) ⊂⊂ B0. If U0 ∩ U∗ = ∅, then Part (ii) of this lemma
shows that F(U∗) ⊂ F(M̃1) ⊂ M2 and thus we are done. (In this case,
f must be constant). Therefore, without loss of generality, we assume that
U∗∩U0 6= ∅. Let D∗ be an arbitrarily given connected component of U0 with
U∗∩D∗ 6= ∅. Note that ∂F(D∗) ⊂ F(∂U)∪M2 and ∂F(D∗)∩(B0 \M2) = ∅.
Then a simple topological argument indicates that either F(D∗) ⊃ B0 ∩Ω+

or F(D∗) ⊃ Ω− ∩ B0 Without loss of generality, we assume the first case.
Then, there exists a point p0 ∈ D∗ and a certain f̃(p0) ∈ F(p0) such that
f̃(p0) ∈ n̂+ and f̃(p0) is close to 0. By the first part of this lemma and
Lemma 8.1, we see that F(p0) ⊂ Ω+. Now, for any z ∈ D∗ \ E, choose a
curve γ in D∗ with γ(0) = p0, γ(1) = z, and γ((0, 1)) ∩ E = ∅. Then for any
f̃(z) ∈ F(z), there is a branch f̂ of F , which is continuous on γ and f̂(z)
coincides with f̃(z). Now, since f̂ ◦ γ does not meet M2 by our choice of U0,
and f̂ ◦ γ(t) ∈ Ω+ for t close enough to 0 (this can be seen by the fact that
all limit points of f̂(γ(t)) (t → 0) are in F(p0)), we conclude that f̂(z) and
thus f̃(z) have to be in Ω+. For z ∈ E ∩D∗, by passing to a limit and noting
F(z) ∩M2 = ∅, we can also see that F(z) ⊂ Ω+. Thus, by the arbitrary
choice of D∗, we see that the proof of the last part of Lemma 8.3 is complete
if we make P small.

§9. Branch Locus of F and Segre Varieties

We now present some connections between the ‘genuine’ branch locus E0
and the Segre varieties of M1 and M2.

In Remark (8.2), we already noticed the importance of the points where
the counting number of A′w collapses. In the following, we make this more
precise:



SCHWARZ REFLECTION PRINCIPLE

As before, denote by A the map, which sends: w ∈ P to the finite set
Aw. w0 is called a separable point of A if Aw0 = {wj}N

∗

j=0 satisfies the fol-
lowing property: There exist open neighborhoods Owj of wj (j = 0, · · · ,N∗)
such that A(w) ∩ Owj = {w} for any w ∈ Owj . We write B = {w ∈ P :
w is not a separable point of A}.

Similarly, we can define A′ and B′.
We will see in the following lemmas that B and B′ can be used to control

the branch locus of F .

Lemma 9.1. Let M1, M2 be as before. Then Q0 ∩B (Q′0 ∩B′, respectively)

is contained in a proper analytic subvariety of Q0 (Q′0, respectively).

Proof of Lemma 9.1: We choose the normal coordinates for M1 near p = 0.
For our purpose here, we can assume that M1 is defined by an equation of
the form:

zn+1 + zn+1 +
∑

|α|,|β|>0

aαβz
′αz′β +

∑
|α|,|β|;k>0

aαβ;kz
′αz′βzkn+1 = 0.

Let Pα(z′, zn+1) =
∑
β aαβz′β +

∑
β,k aαβ;kz′

βzkn+1. Then for a = (a′, an+1)
b = (b′, bn+1) close to the origin, Qa = Qb if and only if an+1 = bn+1

and Pα(a′, an+1) = Pα(b′, bn+1). By the finite D’Angelo type assumption,
it follows that the common zero of Pα(z′, 0)′s is 0 near the origin. Us-
ing the Noetherian property, we see that for some finitely many indices
{αj}mj=1, the locus of {Pαj (z′, 0)}mj=1 is also zero. Now, for a small neigh-
borhood U of 0, define Λ from a small neighborhood U to Cm+1 by Λ(z) =
(zn+1, {Pαj (z′, zn+1)}mj=1). Then Λ is finite to one and proper from U , after
suitably shrinking of U . So, by the Remmert theorem, we conclude that the
set

