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Abstract

We prove that for any n-vertex Dirac graph (graph with minimum

degree at least n/2) G = (V, E), the number, Ψ(G), of Hamiltonian

cycles in G is at least

exp2[2h(G)− n log e− o(n)],

where h(G) = max
∑

e xe log(1/xe), the maximum over x : E → <+

satisfying
∑

e3v xe = 1 for each v ∈ V , and log = log2. (A second

paper will show that this bound is tight up to the o(n).)

We also show that for any (Dirac) G of minimum degree at least d,

h(G) ≥ (n/2) log d, so that Ψ(G) > (d/(e + o(1))n. In particular, this

says that for any Dirac G we have Ψ(G) > n!/(2 + o(1))n, confirming

a conjecture of G. Sárkőzy, Selkow, and Szemerédi which was the

original motivation for this work.

1 Introduction

A graph is said to be Dirac if its minimum degree is at least n/2; this is in

honor of the seminal 1952 result of Dirac [8] proving that any such graph has

a Hamiltonian cycle. In this paper we are interested in lower bounds for the
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number of Hamiltonian cycles in a Dirac graph. Write Ψ(G) for the number

of Hamiltonian cycles in an (arbitrary) graph G, and Ψ(n) for the minimum

of Ψ(G) over n-vertex Dirac graphs G. (Throughout this discussion n is the

default for |V (G)|.)

The question of estimating Ψ(n) was raised by Bondy in [3, p.79], and

also, according to [19], at several conferences. (See also Bollobás [2, p.1260].)

Much earlier Nash-Williams [16] had proved that any Dirac graph has at

least 5
224

n edge-disjoint Hamiltonian cycles, so in particular, Ψ(n) ≥ 5
224

n.

(See [2] for more on the number of disjoint Hamiltonian cycles.) Sárkőzy et

al. [19] proved, using the regularity lemma [20], that Ψ(n) ≥ cnn! for some

(very) small positive constant c, and conjectured that c can be improved to

1/2− o(1); this is our first result:

Theorem 1.1 For any n-vertex Dirac graph G,

Ψ(G) ≥ n!/(2 + o(1))n. (1)

Of course it’s easy to give examples where this bound (apart from the fac-

tor (1 + o(1))n) is attained; but the theorem is best possible in a stronger

sense: Brégman’s Theorem ([4], formerly the Minc Conjecture) on perma-

nents of {0, 1}-matrices implies that for any (n/2)-regular (n-vertex) G one
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has Ψ(G) ≤ ((n/2)!)2 (= O(
√

n2−nn!).

We will actually prove something considerably more general than The-

orem 1.1, for statement of which we need a few definitions. For an edge

weighting x : E → <+, set h(x) =
∑

e xe log(1/xe). We will call this the

entropy of x (but note it is not really entropy since
∑

xe will not usually be

1). Call an edge weighting x proper if
∑

e3v xe = 1 for each v ∈ V . (Such

an x is also called a “perfect fractional matching.”) Finally, let h(G) (the

“entropy” of G) be the maximum of h(x) over proper edge weightings x. (In

the absence of proper weightings we may set h(G) = 0, but this won’t be an

issue here.) Our main result is

Theorem 1.2 For any n-vertex Dirac graph G,

log Ψ(G) ≥ 2h(G)− n log e− o(n).

To get Theorem 1.1 from this, we need a lower bound on h for Dirac graphs.

This is our second, though easier, main point:

Theorem 1.3 If δ(G) (the minimum degree of G) is at least d ≥ n/2, then

h(G) ≥ (n/2) log d. (2)
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This is easy (and sharp) when the graph is d-regular (xe = 1/d ∀e attains

the bound and is easily seen to maximize h), but does not seem obvious in

general.

Of course Theorems 1.2 and 1.3 give a natural extension of Theorem 1.1:

Corollary 1.4 For d ≥ n/2, any n-vertex G of minimum degree at least d

satisfies Ψ(G) ≥ (d/(e + o(1)))n.

In particular for regular G this again matches the Brégman upper bound

(Ψ(G) ≤ (d!)n/d for d-regular G).

In fact Theorem 1.2 is always sharp (again up to the error factor). Write

Φ(G) for the number of perfect matchings of a (general) graph G.

