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Chapter 1. Introduction and open problems

In the present Chapter, we give a description and overview of topics to be

treated in details in later chapters.

§1.1. Mapping problems for algebraic real hypersurfaces in complex

euclidean space:

The study of this topic goes back to Henri Poincaré. In 1907 [Po], he showed

that any biholomorphic mapping between parts of the sphere (boundary of the

ball) in C2 is rational and extends to an automorphism of B2, the ball in C2. This

striking result obviously fails in the setting of one complex variable and reveals

strong rigidity properties of mappings in several variables. In 1960’s, Poincaré’s

theorem was extended to the complex space Cn with n ≥ 2 by Tanaka and later

by Alexander [Al] in a more general setting. More recently, Webster [We1] in-

vestigated biholomorphic mappings between strongly pseudoconvex real algebraic

hypersurfaces in the same complex space Cn with n > 1. He successfully ap-

plied the so-called Segre surfaces and proved the algebraicity for such mappings

(a hypersurface is called algebraic if it is defined by a polynomial and a mapping

is said to be algebraic if its graph is an open subset of an irreducible algebraic

variety). Webster’s idea was extensively used in later research, especially in the

equi-dimensional case (see [DW], [DF1], etc). For the case of positive codimen-

sion, i.e, when the mapping is from a hypersurface in Cn to another one in Cn+k

(n ≥ 2, k > 0), the situation is much more subtle. In the spherical case, based on

the fact that the Segre surfaces of a sphere are just hyperplanes, Forstneric [Fr1]

was able to obtain the rationality of holomorphic mappings from the sphere in Cn

to the sphere in Cn+k (n > 1). We mention here that special cases of Forstneric’s

theorem were previously obtained by Alexander [Al], Webster [We2], Faran [Fa1],

and Cima-Suffridge [CS1].

In the first part of this thesis (Chapter 2), we will study the algebraic map-

ping problem for any codimension and will prove the following general algebraic

mapping theorem (see §2.1 for relevant notation):
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Theorem 1: Let M1 ⊂ Cm and M2 ⊂ Cm+k be strongly pseudoconvex alge-

braic real hypersurfaces with m > 1 and k ≥ 0. Suppose that f is a holomorphic

mapping from a neighborhood of M1 to Cm+k such that f(M1) ⊂ M2. Then f is

algebraic.

In many applications, it would be important to know the above mentioned

results for mappings which are only holomorphic on one side of the hypersur-

face and have only a certain regularity up to the hypersurface. Since rational-

ity and algebraicity are global properties, this leads one to the studies of re-

flection principles between pseudocoonvex real analytic hypersurfaces. In the

equi-dimensional case, the situation is relatively clear by the work of Fefferman

[Fe], Lewy [Le], Pinchuk [Pi], Diederich-Webster [DW], Baouendi-Bell-Rothschild

[BBR], Baouendi-Rothschild [BR1] [BR2], Diederich-Fornaess [DF1] [DF2], etc.

For positive codimension, the general question is open even in the spherical case.

For example, is any C1 smooth CR mapping from the sphere in C2 to the sphere

in C3 real analytic? Equivalently, is any proper holomorphic mapping from B2 to

B3, which admits a C1 smooth extension up to the boundary, rational? Here we

call a function defined on a strongly pseudoconvex hypersurface a CR function if

it can be realized as the boundary value of some function holomorphic on one side

of the hypersurface. We notice that, by the recent work on the existence of inner

functions in several variables, one knows that there exists a proper holomorphic

mapping from B2 to B3, which is continuous up to the boundary, but not C2 at

any boundary point. Thus some minimal smoothness assumption in the above

question is necessary.

Indeed, with a little bit more regularity to begin, in the early 1980’s, Webster

[We2] already showed that any C3-CR mapping from a strongly pseudoconvex real

analytic hypersurface in Cn (n > 2) to the sphere in Cn+1 is real analytic almost

everywhere. Webster’s result was generalized in the subsequent work [Fa1], [CS1],

[CKS], [Fa3], and [Fr1]. In Chapter 2 of this thesis, we will prove the following

theorem by modifying the argument for the proof of Theorem 1:

Theorem 2: Every Ck+1-CR mapping from a strongly pseudoconvex real

analytic hypersurface M1 ⊂ Cn (n > 1) into another strongly pseudoconvex real
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analytic hypersurface M2 ⊂ Cn+k is real analytic (Cω) on a dense open subset.

We mention that, in case the f in the above result is C∞ smooth on M1, then

Theorem 2 is one of the main of themes of [Fr1]. However, reducing the infinite

smoothness assumption to the finite smoothness assumption in this result requires

new ideas and much more effort. Theorem 2 confirms a problem in [Fr1] and

includes all previous results as special cases. Meanwhile, it also allows Theorem 1

to be formulated as follows:

Theorem 1′: Let M1 ⊂ Cm and M2 ⊂ Cm+k be two strongly pseudocon-

vex real algebraic hypersurfaces (m > 1, k ≥ 0). Then every Ck+1 smooth CR

mapping from M1 to M2 is algebraic. That is, each component of the map can be

annihilated by an irreducible polynomial.

A natural question which arises here is to ask if one can further conclude

everywhere real analyticity in Theorem 2. As an application of Theorem 1′, we

can obtain a solution in some special cases; while the general question is still open:

Corollary 1: Let M1 and M2 be two strongly pseudoconvex real algebraic

hypersurfaces in (possibly different) complex spaces of dimension at least two.

Then every C∞ smooth CR mapping from M1 to M2 is real analytic on M1.

We mention that Theorem 1’ also holds if we replace M1 and M2 by two

(Levi-) non degenerate algebraic hypersurfaces with the same signature under

the assumption that f is an embedding with the Hopf Lemma property (see the

remark in the end of §2.2.4). Moreover the degree of the maps can be bounded by

a constant depending only on M1 and M2 (in fact, by the degree of M1 and M2).

When the CR mapping in the above result is only assumed to have certain

minimal smoothness, one has the following problem:

Question:: Let M1 and M2 be two strongly pseudoconvex algebraic real

hypersurfaces in (possibly different) complex spaces of dimension at least two. Is

every continuous algebraic CR mapping from M1 to M2 real analytic on M1?.
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A theorem in this direction is due to Cima- Suffridge ([CS2]), who proved

that any Ck+1-CR mapping from the sphere in Cn to the sphere in Cn+k is Cω.

In the last section of Chapter 2, we will present a partial solution to the above

question by proving the following:

Proposition 1: Let D ⊂ C2 be a bounded smooth algebraic domain. Denote

by tp the type value of the type at p ∈ ∂D in the sense of Kohn [Ko1] (or D’Angelo

[Da]). Let t = maxp∂D tp, which is finite. Suppose that f is a proper holomorphic

mapping from D to B3 which admits a Ct smooth extension up to the boundary.

Then f has a holomorphic extension across the boundary.

§1.2. Kobayashi extremal mappings and holomorphic self-mappings:

Let D be a bounded domain in complex euclidean space Cn, and let f ∈
Hol(D, D) be a holomorphic self mapping of D. It is an old subject to investigate

the asymptotic behavior of the sequence {fk} of iterates of f , defined inductively

by f1 = f and fk = fk−1 ◦f . In 1926, Denjoy [De] and Wolff [Wo] showed that in

case D is the unit disk ∆ in the complex plane, then the sequence {fk} converges

uniformly on compact sets to a boundary point p ∈ ∂D (which is viewed here as

a constant map h : D → Cn with h(D) ≡ p) if and only if f has no fixed point

inside D. Since this pioneering work, much attention has been paid to extending

iteration theory to domains in higher dimensions. To name a few of the recent

results, we mention those on the ball in Cn [He] [Mac], on strongly convex domains

[Ab2] and on bounded contractible strongly pseudoconvex domains in C2 [Ma].

For a very detailed account of the history and references, we refer the reader to

the excellent book of Abate [Ab1].

One of the main themes of this thesis is to study holomorphic self mappings

by making use of Kobayashi extremal disks. In Chapter 3 we will be concerned

with iteration theory on strongly pseudoconvex domains in Cn for any n ≥ 1.

We will prove the following Theorem 3, which gives an exact description of the

Denjoy-Wolff phenomenon for a large class of non-convex domains in Cn with

n ≥ 1 (see also [Ab3] for certain partial results in this regard). Theorem 3 answers

a problem raised in [Ab3]:

5



Theorem 3: Let D be a (topologically) contractible, bounded strongly pseu-

doconvex domain in any dimension with C3 boundary, and let f ∈ Hol(D, D)

be a holomorphic self-mapping of D. Then {fk} converges to a boundary point

uniformly on compact sets if and only if f has no fixed point in D.

As a corollary, we have the following:

Corollary 2: Let D ⊂⊂ Cn be a C3 bounded strongly pseudoconvex domain

(n ≥ 1) that is homeomorphic to the unit ball in Cn, and let f ∈ Hol(D, D) be a

holomorphic self-mapping of D. Suppose that there exists z0 ∈ D so that {fk(z0)}
is a relatively compact subset of D. Then f fixes some point in D.

The key step toward proving Theorem 3 is to prove a fixed point theorem

on lower dimensional holomorphic retracts of D. (Here we recall that a subset

E ⊂ D is called a holomorphic retract if there exists a holomorphic retraction

h ∈ Hol(D, D) so that h2 = h and E = h(D)). In case D is strongly convex or

strongly pseudoconvex in C2 with trivial topology, this can be achieved by making

use of the property that the Kobayashi ball of a bounded convex domain is also

convex in the euclidean metric [Ab2], or by using the Riemann mapping theorem

and the classical Denjoy-Wolff theorem [Ma]. Since we will deal with a non-convex

domain of any dimension, it does not seem that the aforementioned approaches

can be adapted to our situation. The method presented here is based on a very

careful investigation of the asymptotic behavior of Kobayashi extremal mappings

near a strongly pseudoconvex point. Here, we recall that an extremal mapping φ of

D is a holomorphic map from the unit disk ∆ to D so that for any ψ ∈ Hol(∆, D)

with ψ(0) = φ(0) and ψ′(0) = λφ′(0) (where, as usual, λ denotes a real number),

it holds that |λ| ≤ 1. A holomorphic mapping from ∆ to D is called a complex

geodesic in the sense of Vesentini if it realizes the Kobayashi distance between any

two points on its image (see [Ve]). We next present these technical results. Their

statements require some preliminary notation. (for more definitions, see § 3.1).

Let D be a bounded domain in Cn with p a C2 smooth boundary point. For

any z ∈ D, close enough to p, there is a unique point nearest to z in ∂D, which

is denoted by π(z). For any complex vector ξ ∈ T(1,0)D, in what follows, we will
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use ξT and ξN to denote the complex tangential and complex normal components

of ξ at π(z), respectively.

We say that a bounded domain D ⊂ Cn has a Stein neighborhood basis if

there exists a sequence of bounded domains {Dv} in Cn such that D ⊂⊂ . . . ⊂⊂
D3 ⊂⊂ D2 ⊂⊂ D1 and the interior of ∩vDv is D. A well known fact [Kr1] is that

every bounded domain defined by a C1 plurisubharmonic function (in particular,

every bounded C2-strongly pseudoconvex domain) has a Stein neighborhood basis.

Theorem 4: Let D ⊂⊂ Cn be either a pseudoconvex domain with a Stein

neighborhood basis or a pseudoconvex domain with C∞ boundary. Suppose that

p ∈ ∂D is a strongly pseudoconvex point of ∂D with at least C3 smoothness. Then,

for every open neighborhood U of p, there is a positive number ε such that for each

extremal mapping φ of D, when ‖φ(0) − p‖ < ε and ‖(φ′(0))N‖ < ε‖(φ′(0))T ‖,
then φ is the complex geodesic of D and φ(∆) ⊂ U .

Theorem 5: Let D be a bounded domain in Cn and p ∈ ∂D a C3 strongly

pseudoconvex point. Then there is a small neighborhood U of p and a constant C

depending only on U so that for any extremal mapping φ ∈ Hol(∆, D) of D with

φ(∆) ⊂ U ∩D, it holds that ‖(φ′(τ))N‖ ≤ Cη(φ)‖(φ′(τ))T ‖. Here ‖ · ‖ stands for

the Euclidean norm in Cn and η(φ) = maxξ∈∆ ‖φ(ξ)− p‖.

Corollary 3: Let D be a bounded domain in Cn and p ∈ ∂D a C3 strongly

pseudoconvex point. Let {φk} be a sequence of extremal mappings of D and ε0

a positive number so that {φk(0)} converges to p and ‖(φ′k(0))N‖ ≥ ε0‖(φ′k(0))T ‖
for each k. Then the diameter of φk(∆) is greater than a fixed positive constant

for every k.

Theorem 6: Let D ⊂ Cn be a bounded strongly pseudoconvex domain with

Ck (k ≥ 3) smooth boundary and let f be a holomorphic self-mapping of D. Then

the following holds:

(1): Every holomorphic retract of D with complex dimension greater than 1

is actually a closed complex sub-manifold with C(k−1)− smooth boundary.

(2): Suppose that {fk} is a precompact family and does not converge to a

single point. Then there exists a unique holomorphic retract E, depending only
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on f , such that (a) f |E is an automorphism of E (moreover, when E has at

least complex dimension 2 or it is a complex geodesic, then f |E admits a C(k−1)−

smooth extension up to the boundary of E); (b) for each point z0 ∈ D, the limit

points of {f `(z0)} stay in E.

The proofs of Theorem 4 and Theorem 5 are complicated and will be carried

out in §3.2 and §3.3, respectively. However we remark that these two technical

results, which are also of interest in their own right, can be used for many other

purposes. For example, in §3.5, they will be used to prove the following two

theorems. The first one was previously obtained in [CHL] by using Lempert’s

deformation theory in case the boundary is of class C14, while the second result

is an extension of the Burns-Krantz rigidity theorem (see [BK] [Hu2]).

Theorem 7: Let D be a bounded C3 strongly convex domain in Cn. For any

given p ∈ ∂D and complex vector v ∈ T(1,0)Cn, but not in T(1,0)
p ∂D, there exists

an extremal mapping φ so that φ(1) = p and φ′(1) = λv for some real number λ

(this φ must then be uniquely determined up to an automorphism of ∆ according

to Lempert [Lm1]).

Theorem 8: Let D ⊂⊂ Cn be either a simply connected smooth pseudo-

convex domain or a simply connected taut domain with Stein neighborhood basis.

Let p ∈ ∂D be a strongly pseudoconvex point with at least C3 smoothness. Sup-

pose that f ∈ Hol(D, D) is a non-identical holomorphic self mapping of D so that

f(z) = z + o(‖z − p‖k) as z → p. Then the following hold:

(1) k ≤ 2

(2) If k = 1, then either f fixes a holomorphic retract with positive dimension

or fm → p. In case D is not biholomorphic to the ball, then f cannot be an

automorphism.

(3) If k = 2, then f cannot be an automorphism of D and the sequence {fm}
converges to p on compacta.

Corollary 4: Let D and p be as in Theorem 8. Suppose f is a holomorphic

self mapping of D such that f(z) = z + o(‖z − p‖2) and f fixes some point in D.

Then f(z) ≡ z.
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We now state some open questions related to this work. First, in the proofs

of Theorem 3, Theorem 4, Theorem 5, and Theorem 7 one can easily see that our

arguments actually work equally well (without any change) for the C2+α (α > 0)

smoothness assumption of the boundary ∂D near the point p under study. However,

we do not know whether C2 smoothness at p would be sufficient for them. A

similar question is to ask for the optimal mapping theorem for biholomorphic

maps between two strongly pseudoconvex domains with only C2 boundaries. For

example, one has the following

Conjecture: Let D1, D2 ⊂ Cn be two bounded strongly pseudoconvex

domains with C2 boundaries and let f be a proper holomorphic mapping from D1

to D2. Then f admits a C1 smooth extension up to the boundary.

We remark that if Theorem 4 and Theorem 5 could be proved for C2 smooth

domains, then the answer to the above question is yes.

Another possible development of the present work is to generalize the Denjoy-

Wollf theory to weakly pseudoconvex domains of finite type and then use it to

answer the following question (see [HP1] and [HP2] for some approaches):

Question : Let D ⊂ Cn (n > 1) be a bounded smooth pseudoconvex domain

of finite type and let f be a proper holomorphic self-mapping of D. Does it follow

that f is an automorphism?

The extension of the Burns-Krantz theorem and Theorem 8 to weakly pseu-

doconvex domains is essentially unknown (see [H2]) and might require some com-

pletely new ideas and efforts. We formulate here the following:

Question : Let D ⊂⊂ Cn be a smooth pseudoconvex domains, and let

p ∈ ∂D. Find optimal integers mp and np such that for any holomorphic self-

mapping f of D, if f(z) = z + o(‖z − p‖mp); or if f(z) = z + o(‖z − p‖np) and f

fixes some in D, one can then conclude that f(z) ≡ z.

§ 3. Local hull of holomorphy of a surface in C2
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Given a subset E ⊂ C2, we let O(E) denote the collection of germs of holo-

morphic functions defined on E. By the hull of holomorphy of E, we mean the

spectrum (i.e, maximal ideal space) of O(E). A remarkable fact in several complex

variables is that a subset E ⊂ Cn may have a non-trivial hull of holomorphy, i.e,

every holomorphic function defined on a small open neighborhood of E can be

holomorphically extended to a fixed set Ẽ which is larger than E. In full general-

ity, the determination of the holomorphic hull is a very hard problem and involves

some global difficulties. In 1963, Bishop [Bis] first proposed the study of the local

hull of a regular submanifold M in Cn by using analytic discs attached to M

(it is known in general, however—see [STOLZ]—that a set may have a large hull

of holomorphy that contains no analytic discs). In particular, when M is a two

dimensional real submanifold of C2, Bishop classified the local study of the hull

in terms of the local geometry of the base point z0 ∈ M . Now it is understood

that it is important to distinguish the case when the two dimensional tangent

space Tz0M is a complex line from the case when Tz0M is totally real (that is,

Tz0M ∩ √−1Tz0M = 0). Points of the second type are of no interest for us be-

cause, by the work of Hörmander/Wermer [HOM], the local hull of holomorphy

near such a point contains no new points. The situation in the first case is quite

different.

Bishop [BIS] showed that, in the case that z0 ∈ M has a complex tangent

and satisfies a non-degeneracy condition, then a holomorphic change of variables

may be effected so that z0 = 0 and the manifold M may be described in complex

coordinates (z, w) by

w = h(z) = zz + λ(z2 + z2) + o(|z|3)

with 0 ≤ λ ≤ +∞. Here the constant λ is a biholomorphic invariant of the manifold

M . Now it is standard terminology to say that z0 is an elliptic, parabolic, or

hyperbolic point of M according to whether λ ∈ [0, 1/2), λ = 1/2, or λ > 1/2

respectively.

In the elliptic case, Bishop obtained a family of analytic discs attached to

M by using a Picard-style iteration scheme. In the later work of Bedford-Gaveau

[BG] and Kenig-Webster [KW], it was shown that the local hull M̃ of M is foliated
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by a family of embedded, pairwise disjoint analytic discs. Bedford-Gaveau proved

that M̃ is Lipschitz 1 continuous near z0 provided that M itself is of class C5 near

z0. Kenig-Webster proved that M̃ is C∞ near z0 when M is of class C∞ near z0.

The analytic structure of M̃ was studied in the papers of Moser-Webster

[MOW] and Moser [MOS]. In [MOW], it was shown that M̃ is real analytic up

to z0 when the original manifold M itself is real analytic at z0, provided that

0 < λ < 1/2. The case λ = 0 is not treated in [MOW]. Instead, in [MOS], Moser

showed that a formal power series change of variables could be found in the case

λ = 0 so that the manifold M is defined by an equation of the form

w = zz + zs + zs + φ(z) + φ(z).

Here z0 ↔ 0 and s is a biholomorphic invariant of the surface M at z0. Note also

that φ is a formal power series in z beginning with terms of order at least s + 1.

By using the rapidly convergent iteration technique, Moser was able to prove

that, when s = +∞, this formal coordinate change is also a convergent analytic

coordinate change. However he left open the question of whether M̃ is real analytic

near z0 when s < ∞.

In a very recent work with Krantz (see [HK2]), we settled the above open

question of Moser. In the last Chapter of this thesis (Chapter 4), we will further

develop the ideas which we used there and extend the results to a more general

setting. To state the main result of Chapter 4, we first give the following defini-

tions:

Let M be a smooth manifold in C2 and let p be an isolated complex tangent

point of M . We call p a degenerate elliptic point of degree 2m if there exists a

holomorphic change of variables so that p is mapped to the origin 0 ∈ C2 and in

the new coordinates M is given by an equation of the form:

w = h(z) = p0(z) + h∗(z).

Here p0 is a real valued homogeneous polynomial of degree 2m (m ≥ 1) which is

positive in the sense that p0(z) ≥ C|z|2m and ∂2p0(z)
∂z∂z > C|z|2m−2 for some positive

constant C; h∗(z) = o(|z|2m). We say that M can be flattened to order ` at p if,
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in the new coordinates mentioned above, one can make Im(h∗(z)) = O(|z|`). We

remark that the degeneracy number 2m is a biholomorphic invariant.

Theorem 9: Let M ⊂ C2 be a real surface of class Ca, where a = ∞ or ω.

Suppose that p is a degenerate elliptic point of M and suppose that M can be

flattened to any order at p. Then the local hull of holomorphy of M at p is a Ca

regular Levi flat hypersurface with Ca boundary M near p.

Notice that, in case m = 1, the above theorem reduces to the results of

Kenig-Webster, Moser-Webster, Moser, Huang-Krantz.

As an application of Theorem 9, we have the following:

Theorem 10: Let M and p as in Theorem 9. Assume that M is of class Cω,

i.e, real analytic. Then there exists a biholomorphic mapping which sends M to a

submanifold of the standard R3 = {(z, w) : Imw = 0} in C2.

Contrary to the non-degenerate case, the assumption of arbitrary flatness of

M at p in the aforementioned results is necessary as the following proposition

shows:

Proposition 2: Let the real analytic surface Mn be defined by the equation

w = |z|4 + |z|3+2n(|z|2z +
√−1).

Then the local hull of holomorphy of M at the degenerate elliptic point 0 ∈ Mn is

only of class C3/2+n (at least when n ≥ 3) and Mn can not be flattened to order

10 + 4n at 0.

To finish off the introduction, we present several open questions related to

our work in Chapter 4. First, we notice that in the non-degenerate elliptic case,

Moser-Webster derived a normal form for a surface near the complex tangent

point, which in particular implies that any such surface is locally biholomorphic

to an algebraic one. The following two questions have been asked also by Moser

[MOS] (see [Go1] for some partial solutions):
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Question: Let M be an analytic surface with a defining equation of the form

w = |z|2 + o(|z|2). Find all local biholomorphic invariants of M near 0.

Question: Let M be as above. Is M locally biholomorphic to an algebraic

surface?

We say that a surface (M0, p0) can be approximated by the surface (M, p)

(where p0 ∈ M0 and p ∈ M) if for any positive integer ` there exists a biholomor-

phic mapping near p so that p is mapped to p0 and the image of M has an order

of contact ` with M0 at p0.

Question: If (M0, p0) can be approximated by (M, p), can one then conclude

that (M0, p0) is locally biholomorphic to (M, p)?

By [MOS], the answer to the last question is yes if p0 an an elliptic point of

M0 with λ = 0. In case p0 is a non-degenerate hyperbolic point of M0 satisfying

a certain Diophantine condition, then the affirmative answer to the last question

can be found in the thesis of Gong [Go2].
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Chapter 2: Mapping problems for algebraic real hypersurfaces

in complex euclidean space

This chapter is devoted to the proofs of the theorems stated in §1.1. The

organization is as follows: In §2.1, we give some notation and preparation. We

prove Theorem 1 in §2.2 and Theorem 2 in §2.3. The proof of Proposition 1 can

be found in the last section §2.4 .

Before proceeding, we remark that Theorem 1 and also Theorem 2 are false

when m = 1. For example, Let ∆ε = {τ ∈ C1 : |τ |2 + ε2|1− eτ |2 < 1}. Obviously,

when ε ≈ 0, the domain ∆ε is a strongly convex domain with analytic boundary.

Let φε be a conformal mapping from the unit disk ∆ to ∆ε, which is analytic on

∂∆ by the classical Schwarz reflection principle. Define f : ∆ → B2( the unit two

ball) by f(τ)= (φε(τ), ε(1− eφε(τ))). Then f is proper and holomorphic on ∆, but

is not algebraic.

§ 2.1 Preliminaries:

The purpose of this section is to make some necessary preparations. In §2.1.1,

we recall some definitions. In §2.1.2, we reformulate an immersion result of Pinchuk

so that it can be easily applied to our situation (especially, to the proof of Theorem

2).

§ 2.1.1. Notation and an algebraic lemma: Let C(z) be the field of

rational functions in the variable z ∈ Cn. In this chapter, we call a function χ(z)

holomorphic on an open subset U ⊂ Cn algebraic if there is a non-zero polynomial

P with coefficients in C(z) so that P (χ) = 0, i.e., the field generated by adding χ to

C(z) is of finite extension. A mapping is called algebraic if each of its components

is. For convenience, we collect here some facts about algebraic functions which

will be used frequently in the later discussion:
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Lemma 2.1: Let χ be a non trivial algebraic function in z ∈ U ⊂ Cn. Then

the following holds:

(1): For any fixed (z0
k+1, · · · , z0

n), the function χ(z1, · · · , zk, z0
k+1, · · · , z0

n) is

algebraic in (z1, · · · , zk).

(2): Let zj = g(z1, · · · , ẑj , · · · , zn) be a holomorphic solution of χ = 0 for some

fixed j. Then zj=g(z1, · · · , ẑj , · · · , zn) is algebraic in (z1, · · · , ẑj , · · · , zn) ∈ Cn−1.

(3): ∂
∂zj

χ(z) is algebraic in (z1, · · · , zn) for each j.

(4): If g(z) is also algebraic on U ⊂ Cn, then so are χ ± g, χg, and χ/g (in

its defining domain).

(5): Let zj = gj(s) be algebraic in s ∈ V ⊂ Cn′ for j = 1, · · · , n and let

g = (g1, · · · , gn) map V into U . Then χ ◦ g = χ(g1(s), · · · , gn(s)) is algebraic on

V .

(6): Let N1 ⊂ Cn1 and N2 ⊂ Cn2 be two open subsets. Suppose that

g(z(1), z(2)) is a function on N1 × N2. Let g be (holomorphically) algebraic in

z(1) ∈ N1 (respectively, in z(2) ∈ N2) when holding z(2) fixed (respectively, when

holding z(1) fixed). Then g is algebraic.

(7): Let g(z1, · · · , zn) be a (holomorphic) algebraic function at 0 with g(0) = 0

and g(0, . . . , 0, zn) 6≡ 0. Then the Weierstrass polynomial g∗ of g, with respect to

zn, is also algebraic near 0.

Proof: The proofs of (1)-(4) are standard. The argument for (6) can be found,

for example, in [BM] (pp. 199- 205). So we just say a few words about (5) and

(7):

To prove the statement in (5), we assume that χ(g(s)) 6≡ 0 and χ(z) is an-

nihilated by the irreducible polynomial P (z, w) =
∑N

0 aj(z)wj . Let Q(s, w) =

P (g(s), w). Noting aj(g(s)) is algebraic in s by (4), we see the algebraicity of

Q(s, w) in (s, w). Hence, if it is not identically zero, then from (2) and the fact

that Q(s, χ(g(s)) ≡ 0 the algebraicity of χ ◦ g follows. When aj(g(s)) ≡ 0 for each

j, we let Dl = ∂
∂zl

and apply it to the equation P (z, χ(z)) ≡ 0. We then see that∑
j(Dlaj) ◦ g(s)(χ ◦ g)j ≡ 0. Thus we may redefine Q to be

∑
j(Dlaj) ◦ g(s)wj .

Arguing inductively, we then see the proof of (5).

Now, we turn to (7) For any z′(= (z1, . . . , zn−1)) ≈ 0, by a standard argu-
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ment (see [Kr1], for example), we obtain exactly (counting multiplicity) n′ so-

lutions of the equation g(z′, zn) = 0: {a1(z′), · · · , an′(z′)} (with n′ fixed). The

Weierstrass polynomial g∗ of g is then expressed as g∗ =
∏n′

j=0(zn − aj(z′)) =

zn +
∑n′−1

j=0 sj(z′)zj
n, where sj =

∑
(−1)jal1 · · · alj . By (6), to check that g∗ is

algebraic we have only to show that the sj ’s are. But this follows easily from (2),

(4), and the fact that for a generic point z′0 ≈ 0, the aj(z′)’s are holomorphic for

z′ ≈ z′0.

Now let M ⊂ Cn be a real analytic hypersurface with (real analytic) r(z, z) =

0 as its defining function. First, M is said to be strongly pseudoconvex if r(z, z) is

a strongly plurisubharmonic function. We call M algebraic if the complexification

of r, i.e r(z, ω), is algebraic in (z, ω) for (z, ω) ≈ M × Conj(M), where we write

Conj(M) = {z : z ∈ M}. Fix p ∈ M and a small open neighborhood Ω ⊂ Cn of

p. When ω ≈ p then the Segre surface Qω restricted to Ω is a complex manifold

of dimension n − 1. Here we recall that Qω = {z ∈ Ω : r(z, ω) = 0} and the

complexification of M is defined to be Mc = {(z, ω) ∈ Ω × Ω : r(z, ω) = 0}, a

complex manifold of dimension 2n− 1.

§ 2.1.2 Reformulation of a lemma of Pinchuk: We now let M1, M2

and f be as in Theorems 1 and 2. Without loss of generality, we also let f be

non-constant. For a given point p ∈ M1, after making use of a suitable polynomial

holomorphic change of variables (see [Fe]), we can assume that p = 0, f(0) = 0,

and M1, M2 are locally defined by ρ1 and ρ2, respectively:

(2.1.1) ρ1(z, z) = zm + zm +
m−1∑

j=1

|zj |2 + h0(z, z);

(2.1.2) ρ2(w, w) = wm+k + wm+k +
m+k−1∑

j=1

|wj |2 + h(w, w).

Here h0(z, z) = O(‖z‖4) and h(w, w) = O(‖w‖4).
From a result of Pinchuk ([Pi]), it follows that ∂fm+k

∂zm
(0) 6= 0 and

df : T
(1,0)
0 M1 → T

(1,0)
0 M2
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is injective. We write L̃j = ∂ρ1
∂zm

∂
∂zj

− ∂ρ1
∂zj

∂
∂zm

for j = 1, . . . , m− 1. Since f(M1) ⊂
M2 and L̃j ∈ T (1,0)M1, we see that

(2.1.3) fm+k(z)+ fm+k(z)+
m+k−1∑

j=1

|fj(z)|2 +h(f(z), f(z)) = 0 for z ∈ U ⊂ M1.

Applying each L̃j to (2.1.3), we then obtain

(2.1.4) L̃lfm+k(z) +
m+k−1∑

j=1

L̃lfj(z)fj(z) +
m+k∑

j=1

∂h

∂wj
L̃lfj(z) = 0, for z ∈ U.

Now, by letting z = 0 in the formula (2.1.4), we see that L̃jfm+k(0) = 0 for each

j. On the other hand, since {L̃1, . . . , L̃m−1} consists of a local basis of T(1,0)M

near 0, we thus conclude that the rank of the matrix (L̃jfl) 1≤j≤m−1
1≤l≤m+k−1

is m− 1.

Let S be the vector space spanned by

{L̃1f(0), . . . , L̃m−1f(0)}

and let {T1, . . . Tm−1} be an orthonormal basis of S. Extend it to an orthonormal

basis of Cm+k−1: {T1, . . . , Tm+k−1} and set

(f̃1, . . . , f̃m+k−1)t = (T1, . . . , Tm+k−1)t(f1, . . . , fm+k−1)t.

It then follows easily that L̃j f̃l(0) = 0 for l = m, . . . , m+k− 1 and that (f̃ , fm+k)

still satisfies the equation (2.1.4) (up to a term that vanishes to 4th order). Now,

by choosing (L1, . . . , Lm−1)t = (L̃j f̃l(0))−1(L̃1, . . . , L̃m−1)t and by making use of

the identity (2.1.4) with z = 0, we obtain

(2.1.5) Lj f̃l = δl
j =

{
0, if j 6= l;
1, if j = l.