V = Λ−1 (Λ({z ∈ U : dΛ does not have maximal rank at z}))

is a proper variety of U (see [19] for a similar argument). Obviously, V ⊃ B.
Since the projection from V to the {(z1, · · · , zn)}-subspace is one to one, after
a linear change of coordinates in the (z1, · · · , zn)-space, we see that V can be
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defined by an equation of the form: zN
∗

1 +
∑

j<N∗ cj(z2, · · · , zn, zn+1)z
j
1 = 0

with cj(0) = 0. In particular, it follows that B ∩ Q0 is contained in a
subvariety defined by zN

∗

1 +
∑

j<N∗ cj(z2, · · · , zn, 0)zj1 = 0.

Similar arguments also apply to M2. This completes the proof of Lemma
9.1.

Lemma 9.2. Let M1, M2, and E0 still be as before.

(a) F(E0 ∩O(0)) ⊂ B′.
(b) E0 ∩Q0 ∩O(0) is a proper analytic subvariety of O(0) ∩Q0.

Proof of Lemma 9.2: (a). Let z ∈ E0 be sufficiently close to 0. Then, by
the definition of E0 and the discussions at the end of §7, it follows that there
is a sequence zj → z such that we can find two sequences {ηj} and {ξj} with
ξj , ηj ∈ F(zj) ηj 6= ξj , but ξj , ηj → w0 for some w0. By Lemma 8.1, it then
follows that ξj ∈ A′ηj . Hence, w0 is not a separable point of A′. That is,
F(z) ⊂ B′.

(b). By (a) and Lemma 8.1, we have F(Q0 ∩ E0) ⊂ B′ ∩Q′0. Thus, using
Lemma 8.3 (iv) and Lemma 9.1, we see the proof of the assertion in this
part.

§10. A Preservation Principle for F—Proof of Theorem D (b)

Before proceeding further, we need to strengthen Lemma 8.3 (iii) to the
following version:

Lemma 10.1. fn+1(z) = zn+1g(z) with g(0) 6= 0.

This sort of the Hopf lemma was established in [7] in the case when the
map is assumed to be smooth. Since we now have a nice control of the
branches of F and we know that fn+1 is holomorphic, Lemma 10.1 can be
proved by using the same approach and ideas as in [7].

Proof of Lemma 10.1: Since we use the same approach appeared in [7],
we will be brief for those arguments which can be obtained from (§2, [7]).
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Seeking a contradiction, we suppose that fn+1(z) = zkn+1g(z) with k ≥ 2.
We start with the function G(F , λ), which has the following property:

f2(ω) = G(F(z), f̃∗(ω))

for any z ∈ Qω and (f̃∗, fn+1) ∈ F . Write the defining equation of M1 in
the following form (see (1.1)): t = φ(z′, z′, s) with t = 2Rezn+1, s = Imzn+1,
where φ(0, z′, s) = φ(z′, 0, s) ≡ 0. Thus z ∈ Qω reads as

zn+1 + ωn+1 = φ(z′, ω′,
zn+1 − ωn+1

2i
),

where, as usual, we write ω = (ω′, ωn+1). For ξ ∈ Cn, write τ = −is +
1
2φ(z′, ξ, s) and R(z′, ξ, τ ) = is + 1

2φ(z′, ξ, s). As in [7], using the implicit
function theorem, we can find a holomorphic function µ(z′, ξ) near 0 such
that R(z′, ξ, µ(z′ , ξ)) ≡ 0 and µ(z′, 0) = µ(0, ξ) ≡ 0. It is easy to verify
that µ(z′, ξ) 6≡ 0, for, otherwise, it implies that φ(z′, z′, 0) ≡ 0 and thus
contradicts the finite type assumption of M1. Now, one can directly verify
that (z′, R(z′, ξ, τ )) ∈ Q(ξ,τ). So, we have (ξ, τ ) ∈ Q(z′,R(z′,ξ,τ)) and thus

(10.0) fn+1(z′, R(z′, ξ, τ )) = G(F(ξ, τ), f̃∗(z′, R(z′, ξ, τ )).