Theorem 1.5 For any n-vertex Dirac graph G,

log Ψ(G) = 2h(G)− n log e− o(n),

(note o(n) is not necessarily positive), and, if n is even,

log Φ(G) = h(G)− (n/2) log e− o(n),

so that log Ψ(G) = 2 log Φ(G)− o(n).

Of course log Ψ(G) < 2 log Φ(G) (i.e. Ψ(G) < Φ2(G)) is trivial for any graph

G with an even number of vertices. Thus the lower bound on log Φ(G) given
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by Theorem 1.5 is contained in that on log Ψ(G), which is Theorem 1.2. The

upper bounds will be proved in a separate paper [7] as part of a more general

Brégman-like result. (The upper bound on Ψ follows from that for Φ; this

is trivial when n is even, and turns out to be only slightly less so when n is

odd.)

Note that in Theorem 1.5 we have, quite surprisingly, a simple parameter

that essentially captures the behavior of Ψ (and also Φ in case n is even)

for an arbitrary Dirac graph. This has algorithmic implications: since h(G),

the maximum of a concave function subject to linear constraints, can be

estimated efficiently, we have an efficient algorithm for estimating both Ψ

and Φ for Dirac graphs to within subexponential factors.

This is reminiscent of a beautiful result of Linial et al. [12] on approximat-

ing permanents of nonnegative matrices. They show in particular that one

can approximate such a permanent to within a factor en (actually meaning

to within en/2) in deterministic polynomial time. (One can do much better

with randomization [10].) Of course this includes estimating Φ for bipartite

graphs.

In fact bipartite analogues of the preceding results are also true; precisely,
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for a balanced bipartite G on 2n vertices, we have

log Ψ(G) = 2h(G)− 2n log e− o(n), (3)

if δ(G) > n/2, and

log Φ(G) = h(G)− n log e− o(n) (4)

if δ(G) ≥ n/2, as well as a bipartite version of Theorem 1.3 (Theorem 3.1).

The latter is thought to be of some independent interest and is proved in

Section 3, but apart from this we will not pursue the bipartite assertions

here. Proofs of the lower bounds in (3) and (4) are similar to the main

arguments of the present paper, though there are some additional graph

theoretic complications. The upper bounds in (3) and (4) will again follow

from [7].

In the rest of this introduction we will try to say roughly what’s involved

in the proof of Theorem 1.2. Our basic approach—analysis of a self-avoiding

walk on G—is similar to that in [6], which in turn was inspired by [11]. In [6],

which proves a result analogous to Theorem 1.1 for regular tournaments, the

walk is just the natural one: the next vertex is chosen uniformly from the as

yet unvisited outneighbors of the current vertex. The present procedure will

also reduce to this in case G is regular (except we should replace “outneigh-
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bors” by “neighbors”). In general the walk is taken according to the (entropy

maximizing) x realizing h(G); that is, the next vertex is chosen from the as

yet unseen neighbors of the current vertex with probabilities proportional to

the edge weights. (We take X0 to be an arbitrary but fixed vertex.)

We stop the walk at a time l = n − o(n/ log n), and would like to show

that for the stopped walk, say X = (X0, . . . , Xl), we have, except in fairly

pathological situations,

H(X) ≥ 2h(x)− n log e− o(n) (5)

(where H is (ordinary, binary) entropy; see [5] or [13] for entropy basics),

and

w.h.p. X can be completed to a Hamiltonian cycle. (6)

Of course if we have these we are done, since (6) implies

log Ψ(G) ≥ H(X)− 1− o(1).

The pathological situations are those in which G is close to either a com-

plete bipartite graph or the complement thereof. When this happens, h(x)

can be shown to be not much more than (n/2) log(n/2); so we are aiming for

the lower bound of Theorem 1.1, which (in the pathological cases) is not too
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hard to establish directly. At any rate, for the present discussion we assume

G is not pathological.

To see why (5) is natural, we expand H(X) via the “chain rule,”

H(X) = H(X1|X0) + · · ·+ H(Xl|X0, . . . , Xl−1), (7)

and consider the contribution of the step leaving a particular w ∈ V . Our

guiding idea is that {X0, . . . , Xi} looks roughly like a random (uniform) (i+

1)-subset of V . If this is indeed the case, then an easy calculation shows

that, when w = Xi−1, H(Xi|X1, . . . , Xi−1) should typically be about h(w) +

log(1 − i/n), where h(w) =
∑

z xwz log(1/xwz) (the entropy of the first step

of a walk with X0 = w). Thus, overall, the entropy of the walk should be

about
∑

h(w) +
∑

i log(1 − i/n) ≈ ∑
h(w) − n log e (note we have chosen

l large enough that we can safely ignore the missing n − l terms). Since

∑
h(w) = 2h(x), this (suitably quantified) gives (5).