Consequently, to simplify the notation, we assume in what follows that M1,

M2, f , and {L1, . . . Lm−1} already have the properties in (2.1.1), (2.1.2), and

(2.1.5).

§ 2.2 Proof of Theorem 1:
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In this section, we present the proof of Theorem 1, which can be viewed as

the main result of the whole chapter.

Theorem 1: Let M1 ⊂ Cm and M2 ⊂ Cm+k be strongly pseudoconvex alge-

braic real hypersurfaces with m > 1 and k ≥ 0. Suppose that f is a holomorphic

mapping from a neighborhood of M1 to Cm+k such that f(M1) ⊂ M2. Then f is

algebraic.

Our idea is to show that each component of the mapping f stays in the field

generated by adding some algebraic elements (which are obtained from suitable

operations on the defining functions of the hypersurfaces) to the rational functions

field. For this purpose, we start by complexifying the identity: ρ2(f(z), f(z)) =

λ(z, z)ρ1(z, z) and differentiate it along each Segre surface. Then we will obtain the

algebraicity by a very careful case-by-case argument according to how degenerate

the map is. Since the proof is long, we shall, for clarity, split it into 4 subsections

and many small lemmas.

§ 2.2.1. In this subsection, we concentrate on two major cases which we will

study in detail in §2.2.3 and §2.2.4.

Let M1 and M2 be as in the main theorem. As we have discussed in the above

section, we may let M1, M2, and f have the properties (2.1.1), (2.1.2), and (2.1.5)

mentioned in §2.1.2. We first choose a small neighborhood Ω ⊂ Cm of 0 so that f

is holomorphic on this open subset and the Segre surfaces Qω of M1 restricted to

Ω are connected for any ω ≈ 0.

Now, since f(M1) ⊂ M2, we have the equation ρ2(f(z), f(z)) = λ(z, z)ρ1(z, z)

with λ(z, z) real analytic. By the standard complexification, we then see, for each

ω ≈ 0, that ρ2(f(z), f(ω)) = λ(z, ω)ρ1(z, ω). Thus f(Qω) ⊂ Qf(ω) for ω ≈ 0.

Therefore we obtain the following identity:

(2.2.1) fm+k(z) + fm+k(ω) +
m+k−1∑

j=1

fj(z)fj(ω) + h(f(z), f(ω)) = 0,

where, z ∈ Qω, i.e, (z, ω) ∈ M1c, the complexification of M1. By (2) of Lemma 2.1

and the implicit function theorem, the above h can be changed to an algebraic func-

tion not involving the fm+k(ω) term. (h also has no harmonic term). Therefore, we
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can assume that h(f, f) = h(f, f1(ω), . . . ,fm+k−1(ω)), where h(w, y1, . . . , ym+k−1)

is an algebraic holomorphic function on Ow(0)×Oy1(0)× . . .×Oym+k−1(0). Here

and in what follows, we use the symbol O∗(∗∗) to denote a small neighborhood of

∗∗ in the ∗ variable, which may be different in different contexts.

Now we let Lj (for j = 1, . . . , m − 1) be the polarization of the previously

defined operator Lj , i.e, Lj is a linear combination of the following operators

{
∂ρ1(z, ω)

∂zm

∂

∂zj
− ∂ρ1(z, ω)

∂zj

∂

∂zm

}m−1

j=1

.

Then for any ω fixed, {Lj(z, ω)}m−1
j=1 consists of a basis for the holomorphic vector

fields of Qω.

Applying each Ll to (2.2.1), l = 1 . . . ,m− 1, we obtain

(2.2.2) Llfm+k(z) +
m+k−1∑

j=1

Llfj(z)fj(ω) +
m+k∑

j=1

∂h

∂wj
Llfj(z) = 0, for z ∈ Qω.

Let V (z, ω) = (vij(z, ω))1≤i,j≤m−1 with vij(z, ω) = Lifj . Moreover, define

ξ(z, ω) ≡ V −1(z, ω)(L1fm+k, . . . , Lm−1fm+k)t,

and

η(z, ω) ≡ V −1




L1fm . . . L1fm+k−1

. . .

. . .
Lm−1fm . . . Lm−1fm+k−1


 .

Equation (2.2.2) can then be written in the following matrix form:

ξ(z, ω) + F0(ω) + η(z, ω)F (ω) + (id, η(z, ω), ξ(z, ω))Dh(z, ω) = 0 for z ∈ Qω,

where Dh(z, ω) = ( ∂h
∂w1

, . . . , ∂h
∂wm+k

)t(f(z), f(ω)) = O(‖z‖3 + ‖ω‖3) ∩ O(‖z‖‖ω‖)
as (z, ω) → (0, 0), F0 = (f1, . . . , fm−1)t, and F = (fm, . . . , fm+k−1)t.

Again, by making use of the implicit function theorem and by shrinking Ω,

we have, for some holomorphic vector function g, that

(2.2.3) ξ(z, ω)+F 0(ω)+η(z, ω)F (ω)+g(f(z), ξ(z, ω), η(z, ω), F (ω)) = 0 on Qω.
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Since the algebraic function field is closed under the application of the implicit

function theorem (see (2) of Lemma 2.1), it follows that the function g(w, a, b, y)

in (2.2.3) is also algebraic and holomorphic on

Ow(0)×Oa(ξ(0, 0))×Ob(η(0, 0))×Oym(0)× . . . Oym+k−1(0),

where we identify the variables ξ, η, F with a, b, Y = (ym, . . . , ym+k−1), respec-

tively. In fact, it is easy to see that g does not depend on f and is identically 0

when M2 is the sphere. Set

H0(f, ξ, η) = ξ + g(f, ξ, η, 0),

Hα(f, ξ, η) = ηα∗ +
∂g

∂yα∗
(f, ξ, η, 0), with ‖α‖ = 1, and

H∗(f, ξ, η, F )

= g(f, ξ, η, F )− (g(f, ξ, η, 0) +
∑

‖α‖=1

∂g

∂yα∗
(f, ξ, η, 0)fα∗) for (z, ω) ∈ M1c.

Here and also in what follows, for a multi-index α with the jth element 1 and all

other components 0, we let α∗ = m + j − 1, and we let ηα∗ denote the jth column

of the matrix η. Then (2.2.2) can be written as

(2.2.4)

H0(f(z), ξ, η) + F 0(ω) +
∑

‖α‖=1

fα∗(ω)Hα(f(z), ξ, η) + H∗(f(z), ξ, η, F (ω)) = 0,

for (z, ω) ∈ M1c. Let H∗(f, ξ, η, F ) =
∑∞
‖α‖=2 Hα(f, ξ, η)Fα. We will carry our

discussion according to the following two possibilities:

(AA) Ll0Hα0(z0, z0) 6= 0 for some l0, α0, and (z0, z0) ∈ M1c with z0 ≈ 0.

(BB) LlHα(z, z) ≡ 0 for all l, α, and (z, z) ∈ M1c with z ≈ 0.

§2.2.2: We present in this subsection two lemmas which will be useful in our

later discussions.

Lemma 2.2: Let {Hα} be as above. If for some open subset U ⊂ M1 of

p, it holds that LlHα(z, z) ≡ 0 for all z ∈ U and l, α, then there is an algebraic

holomorphic function Ψ so that F0(z) = Ψ(z, F (z)) for z ≈ p.
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We first observe that U × Conj(U) ⊂ M1c is a totally real submanifold of

maximal dimension, where the notation Conj(U) is the same as that at the end

of §1.1. So U × Conj(U) is a set of uniqueness for the holomorphic functions on

M1c. Thus, under the hypothesis of the lemma, it follows that LlHα(z, ω) ≡ 0 for

all l, α and (z, ω)(⊂ M1c) ≈ (p, p).

Proof of Lemma 2.2: Since {L1, . . . , Lm−1} is a basis for the collection of

holomorphic vector fields on Qω and since Hα(f(z), ξ(z, ω), η(z, ω)) is holomorphic

for any fixed ω, it follows, from the just mentioned observation, that

Hα(f(z), ξ(z, ω), η(z, ω))

is constant along any Qω.

Define

(2.2.5) Ψ∗(z, ω, Y ) = −H0(f(z), ξ, η)−
∑

‖α‖=1

yα∗Hα(f(z), ξ, η)−H∗(f, ξ, η, Y ),

for (z, ω) ∈ M1c and Y ≈ 0. We then can conclude that, for any fixed

Y = (ym, . . . , ym+k−1) ∈ Ck,

the function Ψ∗ is constant on each Qω (ω ≈ p). Moreover, it can be seen that

for any fixed (z, ω), Ψ∗ is algebraic in Y since H∗(f, · · · , Y ) is. For any given

z(∈ Ω) ≈ p and Y ≈ 0, we define Ψ(z, Y ) = Ψ∗(ω, z, Y ) with ω ∈ Qz. This

definition makes sense because Ψ∗ is independent of the choice of ω ∈ Qz. By

(2.2.4), it obviously holds that F0(z) = Ψ(z, F (z)) for z ≈ 0. We are now going

to complete the proof of the lemma by showing that Ψ is algebraic in (z, Y ).

First, we notice that, for any given z, Ψ is algebraic in Y by the above

discussion. Thus, by (6) of Lemma 2.1, we have only to prove that Ψ is algebraic

in z when holding Y fixed.

Fix z0 ≈ 0 and let z ∈ Qz0 . Since z0 is also contained in Qz, we see by (2.2.5)

that

Ψ(z, Y ) = −H0(f(z0), ξ(z0, z), η(z0, z))
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−
∑

‖α‖=1

yα∗Hα(f(z0), ξ(z0, z), η(z0, z))−H∗(f(z0), ξ(z0, z), η(z0, z), Y ).

Therefore it can be seen that Ψ(z, Y ) is holomorphic and algebraic along Qz0

for any fixed Y , since Hα and H∗ are algebraic in their separate variables and

ξ(z0, z), η(z0, z) are holomorphically algebraic in z (by the algebraicity of M1 and

M2). Now the algebraicity of Ψ follows clearly from the following

Lemma 2.3: Let M be a piece of algebraic strongly pseudoconvex hypersur-

face. If g is a function defined near p ∈ M which is holomorphic and algebraic on

any Segre surface Qz with z ≈ p, then g(z) is algebraic in z.

Proof of Lemma 2.3: By an algebraic change of variables, we can assume that

p = 0 and M is defined by an equation ρ(z, z) = 0 with a similar form to (2.1.1):

ρ(z, z) = zm + zm +
m−1∑

j=1

|zj |2 + h0(z, z) = 0.

Moreover, we can assume that h0(z, z) has no harmonic terms, i.e, h0(0, ω) =

h0(z, 0) = 0 (for otherwise, by noting that h0(z, 0) is algebraic, we can use zm +

h0(z, 0) as our new zm-variable to get the required form). Also we can always

assume h0 contains no zm.

Let ej = (0, . . . , 1, . . . , 0) with 1 in the jth position , and let τ(6= 0) ∈ R

but close enough to 0. Obviously, we then have τej ∈ Q0 and thus 0 ∈ Qτej for

j = 1, . . . , m− 1. Write Sτ = ∩m−1
j=1 Qτej . We see that 0 ∈ Sτ . Define the map φ

from Sτ ×Q0 to Cm by φ(0, 0) = 0 and

φ(s, t) = Qs ∩ {∩m−1
j=1 Q(τ+tj)ej

},

where we write t = (t1, · · · , tm−1, 0).

Claim 1: When τ(6= 0) is close enough to 0, then Sτ is a regular algebraic

curve near 0 and φ is an algebraic holomorphic map near (0, 0). Moreover, the

Jacobian of φ is not identically zero near (0, 0) ∈ Sτ ×Q0.

Proof of Claim 1: Notice that Sτ is defined by the equations:

zm + τzj + h0(z, τej) = 0 for j = 1, . . . ,m− 1.
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From the implicit function theorem and Lemma 2.1, it then follows easily that

for τ ≈ 0, Sτ is a regular algebraic manifold of complex dimension 1 near (0,0),

parametrized by:

zj = −zm

τ
+ hj(

zm

τ
, zm, τ) j = 1, . . . , m− 1,

where hj(·, ·, ·) is holomorphic and algebraic in its variables and

hj(
zm

τ
, zm, τ) = o(

∑

i+j+k=2,i+j≥1

(zm

τ

)i

(zm)j(τ)k).

Now, let z = φ(s, t) with s = (s1, . . . , sm) and t = (t1, . . . , tm−1, 0). Then, by

the above argument and the definition of φ, we see that

(i) sj = −sm

τ
+ hj(

sm

τ
, sm, τ) j = 1, . . . , m− 1;

(ii) Gm = zm + sm +
m−1∑

l=1

slzl + o(‖s‖2‖z‖+ ‖z‖2‖s‖) = 0; and

(iii) Gj = zm +(tj +τ)zj +o(|τ +tj |2‖z‖+‖z‖2|τ +tj |) = 0 for j = 1, . . . , m−1.

Notice that the Jacobian of G = (G1, · · · , Gm) with respect to z at the origin (i.e,

z,s,t=0) takes the following form:




τ + o(|τ |2) o(|τ |2) . . . o(|τ |2) 1 + o(|τ |2)
o(|τ |2) τ + o(|τ |2) . . . o(|τ |2) 1 + o(|τ |2)

. . . . . .
0 . . . 0 0 1


 .

So, its determinant is τm−1 + o(τm) and thus not equal to 0 when |τ |(6= 0) <<

1. Applying the implicit function theorem to (ii) and (iii) and combining with

(i), we see that for a fixed small τ , there exist an open subset Uτ near 0 and a

(holomorphic) algebraic function χ defined on Uτ such that when (sm, t) ∈ Uτ and

z ≈ 0 (i), (ii), and (iii) can be uniquely solved as

z = χ(sm, t) with χ(0, 0) = 0.
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If we identify Sτ with a small neighborhood of 0 in sm ∈ C1 through (i), it holds

that φ = χ. Now, we will show that the Jacobian determinant of χ with respect

to sm and t ∈ Cm−1 does not vanish identically near (0, 0). For this purpose, we

let 0 < δ << |τ | and Pδ,τ = (τ2δ, 0). We will study the small solution z of (i), (ii),

and (iii) (when (sm, t) = Pδ,τ ).

Let sm = τ2δ. By (i), we then have

sj(τ, δ) = −sm

τ
+ hj(

sm

τ
, sm, τ) = −τδ + o(δτ2).

Returning to (ii), we see that

(iv) zm + τ2δ +
m−1∑

l=1

(−τδ)zl + o(‖s‖2‖z‖+ ‖s‖‖z‖2 + δτ2‖z′‖) = 0,

where z′ = (z1, · · · , zm−1). Using the implicit function theorem and solving for zm

in (iv), we get

(v) zm = −τ2δ + τδ
m−1∑

1

zl + o(δτ‖z′‖+ δτ2‖z′‖2 + τ2δ2).

Substituting the right hand side for zm in (iii), we obtain

−τ2δ + τδ
m−1∑

1

zl + τzj + o(τ‖z′‖2 + τ2‖z′‖+ τ2δ) = 0.

Thus, it follows that

−τδ + δ
m−1∑

1

zl + zj + o(‖z′‖2 + τ‖z′‖+ τδ) = 0 j = 1, · · · ,m− 1.

From these equations, one can easily see that

−τδ + (1 + (m− 1)δ)zj + o(‖z′‖2 + τ‖z′‖+ τδ) = 0, j = 1, · · · ,m− 1.

Now, we shrink τ (and thus also δ) so that the above equations can be solved near

0 for z′. Therefore, we have

zj = τδ + o(τδ), j = 1, · · · ,m− 1.
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Returning to (v), we see that zm = −τ2δ + o(τ2δ2). Denote by P ∗ the uniquely

solved z as above We next consider the Jacobian of G with respect to (sm, t) at

P = (Pδ,τ , P ∗). First, we notice that at P , it holds that ∂Gk

∂tj
= zkδj

k + o(τ2δ),

where δj
k = 1 if k = j and 0 otherwise;

∂Gk

∂sm
= 0;

∂Gm

∂tj
= 0;

and
∂Gm

∂sj
= 1 +

∑ ∂sl

∂sm
zl +

∂

∂sm
(‖s‖2‖z‖+ ‖s‖‖z‖2) = 1 + o(δ),

where we need to use the fact that ∂sl

∂sm
= − 1

τ + o(1). Hence, we see that

J

(
G1, · · · , Gm

sm, · · · , tm−1

)
=




τδ + o(τδ) o(τδ) . . . o(τδ) 0
o(τδ) τδ + o(τδ) . . . o(τδ) 0
. . . . . .
0 . . . 0 0 1 + o(δ)


 .

So, its determinant has the magnitude (τδ)m−1(1 + o(1)) and thus does not

vanish when τ and δ are smaller than certain number.

We are now ready to complete the proof of the claim by arguing as follows:

First, we let τ be very small (but fixed) and then shrink δ so that we can assume

that Pδ,τ ∈ Uτ and the Jacobian of G with respect to (sm, · · · , t) is not zero at

P . Thus by applying the implicit function theorem to (i), (ii), and (iii) again, we

have an algebraic holomorphic solution (sm, t) with respect to z near P , which

is obviously the inverse function of χ. Hence the Jacobian of φ with respect to

(sm, t) is not zero at Pδ,τ and thus is not identically zero near 0.

Now, by the way that φ was constructed and by the hypotheses of Lemma

2.2, we see that g ◦ φ(s, t) is holomorphic and algebraic on s (respectively, t)

when holding t (respectively, s) fixed. From (6) of Lemma 2.1, it thus follows

the algebraicity of g on an open subset of the defining domain (which is always

assumed to be connected). Notice that algebraicity is a global property, we see

that the proof of Lemma 2.3 is now complete.

§2.2.3 : We now suppose that (AA) occurs. Then we will obtain the alge-

braicity of f when k = 1, or reduce the situation to a lower codimensional case

when k > 1.
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We first fix some notation. In what follows, we use the symbol ∗̂l to de-

note the tuple obtained by deleting the element with index l from the vector

∗. For example, according to this convention, F̂m means the vector function

(fm+1, . . . , fm+k−1)t, since F = (fm, . . . , fm+k−1)t; and F̂m,m+1 is the vector func-

tion (fm+2, . . . , fm+k−1)t.

Let us choose an integer n in the following way (the existence of such an

integer can be seen by the condition in (AA)):

(i) If for some p0 ≈ 0, j0, and l0, it holds that Ll0gj0(p0, p0) 6= 0, then we

let n = m. Here g0(f(z), ξ(z, ω), η(z, ω), F̂m(ω)) = H0 +
∑
‖α‖=1,α∗ 6=m fα∗Hα,

g1(f, ξ, η, F̂m) = H(1,0,···,0), and gj for j > 1 is determined by

H∗(f, ξ, η, F ) =
∞∑

j=2

gj(f, ξ, η, F̂m)fm
j
.

(ii) If (i) does not hold, we then let n be the smallest integer such that for

each j, in the following expansion with respect to fm, . . . , fn−1:

gj =
∑
α

φj,α(f, ξ, η, F̂m,···,n−1)fα1
m . . . f

αn−m−1
n−1 ,

it holds that Llφj,α(z, z) ≡ 0 on (0 ∈)U ′ ⊂ M1 for all l and (n −m − 1)-degree

multi-index α. But, for the expansion of some φj0,α0 with respect to fn, there

exist some l0 and i0 so that Ll0φj0,i0,α0(z, z) 6≡ 0 on any small neighborhood of 0,

where

φj0,α0(f, ξ, η, F̂m,...,n) =
∑

i

φj0,i,α0(f, ξ, η, F̂m,...,n)f
i

n.

Lemma 2.4: Let n as above. There is an algebraic function Φ and an open

neighborhood Ω∗ of p ∈ M1∩Ω in Cm such that for any (z, ω) ∈ (Ω∗×Conj(Ω∗))∩
M1c it holds that

(2.2.6) fn(ω) = Φ(f(z), f (1)(z, ω), f (2)(z, ω), F̂n(ω)).

Here the f (j)’s are certain type of derivatives of f . This notation will be explained

below.
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Proof of Lemma 2.4: We first assume that n = m. Then for some j0, l0,

p0 ≈ 0, and the eth element ge
j0

of the vector function gj0 , it holds that

Ll0g
e
j0(f(p0), ξ(p0, p0), η(p0, p0), F̂m(p0)) 6= 0.

We write

f (1) = (L1f1, L1f2, . . . , L1fm+k, · · · , Lm−1fm+k),

f (2) = (L1f
(1), L2f

(1), . . . , Lm−1f
(1)),

f (3) = (L1f
(2), L2f

(2), . . . , Lm−1f
(2)),

· · · .

By the way that ξ and η were constructed, we see that they are rational functions

of f (1). Hence, it follows that Hα and H∗ are algebraic in (f, f (1), F̂m) for each

α. Define

A(f, f (1), F ) = He
0(f, ξ, η) +

∑

‖α‖=1

fα∗H
e
α(f, ξ, η, F ) + H∗e(f, ξ, η, F ),

where He
α and H∗ e are the eth elements of Hα and H∗, respectively. By (3) and

(4) of Lemma 2.1, we obtain the algebraicity of Ll0A(f, f (1), F̂m)( for simplicity,

we denote it by A(1)(f, f (1), f (2), F̂ )) in (f, f (1), f (2), F̂ ). This is so because

A(1)(f, f (1), f (2), F̂ ) =
∑

j

∂A

∂wj
Lj0fj +

∑

i,j

∂A

∂w
(1)
i,j

Lj0(Lifj),

where we identify the variable w
(1)
i,j with Lifj in f (1). Meanwhile, by (2.2.4) and

the definition of gj , we notice that

A(1)(f, f (1), f (2), F̂ ) =
∑

j

Ll0g
e
jfm

j
.

Thus, by the choice of p0, we see that

A(1)(f(p0), f (1)(p0, p0), f (2)(p0, p0), F̂m(p0), ym) 6≡ 0

for ym ≈ fm(p0).
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The proof of Lemma 2.4 in this case therefore follows from Claim 2 with

I = A(1):

Claim 2: Let p ∈ U and let I(z, w, w(1), · · · , w(i), Ŷj , yj) be holomorphi-

cally algebraic on O = Oz(p) × Ow(f(p)) × · · · × Oyj (fj(p)). Suppose that

(z, f(z), · · · , F̂ j(z), fj(z)) is a zero point of I for every z ∈ Ω ∩ U and suppose

that I(p, f(p), · · · , F̂j(p), yj) 6≡ 0 for yj ≈ fj(p). Then there exists an open subset

U ′ of U so that, for (z, ω)(≈ U ′) ∈ M1c, it holds that

fj(ω) = Φ(ω, f(z), f (1)(z, ω), . . . , f (i)(z, ω), F̂ j(ω))

for some algebraic holomorphic function Φ.

Proof of Claim 2: From the given hypothesis, the Weierstrass preparation

theorem, and (7) of Lemma 2.1, it follows that the equation I(z, w, w(1), · · · , yj) =

0 is locally equivalent to the following algebraic equation:

(2.2.7) (yj − y0)n∗ +
n∗−1∑

j=0

λj(z, w, w(1), · · · , Ŷj)(yj − y0)j = 0,

with y0 = fj(p). Let D1 be the variety associated with (2.2.7), defined by

(2.2.8) n∗(yj − y0)n∗−1 +
n∗−1∑

j=1

jλj(z, w, w(1), · · · , Ŷj)(yj − y0)j−1 = 0.

If for z ≈ p, the vector (z, f(z), f (1)(z, z), · · · , F̂ j(z), fj(z)) also satisfies (2.2.8),

whose degree, with respect to yj , is smaller than that of (2.2.7), we then pass to

the study of the variety associated with D1. Otherwise, by the implicit function

theorem, (2.7) tells us, for z ≈ p′(≈ p), that

(2.2.9) fj(z) = Φ(z, f(z), f (1), · · · , F̂ j(z)),

for some algebraic, holomorphic function Φ(z, w, w(1), · · · , Ŷj) on

Oz(p′)×Ow(f(p′))× · · · ×OŶj
(F̂j(p′))
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(here, we need to apply (6) of Lemma 2.1 to obtain the algebraicity of Φ). Com-

plexifying (2.2.9) and noting again the maximal total reality of U ′ × Conj(U ′) in

M1c, we thus obtain

fj(ω) = Φ(ω, f(z), f (1)(z, ω), · · · , F̂ j(ω)),

for (z, ω)(≈ (p′, p′)) ∈ M1c. We now use an inductive argument with respect to n∗

and notice that (2.2.8) will eventually reduce to the equation: n∗(yj−y0)+λn∗−1 =

0. We then conclude the existence of the Φ in the claim. This completes the proof

of Claim 1.

Now let n > m. We then have, for each l and α, that

Llφj,α(f, ξ, η, F̂m,···,n−1) ≡ 0 on some U1 ⊂ U,

where φj,α is defined as before and

(2.2.10) φj,α =
∞∑

i=0

φj,i,α(f, ξ, η, F̂m,···,n)f i
n.

But for some p∗0 ≈ 0, α0, i0 j0, and l0, it holds that

Ll0φj0,i0,α0(p
∗
0) 6= 0

Let Ll0φj0,α0 = ψj0,α0(f, f (1), f (2), fn+1, . . . , fm+k−1, fn). We claim that ψj0,α0 is

algebraic in (f, f (1), f (2), · · · , fm+k−1). In fact, since φj0,α0 is the Taylor coefficient

of the algebraic function gj0 , we can thus see the algebraicity of φj0,α0 , by Taylor’s

formula and by inductively using (3) of Lemma 2.1. Again from Lemma 2.1,

we determine the algebraicity of ψj0,α0 (see the argument for the algebraicity

of A(1)). Now it is easy to check that Claim 2 can be applied to the equation

ψj0,α0(w, w(1), w(2), yn+1, . . . , ym+k−1, yn) = 0 for solving fn. So the proof of

Lemma 2.4 is complete.

An immediate consequence of Lemma 2.4 is that, in case the codimension

k = 1, then fm is algebraic. The reason for this is similar to the proof of Lemma

2.2. In fact, let z0 ≈ U ′ and z ∈ Qz0 . Since z0 ∈ Qz, we see by Lemma 2.4 that

fn(z) = Φ(z0, f(z0), f (1)(z0, z), f (2)(z0, z)).
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Notice that f (j)(z0, z) is algebraic in z and Φ is algebraic in its variables. We thus

conclude the algebraicity of fm along each Qz0 . From Lemma 2.3, we may then

conclude the global algebraicity of fm.

Now, returning to (2.2.4) with α = 1, we get

F0(ω) = −H0(f(z), ξ(z, ω), η(z, ω))

−fm(ω)H1(f(z), ξ(z, ω), η(z, ω))−H∗(f(z), ξ, η, fm(ω)),

where z ∈ Qω. Notice the algebraicity of fm(ω), ξ(z, ω), and η(z, ω) with respect

to the variables ω and the algebraicity of H0, H1, and H∗ with respect to their

own variables. From the above argument, we therefore also see the algebraicity of

F0(z) along each Qz0 (z0 ≈ U). Thus F0(z) = (f1(z), . . . , fm−1(z)) is algebraic in

z. By the same token, we can prove the algebraicity of fm+1 by using the equality

(2.1.1) and the results just obtained. So we have

Lemma 2.5: When k = 1, then f is algebraic in case (AA).

For the general codimension k(> 1), we have

Lemma 2.6: Under the assumptions in Lemma 2.4, there exist a small open

subset U ′′ of U ′ and an algebraic holomorphic function Ψ so that

(2.2.11) fn(z) = Ψ(z, F̂n(z)) for z ∈ U ′′,

where n is as in Lemma 2.4.

The proof of Lemma 2.6 follows easily from the following slightly more general

assertion:

Claim 3: Let p ∈ U ⊂ M1 and Ψ∗ an algebraic holomorphic function on

Oz(p)×Ow(f(p))× . . .×Ow(k′)(f (k′)(p, p))×OŶj
(F̂ j(p)) (j > m− 1) so that for

some i ≥ 1, it holds that

(2.2.12) fi(z) = Ψ∗(z, f(z), f (1)(z, z), · · · , f (k′)(z, z), F̂ j(z)), z(≈ p) ∈ U.
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Then there is a holomorphically algebraic function Ψ, defined on Oz(p∗)×OF̂j(p∗)

with p∗(≈ p) ∈ U , such that

fi(z) = Ψ(z, F̂j(z)), for z(≈ p∗) ∈ U.

Proof of Claim 3: We proceed by induction on the number of the variables

fl
′s in the formula of Ψ∗. First, if Ψ∗ involves no fl terms (l ≥ m), then Claim

3 follows immediately from the argument presented to prove Lemma 2.5 ( in this

situation, the complexification of (2.2.12) is:

fi(ω) = Ψ∗(ω, f(z), f (1)(z, ω), · · · , f (k′)(z, ω)), z ∈ Qω).

In the general case, to simplify the notation, we let j = m and expand Ψ∗ as

follows:

Ψ∗(z, f(z), f (1)(z, z), . . . , F̂m(z)) = φ0(z, f(z), . . . , f (k′)(z, z))

+
∑

‖α‖=1,α∗ 6=m

φα(z, f, . . . , f (k′))(fα∗(z)− fα∗(p)) + φ∗(z, . . . , F̂m),

where

φ∗ =
∑

‖α‖≥2

φα(z, f1, . . . , f
(k′))(F̂m(z)− F̂m(p))α.

(1): In case Llφα(z) ≡ 0 for all α, l, and z(≈ p) ∈ U , we may complete the

proof of the claim by applying Lemma 2.2 in the following way:

Since Llφα(ω, f(z), f (1)(z, ω), . . . , f (k′)(z, ω)) is holomorphic in (z, ω), by the

observation which we made before the proof of Lemma 2.2, we know that the given

hypothesis implies that

φα(ω, f(z), f (1)(z, ω), . . . , f (k′)(z, ω))

is constant along each Segre surface Qω. Set

Ψ̃(z, ω, Ŷm) = φ0(ω, f(z), f (1)(z, ω), . . . , f (k′)(z, ω))

+
∑

‖α‖=1,α∗ 6=m

φα(ω, f(z), . . . , f (k′)(z, ω))(yα∗ − fα∗(p)) + φ∗(ω, . . . , Ŷm),
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where z ∈ Qω. Thus we similarly see that Ψ(z, Ŷm) = Ψ̃(z∗, z, Ŷm) with z∗ ∈ Qz

is well defined. Moreover, the same argument as in Lemma 2.2 shows that Ψ is

holomorphically algebraic in its variables. So, the proof of Claim 3 in this case is

complete; for it obviously holds that fi(z) = Ψ(z, F̂m(z)).

(2): Now, we assume that (1) does not occur. We then define a natural

number n′ in a fashion similar to that used for n (the existence of such an n′ can

also be seen from the hypotheses):

(a): If for some p′(≈ p), α0, and l0, it holds that Ll0(ψα0(p
′)) 6= 0, we then

let n′ = m + 1. Here

ψ0 = φ0 +
∑

‖α‖=1,α∗ 6=m,m+1

φα

(
fα∗(z)− fα∗(p)

)
,

ψ1 = H(0,1,0,...,0), and ψj for j > 1 are determined by

φ∗(z, f, . . . , F̂m) =
∑

j≥2

ψj(z, . . . , f (k′))
(
fm+1(z)− fm+1(p)

)j

.

(b): When (a) does not hold, we let n′ be the smallest integer such that: for

each j, in the expansion of ψj with respect to (fm+1(z)−fm+1(p)), . . . , (fn′−1(z)−
fn′−1(p)), all coefficients are annihilated by the operators {Ll}; but at least for

one coefficient of certain ψj0 , say bj0(z, f, . . . , F̂m,···,n′−1), there exist some l0, i0

with Ll0bj0,i0(z) 6≡ 0 on a small neighborhood p in U . Here

bj0(z, f, . . . , F̂m,···,n′−1) =
∑

i

bj0,i(z, f, . . . , F̂m,···,n′)(fn′(z)− fn′(p))i.