As in the previous section, we write f̃∗(z) = f̃∗(z) and use the same notation
for fn+1(z). Then

(10.1) fn+1(z′, R(z′, ξ, τ )) = G(F(ξ, τ), f̃∗(z′, R(z′, ξ, τ )).

By Lemma 9.2, we have E∗0 = E0 ∩ Q0 = E0 ∩ {z : zn+1 = 0} is a local
complex analytic variety of codimension at least 1.

Now, for each non zero z′ 6∈ E∗0 which is close to the origin, there is a small
neighborhood O((z′, 0)) near (z′, 0) such that we can stratify F into several
holomorphic branches. Next, we choose ξ sufficiently small and then let τ

be sufficiently close to µ(z′, ξ). Then R(z′, ξ, τ ) ≈ 0, too. After letting f̃ be
a holomorphic branch of F over O((z′ , 0)), for each l < n + 1, we then can
take the derivative with respect to zl in (10.1) to obtain

(10.2)
∂fn+1

∂zl
+

∂fn+1

∂zn+1
R′zl(z

′, ξ, τ ) =
∑

j=1,··· ,n

∂G

∂λj
(
∂f̃j
∂zl

+
∂f̃j

∂zn+1
R′zl(z

′, ξ, τ )).
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Let τ = µ(z′, ξ) in (10.2) and notice that R(z′, ξ, µ(z′, ξ)) = 0, fn+1 = zkn+1g

with k ≥ 2. We obtain

(10.3)
∑

j=1,··· ,n

∂G

∂λj
(
∂f̃j
∂zl

(z′, 0) +
∂f̃j

∂zn+1
(z′, 0)R′zl(z

′, ξ, τ )) = 0.

SinceF is a finite-to-finite map, f∗(z′, 0) is a finite-to-one map from O(z′, 0)∩
Q0, too. Moving to a nearby point if necessary, we can assume that

det(
∂f̃j
∂zl

(z′, 0))1≤j,l≤n 6= 0.

Therefore, for each z′ 6∈ E∗0 with |z′| small, when ξ is chosen so that |ξ| is
sufficiently smaller than |z′|, using the fact that R′zl(z

′, 0, τ ) = 0 for l < n+1,
we see that R′zl(z

′, ξ, µ(z′, ξ)) ≈ 0. Hence, we have for each l < n + 1

∂G

∂λl
(F(ξ, µ(z′, ξ)), f̃∗(z′, 0)) ≡ 0.

On the other hand, letting τ = µ(z′, ξ) in (10.1), we have

G(F(ξ, µ(z′, ξ)), f̃∗(z′, 0)) ≡ 0.

Now, as in [7], let ql = G′λl(w
′, 0, λ) and q0 = G(w′, 0, λ). Notice that

G(w′, wn+1, λ) = −wn+1 + q0 −
∑
j>0

ψ̃j(w′, λ)wjn+1

and ql = (q0)′λl . We see that from the equations G(w′, wn+1, λ) = 0 and
G′λl(w

′, wn+1, λ) = 0, we can get

wn+1 = q0h
∗(q0, w

′, λ)), ql = q0ψ
∗
l (w

′, λ, q0)

for certain holomorphic functions h∗, ψ∗l , where l ≤ n.
In the following discussions, we always let τ = µ(z′, ξ). Let w′(z′, ξ) =

f̂∗(ξ, τ ) with f̂∗(ξ, τ ) ∈ F(ξ, τ ), and let λ(z′) = f̃∗(z′, 0) in the above for-
mulas. We obtain the following equality
(10.4)

ql(f̂∗(ξ, τ), f̃ l(z
′, 0)) = q0(f̂∗(ξ, τ), f̃∗(z′, 0))× ψ∗l (f̂

∗(ξ, τ), f̃∗(z′, 0), q0).
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Here for clarity, we summarize the situations in which (10.4) makes sense
and holds:

(a) z′ 6∈ E∗0 is any given point of Q0 near the origin. (b) f̃ is some
holomorphic branch of F over some small neighborhood O((z′ , 0)) of (z′, 0),
whose size depends on z′. (c) ξ is taken in a small neighborhood O(z′; f̃∗)
of 0, whose size depends on the choice of O((z′ , 0)) and the choice of f̃∗. (d)
f̂(ξ, τ ) is any point in F(ξ, τ ).