Our goal, then, is to show that this idealized behavior is not too different

from what actually happens. (This will say in particular that V \{X0, . . . , Xl}

looks roughly like a random (n − l − 1)-subset of V , and (6) will follow

relatively easily from this.)

To keep track of how things evolve we work with a family F of “relevant”

functions f : V → <+, and consider the walk to be “good” if it gives accurate
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samples of the relevant f ’s, meaning (roughly) that for each f ∈ F and i,

f({X0, . . . , Xi}) ≈ if(V )/n

(where f(S) =
∑

v∈S f(v)). Our main task will be to show that the walk is

likely to be good (Lemma 2.2).

The relevant functions are both a means of measuring the progress of the

walk and, at the end, the basis for the conclusions (5) and (6). Here are two

examples: fv(w) = xvw will be a relevant function (for each v), so that if the

walk is good through time i, then the (normalization of the) restriction of x

to Gi := G − {X0, . . . , Xi−1} is nearly proper, implying that the stationary

distribution of the ordinary x-walk on Gi is close to uniform (which is one

prerequisite for continued good behavior); and proper evolution of the fv’s

and the (relevant) functions gv(w) := xvw log(1/xvw) will fairly easily give

(5). (See the proof of (16) at the end of Section 2.)

The analysis that establishes good behavior is reminiscent of the cele-

brated “nibble” method (e.g. [18] or [14]), in that we break the walk into

fairly short intervals and show that actual behavior over such an interval is

(very) likely to be close to expected behavior.

We briefly sketch how this will go. We will be considering the behavior

of the walk over an interval (Xa, . . . , Xb), in part by comparing it with the
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corresponding ordinary walk, say Y = (Xa = Y0, Y1, . . .), on Ga. There are

three parts to the analysis.

First, the behavior of (Xa, . . .) closely follows that of Y . This is easy: if

we couple the two walks so that they agree up to the first time that Y revisits

a vertex, then this agreement is likely to continue up to time b, provided b−a

is not too large. (This is why we need to make the intervals fairly short.)

Second, Y has nearly uniform stationary distribution (a consequence, as

noted above, of the assumption that X is good up to time a) and mixes

(converges to stationarity) very rapidly. (This is where we need to assume

Ga is not pathological).

Combining these two observations, we find that, even for q quite small,

the distribution of each Xi given the walk to time i − q is typically close to

uniform distribution on V \ {X1, . . . , Xi−q}; so the expectations Ef(Xi) for

f ∈ F (again, given the walk to time i− q) are close to what we would like.

(Of course nothing like this is true if we condition on the walk to time i− 1.)

The third—and perhaps main—point is that the actual values of quan-

tities
∑{f(Xi) : a ≤ i ≤ b} are very likely to be close to what these ex-

pectations suggest. For this we need Azuma’s inequality, applied here in a

slightly atypical setting, in which the expectations in question are not fixed
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in advance, but are themselves functions of the evolving sequence X (see

Lemma 5.3).

Technical lemmas supporting this analysis are proved in Section 5 and

the analysis itself is carried out in Section 6. We begin, in Section 2, by

proving Theorem 1.2 modulo the results of these later sections and Section 4,

which develops the graph theory needed for (6) and the pathological cases

of Theorem 1.2. Section 3 contains the proofs of Theorem 1.3 and the afore-

mentioned bipartite version, Theorem 3.1, as well as one technical result on

the values taken by an entropy-maximizing x.

2 Main points and proof of Theorem 1.2

Here, to see more concretely where this is all headed, we want to give the

proof of Theorem 1.2 modulo several results that will be proved in later

sections, the most important being Lemma 2.2. We first need some prelimi-

naries.