We now apply the argument in Lemma 2.4 with gj ’s there being replaced by

the φj ’ (in case (a)), or with φj0,α0 and φj0,i,α0 being replaced by bj0 and bj0,i,

respectively (in case (b)). We then obtain an algebraic holomorphic function Ψ∗∗

so that

(2.2.12)′ fn′(z) = Ψ∗∗(z, f(z), · · · , f (k′)(z, z), F̂ j(z)),

where z is in a small open subset U of p. Substitute (2.2.12)′ into the fn′ variable

in the formula of Ψ∗. Since the number of fl
′s is now decreased by 1,we can thus

conclude the proof of Claim 3 by the induction hypothesis.
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Replace fn(z) in (2.2.4) by Ψ(z, F̂n(z)) obtained in Lemma 2.6. Then we

have, for each i ≤ m− 1, that

(2.2.13) f i(z) = g∗i (z, f, f (1), F̂n) on U (2) ⊂ U ′′,

where g∗i is holomorphic and algebraic on Oz(p′′)×Ow(f(p′′))×· · ·×OŶj
(F̂j(p′′))

with p′′ being some point in U ′′. From Claim 3, it follows that on some U (3) ⊂ U ′′,

there exist algebraic holomorphic functions {Ψ1, · · · ,Ψm−1} so that it holds for

each i ≤ m− 1 that

(2.2.14) fi(z) = Ψi(z, F̂n(z)) for z ∈ U (3).

Similarly, by substituting (2.2.11) and (2.2.14) to (2.2.1), we obtain

(2.2.15) fm+k(z) = g∗m+k(z, f(z), F̂n(z)) on U (4) ⊂ U (3),

with g∗m+k holomorphic and algebraic in (f, z, F̂n). Thus it can be seen, after

shrinking U (4), that we have

(2.2.16) fm+k(z) = Ψm+k(z, F̂n(z)) on U (4),

for some algebraic holomorphic function Ψm+k. Combining all these formulas, we

now obtain:

Lemma 2.7: There are a small neighborhood Ω∗ ⊂ Cm of some p ∈ U (4)

and a nonsingular algebraic complex variety M∗ ⊂ Cm+k, which contains f(p), so

that f(Ω∗) ⊂ M∗.

Proof of Lemma 2.7: Let Ψ and n be as in Lemma 2.6. Consider the equation

wn = Ψ(z, ŵ∗n), where w = (w∗, w∗, wm+k) with w∗ = (w1, . . . , wm−1) and

w∗ = (wm, . . . , wm+k−1).

Set χ1(z, w) = wn − Ψ(z, ŵ∗n). If χ1 does not involve any z terms, then we de-

fine M∗ ⊂ Cm+k by the equation wn = Ψ(p, ŵ∗n). Obviously, M∗ is a regular

algebraic manifold near f(p) and f(U (5)) ⊂ M2, where U (5) ⊂ U (4) ⊂ U ′′ is a
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small neighborhood of p in M1 (see Lemma 2.6). Since U (5) is a set of unique-

ness for the holomorphic function f , it follows that f(Ω∗) ⊂ M∗ for some small

neighborhood of U (5) in Cm. So, without loss of generality, we assume that the

Taylor expansion of Ψ at (p, F̂n(p)) does have z terms. After a rotation around p

in Cm (if necessary), we may assume that ∂jΨ

∂zj
1
(p) 6= 0 for some j ≥ 1. Notice that

χ1(p, f(p)) = 0. By the Weierstrass preparation theorem, the equation χ1 = 0 is

therefore equivalent to

(2.2.17) (z1 − p1)
n∗

+
n∗−1∑

j=0

aj(w∗, z2, · · · , zm)(z1 − p1)
j

= 0

with n∗ ≥ 1, where p = (p1, · · · , pm) and aj
′s are algebraic. Arguing as in Claim

2, we can conclude that z1 = χ∗1(z2, . . . , zm, F (z)) for z(∈ U (5)) ≈ p∗ (here we may

have to shrink U (5)). Now, substituting this into (2.2.14), we obtain, for i < m

that

(2.2.17)′ fi(z) = Ψ(1)
i (z2, · · · , zm, F (z)) for z ∈ U (5),

where Ψ(1)
i = Ψi(χ∗1(z2, · · · , zm, w∗), z2, · · · , zn, ŵ∗n). Consider in particular the

equation:

χ2(z2, . . . , zm, w) = w1 −Ψ(1)
1 (z2, · · · , zm, w∗) = 0.

By the same token, if the above equation is independent of (z2, . . . , zm), then the

M∗ in the lemma can be defined by w1 = Ψ(1)
1 (p∗2, · · · , p∗m, w∗), where (p∗1, · · · , p∗m)

is a fixed point in U (5). Otherwise, after a rotation at (p∗2, · · · , p∗m) with respect

to the variables (z2, · · · , zm), we can also assume that ∂jΨ
(1)
1

∂zj
2

(p) 6= 0 for some

j ≥ 1. Then it follows similarly that there exists an algebraic holomorphic function

χ∗2(z3, · · · , zm, w1, w
∗) with z2 = χ∗2(z3, · · · , zm, f1(z), F (z)) for z in a small open

subset of U (5). Now, substitute this again into (2.2.17)′ and consider the equation:

(2.2.17)′′ w2 −Ψ(2)
2 (z3, · · · , zm, w1, w

∗) = 0,

where Ψ(2)
2 = Ψ(1)

2 (χ∗2(z3, · · · , zm, w1, w
∗), z3, · · · , w∗). Repeating what we just did,

we see that either we complete the proof of the lemma, or we can solve (2.2.17)′′

to determine that z3 = χ∗3(z4, · · · , zm, w1, w2, w
∗) with

f3(z) = χ∗3(z4, · · · , zm, f1(z), f2(z), F (z))
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for z in a small subset of U (5). Arguing inductively in this way, we then either come

up with the proof of Lemma 2.7, or we obtain algebraic holomorphic functions

χ∗j (zj+1, · · · , zm, w1, w2, · · · , wj−1, w
∗) (j = 1, . . . , m)

so that zj = χ∗j (zj+1, · · · , f1(z), · · · , fj−1(z), F (z)) for z on a small open subset of

U (5) . Here we understand w0 and zm+1 as 0. In the latter case, we can easily

obtain an algebraic vector function χ(w∗, w∗) with z = χ(F0(z), F (z)) for z in

a small open subset of U (5). Meanwhile, combining this equality with (2.2.16),

we also see that the algebraic manifold M∗, defined by the equation wm+k =

Ψm+k(χ(w∗, w∗), ŵ∗n), completes the proof of the lemma.

Lemma 2.8: Let M∗ be as in Lemma 2.7. Then M∗ ∩ M2 is an algebraic

strongly pseudoconvex hypersurface of M2.

Proof of Lemma 2.8: Through a linear change of variables, we may assume

that p = 0 and that the complex tangent space of M2 is defined by wm+k = 0.

Since f(Ω∗) ⊂ M∗ and since f(Ω∗) is transversal to T
(1,0)
0 M2 (see §1.1.2), it follows

that T
(1,0)
0 M∗ 6= {wm+k = 0}. Thus, by the implicit function theorem, we see that

M∗ can be locally expressed by the equation: wl = φ(ŵl) for some l 6= m+k. Now

it is easy to see that ρ∗2 = ρ2(w1, · · · , φ(ŵl), · · ·) is a non degenerate real algebraic

defining function of M∗ ∩M1, which is obviously strongly plurisubharmonic at 0.

§2.2.4: We are now in a position to study the main theorem in case (BB).

We will either reduce to the situation (AA) or obtain the algebraicity of f .

By Lemma 2.2, we have an algebraic function Φ so that

(2.2.18) F0 = Φ(z, F )

for z ≈ 0 (we remark that ∂Φ
∂F (0, 0) = 0). Substituting this equation into (2.2.1)

(here we assume that the h in (2.2.1) does not contain any fm+k(ω) term), we

obtain

(2.2.19) fm+k(z) + fm+k(ω) +
m+k−1∑

j=1

fj(z)fj(ω) + h∗(ω, f(z), F (ω)) = 0
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for z ∈ Qω, or, (z, ω) ∈ M1c with h∗(ω, f(z), F (ω)) = h(f(z),Φ(ω, F (ω)), F (ω)).

We now repeat what we did at the beginning of this section. Then we obtain also

an equation with a form similar to (2.2.2):

(2.2.20) ξ + F 0 + ηF + g(ω, f, ξ, η, F ) = 0, for (z, ω) ∈ M1c,

where g(ω, f, ξ, η, F ) = (id, η, ξ)Dh∗. Define similarly the new Hα functions in

terms of (2.2.20). We also consider the conditions (AA) and (BB), respectively.

By §2.2.3, in case (AA) occurs, then either we obtain the algebraicity (k = 1) or

we can transform the problem to the case of codimension k − 1.

Assume that we are still in case (BB). So the new H ′
αs are also constant along

each Segre surface. We note that

(2.2.21) H0 = ξ + (id, η, ξ)Dh∗|Y =0

and

(2.2.22) Hα = ηα∗ + (id, η, ξ)
∂

∂yα∗
Dh∗|Y =0 for ‖α‖ = 1.

From (2.2.21) and the definition of η and ξ, it follows, for any l, that

Ll(
m−1∑

j=1

Hj
0(z, ω)fj) = Ll(fm+k) + Llh

∗,

where H0 = (H1
0 , · · · ,Hm−1

0 )t. Thus if we set

(2.2.23) E0 =
m−1∑

j=1

Hj
0(z, ω)fj − fm+k − Llh

∗,

then E0(z, ω) is constant on Qω for every ω ≈ 0. Similarly, (2.2.22) tells that

(2.2.24) Ej =
m−1∑

i=1

Hi
(0,···,1(jth),···,0)(z, ω)fi − fj − ∂h∗

∂yj

is also constant along Qω for j = m, · · · ,m+k−1. Notice Hα(0, 0) = 0. Applying

the implicit function theorem to (2.2.18), (2.2.23), and (2.2.24), we then obtain

f(z) = G(z, ω, E,Hα), (z, ω) ∈ M1c,
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where E = (E0, Em, · · · , Em+k−1) and ‖α‖ ≤ 1. From Lemma 2.1, it follows that

G is also algebraic in its variables. By Lemma 2.3, to show that f is algebraic in

z, it suffices for us to prove that f(z) is algebraic along any Qω. However, this

follows immediately from the fact that E and H are constant along each Segre

surface.

§ 2.2.5. Summarizing all the above discussion, we can conclude the algebraic-

ity of the mapping when k = 1. In case k > 1, we either obtain the algebraicity

of f (see §2.2.4) or we may reduce to a problem with smaller codimension (see

§2.2.3 and §2.2.4). Thus, by a simple induction argument, the proof of our main

theorem follows.

Remark: From the proof, it is easy to see that when f is apriori assumed

to be an immersion from M1 to M2 with the Hopf Lemma being held, then M1

and M2 in the main theorem can be relaxed to (Levi-) non-degenerate algebraic

hypersurfaces which have the same number ` of negative Levi eigenvalues, which

we call the signature of M1 and M2. Here, we arrange the number of negative

Levi eigenvalues to be no bigger than the number of positive Levi eigenvalues.

(However, the main theorem is obviously false if M1 and M2 are allowed to be

Levi flat). In fact, the only difference from the strongly pseudoconvex case is

that when we use a nice coordinate system like (2.1.2) we might have -1 for the

eigenvalues of the Levi form. In this case, when we define F0 and F as in §2.2.1, we

need to place a negative sign before a component if the corresponding eigenvalue

at that position is negative. Notice that after the complexification, the signs will

play no role at all. In our proof, the strong pseudo-convexity (instead of Levi

non-degeneracy) is only used to get two things: (a). The Hopf lemma property

for the map (the Pinchuk lemma), which is now stated as part of the assumption.

(b). The only other place where the strong pseudoconvexity is used is in the proof

of Lemma 2.8 which guarantees the induction process would go through. With

the assumption that the Hopf lemma holds and the signature of M1 and M2 are

the same, we can also show that M∗ ∩ M2 defined as in Lemma 2.8 is a Levi

non-degenerate hypersurface with the same signature ` as follows:
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Lemma 2.8′: Assume that V is a smooth complex analytic hypersurface in a

neighborhood of 0 in Cn+1. Assume that M ′ is a Levi non-degenerate hypersurface

of signature ` > 0 at 0 and T
(1,0)
0 M ′ 6= T

(1,0)
0 V . Assume that M ′ ∩ V contains

a Levi non-degenerate submanifold of hypersurface type with signature ` near 0.

Then M ′∩V is a Levi non-degenerate hypersurface of signature ` in V near 0. (In

our application, M is simply taken to be the image of the source manifold under

the local (CR) transversal embedding).

Proof of Lemma 2.8′: The case ` = 1 is easy. We assume that ` > 1. Choose

a holomorphic coordinate (z1, · · · , zn, zn+1) with zn+1 = u + iv such that M ′ is

defined near 0 by an equation of the form:

v = −
∑̀

j=1

|zj |2 +
n∑

j=`+1

|zj |2 + o(|z|2).

By the transversality of V with M ′, we can assume that M ′ near 0 is defined by an

equation of the form: zj0 =
∑n+1

j=1,j 6=j0,n+1 ajzj + O(zn+1) + o(z) with j0 6= n + 1.

We argue in two steps:

Step 1. We assume that j0 < `. For simplicity of notation, we can assume

that j0 = 1. We first find an (` − 1) × (` − 1) unitary matrix UI such that

(a2, · · · , a`)UI = (α, 0, · · · , 0) with α ≥ 0. We also find an (n − `) × (n − `)

unitary matrix UII such that (a`+1, · · · , an)UII = (β, 0, · · · , 0) with β ≥ 0. Define

(z′2, · · · , z′`) = (z2, · · · , z`) · U , (z′`+1, · · · , z′n) = (z`, · · · , zn) · U and z′n+1 = zn+1.

Then M ′ ∩ V is defined in the (z′2 · · · , z′n+1)-coordinates by an equation of the

following form:

v′ = −|αz′2 + βz′`+1|2 −
∑̀

j=2

|z′j |2 +
n∑

j=`+1

|z′j |2 + o(|z′|2).

Now consider the quadric form: −|αz′2 + βz′`+1|2 − |z′2|2 + |z′`+1|2, whose

corresponding Hermitian metric is as follows:

A =
(−1− |α|2 −αβ

−αβ 1− |β|2cr
)
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Now. By the assumption, it should have exactly two negative eigenvalues. Hence

M ′∩V is a Levi non-degenerate hypersurface in the (z′2 · · · , z′n+1)-coordinates with

signature `, for it has exactly `-negative Levi eigenvalues and (n− `− 1)-positive

Levi eigenvalues.

Step 2: j0 > `. For simplicity, let us assume that j0 = ` + 1.

We first find a `× ` unitary matrix UI such that (a1, · · · , a`)UI = (α, 0, · · · , 0)

with α ≥ 0. We also find a (n− `− 1)× (n− `− 1) unitary matrix UII such that

(a`+2, · · · , an)UII = (β, 0, · · · , 0)

with β ≥ 0. Define (z′1, · · · , z′`) = (z1, · · · , z`) ·U , (z′`+2, · · · , z′n) = (z` + 2, · · · , zn) ·
U and z′n+1 = zn+1. Then M ′ ∩ V is defined in the (z′1 · · · , z′`, z′`+2, · · · , z′n+1)-

coordinates by an equation of the following form:

v′ = −
∑̀

j=1

|z′j |2 + |αz′1 + βz′`+2|2 +
n∑

j=`+2

|z′j |2 + o(|z′|2).

Now consider the quadric |αz′1+βz′`+2|2−|z′1|2+ |z′`+2|2, whose corresponding

Hermitian metric is as follows:

A =
( |α|2 − 1 αβ

αβ 1 + |β|2
)

By the assumption, we must have at least one negative eigenvalue from A.

Since Tr(A) = |α|2 + |β|2 > 0. It must also have a positive eigenvalue. Thus the

Levi form of M ′∩V at 0 has exactly `-negative eigenvalues and (n−`−1)-positive

eigenvalues, namely, M ′ ∩ V is Levi non-degenerate. This completes the proof of

the Lemma.

To see that the degree of the mapping is bounded by a constant depending

only on the degree of M1 and M2, we just notice that the bound of the degree of

the resulting functions in the operations of Lemma 2.1 depends only on the degree

of the known functions. Here we recall that the degree of an algebraic function f is

defined as the degree of the irreducible polynomial which annihilates f . According

to these observations and the proof of Corollary 1 in the next section, we may state

the following:
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Corollary: Let M1 and M2 be two algebraic hypesurfaces in (possibly dif-

ferent) complex spaces of dimension at least 2. Assume that M1 is minimal (thus,

any CR function defined on M1 can be extended to certain side of M1 at each

point). Suppose that f is a smooth CR mapping from M1 into M2 so that at

least there is a non degenerate point p ∈ M1 with signature ` ≥ 0 where f is

an immersion with the Hopf lemma property being held, and f(p) is also a non

degenerate point in M2 with the same signature. Then f is the restriction of some

holomorphic algebraic map to M1. Moreover, the vanishing order of each non-

zero component of f is bounded by a constant depending only on the degree of

M1 and M2.

§ 2.3 Proof of Theorem 2:

The purpose of this section is to prove Theorem 2 by modifying the previous

argument.

Theorem 2: Every Ck+1-CR mapping from a strongly pseudoconvex real

analytic hypersurface M1 ⊂ Cn (n > 1) into another strongly pseudoconvex real

analytic hypersurface M2 ⊂ Cn+k is real analytic (Cω) on a dense open subset.

We first notice that, by Lewy’s extension result, we may assume that the map

f in Theorem 2 can be extended holomorphically to the pseudoconvex side. We

still start with the equation ρ2(f(z), f(z)) = λ(z, z)ρ1(z, z). Since we do not know

the existence of the complexification in the present setting, we will differentiate the

equation along M1. Then we will come up with a new equation similar to (2.2.3),

which also enables us to divide the discussions according to how degenerate the

map f is: In a sort of the totally degenerate case (analogous to (BB)), we will

reduce the analytic extendibility to the analytic hypoellipticity of a differential

equation by making use of the CR-extension results. In the other situations, we

will similarly obtain the analyticity of f (in case k=1) or get a reduction with

respect to the codimension.

For the sake of brevity, we retain most of the notation in §2.2.
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§2.3.1 We now let M1, M2, and Ll as in §1.2. To prove Theorem 2, we proceed

by seeking a point q ∈ U , where U is an arbitrarily fixed small neighborhood of 0

in M1, so that f has an analytic extension at q.

By the properness of f (i.e., the fact: f(M1) ⊂ M2), we see that

(2.3.1) fm+k(z)+ fm+k(z)+
m+k−1∑

j=1

|fj(z)|2 +h(f(z), f(z)) = 0 for z ∈ U ⊂ M1.

As we did in §2.2.1, by using the implicit function theorem, we can assume

that h(f, f) = h(f, f1, . . .fm+k−1), where h(w, y1, . . . , ym+k−1) is a holomorphic

function on Ow(0)×Oy1(0)× . . .×Oym+k−1(0).

Applying Ll to (2.3.1) for each l, we obtain

(2.3.2) Llfm+k(z) +
m+k−1∑

j=1

Llfj(z)fj(z) +
m+k∑

j=1

∂h

∂wj
Llfj(z) = 0, for z ∈ U.

Let V, ξ, and η as defined in §2.1, except replacing ω by z. Equation (2.3.2) can

then be written as

ξ(z) + F0(z) + η(z)F (z) + (id, η(z), ξ(z))Dh(z) = 0 for z ∈ U,

where Dh(z) = ( ∂h
∂w1

, . . . , ∂h
∂wm+k

)t(z) = O(‖z‖3) as z → 0, F0 = (f1, . . . , fm−1)t,

and F = (fm, . . . , fm+k−1)t.

Again, by making use of the implicit function theorem and by shrinking U ,

we have that

(2.3.3) ξ + F 0 + ηF + g(f, ξ, η, F ) = 0 on U.

Here g is holomorphic in its variables and if

g(f, ξ, η, F ) =
∑
α

gα(f, ξ, η)Fα,

then
∂gα

∂ξ
,
∂gα

∂η
→ 0
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as z(∈ U) → 0 for ‖α‖ ≤ 1 (by (2.1.2) and (2.1.3)).

We now expand g with respect to fm:

g =
∞∑

j=0

gj(f, ξ, η, F̂m)f j
m,

where gj(w, ξ, η, ym+1, · · · , ym+k−1) is holomorphic on

O1 = Ow(0)×Oξ(0)×Oη(0)× · · · ×Oym+k−1(0)

and there exists a number R >> 1 so that

|gj(w, ξ, η, · · · ym+k−1)| ≤ Rj

for each j and for every (w, ξ, η, · · · , ym+k−1) ∈ O1.

Set

H0 = ξ + η̂mF̂m + g0(f, ξ, η, F̂m),

H1 = ηm + g1(f, ξ, η, F̂m),

and

Hj = gj(f, ξ, η, F̂m) for j = 2, · · · , .

Here, as we defined before, we write η = (ηm, . . . , ηm+k−1) and

η̂m = (ηm+1, . . . , ηm+k−1).

Now (2.3.3) reads as

(2.3.4) H0 + F 0 + fmH1 +
∞∑

j=2

f j
mHj = 0 on U0 ⊂ U,

where U0 is a small neighborhood of 0 ∈ M1.

§2.3.2: In this subsection, we study a situation similar to (BB) in §2.2.2. We

will obtain the analyticity by using CR-extension and partial differential equations

results.
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From (2.3.4), we now define Ind(1) = 0 if, for each k and j, Ll(Hj) = 0 on

a small neighborhood U1 ⊂ U of 0. Otherwise, we define Ind(1) = 1. In case

Ind(1) = 0, we then let, for each j0,

(2.3.5) Hj0(z) =
∞∑

j=0

φj0,j(f, ξ, η, F̂m,m+1)f
j

m+1.

Applying Ll to (2.3.5) for each l, we see that

(2.3.6)
∑

j

Ll(φj0,j(f, ξ, η, F̂m,m+1))f
j

m+1 = 0, on U1.

Define Ind(2) = 0 if Ll(φj0,j) = 0 for all l, j0, and j in a small neighborhood

U2(⊂ U1) of 0; otherwise let Ind(2) = 1.

If it still happens that Ind(2) = 0, we expand φj0,j1 , for every j0 and j1, with

respect to fm+2. Then we can similarly define the value of Ind(3) · · ·. Arguing

inductively, if it always happens that Ind(j) = 0 for j = 1, · · · , k, we then easily

see, for any index i, that

Hi(f, ξ, η, F̂m) =
∞∑

‖α‖=0

hi,α(f, ξ, η)F̂
α

m for z ∈ Uk( a small neighborhood of 0),

where Llhi,α(f, ξ, η) ≡ 0 for all indices i, l, α, and hi,α(w, a, b) is holomorphic on

O2 = Ow(0)×Oa ×Ob(0) with |hi,α(w, a, b)| < R‖α‖ for each (k-1)-multi-index α

and for some R >> 1. Returning to (2.3.4), we then obtain the expansion:

(2.3.7) F0 +
∞∑

‖α‖=0

H∗
αFα = 0,

with LlH
∗
α ≡ 0, for all l and k-multi-index α, on U ′ (a neighborhood of 0). By the

uniqueness of the power series of a holomorphic function and by combining the

upper bound (Cauchy) estimates of hi,α with those of gj , it therefore follows that

(2.3.7)′ |H∗
α(w, ξ, η)| ≤ R‖α‖

for some R >> 1 and that

H∗
0 = ξ + g0(f, ξ, η, 0),
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H∗
(1,0,...,0) = ηm + g1(f, ξ, η, 0),

and

(2.3.8) H∗
α = ηα∗ +

∂g0

∂yα∗
(f, ξ, η, 0)

where the notation α∗ is the same as before.

Lemma 2.9: Under the above circumstances, we have, for each α, a holomor-

phic extension Aα(z) of H
∗
α on Ω∗ ( a small neighborhood of U ′ in Cm). Moreover,

it holds that maxz∈Ω∗ |Aα(z)| < Rα.

Proof of Lemma 2.9: First, we note that H∗
α(z) is a CR-function on Uk for

each α, since Ll(H∗
α)(z) = 0 for all l. Consequently, by the Lewy extension

theorem, we have, for each H∗
α, a holomorphic extension A+

α (z) defined on some

open subset Ω′(⊂ Ω) whose size depends only on U ′. Since the analytic discs with

their boundaries attached to Uk sweep out an open subset of Ω, so after shrinking

Ω′, the maximal principle then implies that maxΩ′ |A+
α | = maxU ′ |H∗

α| < Rα (by

(2.3.7)′).

Now, let φ: V ⊂ C1 → Cm be an embedding such that φ(V ∩ ∆) ⊂ Ω′,

φ(1) ≈ 0, φ(∂(∆ ∩ V )) ⊂ M1, and φ(∆c ∩ V ) ⊂ Cm − Ω′ (where ∆ denotes the

unit disk in C1). Since M1 is real analytic, we can extend f ◦ φ(τ), ξ ◦ φ(τ), and

η ◦ φ(τ) holomorphically into ∆ ∩ V ′ (where V ′ ⊂ V is a small neighborhood of

∂∆ ∩ V and symmetric with respect the unit circle). For τ ∈ ∆c ∩ V ′, we define

A−α (τ) = H∗
α(f ◦ φ(1/τ), ξ ◦ φ(1/τ), η ◦ φ(1/τ)).

Then A−α is holomorphic on ∆c ∩ V ′ and A−α (τ) = A+
α (τ) for τ ∈ ∂∆∩ V ′. It thus

follows from the Hartogs theorem that A+
α has a holomorphic extension Aα, on an

open subset Ω∗ near 0, which does not depend on α. By the construction of Aα

and (2.3.7)′, it obviously holds that maxΩ∗ |Aα| < Rα (we may have to shrink Ω∗

here). This completes the proof of Lemma 2.9.

Now by (2.3.7), we have that

(2.3.9) F0(z) +
∑
α

Aα(z)Fα(z) = 0.

44



Let J(z, w∗) = −∑∞
‖α‖=0 Aα(z)w∗α. For (z, w∗) ∈ Ω∗ ×Ow∗(0), since

max
Ω∗

|Aα(z)| < Rα

for some R >> 1,we see that J(z, w∗) is holomorphic on Ω∗ × Ow∗(0) (where

we may have to shrink the domains). On the other hand, by making use of the

formulas in (2.3.8) and the implicit function theorem, we have that

ξ = H∗
0 + G0(f,H∗

0 ,H∗
α)

and

ηα∗ = H∗
α + Gα(f,H∗

0 ,H∗
α).

Here G0 and Gα (‖α‖ = 1)) are holomorphic in their variables and have no linear

terms. Applying L = (L1, · · · , Lm−1) to (2.3.9), we obtain

V = LzJ + V × (H∗
0 + G,H∗

α + Gα)× ∂J

∂w
,

where ‖α‖ ≤ 1 and LzJ is the partial differential operator L applied to J while

holding w∗ fixed. So it follows easily that

V = (LJ)(id− (H∗
0 + G,H∗

α + Gα)
∂J

∂w
)−1 = G∗1(z, f),

where G∗1(z, w) is real analytic on Oz(0)×Ow(0) for H∗
0 and H∗

α are real analytic

on Uk by Lemma 2.9. Combining this with the formulas for ξ and η, we therefore

conclude that Lifj = G∗∗ij (z, f) with G∗∗ij real analytic in z and f (when z ≈ 0).

Let T = [L1, L1]. Then Tfj = L1(L1fj) = L1z(G∗∗1j ) +
∑ ∂G∗∗1j

∂wl
G∗∗1l , which

is also real analytic on z and f for j = 1, · · · , m + k. Since {L,L, T} consists

of a local analytic basis of TM1, we can conclude that f ∈ C∞(Uk). Now, from

Lemma 2.10 or Theorem 1 of [Fr1], we thus have the real analyticity of f on Uk.

Lemma 2.10: Let f ∈ C∞(Bn, Rm) be such that f(0) = 0 and

∂f

∂x
= G(x, f).

Here Bn stands for the ball in Rn and G(x, f) is real analytic in x and f . Then

f is real analytic at 0.
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Proof of Lemma 2.10: Th proof is a straightforward application of the Cauchy-

Kovalevsky theorem. In fact, when n = 1, it follows immediately from the unique-

ness of the solution near the origin and the Cauchy-Kovalevsky theorem. Suppose

the lemma is proved for n ≤ p− 1 and assume n = p. Write

(x1, · · · , xp−1, xp) = (y, t)

with t = xp. By the induction, we see that g(y) = f(y, 0) (g(0) = 0) is real

analytic for y ≈ 0. Consider now the following Cauchy problem:

∂f(y, t)
∂t

= G(y, t, f) with f(y, 0) = g(y).

Notice that the above equation also has a unique solution for (y, t) ≈ 0. Again by

the Cauchy-Kovalevsky theorem, we see the real analyticity of f near 0.

§2.3.3 This subsection is very similar to §2.2.3. We will directly show the

analyticity of f in case k = 1 and obtain a reduction in case k > 1.

By the argument in § 2.3.2, to complete the proof of Theorem 2 it now suffices

for us to assume that there is an n ≥ m so that Ind(j) = 0 for j ≤ n −m, but

Ind(n−m + 1) = 1. This similarly implies the following:

Lemma 2.11: There exist an open subset U ′ ⊂ U and a holomorphic function

Φ so that it holds that fn(z) = Φ(f(z), f (1)(z), f (2)(z), F̂n(z)) for z ∈ U ′.

Proof of Lemma 2.11: We first assume that n = m. Then for some j0, l0,

p∗0 ≈ p0, and the eth element He
j0

of the vector function Hj0 , it holds that

Ll0H
e
j0(f, ξ, η, F̂m)(p∗0) 6= 0.

Then it is easy to see that for each j, LlH
e
j = ψj(f, f (1), f (2), fm+1, · · · , fm+k−1)

for some ψj that is holomorphic in its variables and satisfies the corresponding

Cauchy estimates.

Define

I1(w, w(1), w(2), ym+1, · · · , ym+k−1, u)
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=
∑

ψj(w, w(1), w(2), ym+1, · · · , ym+k−1)(u− u0)j

with u0 = fm(p∗0). Obviously, by (2.3.4), I1 is holomorphic on

Ow(f(p∗0))×Ow(1)(f
(1)(p∗0)) · · · ×Ou(0).

We note that (f(z), f (1)(z), f (2)(z), fm+1(z), · · · , · · · , fm+k−1(z), fm(z) + u0) sat-

isfies the equation I1 = 0 and I1(f(p∗0), · · · , fm+k−1(p∗0), u) 6≡ 0 for u ≈ 0. The

proof in this case thus follows from Claim 2 of §2.2.

Now let n > m. We then have, for each l and α, that

Llφα(f, ξ, η, F̂m,···,n−1) = 0 on some U1 ⊂ U,

where α is an (n− 1)-multi-index, φα is defined as in §3.2.2, and

(2.3.10) φα =
∞∑

j=0

φα,j(f, ξ, η, F̂m,···,n)f j
n.

But for some p∗0 ≈ 0, α0, j0, and l0, it holds that

Ll0φα0,j0(p
∗
0) 6= 0.

Let Llφα0,j = ψα0,j(f, f (1), f (2), · · · , fm+k−1) and define

I2(w, w(1), w(2), ym+1, · · · , ym+k−1, u) =
∑

ψn,α0,j(w, w(1), · · · , ym+k−1)(u− u0)j

with u0 = fn(p0). Then it is easy to see that Claim 2 can be applied to the

equation I2 = 0 for solving for fn. So the proof of Lemma 2.2.11 is complete.

When the codimension k = 1, Lemma 2.11 tells that fm admits a holomorphic

extension to U ′; for the formula of Φ involves no conjugate holomorphic terms (see

the proof of Lemma 2.9 or [Pi] for details on this matter). Returning to (2.3.3)

with k = 1, we see that

F0(z) = A(z, ξ(z), η(z), f(z)) for z(≈ p0) ∈ U ′,

where

A(z, ξ, η, f) = −ξ − ηfm(z)− g(f, ξ, η, fm(z)).

47



We claim that this also implies the analyticity of F0(z) = (f1(z), · · · , fm(z))

near p0. In fact, from the analyticity of fm(z), it follows that A is holomor-

phic in (z, ξ, η, f). So, let φ and V be as constructed in Lemma 2.9. Then

A(φ(τ), ξ(φ(τ)), η(φ(τ)), f(φ(τ))) admits a (uniform) holomorphic extension to ∆

near 1 ∈ ∂∆ (see the proof of Lemma 2.9 for more details concerning this matter).