We next show that

(10.5) ql(w′, λ) ≡ q0(w′, λ)h∗l (w
′, λ, q0(w′, λ))

for any (w′, λ) ≈ 0 and for each l < n + 1. Indeed, this can be argued as
follows:

Let z′0 ∈ Cn be chosen as above such that λ(z′) = f̃∗(z′, 0) is an open map-
ping from O((z′0, 0))∩Q0 to Cn. Fix each z′ ∈ O((z′0, 0))∩Q0 and consider the
map H which sends each ξ(≈ 0) ∈ Cn to (f̂∗(ξ, µ(z′, ξ)), fn+1(ξ, µ(z′, ξ))).
Since (f̂∗(ξ, τ ), fn+1(ξ, τ)) ∈ Q′

( ef∗(z′,0),0)
, by Lemma 8.1, and from the fact

(ξ, µ(z′, ξ)) ∈ Q(z′,0), we see that H, which sends each ξ into Q′
( ef∗(z′,0),0)

, is

a finite to one map. Next, let π∗ be the natural projection from Cn+1 to its
first n-copies of C. Then, it follows easily that π∗ ◦H is an open mapping.
This tells that for each z′ ≈ z′0, (10.5) holds for an open subset of w′ ∈ Cn.
Hence, from the uniqueness theorem of holomorphic functions, we conclude
that (10.5) holds identically.

Now, as in [7], by applying the basic theory of ODE to

ql(w′, λ) = q0(w′, λ)h∗l (w
′, λ, q0)

and by using the initial condition q0(w′, 0) = G(w′, 0, 0) = 0, we conclude
that q0 ≡ 0. This contradicts the finite D’Angelo type assumption for M1.

We now prove the following preservation principle for our map F :

Lemma 10.2. After shrinking P , F(P∩D) and F(P∩Dc) stay in different

sides of M2.
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Proof of Lemma 10.2: We will still use the reflection function G(F , λ)
introduced in Lemma 7.1. Let

ρ∗(z,w) = 1/NRe

 ∑
ef(w)∈F(z)

(
fn+1(w)−G(F(z), f̃∗(w))

) ,

where N is the generic counting number of F(z). Then by Lemma 7.1 and the
Riemann extension theorem, we see that ρ∗(z,w) is holomorphic in (z,w).
In particular, ρ∗(z, z) is real analytic near 0. We claim that ρ∗(z, z) is < 0,
when F(z) ⊂ Ω+; > 0 when F(z) ⊂ Ω−; and = 0 when F(z) ⊂ M2 (see
Lemma 8.3 (a) for related notations). In fact, for each fixed f̃(z) ∈ F(z), we
have

Re
(
fn+1(z)−G(f̃ , f̃∗(z))

)
= Reρ̃2

(
f̃ , f̃(z)∗

)
= ρ2

(
f̃ , f̃(z)

)
Reh2(f̃(z), f̃(z))) = ρ2(f̃ , f̃(z)))(1 + o(‖f̃(z)‖),

where ρ̃2 = ρ2h2. Thus, the claim follows from Lemma 8.3 (v).
Next, applying Lemma 10.1, one sees that

ρ∗ = 2Re(fn+1(z)) + o(|z|) = Re(g(0)zn+1) + o(|z|)

with g(0) 6= 0. Thus, d0ρ∗ 6= 0. Therefore, ρ∗ serves as a real analytic
defining function of M1 near 0. Without loss of generality, let us assume that
ρ∗(z, z) < 0 for z ∈ D. Then ρ∗(z, z) > 0 for z ∈ Dc. Now, by making P
small, the above argument shows that F(D∩P) ⊂ Ω+ and F(Dc∩P) ⊂ Ω−.