Two general conventions: we use µ(f) for the expectation of a function

f with respect to a probability measure µ, and a = (1 ± δ)b for “a ∈ ((1 −

δ)b, (1 + δ)b).”
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For the following definitions we suppose G = (V, E) is a graph on n

vertices and x : E → <+. A half-set of G is a subset of V of size bn/2c

or dn/2e. For A,B ⊆ V set e(A,B) = |{ab ∈ E : a ∈ A, b ∈ B}| and

x(A,B) =
∑{xab : a ∈ A, b ∈ B}. (Here and elsewhere we set xvw = 0 when

vw 6∈ E.) Note that the last two expressions double count edges contained

in A ∩ B; we will sometimes avoid this by using e(A) = e(A,A)/2 and

x(A) = x(A, A)/2.

For ξ ∈ [0, 1], we say G is ξ-Dirac if it has minimum degree at least

(1 − ξ)n/2, ξ-normal if for any two half-sets A,B we have e(A,B) > ξn2,

and ξ-special if it is not ξ-normal. We also say that x : E → <+ is ξ-normal

if x(A,B) > ξn for any two half-sets A,B, and ξ-special otherwise. These

definitions are inspired by the “extremal condition” of [19, p.40].

Notice that if G admits a ξ-normal proper weighting x, then G itself is ζ-

normal with ζ = ξ/(n‖x‖∞) (since for any half-sets A,B we have x(A,B) ≤

e(A,B)‖x‖∞). We set

ξ = log−3 n and ζ = 1
64

ξ4; (8)

ξ will soon be the assumed normality of x and ζ the corresponding normality

of G given by Lemma 3.2.

We now specify the set F of relevant functions; these will be of five types,
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fv, gv, hv, gvw and hwx. The first three are defined for each v ∈ V and are

given by

fv(w) = xvw,

gv(w) = xvw log(1/xvw),

and

hv = 1N(v)

(where N(v) is the neighborhood of v). For the gvw’s and hwx’s, let

A(w) = {x ∈ V : |N(x) \N(w)| > ζn/4}. (9)

We set

gvw(x) = |N(x) \N(w)|1A(w)\N(v)(x),

hwx = 1N(x)\N(w),

and put gvw ∈ F if e(V \N(v), V \N(w)) > 2ζn2/3, and hwx ∈ F if x ∈ A(w).

Set

ρ = max{‖f‖∞/f(V ) : f ∈ F}
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(note f can be any of the five types of functions in F and (recall) f(S) is

∑
v∈S f(v)). Then (it is not hard to see that)

ρ ≤ max{4/(ζn), ‖x‖∞} (10)

(which will turn out to be 4/(ζn)).

We next need some terminology regarding the random walk. Formally

this is X = (X0, . . . , Xl), where X0 is some fixed vertex and, for i ≥ 1,

Pr(Xi = w|X0, . . . , Xi−1) ∝ xw,Xi−1
1{w 6∈{X0,...,Xi−1}}.

(Recall xvw = 0 if vw 6∈ E. As usual, “∝” means “is proportional to.”)

We use XI = (Xi : i ∈ I), X(i) = (X0, . . . , Xi) (= X{0,...,i}), and Vi =

V \ {X0, . . . , Xi−1) (so Gi = G[Vi]).

We will break the walk into intervals of length κ; this will be of the

form n2/3 logO(1) n, but we defer a more precise specification until (56). A

milestone is an index of the form rκ, with r a nonnegative integer, and a

basic segment is a subwalk (Xa, . . . , Xb) with a, b consecutive milestones.

We need to show that the walk is likely to satisfy f(Vj) ≈ (n− j)f(V )/n

for each relevant f and each j. As one might expect, the accuracy of these

estimates deteriorates over time; to allow for this we introduce “phases” of

the walk, and a slowly relaxing sequence of “tolerances” δm as follows.
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Set

c = 1/4 and γ = 1/6. (11)

(We will need c < 1/3 (see 62), and c(1−γ) > γ (see 12).) Let a0, . . . , as = l

be the sequence of milestones with a0 = 0 and, for i ≥ 1,

n− ai = b(1− γ)(n− ai−1)/κcκ

(that is, ai is the first milestone for which n− ai ≤ (1− γ)(n− ai−1)). Thus

l = n− o(n/ log n) corresponds to

s = −(log log n + ω(1))/ log(1− γ).