Notice that F0(φ(τ)) allows a uniform holomorphic extension to the outside of ∆

near 1 and coincides with A(φ(τ), ξ(φ(τ)), η(φ(τ)), f(φ(τ))) on part of the circle

∂∆ near 1. So, by using the Hartogs theorem, we can conclude the claim (see the

proof of Lemma 2.9). By the same token, with these results at our disposal and

returning to (2.3.1), we obtain the analyticity of fm+1. For general codimension,

we have

Lemma 2.12: Under the assumptions of Lemma 2.11, there exist a small

open subset U ′′ of U ′ and a holomorphic function Ψ so that

(2.3.11) fn(z) = Ψ(z, F̂n(z)) for z ∈ U ′′,

where n is as in Lemma 2.11.

Proof of Lemma 2.12: Make use of the assumption that f is of class Ck+1

and copy the proof for Lemma 2.6 (Claim 3).

§2.3.4: Now we replace fn in (2.3.4) by Ψ(z, F̂n). Then we have, for each

i < m− 1, that

(2.3.12) f i = g∗i (z, f, f (1), F̂n) on U (2) ⊂ U ′′,

where g∗i is holomorphic on Oz(p′′)×Ow(f(p′′))×· · ·×OŶj
(F̂j(p′′)) with p′′ being

some point in U ′′. By a slight modification of Lemma 2.12, it follows that on some

U (3) ⊂ U (2) there exist holomorphic functions {Ψ1, · · · ,Ψm−1} so that it holds for

each i that

(2.3.13) fi(z) = Ψi(z, F̂n(z)) for z ∈ U (3).

Similarly, by substituting (2.3.12) and (2.3.13) to (2.3.1), we obtain

(2.3.14) fm+k = g∗m+k(z, f, F̂n) on U (4) ⊂ U (3),
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with g∗m+k holomorphic in (f, z, F̂n). Thus it can be seen, after shrinking U (4),

that we have

(2.3.15) fm+k = Ψm+k(z, F̂n) on U (4),

for some holomorphic function Ψm+k. Combining all these formulas, we have

Lemma 2.13: There are a small neighborhood Ω∗ ⊂ Cm of some p ∈ U (4)

and a nonsingular complex variety M∗ ⊂ Cm+k, which contains f(p), so that

f(Ω∗) ⊂ M∗.

Proof of Lemma 2.13: Copy that for Lemma 2.7.

Lemma 2.14: The mapping f admits a holomorphic extension on some point

near p. Thus the proof of Theorem 2 is complete.

Proof of Lemma 2.14: First, summarizing the argument in §2.3.2 and the

argument following Lemma 2.11, we note that Lemma 2.14 is true in case k = 1.

For k > 1, we also see that either f has a holomorphic extension at some point on

U (4) or f has no analytic extension at any point on U (4) but Lemma 2.13 holds.

In the latter case, similar to Lemma 2.8, we conclude that there is a complex

manifold M∗ of dimension m + k− 1 so that f(Ω) ⊂ M∗ and f(U (4)) is contained

in some strongly pseudoconvex real analytic hypersurface of M∗ (here we may

have to shrink U (4)). By making use of a local coordinates chart of M∗, we then

see that Theorem 2 is false in the case of codimension k − 1. Inductively, this

would result in a contradiction with the situation of k = 1.

§2.4 Proof of Proposition 1 : In this section, we present the proofs of

Proposition 1 and Corollary 1. In fact, we will first prove the following slightly

stronger local result:

Proposition 1′: Let M ⊂ C2 be an algebraic pseudoconvex hypersurface

which bounds D on its pseudoconvex side. Let f be a non-trivial holomorphic

mapping from D into C3 that is continuous up to M and maps M to ∂B3 (the
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boundary of the unit 3-ball). For any point p ∈ M , denote by t(p) the type value

of M at p (in the sense of Kohn [Ko1] or D’Angelo [Da]). If f is of class Ct(p) at

p with t(p) < ∞, then f admits a holomorphic extension at p.

Proof of Proposition 1′: We first note that the set of all strongly pseudoconvex

points of M is dense in M ; for M is of finite type. Thus, from Theorem 1,

the algebraicity of f follows easily. After making a suitable algebraic change of

variables, we assume that p = 0, f(p) = 0, M is locally defined by

ρ(z, z) = z2 + z2 +
∑

i+j=m

cijz
i
1z

j
1 + O(|z1|m+1 + |z2z1|) = 0

with m = t(p), and S3 is defined by

w3 + w3 +
2∑

j=1

|wj |2 = 0.

Let

L =
∂

∂z1
− ρ′z2

ρ′z1

∂

∂z2

be the (conjugate) Cauchy-Riemann operator of M .

Lemma 2.15:
∑m−1

k=1 (|Lkf1|+ |Lkf2|)(0) 6= 0.

Proof of Lemma 2.15: Seeking a contradiction, suppose that Ljfl(0) = 0 for

all j ≤ m− 1 and l = 1, 2. Notice that

(2.4.1) f3(z) + f3(z) +
2∑

j=1

|fj(z)|2 = 0, for z ∈ M(≈ 0).

Applying the operator Lk1Lk2 to Equation (2.4.1) and letting z = 0, we then see

that

Lk1Lk2f3(0) = −
2∑

j=1

k1∑

i=0

(k1
i )LiLk2(fj(0))Lk1−ifj(0).

Thus, by the assumption, it holds that

(2.4.1)′ Lk1Lk2f3(0) = 0,
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whenever k1 or k2 is less than m.

Now, since 0 is a point of type m of ∂M , we can conclude that, for some choice

of the operator N : N = [· · · , [L,L], · · · , L(or L)] (where the Lie bracket length is

m), {L,L,N} consists of a basis of T0M (see [Ko1]). Meanwhile, it is easy to see

that (2.4.1)′ implies N(f3)(0) = 0. Consequently, we obtain Tf3(0) = 0 for any

T ∈ T0M . In particular, it follows that

(
∂

∂z2
− ∂

∂z2

)
f3(0) = 0.

Hence, ∂
∂z2

f3(0) = 0. This is a contradiction, because by the pseudoconvexity of

M and a standard application of the Hopf lemma, we have that f ≡ 0.

From now on, we let, without loss of generality, Lkf1(0) 6= 0 for some k ≤
t0 − 1. Applying Lk to (3.4.1), we obtain

(2.4.2) Lkf3 +
∑

Lkfjfj = 0 for z(≈ 0) ∈ M.

Similar to what we did before, we consider the following two cases:

(AAA): L(Hj) ≡ 0 for z(≈ 0) ∈ M , and j = 1, 2.

(BBB): L(H1) 6≡ 0 on any small neighborhood of 0 in M .

Here Hj = Lkfj+1(z)
Lkf1(z)

for j = 1, 2.

§2.4.1: We first assume (AAA). Then by Lemma 2.9, we know that Hj is

holomorphic near 0, in particular Hj is real analytic on M near 0. In the meantime,

we also see that Lk(fj+1 − f1(z)Hj(z)) ≡ 0. Again by Lemma 2.9, we therefore

have some analytic Hj,1 such that Lk−1(fj+1 − f1(z)Hj(z)) = Hj,1 and LHj,1 ≡
0. Notice that Lk−1(zk−1

1 /(k − 1)!) = 1. It follows that Lk−1(fj+1 − f1Hj −
Hj,1z

k−1
1 /(k − 1)!) ≡ 0. Hence, by inductively using Lemma 2.9 and by noting

that Ll(zl
1/l!) = 1 for all l, we obtain

(2.4.3) fj+1 = f1(z)Hj(z) + H0
j (z),
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where z(∈ M) ≈ 0 and H0
j (z) is real analytic for j = 1, 2. On the other hand,

(2.4.2) tells us that

(2.4.3)′ f1 = −H2 −H1f2.

So, by combining (2.4.3) with (2.4.3)’, we easily deduce the real analyticity of f

at 0.

§2.4.2: We now study the case (BBB). Applying L to Equation (2.4.2), we

then see that f2(z) = −LH2(z)
LH1(z) for z(≈ 0) ∈ M .

Claim 4: LH1(z) cannot vanish on any open subset of M near 0.

Proof of Claim 4: Denote by g(z, ω) the complexification of LH1(z), i.e,

g(z, z) = LH1(z). By Lemma 2.1, Theorem 1 and the algebraicity of M , we know

that g(z, ω) is also algebraic. Since Condition (BBB) indicates that g(z, ω) 6≡ 0,

we therefore have a polynomial P (ξ) =
∑

cj(z, ω)ξj with c0(z, ω) 6≡ 0 so that

P (g(z, ω)) ≡ 0. Now if g(z, z) vanishes on an open subset of M , it then follows

easily that c0(z, z) ≡ 0 on that same set. Notice that any open subset on M is a

set of uniqueness. We see that c0(z, ω) ≡ 0 and thus obtain a contradiction.

We now prove Proposition 1′ in case (BBB). By Claim 4, we can find two

transversal complex lines, denoted by C1 and C2, which pass through 0 so that

L(H1) is not identically zero on Cj ∩M (j = 1, 2) and Cj ∩M divides Cj ∩Ω into

two parts: the one inside D ∩ Ω and the one in Dc ∩ Ω. Here Ω ⊂ C2 is a small

neighborhood of 0 (see §3.1 of [HK1] for more details on this matter). Translating

C1 or C2, we then obtain an algebraic coordinates system in C2 near 0. In terms

of the continuity of LH1, it is easy to see that when Cε is parallel and close to C1

or C2, then LH1 is also not identical zero on Cε ∩M .

Now, we will extend f2(z) holomorphically to each of such Cε (∩Ω)’s. We let

φ be an algebraic embedding from ∆ to C2 so that φ(∆+) ⊂ Ω ∩ Cε, φ(∆−) ⊂
Ω ∩ Dc ∩ Cε, and φ(−1, 1) ⊂ M ∩ Cε. Here ∆+ = {τ ∈ ∆ : Im(τ) > 0} and

∆− = {τ ∈ ∆ : Im(τ) < 0}. After shrinking Ω, we may assume that LHj ◦ φ(τ)

has a holomorphic extension to ∆+ (by Theorem 1 and Lemma 2.1, the extension is

52



also algebraic). Let a−(τ) = LH2◦φ(τ)
LH1◦φ(τ) . Then a−(τ) is meromorphic and algebraic

on ∆−. Define a(τ) by f ◦φ(τ) if τ ∈ ∆−∆− and by a−(τ) when τ ∈ ∆−. We then

see by the above argument, that a(τ) is meromorphic on ∆− E, where E = {τ ∈
(−1, 1) : LH1 ◦ φ(τ) = 0}. We will show that a(τ) is actually holomorphic near

(−1, 1) and hence meromorphic on ∆. For this purpose, we let α(τ) = LH1 ◦ φ(τ).

Claim 5: E is a removable singular set of α(τ).

Proof: As we noted above, α(τ) is algebraic and holomorphic on ∆−. Thus

there is a polynomial P (ξ) =
∑

cj(τ)ξj with c0 6≡ 0 so that P (α(τ)) ≡ 0. Obvi-

ously, it holds that c0(E) = 0. Therefore, it follows that E can only be a finite set

for c0(τ) is a nonzero polynomial in τ .

On the other hand, from the equation
∑

cj(τ)(α(τ))j = 0, we easily see that

for any τ0 ∈ E, it holds that |α(τ)− α(τ0)| ≥ const|τ − τ0|n for some big n. Thus

every point in E can at most be a pole of a(τ). However, since a(τ) is bounded

on ∆+, we can thus conclude the claim.

Now we can verify the analyticity of f2 at 0 by making use of the Hartogs

theorem and by noting that we can make Cε close enough to Cj so that the

extension a(τ) of f2 ◦ φ(τ) is holomorphic on a fixed small open subset of (−1, 1).

(We can also obtain the analyticity of f2 at 0 in the following way: First, we prove

by using algebraicity of f that f3 is meromorphic. Then we prove the meromorphic

property of f1 and f2. Finally, we see the holomorphic property of f by using the

result of [Ch]. A much more general argument in this aspect will appear in a

future work.)

Whenever we know the analyticity of f2 at 0, returning to (2.4.2) and (2.4.1),

we then can conclude the holomorphic extension of f at 0.

The proof of Proposition 1′ is complete.

We conclude this chapter by presenting a discussion of Corollary 1.

Corollary 1: Let M1 and M2 be two strongly pseudoconvex real algebraic

hypersurfaces in (possibly different) complex spaces of dimension at least two.

Then every C∞ smooth CR mapping from M1 to M2 is real analytic on M1.
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§ 2.4.3: Proof of Corollary 1: The proof follows from Theorem 1, the fact

that M1 is a uniqueness set of holomorphic functions defined on the pseudoconvex

side of M1, and the following known result (see [BR3] or [BJT]).

Lemma 2.16: Let u(s) be a C∞ function defined on the unit ball B in Rn.

Suppose that there exists a polynomial

h(s, z) = aJ(s)zJ + aJ−1(s)zJ−1 + · · ·+ a0(s)

with coefficients real analytic in B and aJ(s) 6≡ 0 so that h(s, u(s)) ≡ 0. Then u

is real analytic in B.

Proof of Lemma 2.16: This lemma follows from the arguments in [BK3].

However, we present the following details for completeness.

Let v(s) = aJ(s)u(s) and h̃(s, z) = zJ + aJ−1(s)zJ−1 + aJ−2(s)aJ(s)zJ−2 +

· · · + aJ−1
J (s)a0(s). Then by the given hypothesis, we see that h̃(s, v(s)) ≡ 0.

From Theorem 6.8.20, it thus follows that v(s) is real analytic on B. Now, to

conclude the real analyticity of u(s), we first notice that for certain open dense

subset S′ ⊂ ∂B, it holds that aJ(ωt) 6≡ 0 for any given ω ∈ S′, where t ∈ (−1, 1).

Since u(s) is smooth, we therefore see that u(ωt) = v(ωt)/aJ(ωt) is real analytic

in t ∈ (−1, 1) for any given ω ∈ S′. By Theorem 6.8.18, we thus get that the

Taylor series of u(s) at the origin is actually a convergent series. Noting the fact

that this power series must coincide with u(s) when restricted in each line tω with

ω ∈ S′ and noticing that S′ is dense in ∂B, we thus see that the Taylor series of

u(s) at the origin converges to u(s) everywhere; for u is continuous in B. This

completes the proof of Lemma 2.16
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Chapter 3: Kobayashi extremal mappings and

holomorphic self-mappings

The purpose of the present chapter is to give the proofs of the results which

we described in §1.2. In §3.1 and §3.2, we will prove Theorem 4 and Theorem

5 (Theorem 6), respectively. The discussions of Theorem 7 and Theorem 3 can

be found in §3.3. In the last section of this chapter (§3.4), we study further

applications of previously obtained results, including the proof of Theorem 8.

§3.1 A preservation principle of extremal mappings—Proof of The-

orem 4:

In this section, we give the proof of Theorem 4 and some of its immediate

corollaries.

Theorem 4: Let D ⊂⊂ Cn be either a pseudoconvex domain with a Stein

neighborhood basis or a pseudoconvex domain with C∞ boundary. Suppose that

p ∈ ∂D is a strongly pseudoconvex point of ∂D with at least C3 smoothness. Then

for every open neighborhood U of p, there is a positive number ε such that for each

extremal mapping φ of D, when ‖φ(0) − p‖ < ε and ‖(φ′(0))N‖ < ε‖(φ′(0))T ‖,
then φ is the complex geodesic of D and φ(∆) ⊂ U .

Our idea is to make use of the Ck-version of the reflection principle to get

the uniform Hölder continuity of the differentials of a sort of ‘normalized’ com-

plex geodesics on strongly convex domains. We then apply it with the Fornaess

embedding theorem and the Graham estimates of the Kobayashi metric to obtain

our results.

We first fix some notation. In what follows, we fix the symbol 〈, 〉 for the

standard Hermitian inner product in Cn and the symbol ‖·‖ for the corresponding

euclidean norm. For two domains D1 and D2, Hol(D1,D2) stands for the set of all
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holomorphic mappings from D1 to D2. When f ∈ Hol(D1, D2) with D1 = D2, we

denote by fm the mth-iterate of f defined inductively by f1 = f , ···, fm = f◦fm−1.

For a bounded domain D in Cn, denote by KD the Kobayashi distance and

by κD the Kobayashi metric of D (see [Kr1] for the definitions). For any z ∈ D,

we use δ(z) to stand for the euclidean distance of z to ∂D. We recall that φ ∈
Hol(∆, D) is said to be a complex geodesic (respectively, an extremal mapping)

of D if KD(φ(τ1), φ(τ2)) = K∆(τ1, τ2) for every pair τ1, τ2 ∈ ∆ [Ve] (respectively,

κD(φ(0), φ′(0)) = κ∆(0, 1) = 1).

In what follows, we will also use the notation Ck− to denote the function

space ∩α<1C
k−1+α in case k is an integer, and the space Ck otherwise.

Lemma 3.1: Let D1 ⊂ D2 be two bounded domains in Cn. If φ is a complex

geodesic (respectively, an extremal mapping) of D2 such that φ(∆) ⊂ D1, then φ

is also a complex geodesic (respectively, an extremal mapping) of D1.

Proof: This follows immediately from the monotonicity properties of the

Kobayashi metric and the Kobayashi distance [Kr1].

Let D be a C1-smoothly bounded domain in Cn. Then, for every p ∈ ∂D,

we may define the outward unit normal vector of ∂D at p, denoted by ν(p).

When D ⊂⊂ Cn is a bounded Ck-strongly convex domain (k > 2), Lempert in

[Lm1] [Lem 2] showed that a holomorphic mapping φ from ∆ to D is an extremal

mapping (or complex geodesic) of D if and only if it is proper and there exists a

(unique) C(k−1)−- smooth function Pφ : ∂∆ → R+ so that the vector function

ξPφ(ξ)ν(φ(ξ)), initially defined on ∂∆, can be extended to a holomorphic vector

function φ̃ on ∆ (which is called the dual mapping of φ) with 〈φ′, φ̃〉 ≡ 1. The

following lemma is an obvious consequence of this characterization:

Lemma 3.2: Let D1 ⊂ D2 be two bounded C3-strongly convex domains in

Cn. Suppose that ∂D1 ∩ ∂D2 is a piece of hypersurface. If φ ∈ Hol(∆, D1) is a

complex geodesic of D1 so that φ(∂∆) ⊂ ∂D2, then φ is also a complex geodesic

of D2.
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In the next two lemmas, we assume D ⊂⊂ Cn to be a C3-strongly convex

domain.

For each a >0, let Fa denote the set of all complex geodesics φ of D which

satisfy δ(φ(0)) ≥ a. From §7 of [Lm1], we see that there exist two positive constants

C0 and C′0, depending only on D and a, so that for every φ ∈ Fa, it holds that:

(3.1.a) ‖φ(τ1)− φ(τ2)‖ < C0‖τ1 − τ2‖1/2, ‖φ̃(τ1)− φ̃(τ2)‖ < C0|τ1 − τ2|1/2 for

any τ1, τ2 ∈ ∆;

(3. 1.b) C′0 < Pφ < C0.

Starting with these properties, we now prove the following:

Lemma 3.3: There exist two positive constants R1 and R2, depending only

on D and a, so that for every φ ∈ Fa, it holds that R1 < ‖φ̃‖ < R2.

Proof of Lemma 3.3: We note that φ̃ = ξPφ(ξ)ν(φ(ξ)) for ξ ∈ ∂∆. Thus by

applying the maximal principle to ‖φ̃‖, we see that R2 can be chosen to be C0

in (3.1.b). To obtain the other inequality, we suppose not and seek a contradic-

tion. Then there exist a sequence {φk} ⊂ Fa and a sequence {τk} ⊂ ∆ which

approaches some ξ0 ∈ ∆ so that φ̃k(τk) → 0. By (3.1.a) and the Arzela-Ascoli

theorem we can assume, without loss of generality, that {φk} converges uniformly

to some φ ∈ Fa and {φ̃k} converges uniformly to some φ∗ ∈ Hol(∆,Cn). Hence

Pφk
= (ξ−1φ̃kν(φk(ξ))) converges uniformly to some positive continuous function

P∗ defined on ∂∆. Since now φ∗(ξ) = ξP∗(ξ)ν(φ(ξ)) and φ̃(ξ) = ξPφ(ξ)ν(φ(ξ))

we see that

φ∗ =
P∗

Pφ
φ̃

on ∂∆. From the fact that φ̃ 6= 0, it follows easily that P∗
Pφ

is the boundary value

of some holomorphic function defined on ∆. This implies that P∗ = CPφ and

thus that φ∗ and φ differ by a positive constant. That is a contradiction, for

φ∗(ξ0) = limk→∞ φ̃k(τk) = 0 but φ̃(ξ0) 6= 0.

Lemma 3.4: There exists a positive constant C1, depending only on D and a,

such that for every φ ∈ Fa and for any τ1, τ2 ∈ ∆, it holds that ‖φ′(τ1)−φ′(τ2)‖ <

C1|τ1 − τ2|1/2.
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Proof of Lemma 3.4: The argument is based on a careful examination of what

is called the Ck version of the Schwarz reflection principle.

Let S = {(p, T(1,0)
p ∂D) : p ∈ ∂D} and let CPn−1 be the complex pro-

jective space of hyperplanes in Cn. Then by a result of Webster (see [Ab1]),

S ⊂ Cn × CPn−1 is a compact totally real submanifold of maximal dimension .

Let B(R1,R2) = {z ∈ Cn : R1 < ‖z‖ < R2} , and denote by π : Cn×B(R1,R2) →
Cn ×CPn−1 the natural projection, where R1, R2 are as in Lemma 2.3.

We first find two open coverings {Ei}m
i=1 and {Ẽi}m

i=1 of S such that the

following assertions hold for each i:

(3.1.c) Ei ⊂⊂ Ẽi ⊂⊂ Cn ×CPn−1

(3.1.d): There exists a C2-diffeomorphism Ψi : Ẽi → Vi ⊂⊂ C2n−1 so that

Ψi(Ẽi ∩ S) ⊂ R2n−1 ⊂ C2n−1 and Dα(∂Ψi) = 0 on Ẽi ∩ S for all multi-indices α

with ‖α‖ ≤ 1;

(3.1.e) Let Oi = {z ∈ Cn : There exists w ∈ B(R1, R2) so that π(z, w) ∈ Ẽi}.
Then maxz∈Oi

dist(z, ∂D) << 1.

For every φ ∈ Fa, from Lemma 3.3, we can define a holomorphic mapping

φ̂ ∈ Hol(∆,Cn ×B(R1, R2)) by letting φ̂(τ) ≡ (φ(τ), φ̃(τ)). Let

b0 ≡ min
i
{dist

(
∂(π−1(Ẽi), ∂(π−1(Ei))

)

and let Ui ≡ (π ◦ φ̂)−1(Ei). We notice that the boundaries defined here are taken

in the space Cn × B(R1, R2) and the ‘dist’ is inherited from the standard one.

From (3.1.c), we see that b0 >0. Furthermore the following properties are easy to

verify:

(3.1.f) Let Ũi = {τ ∈ ∆ : dist(τ, Ui) <
(

b0
C0

)2

} , where C0 is chosen as in

Lemma 3.3. Then π(φ̂(Ũi)) ⊂ Ẽi (whenever Ui 6= ∅).
(3.1.g): There exists a constant b1 > 0, independent of the choice of φ, so

that for any τ1, τ2 ∈ ∆, if 1 − |τ1| < b1 and |τ1 − τ2| < b1, we may find some Ui,

defined as above, which contains τ1 and τ2.

(3.1.h): There exists a constant b2 >0, independent of the choice of φ, so that

for every τ ∈ ∆ with |τ | < b2, we have τ /∈ ∪iŨi.

In fact, (3.1.f) follows easily from (3.1.a) and the definition of b0, (3.1.h)

follows from (3.1.a) and (3.1.e), while (3.1.g) is a simple application of the Lebesgue
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number lemma and (3.1.a).

We let Ũ∗
i = {τ ∈ C1 : τ−1 ∈ Ũi ∩ ∆}, V ∗

i = {z ∈ C2n−1 : z ∈ Vi},
and Ω̃i = Ũi ∪ Ũ∗

i . Define gi : Ω̃i → Vi ∪ V ∗
i by Ψi ◦ π ◦ φ̂(τ) when τ ∈ Ũi,

and by Ψi ◦ π ◦ φ̂(τ−1) when τ ∈ Ũ∗
i . Consider fi, defined by ∂gi

∂τ
. By the ar-

gument on Page 438 of [Lm1], we can conclude, from (3.1.a), (3.1.d), and the

Hardy-Littlewood theorem, that fi is uniformly bounded and uniformly Hölder -1
2

continuous on Ω̃i with respect to Fa (i.e, there is a constant C, independent of the

choice of φ, so that for every φ ∈ Fa and τ1, τ2 ∈ ∆, the corresponding fi satisfies

‖fi(τ1)− fi(τ2)‖ < C|τ1 − τ2|1/2)

Let

ψi(τ) =
1

2π
√−1

∫

Ω̃i

fi(ξ)
ξ − τ

dξ ∧ dξ.

We then have the following facts:

(3.1.i): ∂ψi

∂τ
= fi;

(3.1.j): ψi is uniformly bounded on Ω̃i with respect Fa ( by (3.1.h) and the

uniform boundedness of fi);

(3.1.k): ∂ψi

∂τ is uniformly Hölder-1
2 continuous on Ωi (by (3.1.a) and Propo-

sition 2.6.40 of [Ab1]). Here U∗
i = {τ ∈ C1 : τ−1 ∈ Ui} and Ωi = Ui ∪ U∗

i

.

Since ψi − gi is holomorphic and uniformly bounded on Ω̃i, it follows, from

(3.1.f) and the Cauchy estimates, that (ψi − gi)′ is uniformly bounded on Ui.

Hence, by (3.1.k), ∂gi

∂τ is uniformly Hölder-1
2 continuous on Ui. So by (3.1.a),

(3.1.d), (3.1.g), and the Cauchy estimates, we can now find a constant C1, de-

pending only on D and a, so that for every φ ∈ Fa and for any τ1, τ2 ∈ ∆ , we

have

‖φ′(τ1)− φ′(τ2)‖ < C1|τ1 − τ2| 12 .

This completes the proof.

Remark: Let F be the set of all complex geodesics φ satisfying

δ(φ(0)) = max
τ
{δ(φ(τ))}.

By making use of the uniform Hölder-1/4 continuity of F [CHL], the above argu-

ment can furthermore be modified to prove the following:
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Proposition 3.1: Let D ⊂⊂ Cn be a Ck-strongly convex domain (k > 2).

If k = ω, then there exists an open neighborhood U of ∆ so that all elements

in F can be extended holomorphically to U; if k < ω, then for any j ≤ k − 2

there exists a constant Cj so that for every φ ∈ F and τ1, τ2 ∈ ∆, it holds that

‖φ(j)(τ1)− φ(j)(τ2)‖ < Cj |τ1 − τ2|1/4.

Another key lemma which we need is the following version of the Fornæss

embedding theorem:

Lemma 3.5: Let D be a bounded pseudoconvex domain in Cn and let p ∈ ∂D

be a strongly pseudoconvex point with at least C2-smoothness. Suppose that

either D has a Stein neighborhood basis or D has a C∞ boundary. Then there

exist a neighborhood U of p, a bounded C2-strongly convex domain Ω in Cn, and

a holomorphic mapping Φ from D to Ω such that

(a): Φ can be extended holomorphically to U with Φ−1(Φ(U ∩D)) = U ∩D;

(b): Φ(U ∩D) ⊂ Ω, Φ(U ∩ Ωc) ⊂ Ωc, and Φ(U ∩ ∂Ω) = Φ(U) ∩ ∂Ω.

Proof of Lemma 3.5: When D has a Stein neighborhood basis, the lemma

is Proposition 1 of [Fn]. So it suffices for us to prove the lemma in case D is a

smooth pseudoconvex domain with p being a strongly pseudoconvex point. The

argument in this situation is also a slight modification of that in [Fn]. In fact, the

only difference is that we now have to make use of Kohn’s global regularity result

for the ∂-equations [Ko2] on smooth pseudoconvex domains to construct a nice

bounded supporting function appearing in line 1−5 of page 533 of [Fn] (this is the

only place we need the global boundary smoothness of D). For the convenience of

the reader, we present the following details:

First, let {w1(z), · · ·, wn(z)} be a local coordinates system on a neighborhood

U of p so that w(p) = 0 and U ∩ ∂D is defined by ρ(w) = Rew1 +
∑n

j=1 ‖wj‖2 +

o(‖w‖2). Let V ⊂⊂ U be a very small neighborhood of p (or w = 0). Choose χ to

be a positive cut-off function with Suppχ ⊂⊂ V and χ(0) = χ(w(p)) = 1. For a

positive number ε, define Dε = {z ∈ Cn : either z ∈ D or z ∈ V with ρ(w(z)) <

εχ(w)}. By the above discussions and (3.4.2.2) of Theorem 3.4.2 in [Kr1], it is easy

to check that when ε is small enough then Dε(⊃ D) is also a smoothly bounded
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pseudoconvex domain. Now when ‖w‖ < λ0 with λ0 << 1, we may assume that

χ(w) < 2 and ρ(w) > Rew1 +1/2
∑n

j=1 |wj |2. Thus for w ∈ Dε ∩{‖w‖ < λ0} , we

have that

Rew1 < ρ(w)− 1/2
n∑

j=1

|wj |2 < εχ(w)− 1/2|w|2 < 2ε− 1/2‖w‖2,

where ‖w‖2 =
∑n

j=1 ‖wj‖2. Hence, for λ << 1, if we let ε = 1
4λ2, then the

following claim holds (see also Lemma 5.2.8 of [Kr1]):

Claim: Let ε, λ, and λ0 as above. Then, when 1 >> λ0 > λ, λ < ‖w‖ < λ0,

and when w ∈ Dε, it holds that Re(w1) < 0.

Now, define a cut-off function ξ(t) : R1 → [0, 1] with ξ(t) = 1 for |t| < λ′ and

0 for |t| > λ′0. Here λ < λ′ < λ′0 < λ0. It thus follows that ω = ∂z(ξ(‖w‖)logw1 is

a well-defined C∞ (0, 1)-form on Dε; for in case ∂z(ξ‖w‖) 6= 0, Rew1 < 0 and thus

log(w1) is well defined (see page 186-187 of [Kr1] for more details on this matter).

Furthermore, it is easy to verify that ∂ω ≡0. Therefore, by a theorem of Kohn

[Ko2], there is a g ∈ C∞(Dε) so that ∂zg = ω.

Define f(z) with f(z) = exp(g + ξ(‖w‖)logw1) for w ∈ Dε ∩ {‖w‖ < λ′0}
and f(z) = exp(g) for w ∈ Dε ∩ {‖w‖ ≥ λ′0}. By the way these objects were

constructed, we can conclude that

(i): f(z) ∈ Hol(Dε) ∩ C(Dε) (see also page 186 of [Kr1]);

(ii): for w close to 0, f(w(z)) = w1f
∗(w) with f∗(0) 6= 0.

We now shrink λ0 and λ (thus also ε) so that

(iii): ‖f∗(w)− f∗(0)‖ < 1/2‖f∗(0)‖ for ‖w‖ < λ0 and w ∈ Dε

(iv): Rew1 < 0 for w ⊂ (D − {p}) ∩ {w : ‖w‖ < λ0}.
Therefore, we can also define the smooth (0, 1)-closed form ω∗ = ∂(ξ(‖w‖)logf ·f−3

on the closure of Dε. Consider the similar equation ∂zg
∗ = ω∗. By Kohn’s

theorem, we obtain again a solution g∗ which is continuous on Dε (actually smooth,

but for our purposes here, all we need is the existence of a bounded solution).

Now, define η∗(z) = exp(g∗f3 + ξ(‖w‖)logf) for w ∈ Dε ∩ {‖w‖ < λ′0} and

η∗(z) = exp(g∗f3) for w ∈ Dε ∩ {w : ‖w‖ ≥ λ′0}. Then we similarly see that

η∗(z) ∈ Hol(Dε) ∩ C(Dε). Moreover, it holds, for w ≈ 0 (or z ≈ p), that η1(w) ≡
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η∗(z)f∗−1(w(p)) = w1 + O(‖w‖3). As was done in [Fn], we now change the

coordinates {w1, · · ·, wn} to the globally defined functions {η1, · · ·, ηn} on Dε

which also serve as the local coordinates near p, where η1 is as above and ηj is

the linear term of the Taylor expansion of wj(z) at z = p(j > 1). Notice that, for

z ∈ D, it still holds that ρ(w(η)) = Reη1 +
∑n

j=1 |ηj |2 +o(‖η‖2) < 0. We therefore

see that Reη1(z) < 0 for z(≈ p) ∈ D − p. Since η1(z) 6= 0 for z ∈ D − p (by

the construction of η1 and the property (iv)), and since η1 is continuous on D, we

therefore conclude that there is a small positive ε0 so that |η1(z) − ε0| > ε0 for

z ∈ D − p. Also, notice that η1 ∈ Hol(Dε) ∩ C(Dε) and η1 is holomorphic near p.