Remark 10.3: In what follows, we will write Ω = Ω+. Then we observe
that the above results give the fact that F(D) ⊂ Ω and F(Dc) ⊂ Ωc with
Ωc = U

′(0) \ (Ω ∪M2).

We now are ready to show that f admits a proper holomorphic extension
to the D-side:

Proof of Theorem D (b): With the above notation, let B be a sufficiently
small ball centered at 0. Let U∗ to be the connected component of the set
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{z ∈ B ∩D : f(z) 6∈ f(∂B ∩D)} such that f(U∗) contains Ω ∩ O(0) with
O(0) sufficiently small. Then, Lemma 10.2 and Lemma 8.3 (i.v) indicate
that U∗ is a bounded domain which contains a small piece of M1 near the
origin as part of its smooth boundary. By a well-known result (see [14], for
example), one can see that f is proper from U∗ to its image. Hence, after
taking D = U∗ and Ω = f(U∗), we see that f is proper from D to Ω.

As another application of the Hopf lemma, we have the following propo-
sition, which will be used in §11.

Proposition 10.4. Assume all the previous notation. Let a, b ∈ Cn+1 be

sufficiently close to the origin. If Q′F(a) = Q′F(b), then Qa = Qb.

Proof of Proposition 10.4: Let a and b be as in the hypothesis of the
proposition. We then need to show that Qa ∩ P̃ = Qb ∩ P̃. To this aim, we
consider the function ρ̃2(F(z), f̃∗(ω)), for any given f̃(ω) ∈ F(ω). By Lemma
7.1, ρ̃2(F(z), f̃∗(ω)) is well defined and holomorphic in (z, λ) with λ = f̃∗(ω)

for (z, λ) ∈ Oz(0) × Oλ(0). Hence, ρ̃2(F(z), f̃∗(ω)) = czn+1 + cωn+1 +
O(|z||λ|)+o(|λ|) for some c 6= 0, by Lemma 10.1. Thus, for each ω sufficiently
close to 0, since |f̃(ω)| ≈ 0, the implicit function theorem indicates that

ρ̃2(F(z), f̃∗(ω)) = 0 defines a connected complex hypersurface Wω in some
small neighborhood U# of 0, whose size is independent of the parameter ω

once |ω| is sufficiently small. Notice, by Lemma 8.1, that F(Qω) ⊂ Q′
ef(ω)

near 0. We see that Qω ∩ U# ⊂ Wω. Thus it follows that Wω = Qω in
U# when |ω| << 1; for Qω is also a connected complex submanifold of
codimension 1 in P̃.

Now, if Q′F(b) = Q′F(a), we then conclude that ρ̃2(F(z),F∗(b)) = 0 and

ρ̃2(F(z),F∗(a)) = 0 define the same variety. Hence, when a, b ≈ 0, we
conclude that Qa = Qb; for both of them have a small open subset of Wa ∩
U# = Wb ∩ U# in common. This completes the proof.

§11. Completion of the Proof of Theorem C
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We now proceed to the proof of Theorem D (c), i.e, Theorem C. In this
section, we let n = 1. For simplicity, we retain all the notation which we
have set up in the previous sections of Part II.

Lemma 11.1. (a) Let M1 and D be as before. There is an analytic variety

V ⊃ B such that (i) V ∩Q0 = {0}, and (ii) for each sufficiently small t > 0,

there is a disk, denoted by ∆(t)(⊂ C1), so that V ∩ {(z1,−t) : z1 ∈ C1} ⊂
∆(t)× {−t} ⊂ D. Similar statement also holds for the pair M2 and Ω.

(b) Let V be chosen as in (a). Then E ⊂ V .