(It will be enough to know that s = Θ(log log n).) The ith phase of the walk

is then (Xai−1
, . . . , Xai

)

Now set δ0 = 0 and define δ1, . . . , δs by

δm = [(c(1− γ)− γ)(1− am−1/n)]−1[am−1δm−1/n + 2κρ] (12)

for 1 ≤ m ≤ s. Despite this very precise definition, we won’t need to be very

careful with the actual values of the δ’s; for instance, it will be enough to say

that (as is easily verified)

δs < exp[O((log log n)2)]κρ. (13)
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Say that a subwalk XI of phase m is good if

f(XI) = (1± δm)
|I|
n

f(V ) (14)

for each f ∈ F , and that X(i) is good (or X is good through time i) if each

basic segment contained in X(i) is good. In particular, the entire walk is

good if each of its basic segments is good.

Proof of Theorem 1.2

We assume throughout that G is an n-vertex Dirac graph, and that

x is entropy maximizing (15)

(that is, h(x) = h(G)). Lemma 2.2 below is the heart of the matter, but

can fail to apply if x is sufficiently “abnormal”; in such cases Theorem 1.2 is

contained in

Lemma 2.1 If G is an arbitrary graph and x a ϕ-special proper weighting,

then h(x) ≤ (n/2) log(n/2) + O
(
ϕn log2(1/ϕ)

)
. If, in addition, G is Dirac

and ϕ ≤ 1/ log3 n, then Ψ(G) ≥ n!/(2 + o(1))n.

This is proved in Section 4.

So, with ξ as in (8), we may assume for the remainder of this discussion

that x is ξ-normal. We then have the main point:
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Lemma 2.2 If x is ξ-normal then X is good with probability at least 1 −

o(1/ log n).

(The bound o(1/ log n) is what the present argument requires, but there is

plenty of room here and we could easily do much better.) A little reflection

should convince the reader that some normality assumption is needed here.

(Think of G consisting of two disjoint cliques of size n/2 joined by a few

edges.)

So we are entitled to assume the conclusion of Lemma 2.2 and want to

show this implies (5) and (6). We first verify (6), which is mainly an instance

of the following graph-theoretic lemma, proved in Section 4. Recall that a

graph is Hamiltonian connected if any two of its vertices can be joined by a

Hamiltonian path.

Lemma 2.3 If a graph H is α-Dirac and β-normal on n vertices with β >

max{2α, 13/n}, then H is Hamiltonian connected.

(The 13/n should of course be ignored.) We want to apply this to G[Vl ∪

{X0}], so essentially need to say that Gl has the appropriate normality and

“Diracity” whenever X is good. These are both special cases of properties we

need to establish in the course of proving Lemma 2.2: see (47) and (49), which
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imply in particular that G[Vl ∪ {X0}] satisfies the hypotheses of Lemma 2.3

with α = δs and β = 1
320

ξ4 (= ω(α)). (That Gl is (δsn/(n − l))-Dirac is

immediate from the definition of “good” applied to the functions hv; we

could get by with this, but may as well assert the stronger property since we

will wind up proving it anyway.) So we have (6).

Turning to (5), we consider the expansion (7). Given v ∈ V , set

hi(v) =
∑

{(xvw/µ) log(µ/xvw) : w ∈ Vi},

where we (temporarily) set µ =
∑{xvw : w ∈ Vi} = fv(Vi). Thus for v ∈ Vi,

hi(v) is the entropy of a random step from v (according to x) in Gi, and we

have

H(Xi+1|X0, . . . , Xi) = Ehi(Xi).

Claim. If X is good then

l−1∑
i=0

hi(Xi) > 2h(x)− n log e− o(n). (16)

(Note the familiar abuse: this recycles “X” as a possible value of the random

object we’ve been calling X.)

Note that (5) follows easily from the claim when we recall (Lemma 2.2)

that we have the lower bound 1−o(1/ log n) on the probability that the walk

is good (and the trivial upper bound n log n on h(x)).
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Proof of Claim. Write δ for δs. Given i, set t = t(i) = di/κeκ (the first

milestone not preceding i); then (trivially) hi(v) ≥ ht(v) for any v (recall

ht(v) was defined for v ∈ V ). Temporarily fix v and set µ = fv(Vt). Then

ht(v) =
∑

{(xvw/µ) log(µ/xvw) : w ∈ Vt} = µ−1gv(Vt) + log µ. (17)

On the other hand, since X is good, we have

µ = (1± δ)(n− t)/n and gv(Vt) > (1− δ)h(v)(n− t)/n

(note h(v) =
∑

z xvz log(1/xvz) = gv(V )), implying

ht(v) >
1− δ

1 + δ
h(v) + log

n− t

n
+ log(1− δ).