Thus starting from such a supporting function, we can now obtain the Φ in our

lemma by copying the argument of [Fn] from line 6 of page 533 to line 11 of page

536.

We now are ready to prove Theorem 4.

Proof of Theorem 4: Seeking a contradiction, we suppose that there is a

sequence of extremal mappings {φk} of D so that φk(0) → p,
‖(φ′k(0))T ‖
‖(φ′

k
(0))N‖ →∞, but

for each k, φk(∆) ∩ V 6= ∅ for some fixed neighborhood V of p.

Let Ω, U, Φ be as in Lemma 3.5 and let φ∗k = Φ ◦ φk. It is then easy to see

that φ∗k(0) → Φ(p)(∆
= q) and ‖(φ∗′k (0))T ‖

‖(φ∗′
k

(0))N‖ →∞. Construct another strongly convex

domain Ω0, which is contained in Φ(U), so that ∂Ω0 ∩ ∂Φ(D)(⊂ ∂Ω ∩ ∂Φ(D)) is

a piece of strongly convex hypersurface, and find a sequence of complex geodesics

{ψk} of Ω with ψk(0) = φ∗k(0) and ψ′k(0) = λkφ∗′k (0)(λk > 0) for each k. We

claim that ψk(∆) → p as k → ∞, thus ψk(∆) ⊂ Ω0 for k >>1. In fact, let

{σk} ⊂ Aut(∆) be such that ψ∗k
∆
=ψk ◦ σk ∈ F and ψ∗k(τk) = ψk(0) for some

{τk} ⊂ (0, 1). If ψk(∆) does not reduce to q as k → ∞, it then follows easily

from the assumptions that, for infinitely many k, τk → 1 and {ψ∗k} ⊂ Fa for some

a > 0. By a normal family argument, we may assume, without loss of generality,

that ψ∗k → ψ ∈ Fa (see Proposition 4 of [CHL]). Hence, from Lemma 3.4 and the

above hypotheses, we obtain ψ′(1) ∈ T(1,0)
q ∂Ω. This is a contradiction [Lm1].

By Lemma 3.1, we see that ψk is also a complex geodesic of both Ω0 and

Φ(D) when k >> 1. Hence, by making use of the monotonicity property of the
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Kobayashi metric and this fact, we have for k>>1 that

κΦ(D)(φ∗k(0), φ∗′k (0)) ≤ κD(φk(0), φ′k(0)) = 1

and

κΦ(D)(φ∗k(0), φ∗′k (0)) = κΩ0(φ
∗
k(0), φ∗′k (0))

= κΦ−1(Ω0)(φk(0), φ′k(0)) ≥ κD(φk(0), φ′k(0)) = 1.

Thus,

κΦ(D)(φ∗k(0), φ∗′k (0)) = 1.

On the other hand, since κΦ(D)(φ∗k(0), λkφ∗′k (0)) = 1 (because ψk is a complex

geodesic of Φ(D)), we obtain λk = 1. So we can conclude that φ∗k is a complex

geodesic of Ω when k>>1. By the uniqueness property of complex geodesics on

strongly convex domains [Lm1], we therefore have φ∗k = ψk for k>>1. However,

from the above argument this implies that φ∗k(∆) → q as k → ∞. That is a con-

tradiction and hence completes the proof for the second assertion of our theorem.

To conclude the proof, we let ε be small enough so that we can choose V in

the theorem to be Φ−1(Ω0). Suppose that φ is an extremal mapping of D with

φ(∆) ⊂ V . Then by Lemma 3.1, it is also an extremal mapping for V, thus a

complex geodesic of V for V is biholomorphic to the strongly convex domain Ω0.

By making use of Lemma 3.2, we see that Φ◦φ is a complex geodesic of Ω. Now, by

the monotonicity property for the Kobayashi distance, we have, for any τ1, τ2 ⊂ ∆,

that

K∆(τ1, τ2) = KV (φ(τ1), φ(τ2)) = KΩ(Φ ◦ φ(τ1),Φ ◦ φ(τ2))

≤ KΦ(D)(Φ ◦ φ(τ1),Φ ◦ φ(τ2)) ≤ KD(φ(τ1), φ(τ2)) ≤ K∆(τ1, τ2).

Therefore φ is a complex geodesic of D. The proof of Theorem 4 is complete.

We conclude this section by presenting several corollaries of Theorem 4.

Corollary 3.1: Let D and p as in Theorem 4. Suppose that φ is a complex

geodesic of D. If there is a sequence {τk} ⊂ ∆ converging to 1, such that φ(τk) → p,
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then φ′ is bounded near 1 ∈ ∂∆. Thus φ admits a Lipschitz-1 continuous extension

near 1.

Proof of Corollary 3.1: Let φ be as in the corollary. Then from the argument

in Theorem 1 of [FR], we easily see that φ is continuous at 1.

By well-known estimates of the Kobayashi metric near a strongly pseudo-

convex point (see [Ala], for example), we may find a neighborhood U of p and

a constant C so that for every z ∈ U ∩ D and X ∈ T(1,0)
z D, it holds that

κD(z, X) ≥ C‖X‖N/δ(z). Meanwhile, we recall that φ is also an infinitesimal com-

plex geodesic (see [Ab1]), i.e., κD(φ(τ), φ′(τ)) = κ∆(τ, 1) = 1/(1 − |τ |2). Hence,

from the fact that δ(φ(τ)) ≈ 1−|τ |2 ([Ab1]), it follows easily that ‖(φ′(τ))N‖ < C

near 1. To finish the proof, it now suffices to show that ‖(φ′(τ))T ‖ is bounded

near 1. Suppose this is not the case. Then there exists a sequence {τk} converging

to 1, so that ‖(φ′(τk))T ‖/‖(φ′(τk)N‖ goes to the infinity as k → ∞. Let φk be a

reparametrization of φ so that φk(0) = φ(τk) for each k. From Theorem 4, it then

follows that φk(∆)(= φ(∆)) → p. This is obviously a contradiction.

We recall that a subset E of a bounded domain D is called a holomorphic

retract if there is a h ∈ Hol(D, D) with h2 = h so that h(D) = E. An obvious ob-

servation is that, for a holomorphic retract E, it holds that KE(z1, z2) = KD(z1, z2)

for any z1, z2 ∈ E. Combining this fact with Corollary 3.1 , we have the following

Corollary 3.2: Let D and p be as in Theorem 1. Suppose that E is a simply

connected one dimensional holomorphic retract of D with p ∈ E, and suppose

that φ is a biholomorphic mapping from ∆ to E with φ(τk) → p for some τk → 1.

Then φ is Lipschitz-1 continuous near 1.

Remark : From the proof, we can actually see that Theorem 4, Corollary 3.1,

and Corollary 3.2 hold for all bounded domains which possess the local embedding

property in Lemma 3.5. In particular, we can replace D by the bounded domain

of the form D −K, where D is as in Theorem 1 and K is a compact subset of D.
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3.2. A non-degeneracy property of extremal mappings–Proof of

Theorem 5:

The purpose of this section is to prove Theorem 5. The immediate application

to the proof of Theorem 6 is also presented.

Theorem 5: Let D be a bounded domain in Cn+1 and p ∈ ∂D a C3 (α > 0)

strongly pseudoconvex point. Then there is a small neighborhood U of p and a

constant C depending only on U so that for any extremal mapping φ ∈ Hol(∆, D)

of D with φ(∆) ⊂ U ∩D, it holds that ‖(φ′(τ))N‖ ≤ Cη(φ)‖(φ′(τ))T ‖. Here, as

before, ‖ · ‖ stands for the euclidean norm in Cn and η(φ) = maxξ∈∆ ‖φ(ξ)− p‖.

Our point of departure is the characterization of extremal mappings in terms

of their Euler-Lagrange equations (see [Lm1] or [P]), which leads to the study

of their corresponding meromorphic disks attached to a totally real submanifold.

Since we are only interested in the extremes near a boundary point, the poles

of the meromorphic disks can be easily controlled. Using the technique of the

Riemann-Hilbert problem, we then obtain a family of non-linear (but compact)

operators, whose fixed points are exactly the boundary values of our meromorphic

disks. Finally, a careful analysis of those operators completes the proof of Theorem

5.

Before proceeding, we recall again that an extremal mapping φ of D is a

holomorphic map from the unit disk ∆ to D so that for any ψ ∈ Hol(∆, D) with

ψ(0) = φ(0) and ψ′(0) = λφ′(0) (where, as usual, λ denotes a real number), it

holds that |λ| ≤ 1. A holomorphic mapping from ∆ to D is called a complex

geodesic in the sense of Vesentini if it realizes the Kobayashi distance between

any two points on its image (see [Ve]). For a bounded convex domain, extremal

mappings coincide with complex geodesics by a result of Lempert ([Lm1]).

Proof of Theorem 5: We let D ⊂⊂ Cn+1 and p ∈ ∂D a C3 strongly pseu-

doconvex point. We then need to show that for any extremal mapping φ of D,

when φ(∆) is close enough to p, it holds that ‖(φ′(0))N‖ = O(η(φ))‖(φ′(0))T ‖.
For this purpose, we start by constructing a C3 strongly convex domain Ω ⊂ D

with ∂Ω∩∂D being a piece of hypersurface near p. More precisely, here we should
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say that Ω is the biholomorphic image of a C3 strongly convex domain. However,

we will not make this distinction in what follows; for all objects involved in this

section are biholomorphically invariant. Let us assume that φ(∆) ⊂ Ω. It then

follows from the monotonicity of the Kobayashi metric that φ is also an extremal

mapping of Ω (thus a complex geodesic of Ω). Now we recall a result of Lempert

[Lm1], which asserts that φ is proper and has a C2− (α ∈ (0, 1)) smooth extension

up to ∂∆. Write ν(q) for the unit outward normal vector of Ω at q. The key fact

(see [Lm1] or [P]) for our later discussion is that φ satisfies the Euler-Lagrange

equation in the sense that there exists a C2− positive function P on ∂∆ so that

φ̃(ξ) = Pξν(φ(ξ)), initially defined on ∂∆, can be holomorphically extended to ∆

(this φ̃ is called the dual mapping of φ).

Since extremal maps are preserved under holomorphic changes of variables,

we can assume, without loss of generality, that p = 0 and Ω is locally defined by

an equation: ρ(z) = z̄n+1 + zn+1 + h(z, z̄) with h(z, z̄) =
∑n

j=1 |zj |2 + o(‖z‖2).
Moreover, a simple application of the implicit function theorem tells that we can

make h(z, z̄) depending only on z′ = (z1, · · · , zn) and yn+1 = Imzn+1.

Write ν = (v1, . . . , vn+1) and define

W =

{
w = (z, ω) ∈ C2n+1 : z ∈ ∂Ω, z ≈ 0, ω =

(
v1(z)/vn+1(z), . . . , vn(z)vn+1(z)

)}
.

Then, by an easy calculation, it can be seen that W is defined near 0 by the

equation: w = (z′, iyn+1, z̄′)+O(‖z‖2). Thus it follows that W is totally real near

0 (this is called the Webster lemma). In fact, the real tangent space of W at 0 is

spanned by {T1,r, . . . , Tn,r, Tn+1, T1,i, . . . , Tn,i}, where, for j ≤ n,

Tj,r = (0, . . . , 1, · · · , 1, . . . , 0),

Tj,i = (0, . . . ,
√−1, · · · ,−√−1, . . . , 0),

and

Tn+1 = (0, . . . ,
√−1, . . . , 0).
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Write

A0 =




T1,r

T2,r

...
Tn+1

...
Tn−1,i

Tn,i




=




1 0 . . . 0 1
0 1 . . . 1 0
...

...
...

...
...

. . . . . .
√−1 . . . . . .

...
...

...
...

...
0

√−1 . . . −√−1 0√−1 0 . . . 0 −√−1




and let W ∗ = WA−1
0 = {wA−1

0 : w ∈ W}. Then we have that T0W
∗ = R2n+1 ⊂

C2n+1. From the implicit function theorem, W ∗ can thus be defined by an equa-

tion: Y = H(X) with X + iY ∈ C2n+1 and H(0) = dH(0) = 0.

We now return to the extremal mapping φ (of D and Ω). Assume that φ(∆)

is close enough to 0 so that Φ(ξ) = (φ(ξ), φ∗(ξ)), defined by

(
φ(ξ), v1(φ(ξ))/vn+1(φ(ξ)), . . . , vn(φ(ξ))/vn+1(φ(ξ))

)
,

stays on W for ξ ∈ ∂∆. Write Φ∗(ξ) = Φ(ξ)A−1
0 . Then we have that Φ∗(∂∆) ⊂

W ∗.

Lemma 3.6: There exists a σ ∈ Aut(∆) so that Φ∗ ◦ σ has a holomorphic

extension to ∆ \ {0}. Furthermore, 0 ∈ ∆ is a simple pole of Φ∗ ◦ σ.

Proof of Lemma 3.6: Write φ̃, the dual mapping of φ, as (φ̃1, . . . , φ̃n+1). We

then see that ˜φn+1(ξ) = ξP(ξ)vn+1(φ(ξ)) for ξ ∈ ∂D and some positive function

P. Since vn+1(φ(ξ)) ≈ 1, we can conclude that the winding number of φ̃n+1 is 1.

So it just has a simple zero on ∆, say a. Take σ ∈ Aut(∆) with σ(0) = a. Then

φ̃n+1 ◦ σ has a simple zero at 0 ∈ ∆. Thus Φ ◦ σ can be extended to ∆ as

(
φ ◦ σ,

φ̃1 ◦ σ

φ̃n+1 ◦ σ
, . . . ,

φ̃n ◦ σ

φ̃n+1 ◦ σ

)
,

which is obviously meromorphic on ∆ with a simple pole at 0. Since Φ∗ differs

from Φ only by a linear transformation, we see that the proof of Lemma 3.6 is

complete.
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For simplicity, let us still write Φ∗(ξ) = X(ξ) + iY (ξ) (ξ ∈ ∂∆)for Φ∗ ◦ σ

in what follows. Note that Φ∗(∂∆) ⊂ M∗. It follows that Y (ξ) = H(X(ξ))

(ξ ∈ ∂∆). Let ξ = eiθ and take the derivative with respect to θ. We then see that
dY
dθ = dX

dθ
∂H
∂X , where ∂H

∂X is the Jacobian of H. So,

dΦ∗

dθ
=

dX

dθ
+ i

dY

dθ
=

dX

dθ
(I2n+1 + i

∂H

∂X
),

or

(3.2.1) Im(
dX

dθ
+ i

dY

dθ
)(I2n+1 + i

∂H

∂X
)−1 = Im

dX

dθ
= 0.

Here I2n+1 denotes the identical (2n+1)×(2n+1) matrix and ‖g‖ = maxξ∈∂∆ |g(ξ)|
for each function g in the Banach space L∞(∂∆). An easy fact is that ‖X(eiθ)‖ <<

1 when η(φ) ≈ 0.

Consider the Riemann-Hilbert problem

(3.2.2) Im
(

Q(X, ξ)(I2n+1 + i
∂H

∂X
)−1

)
= 0, ξ ∈ ∂∆,

with Q(X, ξ) holomorphic on ξ ∈ ∆, L2 integrable on ∂∆, and Re(Q(X, 0)) =

I2n+1.

Lemma 3.7: When ‖X‖ << 1, then (3.2.2) has a unique solution Q.

Moreover, Q−1(X, ξ) exists and ‖Q(X, eiθ) − I2n+1‖2, ‖Q−1(X, eiθ) − I2n+1‖2 =

O(‖X‖). Here, we write ‖ ◦ ‖2 for the L2 norm of the Hilbert space L2(∂∆).

Proof of Lemma 3.7: Write (I2n+1 + i∂H(X)
∂X )−1 = e1 + ie2 and Q(X, ξ) =

q1(X, ξ) + iq2(X, ξ). Then we see that q1(X, 0) = I2n+1, ‖e2(X, eiθ)‖2 = O(‖X‖),
and (3.2.2) is equivalent to

(3.2.3) q1e2 + q2e1 = 0.

Since q1 = −H(q2) + I2n+1, where H is the standard Hilbert transform on ∂∆,

(3.2.3) can therefore be written as

−H(q2)e2e
−1
1 + q2 = −e2e

−1
1 .
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So, when ‖X‖ << 1, it follows that q2 = (−H(◦)× (−e2e
−1
1 ) + I2n+1)−1(−e2e

−1
1 )

and

‖q2‖2 ≤ 1
(1− ‖e2e

−1
1 ‖2)

‖e2e
−1
1 ‖2 = O(‖X‖).

Thus Q is uniquely determined and ‖Q(X, ξ) − I2n+1‖2 ≤ ‖q2‖2 + ‖H(q2)‖2 =

2‖q2‖2 = O(‖X‖).
We now consider the following equation with respect to Q∗:

Im
(

(I2n+1 + i
∂H(X)

∂X
)Q∗(X, ξ)

)
= 0, with Re(Q∗(X, 0)) = I2n+1.

Similarly, we can obtain a unique solution with ‖Q∗(X, ξ) − I2n+1‖2 = O(‖X‖).
Since the holomorphic matrix Q×Q∗ has real values on ∂∆, it thus follows from the

Schwarz reflection principle that Q(X, ξ)×Q∗(X, ξ) = C(X), some real constant

matrix. Here, we remark that, to apply the Schwarz reflection principle, we need

obtain Q(X, ξ)Q∗(X, ξ) ∈ L`(∂∆) for some ` > 1. But this can be easily seen

by solving the equation (3.2.2) in the space L`(∂∆) with ` >> 1. We now notice

that ‖Q(X, 0) − I2n+1‖ ≤ 1
2π

∫
∂∆
‖Q(X,ξ)−I2n+1

ξ dξ‖ = O(‖X‖) and ‖Q∗(X, 0) −
I2n+1‖ = O(‖X‖) as ‖X‖ → 0 (by the Hölder inequality). We see, especially,

that C(X) = Q(X, 0)Q∗(X, 0) = I2n+1 + O(‖X‖) as ‖X‖ → 0. Hence C(X)

is invertible in case ‖X‖ << 1. This completes the proof of Lemma 3.7; for

Q−1(X, ξ) = C−1(X)Q∗(X, ξ).

Now, by making use of Lemma 3.7, (3.2.1) becomes

Im
(

dX

dθ
+ i

dY

dθ

)
Q−1(X, ξ) = 0, for ξ ∈ ∂∆,

i.e,

Re
(

ξ
dΦ∗

dξ
Q−1(X, ξ)

)
= 0.

Note that ξ dΦ∗
dξ Q−1(X, ξ) is holomorphic on ∆\{0} and has at most a simple pole

at 0. We can conclude that

ξ
dΦ∗

dξ
Q−1(X, ξ) =

α

ξ
− ᾱξ + iβ,
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where α is a constant complex vector and β is a constant real vector (with respect

to ξ, but depending only on X). In fact, since Φ(ξ) = Φ∗ × A0 = (φ, φ∗∗

ξ ) with

φ∗∗ = ξφ∗ holomorphic on ∆ by Lemma 3.6, it follows that:

(3.2.4) α = lim
ξ→0

ξ2 dΦ∗

dξ
Q−1(X, ξ) = (0,−φ∗∗(0))A−1

0 Q−1(X, 0).

Write R(X, ξ) = Q(X, ξ)(I2n+1 + i∂H(X)
∂X )−1 for ξ ∈ ∂∆ (we note that R is

real). By Lemma 3.7, it then holds that ‖R − I2n+1‖2 = O(‖X‖). Therefore, the

Hölder inequality implies that
∫ 2π

0
R(X, ξ)dθ = 2πI2n+1 + O(‖X‖) is invertible

when ‖X‖ << 1. On the other hand, we have

dX

dθ
=

dΦ∗

dθ
(I2n+1 + i

∂H(X)
∂X

)−1 = iξ
dΦ∗

dξ
(I2n+1 + i

∂H(X)
∂X

)−1

= i(
α

ξ
− ᾱξ + iβ)Q(X, ξ)(I2n+1 + i

∂H(X)
∂X

)−1 = i(
α

ξ
− ᾱξ + iβ)R(X, ξ).

Integrating both sides with respect to θ, we obtain

0 =
∫ 2π

0

(
α

ξ
− ᾱξ + iβ)R(X, ξ)dθ.

Thus,

(3.2.5) β =
√−1

(∫ 2π

0

(
α

ξ
− ᾱξ)R(X, ξ)dθ

)(∫ 2π

0

R(X, ξ)dθ

)−1

.

Here, as usual, we identify ξ ∈ ∂∆ with eiθ. In particular, we easily see that

α, β = O(‖X‖); for by the Cauchy formula and the Hölder inequality, it holds

that φ∗∗(0) = O(‖X‖) (since ‖φ∗ ∗ (ξ)‖ with ξ ∈ ∂∆ is of quantity O(‖X‖)).
Consider now the following differential equation with parameters γ ∈ Cn and

X0 ∈ R2n+1:

(3.2.6)
dX(ξ, γ,X0)

dθ
= i(

α(X, γ)
ξ

− α(X, γ)ξ + iβ(X, γ))R(X, ξ), with X(1) = X0,

or

(3.2.6)′ X(ξ, γ,X0) = i

∫ θ

0

(
α(X, γ)

ξ
− α(X, γ)ξ + iβ(X, γ))R(X, ξ)dθ + X0,
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where ξ = eiθ,

(3.2.7) α(X, γ) = (0, γ)A−1
0 Q−1(X, 0),

and β(X, γ) is given by (3.2.5).

Lemma 3.8: For any extremal mapping φ with φ(∆) ≈ 0, there correspond

an automorphism σ of ∆, a γ ≈ 0, and an X0 ≈ 0 so that the previously defined

X is a solution of (3.2.6). Conversely, for any γ, X0 ≈ 0, (3.2.6) can be uniquely

solved, and each of its solutions gives an extremal mapping φ of Ω with φ(∆) ≈ 0

and the last component of its dual mapping having a simple pole at 0. Moreover,

the solutions of (3.2.6) are uniformly Hölder-1
2 continuous with respect to the

parameters α and γ. In fact, denoting by ‖ ◦ ‖ 1
2

the Hölder-1
2 norm in the Banach

space C
1
2 (∂∆), defined by

‖g‖ 1
2

= ‖g‖+ sup
ξ1,ξ2

|g(ξ1)− g(ξ2)|
|ξ1 − ξ2| 12

, with g ∈ C
1
2 (∂∆),

then for each solution X of (1.5), we have ‖X‖ 1
2

= O(‖X‖).

Proof of Lemma 3.8: The first part of the lemma follows from the above

arguments.

We now present the proof of the last part of the lemma. To this aim,

let X(ξ, γ,X0) be a solution of (3.2.6) with ‖X‖ << 1 and let Φ∗(ξ, γ,X0) =

X(ξ, γ,X0) + iH(X(ξ, γ,X0)). Then we know from (3.2.6) that

dΦ∗(ξ, γ,X0)
dξ

=
(

α(X, γ)
ξ2

− α(X, γ) + iβ(X, γ)
1
ξ

)
Q(X, ξ).

So (3.2.4) still holds. Notice that Φ∗ must have a meromorphic extension to ∆

(with at most a simple pole at the origin ). Using the Cauchy formula and the

Hölder inequality, we know from (3.2.4) that α and thus β (by (3.2.5)) are of

O(‖X‖). Now we note that ‖R‖2 = O(1) and

‖X(eiθ1 , γ,X0)−X(eiθ2 , γ,X0)‖ ≤ ‖
∫ θ2

θ1

(
α(γ)

ξ
− α(γ)ξ + iβ(γ))R(X, ξ)dθ‖
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≤ C(‖α‖+ ‖β‖)
∫ θ2

θ1

‖R(X, ξ)‖dθ ≤ C(‖α‖+ ‖β‖)‖R‖2‖θ1 − θ2‖1/2

= O(‖X‖)‖θ1 − θ2‖1/2.

It therefore follows that

sup
ξ1,ξ2

‖X(ξ1, γ,X0)−X(ξ2, γ,X0)‖
|ξ1 − ξ2|1/2

= O(‖X‖).

Thus, the Hölder -1
2 norm of X,

‖X‖ 1
2

= ‖X‖+ sup
ξ1,ξ2

‖X(ξ1, γ,X0)−X(ξ2, γ,X0)‖
|ξ1 − ξ2|1/2

,

is bounded by C‖X‖ with some constant C independent of γ and X0.

It remains to prove the existence of the solutions of (3.2.6)and study their

behavior. For this purpose, we first notice that, by making use of the just

obtained result and by solving (3.2.2) in the Hölder-1
2 space C

1
2 , we see that

the holomorphic matrix Q(X, ξ) is also uniformly Hölder-1
2 continuous up to

the boundary. Moreover it can be similarly seen that ‖Q − I2n+1‖ 1
2

and thus

‖R(X, ξ)− I2n+1‖ 1
2

= O(‖X‖). Now consider the operator

F : C
1
2 (∂∆)×Cn ×R2n+1 → C

1
2 (∂∆);

F (X, γ,X0) = i

∫ θ

0

(
α(X, γ)

ξ
− α(X, γ)ξ + iβ(X, γ))R(X, ξ)dθ + X0.

From the above discussions, it follows that in case γ, and X0 ≈ 0, we then have

dXF (0) ≈ 0. Hence, by the implicit function theorem in the Banach space, (3.2.6)

and thus (3.2.6)′ can be uniquely solved for small γ and X0. Now, for each solution

X(ξ, γ,X0), let Ψ∗(ξ) = X(ξ, γ,X0) + iH(X(ξ, γ,X0)). Then

dΨ∗

dξ
=

(
α

ξ2
− ᾱ +

iβ

ξ

)
Q(X, ξ).

Denote by (ψ, ψ∗) = Ψ∗A0, where ψ maps ∂∆ to Cn+1. It follows easily that

(3.2.7)′ ψ′ξ = (
α(X, γ)

ξ2
− α(X, γ) + iβ(X, γ)

1
ξ
)Q(X, ξ)B.
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Here we write B for the (2n + 1) × (n + 1) matrix, formed by the first (n+1)

columns of A0. Noting that α(X, γ)Q(X, 0)B = (0, γ)A−1
0 B = 0, we see that

p = 0 can be at most a simple pole of ψ′. Since ψ is well-defined on ∂∆, we can

conclude that ψ has a holomorphic extension to ∆. Meanwhile, it can be verified

that ψ(∂∆) ⊂ ∂D and ψ satisfies the Euler-Lagrange equation. We thus conclude

that ψ is an extremal map of Ω (and of D, in fact)([Lm1], Theorem 4 of the last

section) with the property described in the lemma. The proof of Lemma 3.8 is

complete.

We now are in a position to finish the proof of Theorem 5. For the sake

of brevity, we retain the above notation and assume that σ in Lemma 3.6 is the

identity.

Let φ be an extremal map of D with φ(∆) close to 0. First, we notice that

both sides in (3.2.7)′, with ψ being replaced by φ, are holomorphic on ∆ \ {0}.
We therefore have

φ′(ξ) =
(

α(γ)
ξ2

− α(γ) + iβ(γ)
1
ξ

)
Q(X, ξ)B,

for ξ ∈ ∆\{0}. Writing Q1(X, ξ) = Q(X, ξ)−Q(X, 0) and Q2(X, ξ) = Q1(X, ξ)−
Q′ξ(X, 0)ξ, we then obtain

(3.2.8) φ′ξ =
(

αQ2(X, ξ)
ξ2

− α(γ)Q(X, ξ) + iβQ1(X, ξ)
1
ξ

)
B;

for φ is holomorphic on ∆.

Lemma 3.9: We have the estimates Q1(X,ξ)
ξ = O(‖X‖) and Q2(X,ξ)

ξ2 =

O(‖X‖) as ‖X‖ → 0.

Proof of Lemma 3.9: From the definition, we see that Q1(X,ξ)
ξ and Q2(X,ξ)

ξ2

are holomorphic on ∆. So, by the maximal principle, we have only to show that

they converge uniformly to the 0-matrix at the rate of ‖X‖, when ξ ∈ ∂∆ and

‖X‖ → 0. But this follows obviously from the facts that Q(X, ξ) = I2n+1+O(‖X‖)
and Q′ξ(X, 0) = O(‖X‖) (by the Cauchy formula and Hölder inequality).

73



Note that α = (0, γ)A−1
0 Q(X, 0) = (0, γ)A−1

0 + O(‖γ‖‖X‖) and β = O(‖γ‖)
by (3.2.5). It can be verified that (3.2.8) may be written as

1
‖γ‖φ′(ξ) = − (0, γ)

‖γ‖ A−1
0 ×B + o(‖X‖),

as ‖X‖ → 0. Now a direct computation shows that

A−1
0 = 1/2




1 0 . . . 0 −i
0 1 . . . −i 0

. . . . . . . . . . . . . . .

. . . . . . −2i . . . . . .

. . . . . . . . . . . . . . .
0 1 . . . i 0
1 0 . . . 0 i




.

So, writing γ
‖γ‖ = (a1, . . . , an), we then have

1
‖γ‖φ′(ξ) = − (0, γ)

‖γ‖ A−1
0 ×B + O(‖X‖) = −(an, an−1, . . . , a1, 0) + O(‖X‖),

when ‖X‖ → 0. Hence, we obtain

|φ′n+1(ξ)|
‖φ′(ξ)‖ = O(‖X‖),

and
|(φ′1(ξ), . . . , φ′n(ξ))|

‖φ′(ξ)‖ = 1 + O(‖X‖).

Since
‖(φ′(ξ))N‖
‖(φ′(ξ))‖ =

|φ′n+1(ξ)|
‖φ′(ξ)‖ + O(‖X‖)

and
‖(φ′(ξ))T ‖
‖φ′(ξ)‖ =

|(φ′1(ξ), . . . , φ′n(ξ))|
‖φ′(ξ)‖ + O(‖X‖) = 1 + O(‖X‖),

we finally conclude that

‖(φ′(ξ))N‖ = O(‖X‖)‖(φ′(ξ))T ‖, for ξ ∈ ∆,

as ‖X‖ → 0. This completes the proof of Theorem 5; for ‖X‖ ≈ η(φ).

74



We conclude this section by proving Theorem 7.

Theorem 7: Let D be a bounded C3 strongly convex domain in Cn with α >

0. For any given p ∈ ∂D and complex vector v ∈ T(1,0)Cn, but not in T(1,0)
p ∂D,

there exists an extremal mapping φ so that φ(1) = p and φ′(1) = λv for some real

number λ (this φ then must be uniquely determined up to an automorphism of ∆

according to Lempert [Lm1]).

Proof of Theorem 6: Let D ⊂⊂ Cn be a C3 strongly convex domain and

p ∈ ∂D. For any complex vector v, which is not contained in T
(1,0)
p ∂D, we then

need to find an extremal mapping of D so that φ(1) = p and φ′(1) is different from

v by a complex number. To this end, we choose a sequence {zj} ⊂ D converging

to p and choose a sequence of normalized extremal mappings {φj} ⊂ F(D) so that

for each j, it holds that φj(τj) = zj with some τj ∈ (0, 1) and φ′j(τj) = λjv with

λj ∈ C. Since v is independent of j and is not contained in the complex tangent

space of ∂D at p, it follows from Corollary 3, that infj φj(∆) > 0. In light of

Lemma 3.4, we therefore see that there is a subsequence of {φj}, which converges

to an extremal mapping φ in the topology of C1(∆). Noting that τj → 1, we can

thus conclude that φ′(1) = λv for some λ ∈ C. The proof is complete.