Proof of Lemma 11.1: Let M1 be defined by the following normalized
equation:

z2 + z2 +
∞∑
j=0

φ̃j(z1, z1)z
j
2 = 0; or z2 + z2 +

∞∑
j=0

φ̃j(z1, z1)z
j
2 = 0.

For each b = (b1, b2) ≈ 0, Ab = {(w1, w2) : Qw ∩ P̃ = Qb ∩ P̃}. As
did in Lemma 8.3, one sees that w2 = b2. Now, it is easy to see that Qw

can be defined by z2 = −b2 −
∑∞

j=0 φ̃j(w1, z1)b2
j
, where the notation φ̃

is the same as explained before. Write φ̃j(w1, z1) =
∑

α>0 Ξjα(w1)zα1 . Then

z2 = −b2−
∑

α

∑
j Ξjα(w1)b2

j
zα1 . So, the equation: Qw = Qb can be written

as
∑

j Ξjα(w1)b2
j

=
∑

j Ξjα(b1)b2
j

or
∑

j Ξjα(w1)b2
j =

∑
j Ξjα(b1)b2

j , for
any α.

Choose k0 to be the smallest integer so that for some α0, Ξ0α0(w1) =
a∗wk0

1 + o(|w1|k0) with a∗ 6= 0.
Write P (w1, b2) = Ξ0α0(w1) +

∑
j>0 Ξjα0 (w1)b

j
2. For (b1, b2) close to the

origin, we define

V = {(b1, b2) : for some w0
1, P (w0

1, b2) = P (b1, b2),
∂P

∂w1
(w0

1, b2) = 0}.

Then as in the proof of Lemma 9.1, one can easily verify that Q0 ∩ V = {0}
and B ⊂ V .

We next claim that V possesses the other properties claimed in the lemma.
To see that, we let

V ∗ = {(b1, b2, w1) ∈ O(0) : P (w1, b2) = P (b1, b2),
∂P

∂w1
(w1, b2) = 0}.
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Then V is the projection of V ∗ to the first two copies of C1. This projection
map is obviously finite to one near the origin and thus is locally proper.
Meanwhile, for each b2, from ∂P(w1,b2)

∂w1
= 0, we can solve out only finitely

many w1’s with |w1| small. Moreover, for any solution w1, we can easily
see that |w1| <

∼
|b2|

1
k0−1 . Thus it follows that there are also only finitely

many b1’s so that P (w1, b2) = P (b1, b2) with ∂P(w1,b2)
∂w1

= 0. Furthermore,
one can also see that |b1| <∼ |b2|1/k0 . Meanwhile, it is also easy to see that

V ∩ (C1 × {b2}) ⊂ ∆|b2|α∗ × {b2} for |b2| sufficiently small. Here ∆r is used
to stand for the disk in C1 with center at the origin and with radius r, α∗

is a constant between 1
k0+1 and 1

k0
. By our choice of k0, it follows easily for

sufficiently small |b2|, that ∆|b2|α∗ × {b2} ⊂ D when b2 < 0. This completes
the proof of of Lemma 11 .1 (a).

(b). We first observe that in the two dimensional case, E is exactly the
branch locus of the irreducible Weierstrass polynomial defining f1. Hence for
z ∈ E, there is always a sequence {zj} → z such that #π−1(z) < #π−1(zj).
So, the exact argument as in Lemma 9.2 (a) shows that F(E) ⊂ B′. We
next show that E ∩ O(0) ⊂ V , where V is as defined in (a). To this aim,
we assume, without loss of generality, that E 6= ∅. Let ∪jEj be the union of
the irreducible components of E near 0. We notice that each Ej then must
be of dimension 1 at 0. Now, since F(Ej) ⊂ B′ is also an analytic variety
of codimension 1 at 0 (Lemma 8.3 (iv)), the assertion in (a) indicates that
F(Ej)∩Ω 6= ∅ near 0. Therefore, it follows from Lemma 10.2, that Ej ∩D is
not empty in any neighborhood of 0. Now, pick any point z ∈ Ej ∩D, which
is sufficiently close to 0. Then, as above, we can find a sequence zj → z and
{ηj}, {ξj} with ξj , ηj ∈ F(zj) ηj 6= ξj, but ξj , ηj → w0 ∈ Ω. By making z