Thus we have

l−1∑
i=0

hi(Xi) >
1− δ

1 + δ

l−1∑
i=0

h(Xi) +
l−1∑
i=0

log
n− t(i)

n
+ l log(1− δ)

> (1− 2δ)
∑
v∈V

h(v)− (n− l) log n− n log e + l log(1− δ)

= 2h(x)− n log e− o(n).

3 Weights

In this section we are mainly concerned with proving Theorem 1.3 and the

following related result.
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Theorem 3.1 If G is bipartite on X ∪Y with |X| = |Y | = n and all degrees

at least d ≥ n/2, then h(G) ≥ n log d.

Before turning to these we establish one technical point that will be useful

when we consider the mixing speed of the ordinary random walk associated

with an optimal x (see Lemma 5.2).

Lemma 3.2 If x satisfies (15) and is ξ-normal, then

xe ∈ (2−10ξ7n−1, 64ξ−3n−1) ∀e ∈ E.

Proof. We first observe that for any even closed walk (v0, . . . , v2k−1, v2k) with

xi := xvi−1vi
(and v2k = v0), we have

x1x3 · · ·x2k−1 = x2x4 · · ·x2k, (18)

since otherwise, for an appropriate nonzero ε, we could increase h(x) by

adding ε to x1, . . . ,x2k−1 and subtracting it from x2, . . . ,x2k (so the change

on a repeated edge will be some multiple of ε).

We first rule out very large weights in x and then very small ones. For

the large weights, suppose xuv = T/n with T > 64ξ−3. Set S = T 1/3 and

let A = {w ∼ u : xuw < S/n}, B = {w ∼ v : xvw < S/n}. Then |A|, |B| >

n/2− n/S, so ξ-normality of x implies x(A,B) > ξn− 2n/S. It follows that
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there are a ∈ A, b ∈ B with xab > (4/n2)(ξn− 2n/S) > 2ξ/n. But then the

cycle (u, v, b, a) violates (18) (namely xuvxab > 2Tξ/n2 > S2/n2 > xuaxvb),

so we have ‖x‖∞ ≤ 64ξ−3/n.

Now suppose that for some uv ∈ E we have xuv < ε/n. Choose w, z with

xuw,xvz > 1/n and set A = N(w), B = N(z). Then ξ-normality of x gives

a ∈ A, b ∈ B with xab > 4ξ/n. But we also know that xwa,xzb < 64ξ−3/n,

so, again appealing to (18), we have

(64ξ−3)2ε/n3 > xuvxwaxzb = xuwxvzxab > 4ξ/n3,

and ε > 2−10ξ7.

Note in particular that for x as in Lemma 3.2—as it will be in Section 6—

we have ‖x‖∞ < 4/(ζn), so that (10) becomes

ρ ≤ 4/(ζn). (19)

We now turn to Theorem 1.3. We will prove something a little stronger:

any graph of minimum degree d ≥ n/2 admits a proper edge weighting x

with

∑
e∈E

x2
e ≤

n

2d
. (20)
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To see that this is stronger, note that (2) is the same as

∑
e

2xe

n
log xe ≤ log(1/d). (21)

On the other hand, if (20) holds, then Jensen’s inequality (with
∑

xe = n/2)

gives

∑
e

2xe

n
log xe ≤ log

∑
e

2x2
e

n
≤ log(1/d).

Lemma 3.3 Under the hypotheses of Theorem 1.3 there is a vertex weighting

u : V → R+ for which the edge weighting x given by

xvw = uv + uw (22)

is proper and satisfies (20).

Proof. If G = Kn/2,n/2 then we may take uv = 1/n for all v; so we may

assume this is not the case, and in particular G is nonbipartite.