§ 3.3 Regularity of holomorphic retracts and iterates of holomorphic

mappings–Proof of Theorem 3:

In this section, we will focus on the proof of Theorem 3. We will make

decisive use of Theorems 4 and 5. The key step, as mentioned in §1.2, is to prove

the following fixed point theorem:

Theorem 3.1: Let D ⊂⊂ Cn be a contractible strongly pseudoconvex do-

main with C3 boundary and let M be a holomorphic retract of D. Suppose that

f ∈ Hol(M, M) is elliptic, i.e, no subsequence of {fk} diverges to the boundary of

M . Then f has a fixed point in M .

The main idea of the proof of this theorem is to obtain certain regularity

results concerning holomorphic retracts so that the Lefschetz fixed point theorem
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can be applied. The argument will be carried out through several propositions,

which are of interest in their own right.

Let M ⊂ D be a holomorphic retract.We first recall that the Kobayashi

metric and the Kobayashi distance of M are the same as those inherited from D.

Another useful result regarding holomorphic retracts is a theorem of Rossi (see

[Ab1] for example), which states that all holomorphic retracts of D are closed

complex sub-manifolds of D.

We now start with Proposition 3.2, which will play a crucial role in the whole

discussion.

Proposition 3.2: Let D ⊂⊂ Cn be either a smooth pseudoconvex domain

or a taut domain with a Stein neighborhood basis. Let p ∈ ∂D be a strongly

pseudoconvex point with at least C3 smoothness. Suppose that M ⊂ D is a

holomorphic retract with complex dimension greater than 1 and suppose that

p ∈ ∂M . Then for any neighborhood U of p, there is a C2− complex geodesic φ

of D with φ(∆) ⊂ U ∩M and φ(1) = p.

Proof of Proposition 3.2: Choose a sequence {zj} ⊂ M converging to p and

define

tj = sup
v∈T

(1,0)
zj

M

‖vN‖
‖vT ‖ .

Then we first claim that infj(tj) > 0, i.e, M intersects ∂D transversally at p. If

that is not the case, we may just assume that tj → 0. Then we let

Mj

= ∪{φ(∆) : φ is extremal with respect to D, φ(0) = zj , and φ′(0) ∈ T (1,0)
zj

M}.

We first note that Mj is a non-empty set by the tautness of D. In light of the

preservation principle (Theorem 4), we see that, for every C3 strongly convex

domain Ω ⊂ D with ∂Ω ∩ ∂D being a piece of hypersurface near p, when j >> 1,

it holds that tj << 1 and each φ in the definition of Mj stays in Ω and thus

Mj ⊂ Ω. Therefore each φ, described in the definition of Mj , is also an extremal

mapping of Ω. Now, we notice the tautness of M and the uniqueness property
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of extremal mappings in Ω. We see, by the fact that each extremal map of M is

also extremal with respect to D, that Mj is also a subset of M . We now need to

use Lempert’s spherical representation Ψj(zj , ◦) of Ω with the base point zj , i.e,

we define the map Ψj(zj , ◦) from the closed unit ball Bn to Ω̄ by Ψj(zj , 0) = zj

and Ψj(zj , b) = ψzj (b, ‖b‖) for each b ∈ Bn. Here ψzj (b, ξ) stands for the unique

extremal mapping of Ω with ψzj (b, 0) = zj and ψ′zj
(b, 0) = λb for some positive λ.

Writing E = {v ∈ T
(1,0)
zj M : ‖v‖ ≤ 1}, we then get Mj = Ψj(E). Notice that Ψj

is a homeomorphism (in fact, it is a C2− diffeomorphism on Bn \{0}, as showed in

[Lm2]) and notice that E is a closed submanifold of Bn with real dimension equal

to 2 dimC M . We therefore see that Mj is a closed open subset of M . From the

connectedness of M (since all domains in this thesis are automatically assumed to

be connected), it hence follows that M = Mj . That is a contradiction; for Ω can

be made arbitrarily small.

So, there is an ε0 > 0 such that tj > ε0 for every j >> 1. Pick two independent

unit vectors v1 and v2 in the complex tangent space of M at zj . By the above claim

and by passing to a simple linear combination, we may assume that (v1)N = 0

and ‖(v2)N‖ > ε0‖(v2)T ‖. Let v(t) = v1+tv2
‖v1+tv2‖ . Then it is easy to see that

‖(v(t))N‖
‖(v(t))T ‖ =

‖t(v2)N‖
‖(v1)T + t(v2)T ‖ ,

can be made to be any number between 0 and ε0 by just varying t.

To finish the proof of the proposition, we let U be a small neighborhood of p

and construct a C3 strongly convex domain Ω ⊂ D∩U with ∂Ω∩∂D being a piece

of hypersurfaces near p. Again, by making use of Theorem 4, for j >> 1 and some

ε << 1, we can find a complex geodesic φj of D with φ(0) = zj , φ′(0) ∈ T
(1,0)
zj M ,

φj(∆) ⊂ Ω, and ‖(φ′j(0))T ‖ = ε‖(φ′j(0))N‖. As argued in Theorem 6, since ε is

independent of j, after a normalization, Theorem 5 indicates that a subsequence

of {φj} will converge to a complex geodesic φ of D (and also Ω) in the topology of

C1. Noting that φj(∆) ⊂ M for each j, we thus conclude that φ(∆) ⊂ M ∩Ω and

φ(1) = p. Finally, the regularity of φ follows from the reflection principle [Lm1].

We now turn to the regularity result for holomorphic retracts.
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Proposition 3.3: Let D ⊂⊂ Cn be either a smooth pseudoconvex domain

or a taut domain with a Stein neighborhood basis. Suppose that p ∈ ∂D is a

strongly pseudoconvex point with Ck smoothness (k > 2) and suppose that M is

a holomorphic retract of D with complex dimension greater than 1. If p ∈ M ,

then M is a complex submanifold with a C(k−1)− smooth boundary near p.

Proof of Proposition 3.3: As before, we first construct a small Ck strongly

convex domain Ω with ∂D∩∂Ω being an open subset of ∂Ω near p. By Proposition

3.2, we have a complex geodesic φ of D, M , and Ω, staying close to p , and

with φ(1) = p. Let z = φ(0) and v0 = φ′(0)
‖φ′(0)‖ . By Theorem 5, it holds that

‖(φ′(0))N‖ << ‖(φ′(0))T ‖. Hence, from Theorem 4, it follows that all extremal

mappings of D starting from z and with the initial velocity close to v0 should also

stay in Ω. To be more precise, by shrinking φ if necessary, there exists a small

ε > 0 so that, for each extremal mapping ψ with ψ(0) = z and ‖ ψ′(0)
‖ψ′(0)‖ − v0‖ < ε,

then ψ(∆) ⊂ Ω. Write E∗ = {v ∈ Bn : v ∈ T
(1,0)
z M, ‖ v

‖v‖ − v0‖ < ε|} and still

denote by Ψ(z, ◦) the spherical representation of Ω with the base point z. Since

E∗ is a submanifold of Bn with smooth boundary near v0, hence, by a theorem of

Lempert, M∗ = Ψ(z,E∗) is a submanifold with C(k−1)− boundary near p, whose

real dimension is obviously 2 dimC M . As we have argued before, by noting the

fact that all extremal mappings of M are also extremal with respect to D and the

uniqueness of extremal mappings in strongly convex domains, we can conclude

that M∗ ⊂ M . Now, to complete the proof of the proposition, we need only show

that for some small neighborhood U∗ of p, it holds that U∗ ∩M = U∗ ∩M∗.

For this purpose, we proceed by seeking a contradiction if there is no such U∗.

Then we can find a sequence {zj} ⊂ M \M∗, which converges to p. Choose U0,

a small neighborhood of p, with U0 ∩M∗ being a simply connected submanifold

with smooth boundary, and choose a sequence {wj} ⊂ M∗, converging to p.

From an estimate of the Kobayashi distance KD(·, ·) of D (see [Ab1], for

example), we know that

(3.3.1)

KD(zj , wj) ≤ −1
2

log δ(zj)− 1
2

log δ(wj) +
1
2

log(|zj − wj |+ δ(zj) + δ(wj)) + C,

with C independent of j. On the other hand, since M is connected, there is a
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curve γ(t) on M , connecting zj to wj , so that

KD(zj , wj) = KM (zj , wj) ≥
∫ 1

0

κD(γ(t), γ′(t))dt− 1.

Here κD(z, v) denotes the Kobayashi metric of D at z and in the direction v. We

remark that such a curve must intersect the boundary U0 ∩M∗ if we choose U0

small enough. Let t0 be such that γ(t0) ∈ ∂U0∩M∗ but γ(t) /∈ U0∩M∗ for t < t0.

Then we see that ∫ 1

0

κD(γ(t), γ′(t))dt

(3.3.2) =
∫ t0

0

κD(γ(t), γ′(t))dt +
∫ 1

t0

κD(γ(t), γ′(t))dt ≥ K(zj) + K(wj),

where K(z) = infw∈∂U0∩M∗ KD(z, w). Now, from the strong pseudoconvexity of

D at p, it follows that (see [Ab1], for example) K(z) ≥ − 1
2 log δ(z) + C. Thus,

combining (3.3.1) with (3.3.2), we arrive at

log(|zj − wj |+ δ(zj) + δ(wj)) ≥ C.

Since C is independent of j and |zj − wj | + δ(zj) + δ(wj) → 0, we obtain a

contradiction. Therefore the proof of Proposition 3.3 is complete.

Proposition 3.4: Let D ⊂⊂ Cn be a Ck strongly pseudoconvex domain with

k ≥ 3. Suppose that M is a holomorphic retract of D with complex dimension

greater than 1. Then the following holds:

(1) Every automorphism of M has C(k−1)− smooth extension up to M .

(2) Let {fj}j , f ⊂ Aut(M) with {fj} converging to f uniformly on compacta.

Then it follows that fj → f in the topology of Ck−1−(M).

Proof of Proposition 3.4: First of all, Proposition 3.3 tells that M is a complex

submanifold with C(k−1)− boundary. Thus, it makes sense to talk about the reg-

ularity (less than C(k−1)− ) extension up to the boundary for its automorphisms.

Choose p ∈ ∂M . By using Proposition 3.2, we can find a sequence of complex

geodesics {φj} of M with φj(∆) shrinking to p as j → ∞ and with φj(1) = p.
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Let f be an automorphism of M . Then we claim that the diameter of f ◦ φj(∆)

goes to 0 as j → ∞. If that is not the case, then since {f ◦ φj} are also complex

geodesics, we may assume, without loss of generality, that f ◦ φj ∈ FD for each

j. Thus the f ◦ φj ’s can be easily shown to be uniformly Hölder-1
4 continuous on

∆ (see [CHL], for example). Hence, by passing to a subsequence, we may assume

that f ◦ φj converges uniformly to certain complex geodesic φ of D. This implies

that there is a sequence {zj} → p with f(zj) → z ∈ M , and this contradicts the

properness of f .

The rest of the argument for (1) is now similar to that in [Lm1]. For simplicity,

we assume that φj(∆) converges to q ∈ ∂D. As we did before, construct two small

Ck strongly convex domains Ω1 and Ω2 near p and q, respectively. Choose j >> 1

so that φj and f ◦φj are, respectively, complex geodesics of Ω1 and Ω2. Denote by

Ψ1 the spherical representation of Ω1 based at zj = φj(0), and by Ψ2 the spherical

representation of Ω2 based at z∗j = f ◦ φj(0). Then

f(z) = Ψ2

(
z∗j ,

df(φj(0))Ψ−1
1 (zj , z)

‖df(φj(0))Ψ−1
1 (zj , z)‖‖Ψ

−1
1 (zj , z)‖

)

for z ≈ p. Since Ψ1 and Ψ2 give the local coordinate charts of M at p and q,

respectively, we see that f has the same regularity at p as M does at p and q.

Because p is arbitrary, we have obtained the proof for (1).

To prove (2), we still pick an arbitrary boundary point p of M , and write

q = f(p). Define similarly Ω1, Ω2, φ, Ψ1 and Ψ2. Using the fact that fj converges

uniformly to f on a small neighborhood of z0 = φ(0), we know, by Theorem 4,

that fj ◦ φ is also a complex geodesic of Ω2 for j >> 1. Denote by Ψ2(zj , ◦) the

spherical representation of Ω2 at zj = fj(z0) when j >> 1. Then we see that

fj(z) = Ψ2

(
zj ,

dfj(z0)Ψ−1
1 (φ(0), z)

‖dfj(z0)Ψ−1
1 (φ(0), z)‖‖Ψ

−1
1 (φ(0), z)‖

)

for z near p ∈ M . Thus we can conclude that fj converges to f in the topology

of Ck−1−(p); for the matrix sequence {dfj(z0)} converges to df(z0) and Ψ2(zj , ◦)
converges to Ψ2(z∗, ·) (z∗ = limj zj) in Ck−1−-topology near p by the fact that

Ψ(z, w) depends C(k−1)− on the base point z when w ≈ ∂Bn. Let p vary, we then

complete the proof of Proposition 3.4.
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Remark: In case M has the top dimension (i.e, M = D), result (2) of

Proposition 3.4 can also be obtained by using the asymptotic expansion of the

Bergman kernel function (see [GK]). However, we do not know whether there is a

similar Bergman kernel functions argument if M is a holomorphic retract of lower

dimension.

Now with all these Propositions at our disposal, the proof of Theorem 3.1 can

be easily achieved by using an idea in [GK].

Proof of Theorem 3.1: Since a holomorphic retract of M is also a holomor-

phic retract of D, by results of Bedford [Be1] and Abate [Ab1] we may simply

assume that f ∈Aut(M) and dimCM > 0. In case M is a Riemann surface, then

the theorem follows easily from the Riemann mapping theorem and the classical

Denjoy-Wolff theorem. So we assume that dimCM ≥ 2. Let ρ be a C3 defining

function of D. Then, when restricted to M , it also gives a C2− defining function

of M by using the fact that M intersects ∂D transversally (see the Claim in the

proof of Proposition 3.2). Let H be the closed subgroup of Aut(M) generated

by f . Then by the Cartan theorem and the given condition, H is a compact Lie

group. It thus possesses a regular Haar measure µ. Define ρf =
∫

H
ρ ◦ gdµ(g). By

(2) of Proposition 3.4 and a lemma in [Hu1], it follows that ρf is also C2− up to

M and moreover it is easy to check that ρf serves a new defining function of M

(an easy application of Hopf’s lemma). We now let Mε = {z ∈ M : ρf ≤ −ε}, for

ε << 1. Then Morse theory tells that Mε has the same topology type as M does;

for ρf has no critical values between −ε and 0 (including the end points). Since

f(Mε) ⊂ Mε, we conclude, by using the hypothesis and the Lefschetz fixed point

theorem, that f has a fixed point on Mε, which is obviously an interior point of

M .

We now are ready to complete the proof of Theorem 3.

Proof of Theorem 3: We keep the previous notation and consider the sequence

{fk}. First, by making use of results of Bedford [Be1] and Abate [Ab1], we see

that either {fk} diverges to the boundary or there is a holomorphic retract M of
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D so that f |M is an elliptic element of Aut(M). In the latter case, Theorem 3.1

tells that f has an interior fixed point.

So it only remains to explain why the sequence {fk} converges on compacta

to a boundary point in case it diverges to the boundary. This part has actually

been argued in [Ma] and [Ab3]. However, for completeness, we include here a proof

which is slightly different but much simpler. First, the strong pseudoconvexity of

D indicates that there is no non-trivial complex sub-variety in ∂D. Hence, if a

subsequence of {fk} converges on compacta, the limit has to be a boundary point.

Pick z0 ∈ D, and choose, by induction, a subsequence {m1 < m2 < · · · ,mj , · · ·}
so that KD(z0, f

j(z0)) ≥ KD(z0, f
m1(z0)) for each j ≥ 1, . . ., KD(z0, f

j(z0) ≥
KD(z0, f

ml(z0)) for every j > ml−1. By passing to a subsequence, we assume

that {fmj} converges on compacta to p ∈ ∂D. We will complete the proof by

showing that {fk} converges on compacta to p. In fact, if that is not the case,

there would be a subsequence fki , which goes to q(∈ ∂D) 6= p. Since fmj+ki(z0) =

fmj (fki(z0)) → p as j → ∞), for each fixed ki, we therefore are able to find a

subsequence {mji
} of {mj} so that fmji

+ki(z0) → p as i →∞. Noting the length

decreasing property for the Kobayashi distance and the way we chose {mj}, we

have

(3.3.3) KD(fki(z0), fki+mji (z0)) ≤ KD(z0, f
mij (z0)) ≤ KD(z0, f

ki+mji (z0)).

On the other hand, by making use of the fact that fmji
+ki(z0) → p and

fki(z0) → q(6= p), it follows from the estimates for the Kobayashi distance that

KD(fki(z0), fki+mji (z0))−KD(z0, f
ki+mji (z0))

≥ −1
2

log δ(fki(z0))− 1
2

log δ(fki+mji (z0)) +
1
2

log δ(fki+mji (z0)) + C

≥ −1
2

log δ(fki(z0)) + C → +∞, (as i →∞),

where C is a constant independent of i. This contradicts (3.3.3) and thus finishes

the proof of Theorem 3.

Remark: The boundary point in Theorem 3 is the so-called Wolff point of

f , which is a fixed point of f when we understand the value of f there as the non-

tangential boundary limit. Meanwhile, it is worth mentioning that the assumption

82



of the triviality of the topology of D can be weakened to the condition where the

Lefschetz fixed point theorem can be applied.

Theorem 6: Let D ⊂ Cn be a bounded strongly pseudoconvex domain with

Ck smooth boundary and let f be a holomorphic self-mapping of D. Then the

following holds:

(1): Every holomorphic retract of complex dimension greater than 1 of D is actu-

ally a closed complex sub-manifold with C(k−1)− smooth boundary.

(2): Suppose that {fk} is a precompact family, but does not converge to a single

point. Then there exists a unique holomorphic retract E, depending only on f ,

such that (a) in case the dimension of E is greater than 1, f |E is an automorphism

of E and admits a C(k−1)− smooth extension up to the boundary of E (b) for each

point z0 ∈ D, the limit points of {fk(z0)} stay in E.

Proof of Theorem 6: This follows directly from Proposition 3.3., the result

of Bedford and Abate, and Proposition 3.4. In fact, E in the second part of the

theorem is exactly the set {z ∈ D : z is a limit point of {fk(z0)} for some z0 ∈
D}.

§ 3.4: Further applications

We will now present two more applications of the results in previous sections.

The first application is the proof of Theorem 8 which can be viewed as a bound-

ary version of the classical Cartan uniqueness theorem, while the second one is

concerned with the compactness of composition operators on simply connected

strongly pseudoconvex domains.

Theorem 8: Let D ⊂⊂ Cn be either a simply connected smooth pseudo-

convex domain or a simply connected taut domain with Stein neighborhood basis.

Let p ∈ ∂D be a strongly pseudoconvex point with at least C3 smoothness. Sup-

pose that f ∈ Hol(D, D) is a holomorphic self mapping of D, f(z) 6= id, so that

f(z) = z + o(‖z − p‖k) as z → p. Then the following hold:

(1) k ≤ 2
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(2) If k = 1, then either f fixes a holomorphic retract with positive dimension

or fm → p. In case D is not biholomorphic to the ball, then f cannot be an

automorphism.

(3) If k = 2, then f can not be an automorphism of D and the sequence {fm}
converges to p on compacta.

Corollary 3.3: Let D and p be as in Theorem 8. Suppose that f∈ Hol(D, D)

is such that f(z0) = z0 for some z0 ∈ D and f(z) = z +o((z−p)2) as z → p. Then

f ≡ id.

Remarks: Theorem 6 can be viewed as a boundary version of the classical

Cartan theorem. The case (1) is the local version of the Burns-Krantz theorem (see

[BK] and [H2]). For the disk in C1, as noted in [Lm3], the exponent in Corollary 3

can be reduced to just 1. However, the following examples show that the situation

in the higher dimensional case is different and our result is actually quite sharp:

Example (a): Let σ(z1, z2) = ( (1−2i)z1−1
z1−1−2i , −2iz2

z1−1−2i ) for (z1, z2) ∈ B2. Then

σ ∈ Aut(B2) with σ(p) = p and σ′(p) = id, where p = (1, 0). But σ 6= id.

(b): Let D be a bounded strongly pseudoconvex domain defined by D =

{(z1, z2) ∈ C2 : |z1|2+h(|z2|) < 1} for some smoothly increasing function h(·) with

h(0) = 0. Denote by p the boundary point (1, 0). Define f(z1, z2) = (z1, z1z2).

Then f fixes the holomorphic retract of D : {(z1, 0) : ‖z1‖ < 1} and f(z) =

z + o(‖z − p‖) as z → p. But f6=id.

(c): Let B2 = {(z1, z2) ∈ C2 : |z1|2 + |z2|2 < 1} be the unit 2-ball and let

p = (1, 0). For every a > 0, define a holomorphic mapping fa from B2 to C2 by

fa(z1, z2) =
(

z1 + a(1− z1)2

1 + a(1− z1)2
,

z2

1 + a(1− z1)2

)
.

Then it is easy to check that fa is a self-mapping of B2 and fa(z) = z+O(‖z−p‖3)
as z → p. By Theorem 8, {fk} converges compactly to p.

We procceed with the proof of Theorem 8 by way of several lemmas. We first

start with the following
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Lemma 3.10: Let D and p be as in Theorem 8. Suppose that σ is a biholo-

morphism of D such that σ(z) = z + o(‖z − p‖k) as z → p. Then σ ≡ id if either

k = 2 or k = 1 and D is not biholomorphic to the ball.

Remark: We notice that Lemma 3.10 is sharp even in the one complex

variable case:

Example : Let σ(τ) = 1+(2i−1)τ
2i+1−τ for τ ∈ ∆. Then σ(1) = σ′(1) = 1 and σ ∈

Aut(∆). However, by a direct computation, it can be seen that an automorphism

of ∆ which has contact of order 2 with the identity at some boundary point must

be the identity. In fact, let σ = eiθ z−a
1−az with θ ∈ R and a ∈ ∆. Then σ′′ 6= 0

when a 6= 0.

Proof of Lemma 3.10: Let Ω,Ω0,Φ, and U be as in the proof of Theorem 4,

and let φ be a complex geodesic of Ω with φ(1) = Φ(p) (see [Lm1]). As argued

before, we see that when φ′(1) is close enough to the tangential direction, then

φ(∆) ⊂ Ω0 and φ0
∆
=Φ−1|Ω0 ◦φ is a complex geodesic of D. Hence, σ ◦φ0 is also a

complex geodesic of D. Now when σ ◦ φ0(∆) is close enough to p (we can do this

by shrinking φ(∆) and by the continuity of σ at p), it follows from Lemma 3.1 that

σ ◦ φ0 is also a complex geodesic of Φ−1(Ω0). So Φ ◦ σ ◦ φ0 is a complex geodesic

of Ω0 and therefore a complex geodesic of Ω (by Lemma 3.2). We note that φ and

Φ ◦ σ ◦ φ0 coincide at 1 up to the first order. Thus, by the uniqueness property

of complex geodesics on strongly convex domains, we can find a biholomorphism

α of ∆ so that α(1) = 1, α′(1) = 1, and Φ ◦ σ ◦ φ0 = φ ◦ α. If k = 2 or k = 1

and α is elliptic (i.e, the sequence {αn} is a pre-compact family), we have that

α(τ) ≡ τ and hence that σ fixes φ0(∆). If α is non-elliptic, then by noting the

fact that σ(φ0(∆)) ⊂ φ0(∆), we have Φ ◦ σm ◦Φ−1 ◦ φ0 = φ ◦αm → Φ(p). Thus p

is a boundary accumulation point of the automorphism sequence {σm}∞m=1 of D.

By the Wong-Rosay theorem [Kr1], this implies that D is biholomorphic to the

ball. So when D is not biholomorphic to the ball, by making use of the uniqueness

theorem for holomorphic functions and the fact that the union of all such φ0(∆)′s

occupies an open subset of D, we see that σ ≡ id.
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Lemma 3.11: Let D ⊂⊂ Cn (n > 1) be a pseudoconvex domain and p ∈ ∂D

a C2-strongly pseudoconvex point. Assume furthermore that either D has a Stein

neighborhood basis or D has a C∞ boundary. If f ∈ Hol(D, D) is such that

f(z) = z + o(‖z − p‖) as z → p, then for any neighborhood V of p, there exists a

point z ∈ V ∩D such that fk(z) ∈ V for k = 1, 2, 3, · · ·.

Proof of Lemma 3.11: Let D, p, f be as in the lemma, and let −→n be the

inward normal vector of D at p. Denote by L the inward π
4 -cone at p, i.e,

L = {z ∈ D : the angle between −→pz and−→n is less than
π

4
}.

We then define the big and small horospheres for any z0 ∈ D and R >0 as follows

(we note that the definition is somewhat different from that in [Ab2], but is more

suitable for our purpose here):

E(z0, R)
∆
=
{z ∈ D : lim sup

w(∈L)→p

(KD(z, w)−KD(z0, w)) < 1/2 log R},

F (z0, R)
∆
=
{z ∈ D : lim inf

w(∈L)→p
(KD(z, w)−KD(z0, w)) < 1/2 log R}.

Claim 1: Let R > 0 and z0 ∈ −→n close to p. Then it holds that z ∈ ED(z0, R)

for z ∈ −→n close enough to p.

Proof of claim 1: Let z0 ∈ −→n be close to p and let z be in the segment −→z0p.

Denote by B(z) the ball with center z and radius δ(z)(= ‖z − p‖). We then see

that B(z) ⊂ D when z ∼ p. By the estimate that KD(z0, w) ≥ C− 1
2 log δ(w) for

w(∈ L) ∼ p (see Claim 2 for more discussion on this matter) and the monotonicity

properties of the Kobayashi distance we then have for w(∈ L) ∼ p that:

KD(z, w)−KD(z0, w) ≤ KB(z)(z, w)−KD(z0, w)

≤ 1
2

log(
1 + ‖z − w‖/δ(z)
1− ‖z − w‖/δ(z)

)− C +
1
2

log δ(w)
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≤ 1
2

log δ(z) + C +
1
2

log
δ(w)

δ(z)− |z − w| ,

where, as before, C denotes a constant which may be different in different context.

We now use the special property of L which makes δ(w)
δ(z)−‖z−w‖ → 1 as w(∈

L) → p. We therefore obtain that KD(z, w)−KD(z0, w) ≤ 1
2 log δ(z) + C. So for

any R > 0, when z(∈ −→n ) is close enough to p, we have z ∈ E(z0, R).

Claim 2: Let z0 be as in Claim 1. For every small neighborhood V of p, there

exists an R > 0 such that F (z0, R) ⊂ V .

Proof of Claim 2: Let Ω0,Ω, U and Φ be as in the proof of Theorem 4.

Without loss of generality, we assume that Φ−1(Ω0) ⊂ V and dΦ(p) = id. Let

z∗0 = Φ(z0), w∗ = Φ(w), and
−→
n∗ the inward normal vector of Ω at q(= Φ(p)).

Then Φ(−→n ) is tangent to
−→
n∗ at q.

By noting the fact that the Kobayashi distance of Ω between any two points

can be realized by a complex geodesic ( because Ω is a bounded strongly con-

vex domain), we then have for any z∗ /∈ Ω0 and w∗ ∼ q, that KΩ(z∗, w∗) ≥
infu∈∂Ω0−∂Ω KΩ(u,w∗). Let B∗ ⊃ Ω be a ball, which is tangent to Ω at q and has
−→n as part of its diameter. Then, from the direct computation of the Kobayashi

distance for B∗, we obtain KΩ(u,w∗) ≥ KB∗(u,w∗) ≥ −1/2 log δ∗(w∗) + C. Here

C is a constant independent of the choice of u ∈ ∂Ω0 − ∂Ω, δ∗(w∗) denotes the

distance from w∗ to ∂Ω, and w∗(∈ Φ(L)) ∼ q. So from the monotonicity property

of the Kobayashi distance, it follows that

KD(z, w)−KD(z0, w) ≥ KΩ(z∗, w∗)−KΩ0(z
∗, w∗)

≥ −1
2

log δ∗(w∗) + C− C′ +
1
2

log δ∗(w∗) ≥ C− C′.

Thus, if we choose 1
2 log R = C − C′, then z /∈ F (z0, R) when z /∈ Φ−1(Ω0). This

completes the argument for Claim 2.

Claim 3: f(E(z0, R)) ⊂ F (z0, R).

Proof of Claim 3: Let zk = p+
−→n
k (∈ −→n ). Then for k >> 1, f(zk) is in L and

converges to p as k →∞. For any z0 ∈ D, R > 0, and z ∈ E(z0, R), we have the
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following:

lim inf
w(∈L)→p

(KD(f(z), w)−KD(z0, w)) ≤ lim inf
k→∞

(KD(f(z), f(zk))−KD(z0, f(z0)))

≤ lim inf
k→∞

(KD(z, zk)−KD(z0, f(z0)))

≤ lim inf
k→∞

(KD(z, zk)−KD(zk, z0)) + lim sup(KD(zk, z0)−KD(z0, f(zk))

≤ 1
2

log R + lim sup
k→∞

(KD(zk, z0)−KD(z0, f(zk)).

So to complete the proof of Claim 3, we have only to show that

lim sup(KD(z0, zk)−KD(z0, f(zk))) ≤ 0.

In fact, let γk : [0, 1] → D be the segment joining zk and f(zk). Obviously, when

k >> 1, then γk stays in D. Denote by B(a, r) the ball of center a and radius r.

We then have, for every X ∈ T(1,0)
γk(t)D, that

κD(γk(t), X) ≤ κB(γk(t),1/(2k))(γk, X) ≤ C‖X‖k.

Here C is a constant which is independent of k and t. Hence

KD(z0, zk)−KD(z0, f(zk)) ≤ KD(zk, f(zk)) ≤
∫

γk

κD(γk(t), γ′k(t))dt

≤ Ck‖f(zk)− zk‖ ≤ o(1),

as k →∞. This completes the argument for Claim 3.

Now for any given V , a small neighborhood of p, by Claim 1 and Claim 2 we

can find a point z0 and R > 0, so that V ⊃ F (z0, R) ⊃ E(z0, R) 6= ∅. From Claim

3, it follows easily that fk(E(z0, R)) ⊂ F (z0, R) for each k, since for any k, fk

also satisfies the condition in Lemma 3.11. Hence, every element in E(z0, R) does

the job.

Lemma 3.12: Let D, p be as in Theorem 8, and let M be a holomorphic

retract of D with complex dimension greater than 1. Suppose that p ∈ ∂M and

f ∈ Aut(M) is an elliptic element such that f = z + o(z − p) as z(∈ M) → p.

Then f(z) ≡ z.
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Proof of Lemma 3.12: By Proposition 3.2, we can find a complex geodesic

φ of M with φ(1) = p and φ(∆) close enough to p. By the hypothesis, it then

follows that Diam(f ◦ φ(∆)) << 1. Since φ and f ◦ φ are actually two complex

geodesics of a C3 strongly convex domain (see the proof of Proposition 3.2) with

|φ(ξ)− f(φ(ξ))| = o(|ξ − 1|) and since f is elliptic, it thus follows that φ = f ◦ φ.

(This can be seen by an argument similar to that for Lemma 3.10 and the classical

Wolff-Denjoy theorem). So f fixes φ(∆). Now, noting that all such φ(∆)’s fill in

an open subset of M , we have the proof of Lemma 3.12.

Proof of Theorem 8: Let D, p, and f be as in the theorem. Then Case

(1) is the local version of the Burns-Krantz theorem (see [BK] and [H2]). Now if

{f l} does not converge compactly to p, then by the iteration theory of holomorphic

mappings (see [Be1] or [Ab1]) and Lemma 2.11, we have the following possibilities:

(i) {f l} converges compactly to some z0 ∈ D;

(ii) Some subsequence of {f l} converges to a non-trivial holomorphic retract

h of D so that f ∈ Aut(h(D)) (dim(h(D) > 0);

(iii) f is an automorphism of D.

In view of Lemma 3.11, (i) cannot happen, while by Lemma 3.10 (iii) can

occur only when k = 1 and D is biholomorphic to the ball. Hence, all we actually

have to study is the case (ii).

Notice that h(D) is either a simply connected hyperbolic Riemann Surface

(this follows from the simple connectivity of D) or a holomorphic retract of di-

mension greater than 1.