sufficiently close to 0, we can assume by Theorem D (b), that f(z0) = w0 for
some z0 close to 0. Moreover, f is proper from a small neighborhood U of
z0 and U ∩ f−1(w0) = {z0}. Since f is single valued, there are two distinct
points aj , bj ∈ U such that f(aj) = ξj and f(bj) = ηj . Now, Proposition
10.4 indicates that aj ∈ Abj . Since aj , bj clearly converge to z0 as j → ∞,
we conclude that z0 ∈ B. Again by Lemma 8.1 and Proposition 10.4, we
see that z0, z ∈ B. By the arbitrariness of the choice of z and by what we
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obtained in (a), we conclude that Ej has an open subset contained in B and
thus in V . From the uniqueness of analytic varieties, it follows that Ej ⊂ V

for any j.

We now are finally ready to complete the proof of Theorem C.

Proof of Theorem C: The idea is to use the Hartogs extension theorem.
By Lemma 11.1, we know that E is defined by an equation of the form:
zN1 +

∑N−1
j=0 aj(z2)zj = 0. Let t be a small positive number and fix a small δ

Now, using the hypothesis on E and shrinking δ if necessary, we can find
small R > 0 such that E ∩

(
C1 ×∆δ

)
⊂⊂

(
∆ 1

2R
×∆δ

)
Write

Ω0 = (∆R × (Bη(−t))) ∪
(
(∆R \∆ 1

2R
)× B̃(t)

)
.

Here, (0 6∈)Bη(−t) is a small disk centered at −t with radius η and B̃(t) ⊂ ∆δ

is another disk which contains Bη(−t) and 0.
Then, it is easy to see that any (closed) loop in Ω0 \ E based at certain

z0 ∈ (∆R × (Bη(−t))) \ E can be deformed, relative to the base point and
without cutting E, to a loop in (∆R ×Bη(−t)) \ E, by our above choices.

Claim 11.2. Suppose that for a sufficiently small η, f can be extended

holomorphically to ∆R × Bη(−t). Then f admits a holomorphic extension

across 0.

Proof of Claim 11.2: Let Ω0 be as defined above. We then notice that
the holomorphic hull of Ω0 is ∆R × B̃(t). In fact, for any φ ∈ Hol(Ω0), the
following Cauchy integral gives the holomorphic extension of φ to ∆R×B̃(t):

1
2πi

∫
|ξ|= eR

φ(ξ, z2)
ξ − z1

dξ, with R̃→ R.

Now, since any loop in Ω0 \ E can be deformed to a loop in ∆R × (Bη(−t))
without cutting E, by the monodromy theorem, one sees that under the
hypothesis, f can be extended holomorphically to Ω0. Hence, f admits a
holomorphic extension to a small neighborhood of the origin. This completes
the proof of Claim 11.2.
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We next need the following simple topological fact, whose proof is easy
and is left to the reader:

Fact: Assume that t, η are sufficiently small. Write z0 = (ξ,−t) ∈
∆R × {−t} \ E for a certain ξ, where R is as chosen before. Then any loop
in ∆R ×Bη(−t) \ E, which is based on z0, can be deformed, relative to the
base point and without cutting E, into ∆R × {−t}. Here, without loss of
generality, we assume that the variety E, which has dimension at most 1, is
smooth away from 0.

Let t be chosen as in the above fact. By Lemma 11.1, the finite set
E ∩{∆R×{−t}} stays in ∆(t)∩{C1×{−t}} ⊂⊂ D, where ∆(t) is as chosen
in Lemma 11.1 (a).

On the other hand, since f is holomorphic in a small neighborhood of
∆(t)× {−t}, by the monodromy theorem, we see that f admits a holomor-
phic extension to a neighborhood of ∆R × {−t}. Hence by the above fact,
the monodromy theorem, and Claim 11.2, we conclude that f admits an
extension across 0.

The proof of Theorem C is complete now.
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