Let M be the (V × E) vertex-edge incidence matrix of G (that is, the

(v, e)-entry of M is 1 if v ∈ e and 0 otherwise), A = MM t, and u the unique

solution to

Au = 1 (23)

(where 1 is the all 1’s vector; note G connected and nonbipartite implies A

is nonsingular). We then define x by (22)—that is, x = M tu—and note that
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∑
e3v xe = 1 for each v (this is equivalent to (23)). The key to showing that

x (is nonnegative and) satisfies (20) is

u ≥ 0. (24)

We first derive (20) from this. We have

∑
e∈E

x2
e = utMM tu = ut1 =

∑
v∈V

uv;

so we need to say the last sum is at most n/(2d), which is true:

n/2 =
∑

e

xe =
∑

v

uvd(v) ≥ d
∑

uv, (25)

where we used (24) (and d(v) ≥ d) for the inequality. 2

Proof of (24). Assume for a contradiction that N := {x ∈ V |ux < 0} 6= ∅,

and set P = {x ∈ V |ux > 0}. Write αv for −uv (we will use this only when

v ∈ N). For any y ∈ N ,

∑
x∈P

ux ≥
∑

{ux : y ∼ x ∈ P} = 1 + αyd(y) +
∑

{αx : y ∼ x ∈ N}.

Setting d′(y) = dN(y) and averaging over y ∈ N gives

∑
x∈P

ux ≥ 1 +
1

|N |
∑
y∈N

αy(d(y) + d′(y)).

Inserting this in the inequality

d ≥ n/2 =
∑

xe =
∑
x∈P

uxd(x)−
∑
y∈N

αyd(y) (26)
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and using the lower bound on degrees, we have

d ≥ d(1 +
1

|N |
∑
y∈N

αy(d(y) + d′(y))−
∑
y∈N

αyd(y); (27)

that is,

0 ≥ d

|N |
∑
y∈N

αy(d(y) + d′(y))−
∑
y∈N

αyd(y). (28)

Combining this with the trivial

d′(y) ≥ d(y)− (n− |N |) ≥ d(y)− 2d + |N |, (29)

we have

0 ≥ d

|N |
∑
y∈N

αy(2d(y)− 2d + |N |)−
∑
y∈N

αyd(y),

or

0 ≥
(

2d

|N | − 1

) ∑
y∈N

αy(d(y)− d). (30)

Since 2d > |N | and d(y) ≥ d for each y, it must be the case that all in-

equalities used above are actually equalities. In particular, n = 2d (see

(26)); d(z) = d for each z ∈ P ∪ N (see (27) and (30)); and E(N, V \ N)

(:= {yz : y ∈ N, z ∈ V \N}) ⊆ E (see (29)). Then each of |N |, |V \N | is at

most d = n/2, so in fact each is exactly n/2; the neighborhood of each x ∈ P

is precisely N ; and P ∪N = V , since v with uv = 0 would have no neighbors

in P , so lie in no edges of positive weight. So, finally, we find that, contrary

to assumption, G = Kn/2,n/2.
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Proof of Theorem 3.1. This is similar to the proof of Theorem 1.3 and we

focus on the differences. The analogue of (20) is

∑
e∈E

x2
e ≤

n

d
. (31)

The derivation of Theorem 3.1 from this is as before, except the 2’s should be

removed from (21) and the following display. The statement of Lemma 3.3

is unchanged (except that the hypotheses are now those of Theorem 3.1 and

(20) becomes (31)).

For the proof of this version of Lemma 3.3 we again first exclude one easy

case, namely that G = 2 · Kn/2,n/2 (two disjoint copies of Kn/2,n/2). This

allows us to assume that G is connected.

We define M and A as before, but note that now rank(A) = rank(M) =

2n− 1, the (right) kernel of A being 〈w〉, where w is 1 on X and −1 on Y .

Since 〈1,w〉 = 0, we have 1 ∈ row(A), and it is now enough to show that

(24) holds for some u satisfying (23). (Derivation of (31) from this is the

same as that of (20) from (24), except we should replace n/2 by n in (25).)

The solution set of (23) is a translate of 〈w〉, so, assuming for a contra-

diction that this contains no nonnegative vectors, we may take u to be the
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unique member satisfying

∑
αx =

∑
αy, (32)

where we again adopt the convention αv = −uv used only when uv < 0, and

now reserve x and y for vertices of X and Y respectively.

We define P and N as before, set XP = X ∩ P and define XN , YP and

YN similarly. We also use d′(v) as before, so (29) is replaced by

d′(x) ≥ d(x)− (n− |YN |) ≥ d(x)− 2d + |YN |, (33)

and the analogous statement for the d′(y)’s.