In case h(D) has dimension 1, since {fn} is a precompact family, we may

conclude that f fixes some point on h(D) ([Ab1]). From Lemma 3.11, it follows

easily that p ∈ h(D). Hence we may choose a biholomorphism φ from ∆ to

h(D) and a sequence {τk} , converging to 1, so that φ(τk) → p as k → ∞. By

Corollary 3.2, we see that φ(1) = p and φ is Lipschitz-1 continuous near 1. Since

φ−1 ◦ f ◦ φ(∈ Aut(∆)) fixes two points on ∆; one is in ∆ and the another one is

on ∂∆, we can easily conclude that f fixes h(D).

When dim(h(D)) > 1, by applying Lemma 3.12 and noting that f |h(D) is

elliptic, it also follows that f(z) = z for z ∈ h(D).
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So, if the k in the lemma is 2, we then let λ(τ) = (∂f1
∂z1

+ ∂f2
∂z2

) ◦ φ(τ), which is

the sum of the eigenvalues of the Jacobian of f at φ(τ). We claim that Reλ(τ) ≡ 2

under these assumptions. In fact, by using the Cauchy estimates, the Lipschitz-1

continuity of φ at 1, and the fact that δ(φ(τ)) ' C(1− |τ |), we have the following

estimate for τ ∈ (0, 1):

‖∂fj

∂zj
◦ φ(τ)− 1‖ ≤ C

1
δ(φ(τ))

sup
‖z−φ(τ)‖≤δ(φ(τ))

‖fj(z)− zj‖

=
1

|1− τ |o((δ(φ(τ)) + ‖φ(τ)− p‖)2) = o(|1− τ |)

as τ → 1. On the other hand, since Re(λ(τ)) is harmonic and is never greater than

2, it follows from the Hopf lemma that Re(λ(τ)) ≡ 2. However, note that |λ(τ)| ≤
2. From the Cartan-Carathéodory-Kaup-Wu theorem, we therefore conclude that

it implies that f(z) ≡ z on D. This contradicts our assumption and thus completes

the proof.

We end this section by proving:

Proposition 3.5: Let D ⊂⊂ Cn be a C3+ simply connected strongly pseu-

doconvex domain and let φ be a holomorphic self mapping of D. Denote by Hr(D)

the standard Hardy space (see [Kr1]) of D with r > 1. Suppose that the compo-

sition operator Cφ, defined by Cφ(g) = g ◦ φ for each g ∈ Hr(D), is a compact

self-operator of Hr(D). Then {φk} converges uniformly on compacta to a fixed

point z0 ∈ D.

Remark: When D reduces to the ball or a strongly convex domain, Proposi-

tion 3.5 follows from the work of MacCluer or Mercer, respectively. The argument

we will present for the general situation is based on the regularity result in Proposi-

tion 3.3 and the extension theorem for certain Hardy spaces obtained by Cumenge

in 1983 [Cu].

Proof of Proposition 3.5: Under the given hypothesis, we first claim that φ

must be an elliptic element. In fact, if that is not the case, then φk → p ∈ ∂D and

the angular derivative of φ at p is a positive number (see [Ab1]). Thus it follows
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from a standard argument (see [Me], for example), that Cφ cannot be a compact

operator on Hr(D).

Now suppose that there is a non-trivial holomorphic retract M of D with

φ|M ∈ Aut(M). Notice that M is a closed complex submanifold of D with C2

boundary and intersects ∂D transversally (Proposition 3.2, Proposition 3.3 and

Corollary 3.3). Let Hr(M, µk−1) = Hol(M) ∩ Lr(µk−1) (where k is the codi-

mension of M in D and the notation µk−1 is explained on Page 59 of [Cu]).

Then Theorem 0.1 of [Cu] tells us that there exists a bounded linear exten-

sion operator E : Hr(M, µk−1) → Hr(D) and moreover the restriction operator

π : Hr(D) → Hr(M, µk−1) is also bounded (see the argument of Corollary 4.1

in [Cu]). Since Cφ|Hr(M,µk−1) is an isomorphism of Hr(M, µk−1) to itself (see

Proposition 3.4), we can easily conclude that Cφ is not compact; for Cφ cannot

map the closed unit ball in E(Hr(M, µk−1)) to a compact subset of Hr(D).

Applying results in [Be1] and [Ab1], we can thus conclude that {φk} converges

uniformly on compacta to some point z ∈ D.
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Chapter 4: Local hull of holomorphy of a surface in C2

§4.1: Regularity of local hull of holomorphy–Proof of Theorem 9:

We retain all the notation which we have set up in § 1.3. In the present

section, we prove Theorem 9 by using Bishop disks.

Theorem 9: Let M ⊂ C2 be a real surface of class Ca, where a = ∞ or ω.

Suppose that p is a degenerate elliptic point of M of degree 2m and suppose that

M can be flattened to any order at p. Then the local hull of holomorphy of M at

p is a Ca Levi flat hypersurface with Ca boundary M near p.

Our idea of the proof can be described as follows: We first blow up the point

p many times. This process makes the manifold M stated in Theorem 9 into a

twisted totally real cylinder in C2 with regular boundary. We then use a suitable

infinite dimensional implicit function theorem to obtain a real parametrized family

of analytic discs that are attached to this cylinder. In case a = ∞, to verify the

smoothness of M̃ near p, we prove a unique determination of the holomorphic hull

in terms of the locally attached analytic disks. When a = ω, we verify the real

analyticity of our foliation in the normal direction at p. We then finally obtain the

full statement of real analyticity of M̃ near p by using the uniqueness of analytic

functions.

For clarity, we divide our discussion into two subsections. We first study the

Ca dependence of analytic discs on a real parameter. Then we investigate the

local hull of M near the exceptional point.

§ 4.1.1 Ca dependence on a real parameter

Let M ⊂ C2 be an embedded, real, two dimensional manifold of class Ca.

Let p be an isolated complex tangent point of M . Moreover, we assume that p

is a (possibly degenerate) elliptic point of degree 2m, which can be flattened to

any order (as defined in §1.3).That is, for any `, there is a holomorphic change of
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coordinates, which maps p to 0 and such that the manifold M is given, in the new

coordinates (z, w), by

(4.1.1) w = h(z) = p0(z) + h∗(z),

where p0 is a positive polynomial of degree 2m, h∗(z) = O(|z|2m), and Imh∗(z) =

o(|z|`). Here we notice that 2m is invariantly associated to p (i.e, independent of

the coordinates chosen).

In what follows, an analytic disc is a continuous function φ from the closed

unit disc ∆ in C to C2 that is holomorphic on the interior ∆. We say that an

analytic disc ψ is attached to M if ψ(∂∆) ⊂ M .

Next we set up the equation that will describe our analytic discs. Set Iε =

(−ε, ε) ⊂ R, with ε > 0 and ε << 1. Let S1 denote the unit circle in C. We

consider a function Φ : Iε×S1 → C2. The function Φ acts on variables (r, ξ) with

r ≈ 0 and ξ ∈ S1. We would like to arrange for Φ(r, · ) to have a holomorphic

extension to ∆ for each fixed r and also that Φ(r, ξ) ∈ M when ξ ∈ S1. We will

write Φ(r, ξ) = (φ1(r, ξ), φ2(r, ξ)).

For r ∈ Iε, we let Dr denote the domain

Dr ≡ {z ∈ C1 : p0(z) +
1

r2m
p1(rz) < 1}.

Here we write p1(z) for Reh∗(z). We notice that D0 is a bounded star-like (with

respect to the origin) domain with real analytic boundary. In fact, the starlike

property follows from the homogeneity of p0. So, to see the claim, we need only

to show that ∂p0(z)
∂z 6= 0 when z is away from 0. For this purpose, we let p0(z) =∑

i+j=2m aijz
izj (aij = aji. Then

z
∂p0

∂z
=

∑

i+j=2m

iaijz
izj =

∑

i+j=2m

(2m− j)aijz
izj

= 2m
∑

i+j=2m

aijz
izj −

∑

i+j=2m

jaijz
izj

= 2m
∑

i+j=2m

aijz
izj −

∑

i+j=2m

iaijzizj ,
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from which we see that Re
(
z ∂p0

∂z

)
= m

∑
i+j=2m aijz

izj > 0 when z 6= 0.

Now, for each |r| ¿ 1, as a small perturbation of D0, Dr is also simply

connected. Let σr(ξ) = σ(r, ξ) be a conformal mapping of ∆ to Dr. Assume in

advance that σ(r, 0) = 0 and σ′(r, 0) > 0. These last two conditions can always be

arranged and make our choice of σ(r, ξ) unique.

Lemma 4.1: In case a = ∞, σ(r, ξ) is smooth in (r, ξ) ∈ Iε × S1. If a = ω,

we have

σ(r, ξ) =
∑

i≥0

σi(ξ)ri ξ ∈ ∆, r ∈ Iε.

Here ‖σi‖n <
∼

Ri for some R > > 1, depending only on n. Moreover each σj

is holomorphic on ∆ and σ(r, ξ), as a function of two variables r and ξ, is real

analytic. Here and in what follows, we use ‖ ‖n to stand for the standard norm

in the Banach space En = Cn,1/2(S1) (which, in some context, will be used for

the space of real functions with smoothness n + 1/2) and R for a large constant

which may be different in different contexts (depending only on n, an apriori given

non-negative number).

The proof is based on the implicit function theorem in Banach spaces. Since

the technique also plays an important role in the later discussion, we present the

following details on this matter.

We first recall some definitions. Let E and F be two Banach spaces (over

K = R or C) and let O ⊂ E be an open subset. Suppose that T : O →F is a

continuous map. We say that T is of class C1 if for every x0 ∈ O, T (x + x0) =

T (x0)+A(x0)(x−x0)+o(‖x−x0‖) where A(x0) ∈ L(E,F) for each x0 and depends

continuously on x0. We write T ′(x0) for A(x0). The map T is C2 if T ′ is of class

C1. Inductively, we can speak of the Ck smoothness of T for every k. The map

T is said to be smooth or of class C∞ if T is Ck for each k. Usually, we identify

T (k) with a symmetric k-multiple linear mapping from

k times︷ ︸︸ ︷
E× · · · × E → F (see [Die]

and [Dei]). For u ∈ E, we write T (k)(uk) = T (k)(

k times︷ ︸︸ ︷
u, · · · , u)). We use Lk(E, F ) to
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denote the spaces of k-multiple linear mappings between E and F , and Sk(E, F )

for the space of symmetric k-multiple linear mappings.

Let T as above. We say T is analytic if, for any x0 ∈ O, there exist a

small r > 0 and a sequence of symmetric k-multiple linear mappings Ak with∑
k≥0 ‖Ak‖rk < ∞ such that T (x0 + x) = T (x0) +

∑
k≥0 Ak(xk) for ‖x‖ ¿ 1.

Here ‖Ak‖ = sup{‖Ak(y1, · · · , yk)‖ : ‖yj‖ ≤ 1 j = 1, · · · , k}.

Claim 0: (a): Let E and F be two Banach spaces. Let Ak ∈ Lk(E, F )

be such that lim supk→∞ ‖Ak‖1/k = R (R < ∞). Then the map defined by

T (x) =
∑∞

k=0 Ak(xk) is smooth and analytic on B(1/R) = {x ∈ E : ‖x‖ < 1/R}.
Moreover, T (p)(0) = p!(SAp). Here, for L ∈ Lk(E, F ), we define SL to be the

symmetrization of L. That is, SL(x1, · · · , xk) = 1/k!
∑

σ1,···,σk
L(xσ1 , · · · , xσk

),

where the sum is taken over all permutations of {1, · · · , k}.
(b): Let K = C and O ⊂ E = Kn be an opens subset. Then any C1 mapping

from O to F is analytic.

Proof of Claim 0: The proof is similar to the finite dimensional case.

(a): Under the assumptions in (a), we first notice that
∑

Ak(xk) converges

uniformly on B(ε1/R) for each ε < 1. Thus T is continous on B(1/R). Consider

the map from E to F which sends x ∈ E to Ak(xk). It is easy to verify that

Ak(xk)′ = k(SAk)(·, xk−1), i.e., for each h ∈ E, (Ak(xk))′h = k(SAk)(h, xk−1).

Obviously,

‖Ak(xk)′‖ = sup
‖s‖≤1

‖Ak(xk)′s‖ = sup
‖s‖,‖x‖≤1

‖k(SAk)(s, xk−1)‖ ≤ k‖Ak‖‖x‖k−1.

Therefore, it follows that lim sup ‖Ak(xk)′‖ ≤ R‖x‖ , and thus
∑

Ak(xk)′ con-

verges uniformly on each B(ε/R). By [Die], we see that T is of class C1 on B(1/R)

and T ′(X) =
∑

k≥1 Ak(xk)′. Meanwhile, one can see that T ′(0) = A1(x)′ = SA1.

Define Bk ∈ Lk(E, L(E, F )) by

Bk(h1, · · · , hk) = k(SAk+1)(·, h1, · · · , hk).

Then

‖Bk‖ = sup
‖hj‖≤1

‖Bk(h1, · · · , hk)‖ =
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= sup
‖s‖≤1,‖hj‖≤1

k‖(SAk+1)(s, h1, · · · , hk)‖ ≤ k‖Ak‖

and hence lim sup ‖Bk‖1/k ≤ R. Now, applying the previous argumnet to the

series T ′(x) =
∑

Bk(xk), we obtain T is of class C2, T ′′(x) =
∑

Bk(xk)′ for

x ∈ B(1/R)), and B′
1 = T ′′(0). Since

Bk(xk)′ = (k + 1)
(
SAk+1(., xk)

)′
= (k + 1)k(SAk+1)(·, ·, xk−1),

we have T ′′(0) = 2!(SA2). By induction, we then conclude that T is of class C∞

and

T (j)(x) =
∑

j≤k

(Ak(xk))(j) =
∑

k · · · (k − j + 1)(SAk)(· · · , xk−j),

and T (j)(0) = j!(SAj).

Next we will show that T is analytic on B(1/R). To this aim, we notice that

‖T (j)(h)‖ <
∼

∑
k · · · (k−j+1)‖SAk(· · · , hk−j)‖ <

∼

∑
k · · · (k−j+1)‖Ak‖‖h‖k−j .

From this, one derives that, when h ∈ B(ε/R), it holds that ‖T (j)(h)‖ <
∼

j!Rj
ε .

Here the positive number Rε depends only on ε.

We now fix h0 ∈ B(1/R) and use the Taylor formula of T (see [Die]) at h0.

We then have

T (h0 + s) =
N∑
0

T (j)(h0)sj

j!
+RN (h0, s),

where RN = 1/(N − 1)!
∫ 1

0
(1 − t)NT (N)(h0 + ts)dt · sN . Hence, when ‖s‖ << 1,

one see that ‖RN ‖ → 0 and thus T (h0 + s) =
∑ T (j)(h0)s

j

j! . This completes the

proof of (a).

Now we proceed to the proof of (b): Let T be a C1 map from O to F and let

x ∈ O. For each y∗ ∈ F ∗, we consider the complex function y∗T (x+z) in z, which

is then holomorphic on its defining domain. Thus we have the following Cauchy

formula:

φ(z) = y∗T (x + z) = (
1

2πi
)n

∫

Γ

y∗T (x + ξ)
ξ − z

dξ,

where Γ = ∂∆1 × · · · × ∂∆n, the principal boundary of some polydisk centered at

the origin. Taking away y∗ in the above formula, we have

T (x + z) = (
1

2πi
)n

∫

Γ

T (x + ξ)
ξ − z

dξ.
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From this, we see that all partial derivatives of T (x+z) exist and thus T is smooth

on its defining domain (see pp 178 of [Die]). Meanwhile, we have the power series

expansion: T (x + z) =
∑

aαzα with aα = ( 1
2πi )

α
∫
Γ

T (x+ξ)
ξα+1 dξ, which is also equal

to 1
α! (T

(α)(x)). We observe that the norms of partial derivatives and thus those

for the total derivatives of T satisfy the Cauchy estimates (see [Die]) at each fixed

x. Hence we may conclude the analyticity of T at x. (See also a similar argument

in pp. 150 of [Dei]). .

Claim 1: Let B
n,1/2
ε (x0(ξ)) be the ε-ball of En (over K = R) centered at the

x0(ξ) and let f(ξ, r, x, y) be a C∞ function in (ξ, r, x, y) ∈ S1 × Iε × U , where U

is an open subset of R2 ( or C2, in case En consists of complex valued functions)

Suppose that

T1, T2,∈ L(Cn+1/2(S1), Cn+1/2(S1)),

and (x0(ξ), T1(x0)(ξ)) ∈ U for each ξ ∈ S1, then the map F : Iε × B
n,1/2
ε (x0) →

Cn+1/2(S1) defined by

F (r, x) = T2(f(ξ, r, x(ξ), (T1x)(ξ)))

is of class C∞ when ε ¿ 1. Moreover, when x0 = 0 and

f(ξ, r, x, y) =
∑

ijk

aijk(ξ)rixjyk

with ‖aijk‖n <
∼

Ri+j+k. Then the F defined above is real analytic (after shrinking

ε).

Proof: The smoothness part follows from an induction argument. First, since

F ′r = T2(∂f
∂r (ξ, r, x, T1(x)) and F ′x(·) = T2(∂f

∂x (·) + ∂f
∂y T1(·)) are continous on (r, x),

we see that F is C1. Moreover,

F ′ = T2(
∂f

∂r
e1 +

∂f

∂x
e2 +

∂f

∂y
T1 ◦ e2).

Here e1(r, h) = r and e2(r, h) = h are two natural projections.

Suppose that F is of class Cp and

F (p) = T2


 ∑

i+j+k≤p

aijk
∂i+j+kf

∂ri∂xj∂yk
Iijk)


 ,
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where Iijk(∈ Lp(R1 × En, En)) are p- multiple linear mappings. Then

∂F (p)

∂r
= T2(

∑

i+j+k≤p

aijk
∂i+j+k+1f

∂ri+1∂xj∂yk
Ii+j+k),

and
∂F (p)

∂x
h = T2(

∑

i+j+k≤p

aijk
∂i+j+k+1f

∂ri∂xj+1∂yk
hIi+j+k+

+
∑

i+j+k≤p

aijk
∂i+j+k+1f

∂ri∂xj∂yk+1
T1(h)Ii+j+k),

which are continuous on (r, x). Thus, T is of class Cp+1 and

F (p+1) = T2(
∑

i+j+k≤p

aijk
∂i+j+k+1f

∂ri+1∂xj∂yk
e1 ⊗ Iijk+

+
∑

i+j+k≤p

aijk
∂i+j+k+1f

∂ri∂xj+1∂yk
e2 ⊗ Iijk+

+
∑

i+j+k≤p

aijk
∂i+j+k+1f

∂ri∂xj∂yk+1
(T1 ◦ e2)⊗ Iijk).

Hence, by induction, we see the smoothness of T .

Now, assume the latter case, i.e,

f(ξ, r, x, y) =
∑

aijk(ξ)rixjyk

with ‖aijk‖n <
∼

Ri+j+k. Let C0 À 1 so that ‖Tj‖ < C0 (j = 1, 2) and ‖e1 · e2‖ ≤
C0‖e1‖‖e2‖ for e1, e2 ∈ Cn,1/2(S1) (see [GT] for the existence of such a C0).

Consider the power series

F (r, e) =
∑

T2

(
aijk(ξ)riej(T1(e))k

)
=

∑

k

∑

i

Ai,k((r, e)i+k),

where

Ai,k ((r1, e1), · · · , (ri, ei), (ri+1, ei+1), · · · , (ri+k, ei+k)) =

=
∑

l≤k

T2 (ai,l,k−lr1 · · · riei+1 · · · ei+lT1(ei+l+1) · · ·T1(ei+k) .
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Here we understand Ai,k ∈ Lk+i(R× En, En). Then

‖Ai,k‖ <
∼

∑

l≤k

C2k−l
0 ‖ai,l,k−l‖ <

∼
kC2k

0 Ri+k.

Write BN =
∑

i+k=N Ai,k. Then ‖BN‖ <
∼

N2C2N
0 R2N and

T (r, e) =
∑

BN ((r, e)N )

. From (a) of Claim 0, we see the proof of Claim 1.

The following is the starting point for our later discussion:

Implicit Function Theorem: Let X, Y, Z be Banach spaces, U ⊂X and

V ⊂Y be neighborhoods of x0 and y0 respectively. Let F : U × V →Z be of class

C∞. Suppose that F (x0, y0) = 0 and F ′y(x0, y0) is an invertible bounded linear

map from Y to Z. Then there exist balls Br(x0) ⊂ U , Br′(y0) ⊂ V , and a unique

map T : Br(x0) → Br′(y0) of class C∞ such that T (x0) = y0 and F (x, T (x)) ≡ 0

on Br(x0). Moreover, in case X= Kn and F is analytic, then T is also analytic.

Proof: The proof in the C∞ case can be found in many text books (see

[Die], for example). In the real analytic case, there is a general argument in [Dei]

(Theorem 15.3 of [Dei]). It seems to me that there is a gap in the proof there,

but it works well in case X is of finite dimension. For completeness, we give the

following discussion:

When K = C, the proof follows from the first part and (b) of Claim 0. When

K = R. We complexify X, Y, and Z. For example, we define Xc = {x + iy :

x, y ∈ X} and define ‖x + iy‖ = ‖x‖ + ‖y‖. Next, for a symmetric multiple

linear map, say Ak ∈ Lk(X, Y ), we complexify it in a natural way: To define

A∗k(x1 + iy1, · · · , xk + iyk), one expands A∗k(x1 + ty1, · · · , xk + tyk) as a polynomial

in t and then replace t by i. An important observation is then that the complexified

sequence also satisfies the Cauchy estimates if the original one does.

So, by the above argument we can extend F as analytic map near (x0, y0)

which is from Xc×Yc to Zc. Now using the smooth version of the implicit function

theorem, we have a smooth solution Tc which, when restricted to X, coincide with
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T by the uniqueness. By (b) of Claim 0, we see that Tc and thus T is analytic

near x0. .

After all these preparations, we now turn to the proof of Lemma 4.1.

Proof of Lemma 4.1: Let σ0 be the conformal mapping from ∆ to D0 with

σ0(0) = 0 and σ′0(0) > 0. By the Schwarz reflection principle, σ0 is actually

holomorphic on ∆. Thus D∗
r = σ−1

0 (Dr) is also a domain with Ca boundary

(when |r| << 1).

Let p0(σ0(ξ)) = (1 − |ξ|2)p∗0(ξ) with p∗0(ξ) 6= 0 and of class Ca for ξ close to

S1. Let

ρ(r, z) = 1− |z|2 + ρ∗(r, z) = 1− |z|2 +
1

r2m

p1(rσ0(z))
p∗0(z)

.

Then ρ(r, z) is a Ca defining function for D∗
r .

Now σ∗(r, ξ) = σ−1
0 (σ(r, ξ)) is a conformal map from ∆ to D∗

r . Obviously it

suffices for us to show that σ∗(r, ξ) has all the properties stated in the lemma.

In fact, we will show that σ∗(r, ξ) can be uniquely written as ξ(1 + σ∗∗(r, ξ))

with

σ∗∗(r, ξ) = Ξ(r, ξ) +
√−1H(Ξ(r, ξ)),

where H stands for the standard Hilbert transform and Ξ(r, ξ) is real and of class

C∞ when (r, ξ) ∈ Iε × S1. Moreover, when a = ω, then Ξ(r, ξ) =
∑

j≥0 Ξj(ξ)rj

and ‖Ξj‖n <
∼

Rj for R À 1. We observe that H is a bounded isomorphism of

En = Cn,1/2(S1). (Here we will take En as the space of real functions).

To this end, we first note that ρ(r, σ∗(r, ξ)) ≡ 0 for ξ ∈ S1 and

ρ(r, σ∗(r, ξ)) = ρ(r, ξ) + 2Re
(

∂ρ(r, ξ)
∂z

ξσ∗∗(r, ξ)
)

+ ρ∗∗(r, ξ, σ∗(r, ξ)).

Here ‖ρ(r, ξ)‖n = O(r),
∂ρ(r, ξ)

∂z
= −ξ + O(r),

and ‖ρ∗∗(r, ξ, σ∗)‖n = O(‖σ∗∗‖2n). Thus we obtain

(∗) 2Reσ∗∗ = F (r, ξ, σ∗∗)

100



with ‖F (r, ξ, σ∗∗)‖n = O(|r|+ ‖Ξ‖2). Moreover,

F (r, ξ, z) = ρ(r, ξ) + Re
(

∂ρ(r, ξ)
∂ξ

+ ξ

)
z + ρ∗∗(r, ξ, z),

which is obviously of class C∞. In case a = ω, F (r, ξ, z) is real analytic in (r, ξ, z) ≈
Iε × S1 ×∆ε. Note that (∗) can be written as

(∗∗) Ξ = F̃ (r,Ξ,HΞ) = G(r, ξ, Ξ,HΞ)

where F̃ (r,Ξ) = 1/2F (r, ξ, Ξ +
√−1HΞ) is also of class C∞ by Claim 1 (when

(r, x, y) ≈ (0, 0)). When a = ω, we notice that G(r, ξ, x, y) is real analytic in

(r, ξ, x, y). So for each fixed ξ0 ∈ S1, there exist a s small neighborhood U of

0 ∈ R and a small arc Cξ0 such that when r, x, y ∈ U and ξ ∈ Cξ0 , it holds that

G(r, ξ, x, y) =
∑

aijk(ξ)rixjyk,

where ‖aijk(ξ)‖∗n <
∼

Ri+j+k and the norm ‖ · ‖∗n is taken over Cξ0 . Now, by using

the covering lemma, the uniqueness of the power series, and by changing R, we

can assmue that U is fixed and aijk is independent of the choice of ξ0. Meanwhile,

we also see that the global Cauchy estimates for aijk hold.

Now, since F̃ (0, 0) = 0 and F̃ ′Ξ(0, 0) = 0, by the above mentioned implicit

function theorem, Equation (∗∗) has a unique solution Ξ(r) which is also of class

Ca with respect to the parameter r. Especially, When a = ω, then Ξ(r) =∑
j≥0 rj Dj(Ξ)(1j)

j! with ‖Dj(Ξ)(1j)
j! ‖n <

∼
Rj . (We note that Ξ(0) = 0).

Returning to σ∗(r, ξ), when a = ω, we thus have σ∗(r, ξ) =
∑

j≥0 σj(ξ)rj with

σj ∈ Cn,1/2(S1) for every n (thus it is smooth). The holomorphic extendibility

of σ∗j to ∆ follows from a normal family argument. To simplify the notation, we

drop the superscript ‘*’ in what follows.

Now, we show that σ(ξ, r) is smooth in (ξ, r). In fact, we can find an η so

that (∗∗) can be uniquely solved in C1/2(S1) for r ∈ Iη. (The solution will be

denoted by Ξ0(r)). Moreover we may assume that ‖G′x(r, ξ, Ξ0(r),H(Ξ0(r))‖0 and

‖G′y(r, ξ, Ξ0(r),H(Ξ0(r))‖0 are very small when r ∈ Iη. We claim that Ξ0(r) is

also a smooth map from Iη to En for any n. This then will imply th smoothness

of σ(r, ξ) in two variables. For this purpose, we let r0 ∈ Iη. We first notice that
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Ξ0(r0) is in C∞(S1), for by the Kellog theorem σ(r0, ξ) is smooth. Now, consider

the derivative of Ξ− F̃ with respect to Ξ at P = (r0,Ξ0(r0)), which is given by

L(P)h = h− ∂G

∂x
h− ∂G

∂y
Hh,

where h ∈ E0. By the assumption, L(P) is a bounded invertible linear self operator

of E0. Let a(ξ) = 1 − ∂G
∂x |P and b(ξ) = −∂G

∂y |P . Then a(ξ) and b(ξ) are smooth.

Notice that L(P) is also a linear bounded one to one operator from En to En for

each n. By the well-know theorem in Banach space theory, to verify that L is a

bounded invertible self-operator on En, it suffices for us to show that L is onto.

But this follows from the following claim and the fact that L is onto when acting

on E0.

Claim 2: L is an hypoelliptic operator in the sense that for each n, L(P)h ∈
En if only if h ∈ En.

Proof: We need only to prove that Lh ∈ En implies h ∈ En. By the simple

connection between the Cauchy singular integral and the Hilbert transform (pp

63 of [MP]), it suffices for us to show that the solution of the equation

a∗(ξ)h +
b∗(ξ)
iπ

∫

S1

h(τ)
τ − ξ

dτ = g

stays in En when g ∈ En, where ‖a∗‖0 ≈ 1 and ‖b∗‖0 ≈ 0.

Let h(z) = 1
2πi

∫
S1

h(τ)
τ−z dτ . By the Plemelj formula, h = h+ − h− and

1
πi

∫

S1

h(τ)
τ − ξ

dξ = h+ + h−.

Thus we obtain the Riemann-Hilbert equation:

(EQ) h+ =
a∗ − b∗

a∗ + b∗
h− + g∗

with g∗ = g/(a∗ + b∗) ∈ En. Since the index of a∗−b∗
a∗+b∗ is 0, we can well define

d(z) = exp

(
1

2πi

∫

S1

log a∗−b∗
a∗+b∗

τ − z
dτ

)
.
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By the Privalov theorem and the Plemelj formula, we see that d+ = a∗−b∗
a∗+b∗ d− and

d± ∈ En. Returning to Equation (EQ), we see that

h(z) =
1

2πi

∫

S1

g∗(τ)
d+(τ)

dτ

τ − z
+ C,

from which follows the fact that h(t) ∈ En. This completes the proof of Claim 2.

Now, we see that the derivative of Ξ−F̃ (r,Ξ) with respect to Ξ at (r0,Ξ0(r0))

is also bounded invertible when acting on the space En. Thus by the implicit

function theorem, we conclude that Ξ0(r) depends smoothly on r in En near r0

for each n. Therefore we know that σ(r, ξ) is smooth in (r, ξ).

Finally, we assume that a = ω and prove the real analyticity of σ in r and

ξ. Pick r0 and ξ0 with |r0| << 1 and ξ0 ∈ S1. Let q0 = σ(r0, ξ0). Since Dr near

p0 is defined by a function g(r, z) which is real analytic in (r, z) ≈ q0. Using the

implicit function theorem, we may assume that g(r, z) = y− g∗(r, x). Thus, there

is a biholomorphic map which is real analytical in (r, z) and sends, for each fixed

r, an (fixed) open interval in R1 to an arc of ∂Dr near q0. Denote the inverse of

this map by ψ(r, z). Thus we can assume, for each r, that ψ(r, U ∩Dr) into the

upper half space and ψ(r, U ∩∂Dr) into R1. Here U is a fixed open neighborhood

of p0.

Write σ̃(r, ξ) = ψ(r, σ) =
∑

ψj(ξ)(r − r0)j . By the extendibility of φj , we

see that ψj is holomorphic on V ∩∆, where V is a small neighborhood of ξ0. By

shrinking V , we may also assume that the supreme norm of each ψj over U ∩∆,

denoted by ‖ψj‖′, satisfies the Cauchy estimates: ‖ψj‖′ <
∼

Rj . We notice that

when ξ ∈ S1 (≈ ξ0), σ̃ takes the real value. Thus, we easily see that ψj also takes

the real value for ξ ∈ S1. Hence, by the Schwarz reflection principle, each ψj can

be holomorphically extended to some fixed ξ0 ∈ V ′ ⊂ V . Meanwhile, we also see

that the extension (still denoted by ψj) does not increase the supreme norm by

the way we construct the extension.

Now on V ′, suppose that ψk(ξ) =
∑

j akj(ξ − ξ0)j . Here, by the Cauchy

formula and the above discussion, we have some large R so that |ajk| <
∼

Rj+k.

From this, it follows that ψ(r, ξ) =
∑

jk ajk(ξ−ξ0)j(r−r0)k. This finally completes

the proof of Lemma 4.1.
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Now, after a suitable renormalization, the mapping

Φ0(r, ξ) = (rσ(r, ξ), r2m)

gives rise to all of the analytic discs attached to the model surface M0 of M . Here

the “model” surface is given by

M0 = {(z, w) : w = p0(z) + p1(z)}.

Typically, the strategy for constructing discs attached to M is that (i) it is easy to

attach discs to the model surface, (ii) the surface M osculates the model surface

to high order at z0, and (iii) we may then obtain discs attached to M itself from

those attached to M0 by a deformation process.

The ideas in the last paragraphs motivate us to consider a mapping

Φ(r, ξ) = (φ1(r, ξ), φ2(r, ξ))

such that

(4.1.2) φ1(r, ξ) = rσ(r, ξ) (1 + F(r, ξ)) ,

where F(r, ξ) ≈ 0 when r ≈ 0 and is holomorphic in ξ for each fixed r. Our plan

is to construct such a function F later on.

Given (4.1.1) and (4.1.2), we find that

φ2(r, ξ) = p0(φ1(r, ξ)) + p1(φ1(r, ξ)) +
√−1k(φ1(r, ξ)),

where ξ ∈ S1 and k(z) = Imh∗(z). In particular, we see that

1
r2m

φ2(r, ξ) = p0 (σ(r, ξ)(1 + F(r, ξ)) +
1

r2m
p1(φ1(r, ξ)) +

√−1
1

r2m
k(φ1(r, ξ)).

Thus

p0(σ(r, ξ)(1+F(r, ξ)))+
1

r2m
p1(rσ(r, ξ)(1+F)) = − 1

r2m
H(k(rσ(r, ξ)(1+F))+C

for some real constant C. We seek a function F such that C = 1.
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Let

Ω(r,F) = p0(σ(r, ξ)(1 + F)) +
1

r2m
p1(rσ(r, ξ)(1 + F)).

Linearizing near F = 0, we find that

Ω(r,F) = Ω(r, 0) + Ω′(r,F) + Ω∗(r,F).

These terms are defined as follows:

Ω(r, 0) = 1;

Ω′(r,F) = lim
t→0

Ω(r, tF)− Ω(r, 0)
t

= 2Re{σ∂p0(σ)
∂z

+
σ

r2m

∂p1(σ)
∂z

}F ;

‖Ω∗(r,F)‖n <
∼
‖F‖2n.

Let us write

c(r, ξ) = σ(r, ξ)
∂p0

∂z
(σ) +

σ

r2m

∂p1(σ)
∂z

.

We see that

(4.1.3) Re{c(r, ξ)F}+ Ω∗(r,F) = − 1
r2m

H (k(rσ(1 + F))) .

Lemma 4.2: We have that c(r, ξ) 6= 0 and IndS1c(r, ξ) = 0 for |r| ¿ 1. So,

there exists a positive function d(r, ξ) ∈ C∞(S1×Iε) (when a = ω, we furthermore

have d(r, ξ) =
∑

j≥0 dj(ξ)rj with ‖dj‖n <
∼

Rj) such that d∗(r, ξ) = d(r, ξ)c(r, ξ)

has a holomorphic extension to ∆ for each fixed r. Meanwhile, d∗(r, ξ) ∈ C∞(S1×
Iε) and and, when a = ω, d∗(r, ξ) =

∑
j≥0 d∗j (ξ)r

j with ‖d∗j‖n <
∼

Rj . Furthermore,

in this case c, d, and d∗ are real analytic in (r, ξ).

Proof of Lemma 4.2: Let p0 =
∑

i+j=2m aijz
izj . Then we see that

c(r, ξ) = σ(r, ξ)
∂p0

∂z
(σ) +

σ

r2m

∂p(σ)
∂z

=
∑

i+j=2m

aijiσ
iσj + O(|r|‖σ‖2m).
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In analogy with what we did before, it holds that

Re
∑

i+j=2m

aijiσ
iσj = Re

∑
aij(2m− j)σiσj

= 2m
∑

aijσ
iσj − Re

∑
aijσ

iσj .

Therefore we have

Re
∑

aijiσ
iσj = m

∑
aijσ

iσj ≥ C‖σ‖2m.

Thus, when |r| ¿ 1, we obtain

Rec(r, ξ) ≥ C‖σ‖2m > 0 (ξ ∈ S1).

Now we let d(r, ξ) = eiH(log c(r,ξ)), and d∗(r, ξ) = d · c. The d and d∗ possess

the properties mandated in the lemma.

Returning to Equation (4.1.3), we have

Re (d∗(r, ξ)F) = −d(r, ξ)Ω∗(r,F)− d(r,F)
r2m

H (k(rσ(r, ξ)(1 + F))) .

Let F̃ = d∗(r, ξ)F ≡ U(r, ξ) +
√−1H(U(r, ξ)). Then we obtain the equation

U(r, ξ) = −d(r, ξ)Ω∗
(

r,
U +

√−1H(U)
d∗(r, ξ)

)

−d(r, ξ)H
(

1
r2m

k

(
rσ(r, ξ)

(
1 +

U +
√−1HU

d∗(r, ξ)

)))
.

Let

Λ1(r, U) = −d(r, ξ)Ω∗
(

r,
U +

√−1HU

d∗(r, ξ)

)
,

and

Λ2(r, U) = −d(r, ξ)H
(

1
r2m

k

(
rσ(r, ξ)

(
1 +

U +
√−1HU

d∗(r, ξ)

)))
.

Then we need to solve the equation

(4.1.4) U = Λ1(r, U) + Λ2(r, U)

106



for U ≈ 0. We note here that for the model surface, i.e. k ≡ 0, the only solution

for each r ∼ 0 is U ≡ 0.

Now we are going to apply the implicit function theorem to (4.1.4) to obtain

a solution U that is Ca in the variable r. To this end, we still write

Bn,1/2
ε = {φ ∈ Cn,1/2(S1) : φ is real valued and ‖φ‖n < ε}.

The index n is the same as above.

Consider the operator

Λ : Iε ×Bn,1/2
ε → Cn,1/2(S1),

Λ((r, U)) = Λ1(r, U) + Λ2(r, U).

By the boundedness of the Hilbert transform acting on the Banach space

Cn,1/2(S1), we easily see that Λ is a well-defined operator when ε << 1. In fact,

we have

Lemma 4.3: For ε ¿ 1, Λ is a smooth map from Iε ×B
n,1/2
ε to C

n,1/2
ε (S1).

Moreover, when a = ω, Λ is real analytic in (r, U) for any (r, U) ∼ 0.

Proof of Lemma 4.3: This follows from Claim 0, Claim 1, Lemma 4.1, Lemma

4.2, and the fact:

Λ(r, U) = F1(r, ξ, U,HU) + d(r, ξ)H(F2(r, ξ, U,HU)).

Here

F1(r, ξ, x, y) = −d(r, ξ)Ω∗
(

r,
x +

√−1y)
d∗(r, ξ)

)
,

F2(r, ξ, x, y) = −
(

1
r2m

k

(
rσ(r, ξ)

(
1 +

x +
√−1y

d∗(r, ξ)

)))
.

Now we notice that Λ(0, 0) = 0 and Λ′U (0, 0) = 0. Thus, from the implicit

function theorem, (4.1.4) can be uniquely solved. Moreover, if we denote by U(r)

the solution, then U(r) depends Ca on the parameter r.
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A useful observation is that ‖U‖n <
∼

r`−2m. In fact, by (4.1.4),

‖U(r, ξ)‖n ≤ ‖Λ1(r, U)‖n + ‖Λ2(r, U)‖n ≤ ε‖U‖n + O(r`−2m),

that is,

‖U(r, ξ)‖n ≤ C · 1
1− ε

r`−2m.

Therefore, ‖F(r, ξ)‖n <
∼

r`−2m. In particular, we see that rσ(r, ξ)(1 + F) is an

embedding when |r| ¿ 1. Moreover, by the reflection principle [Chik], we see that

this embedding ( thus U(r)(ξ)) is of class Ca for each fixed r. Similar to what we

got in Lemma 4.1, we have

Claim 3: When ‖r‖ << 1, U(r)(ξ) is smooth in (r, ξ).

Proof of Claim 3: The proof is similar to that for Lemma 4.1. First, by

working in E0, we have a solution for (4.1.4), denoted by U0(r) with r ∈ Iη. We

can also assume that at each point P = (r, U(r)), Λ′U (P) has a very small ‖ · ‖0
norm. Similiar to the argument in Lemma 4.1, to prove the smoothness of U0 in

(r, ξ), we need only study the hypoellipticity of the following operator at a given

P:

(!) Lh = h− (F1)′xh− (F1)′yH(h)− d(r, ξ)H (
(F2)′xh + (F2)′yH(h)

)
.

As mentioned before we may replace H in the above equation by the Cauchy

singular integral operator S: Sh(ξ) = 1
πi

∫
S1

h(τ)dτ
τ−ξ . We now apply to (!) the

Poincaré-Bertrand theorem (see pp 59 of [MP]), which asserts that
∫

S1

dt

t− ξ

∫

S1

a(t, τ)dτ

τ − t
= −(π)2a(ξ, ξ) +

∫

S1
dτ

∫

S1

a(t, τ)dt

(t− ξ)(τ − t)
.

By the fact that U(r) is smooth in ξ for the fixed r, we can simplify the above

equation to an equation of the following form:

(@) a∗h + b∗Sh +Kh = g.

Here, a∗ and b∗ are smooth with ‖a∗‖0 ≈ 1 and ‖b∗‖0 ≈ 0. The operator K is

defined as

Kh =
∫

S1
k(t, ξ)h(t)dt
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for certain k(t, ξ) smooth in (t, ξ). Since Kh is always smooth, the hypoellipticity

of (@) thus follows from Claim 2.

Remark: One can also prove by using the reflection principle (see the argu-

ment in Lemma 4.1) that U(r)(ξ) is real analytic in (r, ξ) when r is small but not

equal to 0, in cas a = ω.

Notice that, for ξ ∈ ∆,

Φ(r, ξ) = (φ1, φ2) =
(C(rσ(1 + F)), C(h(rσ(r, ξ)(1 + F)

))
,

where C is the Cauchy integral operator. We have the following properties:

φ1(r, ξ) = rσ(r, ξ)(1 + C(F)) = rσ(r, ξ) + ψ1(r, ξ) with ψ1(r, ξ) = O(r`−2m);

C(h(rσ(r, ξ)(1 + F))) = φ2 = r2m + ψ2(r, ξ) with ψ2(r, ξ) = O(r`)

In particular, when a = ω, we obtain

ψ1(r, ξ) =
∞∑

`−2m

ψ1,j(ξ)rj , and ψ2(r, ξ) =
∞∑

j

ψ2,j(ξ)rj .

Here ψ1,j and ψ2,j ∈ C∞(S1) and ‖ψ1,j‖n, ‖ψ2,j‖n <
∼

Rj for some R À 1 (R

depends only on n).

§4.2.2 Local Hull of Holomorphy:

We now study the hull of holomorphy of M near 0 ∈ M . For 0 < u ¿ 1,let

M̃0 = {(z, w) : Imw = 0, Re(w) ≤ p0(z) + p1(z)}

be the hull of holomorphy of M0 and let E∗ = ∪0≤r¿1Ψ(r,∆) Define Ψ : M̃0 \
{0} → E∗ \ {0} by Ψ(z, u) = Φ(u

1
2m , ξ(z, u)), where ξ(z, u) is determined by the

equations

z = rσ(r, ξ), r = u
1

2m .
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Lemma 4.4: The function Ψ is of class C∞ on M̃0 \ {0}, Cω on M̃0 \ {M0}
(in case a = ω), and admits a C

`−2m
2m extension near 0. Moreover, when ` > 4m,

d0Ψ = id.

Proof of Lemma 4.4: Let ψ1(r, ξ) = r`−2mψ∗1(r, ξ) and ψ2(r, ξ) = r`ψ∗2(r, ξ)

with ‖ψ∗j ‖n = O(1) (j = 1, 2). Then Ψ(z, u) = (z, u) + (φ̃1, φ̃2), where

˜φ1(z, u) = ψ1(u1/2m, ξ(u, z)) = u
`−2m
2m ψ∗1(u1/2m, ξ(u, z)),

˜φ2(z, u) = ψ2(u1/2m, ξ(u, z)) = u
`

2m ψ∗2(u1/2m), ξ(u, z)).

We note that

ξ(u, z) = [(σ(r, · )]−1

(
z

u
1

2m

)
= [σ(u1/2m, ·)]−1(

z

u1/2m
) ≡ σ−1(u1/2m, z/u1/2m),

and σ−1( · , · ) is jointly smooth in its variables, and depends real analytically on

the parameter r when a = ω (by the implicit function theorem).

Thus we easily see that Ψ(z, u) is smooth off u = 0 and, in case a = ω, real

analytic in z, u when (z, u) ∈ M̃0 \ M0. Observe that ‖z/u1/2m‖ = O(1) when

(z, u) ∈ M̃0 \ {0}. We have, for ` > 4m

∂i+j+sφ̃k(z, u)
∂zi∂zj∂us

= O(u
`−2m
2m −s− j

2m ) when k = 1, 2.

Thus, when s + j
2m < `−2m

2m ,

‖∂i+j+sφ̃k(z, u)
∂zi∂zj∂us

‖ = o(1)

as (z, u) → 0. We therefore see that Ψ(z, u) admits a C
`−2m
2m extension near 0

when `−2m
2m > 1, ie, ` > 4m. In this case, we obviously have d0Ψ(z, u) = id.

Lemma 4.5: When ` > 8m, then E∗ is the local hull of holomorphy of M

in the sense that for any small piece M ′ of M near 0, when ε ¿ 1, Bε ∩ E∗ is an

open subset of the holomorphic hull of M ′ near 0. Here Bε is the open ε-ball in

C2 centered at the origin.
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Proof of Lemma 4.5: For any fixed small piece M ′ of M near 0, we first claim

that E∗ ∩Bε is contained in its hull of holomorphy when ε ¿ 1. This follows from

a continuity argument. In fact, let Ω be any pseudoconvex domain containing

M ′. We notice that when r << 1, then Ψ(r, ξ) ∈ Ω for ξ ∈ ∆. Thus by the

pseudoconvexity of Ω and the well-known family of disks argument, it follows that

Φ(r, ξ) ∈ Ω for all r (whenever Φ(r, ξ) ∈ M ′ for any ξ ∈ S1)[Kr1]. To prove the

rest, it suffices for us to show that there exists a sequence of pseudoconvex domains

{Ωj} such that Ωj ⊃ M ′ ∩Bη and E∗ ∩Bε an open subset of ∩Ωj . Here we take

η << 1 but independent of ε.

For this purpose, we return to the mapping Ψ(z, u): M̃0 → E∗ and notice

that ∂zΨ ≡ 0.

For each point (z, u) ∈ M̃0 ≈ (0, 0), we let

JαΨ = DαΨ =
∂|α|Ψ

∂α1z∂α2z∂α3u

(‖α‖ = ‖(α1, α2, α3)‖ ≤ 3) and

T (Ψ) =
∑

‖α‖≤3

(Z − Z0)
α

α!
JαΨ(Z0), where Z = (z, u).

Then, by the fact that Ψ ∈ C2(M̃0) and the holomorphic property along z-

direction, it follows that ‖DαT (Ψ)(Z1) − JαΨ(Z0)‖ = o(‖Z1 − Z0‖)3−|α|. Thus,

by making use of the Whitney extension theorem (see [Mal]), we can obtain a C3-

extension Ψ∗ for Ψ to a neighborhood of M̃0 near (0, 0) with ‖∂W ∂W Ψ∗(z, w)‖ =

o(|Imw|) (where we write W = (z, w)). Obviously dΨ∗|0 = id. We now let

Ψ∗−1 = (ψ̂1, ψ̂2) and ρ(z, w) = Imψ̂2. Then dρ(z, w) 6= 0 on E∗, and ρ(z, w) = 0

if and only if (z, w) ∈ E∗; also |∂∂ρ(z, w)| = o(δ(z, w)) where we use δ(z, w) to

denote the distance from (z, w) to E∗.

Now, we set

Ωη,ε0,τ = {(z, w) ∈ C2 :

(z, w) ∈ Dτ,η, ρ(z, w) < ε0(1− |z|2 − |w|2), ρ(z, w) > −ε0(1− |z|2 − |w|2)},

where

Dτ,η = {(z, w) : u > p0(z) + p1(z)− τ |z|4m − τ, |z|2 + |w|2 < η}.
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Obviously, E∗ ∩ Bε is an open subset of ∩τ,ε0Ωη,ε0,τ . By the positivity of p0(z),

we notice that Dτ,η is pseudoconvex when τ ¿ 1. Meanwhile, we will always

choose τ ¿ ε0. Thus, to verify that Ωη,ε0,τ is pseudoconvex, we need only to

show that the hypersurfaces defined by ρ± = ρ(z, w)∓ ε0(1− |z|2 − |w|2) = 0 are

strongly pseudoconvex towards Ωη,ε0,τ . In fact, The Levi form of ρ+ is the Levi

form of ρ(z, w) + ε0id. Since ‖Levi (ρ(z, w))‖ <
∼
|o(δ(z, w))| and δ(z, w) ≈ ε0 when

ρ(z, w) = −ε0(1− |z|2 − |w|2), we see that the Levi form of ρ+ is positive when η

is small and τ ¿ ε0 ¿ 1.

Similarly, we can show that the Levi form of −ρ(z, w)− ε0(1− |z|2 − |w|2) is

also positive near its zero set. This completes the proof.

Now we are ready to prove the smooth part of Theorem 9.

Lemma 4.6: Let M and p be as given in Theorem 9. Then the local hull of

holomorphy of M near p is C∞ with a piece of M near p as part of the smooth

boundary.

Proof of Lemma 4.6: First, by Lemma 4.3 and Lemma 4.4, we need only to

show that M̃ has a smooth extension at p. To this end, we note that 2m and

the smoothness of M̃ at p are local biholomorphic invariants of M . Thus from

Lemma 4.4 (or, Lemma 4.7 in the following subsection), it follows that M̃ is of

class C(`−2m)/2m for each ` and thus M̃ is a smooth manifold with C∞ boundary.

For the rest of this section, we assume that a = ω and proceed to prove the

real analyticity of M̃ near p.

For this purpose, we return to the function Ψ. From the fact that dΨ|0 = id,

we see that the tangent space T0M̃ = R3
(
= T0(M̃0)

)
.

Now let us define the projection mapping π : M̃ → R3 by π(z, u + iV ) =

(z, u). Then we can conclude that π is a C∞ diffeomorphism by using Lemma 4.6.

Moreover, since π(∂M̃) = π(M) = M0 and
(
π(M̃ \M)

)∩ (
M̃0 \M0

)
is not empty,

we see that π(M̃) = M̃0. That is, M̃ can be viewed as the graph of some function

V (z, u) over M̃0. That is, M̃ =
{(

z, u + iV (z, u)
)

: (z, u) ∈ M̃0

}
.
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We remark that the graph of a function is a Cα smooth manifold if and only

if the function itself is Cα smooth (here α is either ∞ or ω). Thus we have that

V (x, u) ∈ C∞(M̃0) and is real analytic on M̃0 \M0.

We are going to show next that

V (z, u) =
∑

i,j,s

1
i!j!s!

(
∂V i+j+s(z, u)

∂zi∂zj∂us

)

(0,0)

zizjus

when |z|, u ≈ 0. That is, V (z, u) is real analytic near 0. This will complete the

proof of Theorem 9.

To this end, we first note that the point (z, u+ iV (z, u)) ∈ M̃ \M if and only

if there is a unique pair (r, ξ) ∈ I+
ε ×∆ such that u 6= 0 and

z = φ1(r, ξ), u + iV = φ2(r, ξ);

that is,

(a) z = rσ(r, ξ)
(
1 + F(r, ξ)

)

(b) u = Reφ2 = r2m + Reψ2(r, ξ)

(c). V = Imφ2 = Imψ2(r, ξ)

Here we note that ψ2(r, ξ) is holomorphic in ξ ∈ ∆ and real analytic in the

parameter r. Thus it follows that ψ2(r, ξ) =
∑

i+j≥` αijr
iξj with (r, ξ) ∈ Iε ×∆

for ε << 1. From (b), we obtain u
1

2m = r + r2`∗1(r, ξ) with `∗1(r, ξ) real analytic

jointly in r, ξ when (r, ξ) ∈ Iε ×∆ (ε < < 1).

When |r| << 1 then the implicit function theorem tells us that

r = g̃(η1, ξ) = η1 · (1 + g̃∗(η1, ξ)),

where η1 = u
1

2m in case 1 >> u ≥ 0 and g̃∗ = o(|η1|) is jointly real analytic in

(η1, ξ). Thus by (a) we see that

z = u
1

2m (1 + g̃∗(η1, ξ)σ(g̃(η1, ξ), ξ)(1 + F(r, ξ)).
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Write η2 = z/u
1

2m . We then have

η2 = (1 + g̃∗(η1, ξ)σ(g̃(η1, ξ), ξ)(1 + F(g̃(η1, ξ), ξ)) = η2(η1, ξ). (d)

Notice that when η1, ξ ≈ 0, we have (a) η2 is real analytic in ξ and η1; (b)

η2(0, 0) = 0; (c) dξ(1+ g̃∗(η1, ξ)), dξF(g̃(η1, ξ), ξ) ≈ 0; and (d) dξσ(g̃(η1, ξ), ξ) 6= 0.

We see from the implicit function theorem that (d) can be solved as

ξ = f(η1, η2)

with f real analytic near (0, 0) and f(0, 0) = 0. Now

r = g̃(η1, f(η1, η2)) = g(η1, η2),

which is also real analytic near 0.

Returning to (c), we see that

V (z, u) = Imφ2(g(η1, η2), f(η1, η2)),

which is also analytic in η1, η2 when η1, η2 ≈ 0. For η1 real, write

Imφ2(g(η1, η2), f(η1, η2)) =
∑

i,j,s≥0

Sijsη
i
1η

j
2η

s
2

with |Sijs| <∼ Ri+j+s for some R > > 1.

Now, when |u| < ε2m and |z|/u
1

2m < ε with 0 < ε < < 1, we have that

V (z, u) =
∑

i,j,s

Sijsu
1

2m (i−j−s)zjzs.

However we note that V (z, u) is C∞ near 0. In particular,

∂j+sV (z, u)
∂zj∂zs

∣∣
(0,u)

is C∞ in u, as long as 0 ≤ u < < 1.

Meanwhile,

V (j,s)(0, u) =
∂j+sV (z, u)

∂zj∂zs

∣∣∣∣
(0,u)

=
∞∑

i=0

j!s!Sijsu
1

2m (i−j−s) .
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This obviously implies that Sijs = 0 when (1/2m)(i− j − s) is not a non-negative

integer. Thus

V (z, u) =
∑

i,j,s

Sijsu
1

2m (i−j−s)zjzs =
∑

τ,j,s∈Z+

S2mτ+j+s,j,su
τzjzs

when 0 < u < ε2m, |z| < εu
1

2m .

On the other hand,

|S2mτ+j+s,j,s| <∼ R2mτ+j+s+j+s <
∼

(R2m)τ+j+s.

Thus we conclude that

Ṽ (z, u) =
∑

τ,j,s

S2τ+j+s,j,su
τzjzs

is real analytic when u, |z| ≈ 0. Also Ṽ (z, u) ≡ V (z, u) when 0 < u < ε2m and

|z| < εu1/2m. Notice that V (z, u) is real analytic on M̃0 \ M0 and it is C∞ on

M̃0. By the unique continuation property of real analytic functions, it follows that

Ṽ (z, u) ≡ V (z, u) for all z, |u| ≈ 0 and (z, u) ∈ M̃0.

At last this completes the proof of Theorem 9.

The proof of Theorem 10 obviously follows from Theorem 9 and the fact that

any real analytic Levi-flat surface is locally biholomorphic to an open subset in

R3 ⊂ C3 [Cat].

§4.2: A concrete example–Proof of Proposition 2:

When p is a non-degenerate elliptic point in Theorem 9, then a lemma of

Kenig-Webster tells that it can be flattened to any order. However, the situation

for a degenerate elliptic point is different. As an example, consider the analytic

manifold

Mn = {(z, w) : w = |zz|2 + |zz|3+2n(|z|z +
√−1)}

in two dimensional complex space. It turns out that the manifold M̃ (at least

when n is big) in this case is only C3/2+n up to the point 0 ∈ M—certainly not

real analytic. Meanwhile, Mn cannot be flattened to order ` = 10 + 4n.
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To verify this last assertion, we first prove the following uniqueness of attached

analytic disks:

Lemma 4.7: Let M be a smooth surface and p ∈ M be a degenerate elliptic

point of order 2m. Suppose that M can be flattened to some order ` > 4m. Then,

for any non-constant holomorphic mapping φ : ∆ → C2 with φ(∂∆) ⊂ M and

‖φ‖ ¿ 1, there exists a proper holomorphic mapping σ of ∆ and 0 < r ¿ 1 such

that φ(ξ) = Ψ(σ(ξ), r).

Proof of Lemma 4.7: The argument of this lemma is similar to that for Propo-

sition 4.3 of [KW]. However, for completeness, we present the following details.

Without loss of generality, we let p = 0 and E∗ be as constructed in the above

section. Define D = {(z, w) : |z|2 + |w|2 < ε0, ρ(z, w) = q0(z) + q1(z) − u < 0}.
Then D is pseudoconvex and has finite type boundary near 0. So the surface

ρ = 0 does not contain any non-trivial analytic disks near 0. Now let ‖φ‖ ¿ 1.

Then, by the maximum principle, we have φ(∆) ⊂ D. Also, when r ¿ 1, we

have E∗ ⊂ D. Note that E∗ sweeps out D near 0 when we move E∗ along the

v-axis (v = Imw). Thus, if φ(∆) is not contained in E∗, then there is a v0 so that

Ev0 ≡ {(z, u+
√−1v0) : (z, u) ∈ E∗} will touch some Z0 = φ(ξ0); also near φ(ξ0),

φ(∆) stays on one side of Ev0 . We will claim that this contradicts the Levi-flatness

of Ev0 near Z0. In fact, as argued in Lemma 4.5, we can find a small pseudoconvex

domain D∗ with Ev0 as part of the boundary. Meanwhile, we can also choose D∗

so that a small piece of φ(∆) near Z0 is contained in D∗. But this is impossible

by the classical results (see [Kr1], for example).

We note that (the interior of ) E∗ is a smooth Levi flat surface. So φ(∆) is

contained in a unique analytic disk of E∗, say in Ψ(r0,∆). Let σ = Ψ−1(φ(ξ), r0).

Using the fact that φ(∂∆) ⊂ M , one easily sees that σ is a proper self-mapping of

∆.

An immediate corollary of Lemma 4.7 is that the regularity of E∗ near 0 is a

local biholomorphic invariant. In particular, we see that if M at p can be flattened

to some order `, then the image of the local disks attached to M near p fills in a

manifold with C
`−2m
2m boundary at p, where 2m is the degeneracy degree of p ∈ M .
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For our Mn here, we first consider the model surface M0 = {(z, w) : w = |z|4}.
Near the point (0, 0) ∈ M0, we may attach analytic discs to M0 in this way:

{(z, u) : for each fixed u, |z|4 < u}. Here the parameter is the real variable

u ≥ 0: for each value of u, the associated disc is attached to M0. Now we may

map M0 to Mn, and M̃0 to what will turn out to be E∗
n, by way of the mapping

Φ(z, w) =
(
φ1(z, w), φ2(z, w)

)

with

φ1(z, w) = z φ2(z, w) = u + u3/2+n(u1/2z +
√−1).

One can see that this Φ takes each analytic disc in M̃0 to an analytic disc

attached to M1. Thus Φ(M̃0) becomes E∗
n (by Lemma 4.5, at least when E∗ has

C2 smoothness near 0 it is the local hull of holomorphy of Mn near 0).

Lemma 4.8: E∗
n is of class Cn+3/2 at 0.

Proof of Lemma 4.8: Let z = x +
√−1y and w∗ = u∗ + v∗. Then E∗

n =

{(z, w∗) : u∗ = u3+nx+u, v∗ = u3+ny+u3/2+n}. Applying the implicit function

to u∗ = u3+nx + u, we obtain u = u∗ + h∗(x, u∗) with h∗ analytic in (u∗, x) and

h∗(0, u∗) = 0. Thus E∗ is exactly the graph of the function

v∗(z, u∗) = (u∗ + h∗(x, u∗))3+ny + (u∗ + h∗(x, u∗))3/2+n.

This function is obviously only C3/2+n at 0. Thus E∗ has only C3/2+n smoothness

at 0.

Now by Lemma 4.2 and the regularity result obtained in the last section, we

see that Mn cannot be flattened to order ` = 10 + 4n (we remark that E∗
n is the

local hull of Mn at least when n > 3.) Thus we also conclude that the local hull

of Mn has only smoothness C3/2+n at 0).

The argument for Proposition 2 is now complete.
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[HOW]: L. Hörmander and J. Wermer, Uniform approximation on compact sets

in Cn, Math. Scand. 23(1968), 5-21.

[H1]: X. Huang, Some applications of Bell’s theorem to weakly pseudoconvex

domains, Pacific Journal of Math, 158(1993), 305-315.

[H2]: X. Huang, A Rigidity problem for holomorphic mappings on a class of weakly

pseudoconvex domains, Cannadian Journal of Math., in press.

[H3]: X. Huang, On the mapping problem for algebraic real hypersurfaces in

complex spaces of different dimensions, Annales de L’Institut Fourier 44 (1994),

in press

[H4]: X. Huang, A preservation principle of extremal mappings and its applica-

tions, Illinois Journal of Mathematics 38 (1994), 283-303.

[H5]: X. Huang, A non-degeneracy property of extremal mappings and iterates of

holomorphic mappings, Annali Scoula Norm. Sup. Pisa, in press.

[HK1]: X. Huang and S. G. Krantz, A unique continuation problem for holomor-

phic mappings, Communication in P. D. E. 18 (1993), 241-263.

[HK2]: X. Huang and S. Krantz, On a problem of Moser, submitted to Duke

Mathematical Journal.

[HP1]: X. Huang and Y. Pan, Proper holomorphic self-mappings of Hartogs do-

mains in C2, Michigan Math. Journal 40, No 2(1993), 211-217.

[HP2]: X. Huang and Y. Pan, A remark on proper holomorphic self mappings of

domains in Cn, preprint.

121



[KAT]: Y. Katznelson, An Introduction to Harmonic Analysis, John Wiley and

Sons, New York, 1968.

[Kr1]: S. Krantz, Function Theory of Several Complex Variables, Wiley, New York,

1982.

[Kr2]: S. Krantz, A new compactness principle in complex analysis, Division de

Mathematics, Univ. Antonoma de Madrid Seminarios 3 (1987), 171-194.

[KW]: C. Kenig and S. Webster, The local hull of holomorphy of a surface in the

space of two complex variables, Invent. Math. 67(1982), 1-21.

[Ko1]: J. J. Kohn, Boundary behavior of ∂ on weakly pseudoconvex manifolds of

dimension two, J. Diff. Geo. 6, 523-542 (1972).

[Ko2]: J. J. Kohn, Global regularity for ∂ on weakly pseudoconvex manifolds,

Trans. Am. Math. Soc. 181 (1973), 273-292.

[Lm1]: L. Lempert, La metrique de Kobayashi et la representation des domain sul

la boule, Bull. Soc. Math. France 109, 427-474 (1981).

[Lm2]: L. Lempert, A precise result on the boundary regularity of biholomorphic

mappings, Math Z. 193, 559-579 (1986); Math Z. 206, 501-504 (1991).

[Lm3]: L. Lempert, Intrinsic distances and holomorphic retracts, in complex anal-

ysis and applications 1981, Varns, Bolgarian Academy Sciences, Sofia, 1984, 314-

364.

[Le]: H. Lewy, On the boundary behavior of holomorphic mappings, Acad. Naz.

Lincei 35,1-8, 1977.

[Ma]: D. Ma, On iterates of holomorphic maps, Math. Z., 207, 417-428 (1991).

[Mal]: B. Malgrange, Ideals of differentiable functions, Oxford University Press,

London, 1966.

[Mc]: B. MacCluer, iterates of holomorphic self-mappings of the unit ball in Cn,

Michigan Math. J. 30 (1983), 97-106.

[Me]: P. Mercer, Extremal disks and composition operators on convex domains in

Cn, preprint.

[MP]: S. Mikhlin and S. Prossdorf: Singular Integral Operator, Springer-Verlag,

Berlin New York, 1986.

[MOS]: J. Moser, Analytic surfaces in C2 and their local hull of holomorphy,

Annales AcademiæFennicae, Series A.I.Mathematica 10(1985), 397-410.

122



[MOW]:J. Moser and S. Webster, Normal forms for real surfaces in C2 near com-

plex tangents and hyperbolic surface transformations, Acta Math. 150(1983),

255-296.

[Pi]: Pinchuk, On analytic continuation of biholomorphic mappings, Mat. USSR,

Sb. 105, 574-593 (1978).
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