The first two inequalities from the proof of (24) are now pairs of inequal-

ities: for y ∈ YN ,

∑
ux ≥

∑
{ux : y ∼ x ∈ X \XN} = 1 + αyd(y) +

∑
{αx : y ∼ x ∈ XN},

whence

∑
ux ≥ 1 +

1

|YN |
[∑

αyd(y) +
∑

αxd
′(x)

]
,

and similarly with the roles of X and Y reversed. Thus

2d ≥ n =
∑

uxd(x)−
∑

αxd(x) +
∑

uyd(y)−
∑

αyd(y)

≥ 2d +

(
d

|YN | − 1

) ∑
αyd(y) +

(
d

|XN | − 1

) ∑
αxd(x)

+
d

|YN |
∑

αxd
′(x) +

d

|XN |
∑

αyd
′(y). (34)
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Then cancelling the 2d’s and using (33) gives

0 ≥
∑

αxf(x) +
∑

αyg(y), (35)

where, e.g.,

f(x) = d(x)

(
d

|XN | − 1

)
+

d

|YN |(d(x)− 2d + |YN |),

which (by subtracting and adding (d2/|XN |+ d2/|YN | − d)) we may rewrite

as

(d(x)− d)

(
d

|XN | +
d

|YN | − 1

)
+ d2

(
1

|XN | −
1

|YN |
)

. (36)

Noting that the first term here is nonnegative, and inserting in (35), we have,

using (32),

0 ≥
∑

αxd
2

(
1

|XN | −
1

|YN |
)

+
∑

αyd
2

(
1

|YN | −
1

|XN |
)

= 0.

So again, all of our inequalities are actually equalities, and then an anal-

ysis similar to our earlier one leads to the contradiction G = 2 ·Kn/2,n/2.

4 Graph theory

Our purpose in this section is to give proofs of Lemmas 2.1 and 2.3. These

are preceded by a few easy preliminaries plus Lemma 4.4, which does most
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of the work for Lemma 2.1.

Lemma 4.1 Suppose G is an α-Dirac, ϑ-special graph with α < o(ϑ). Then

there is a half-set A ⊆ V (G) such that one of e(A, A), e(A, A) is less than

4ϑn2.

Proof. Let A and B be half-sets with e(A,B) < ϑn2, and C = A ∪ B. For

any v ∈ C,

dC(v) ≥ (1− α)n/2− |A ∪B| = (1− α)n/2− |A ∩B|.

(Strictly speaking, we only know
∣∣|A ∪B| − |A ∩B|

∣∣ ≤ 1, but we will always

ignore this irrelevant annoyance.) Thus

|A ∩B| ((1− α)n/2− |A ∩B|) ≤
∑

v∈A∩B

dC(v) ≤ e(A,B) ≤ ϑn2,

which, since α < o(ϑ), implies that either |A ∩ B| < 3ϑn or |A ∩ B| >

(.5 − 3ϑ)n. In the first case, e(A,A) ≤ e(A, B) + 2(n/2) · 3ϑn < 4ϑn2, and

in the second, e(A,A) ≤ e(A,B) + 2(n/2) · 3ϑn < 4ϑn2.

We also need a version of Lemma 4.1 for weights. Here and in what

follows we will make frequent use of the fact, an easy consequence of Jensen’s

inequality, that for any x : S → R+,

h(x) ≤ x(S) log
|S|

x(S)
. (37)

29



Lemma 4.2 If G is an (arbitrary, n-vertex) graph and x a proper, ϑ-special

edge weighting with h(x) ≥ n
2

log n
2
, then there is a half-set A such that one

of x(A,A), x(A, A) is at most O(ϑn log 1
ϑ
).

Proof. Let A and B be half-sets for which x(A,B) ≤ ϑn. Because x is

proper, x(A ∩ B, V ) = |A ∩ B| =: an. Also, x(A ∩ B, A ∪ B) ≤ x(A,B) ≤

ϑn. Thus, since x(A ∩ B, A ∪B) + x(A ∩ B,A ∪ B) = x(A ∩ B, V ), we

have x(A ∩ B, A ∪B) ≥ an − ϑn, which, since x(A ∪B, V ) = an, implies

x(A ∪B, A ∩B) ≤ ϑn.

Let E1 = E(A \ B) ∪ E(B \ A) ∪ E(A ∩ B, A ∪B) (where E(X) is the

set of edges contained in X) and E2 = E \ E1. We have

∑
e∈E1

xe log
1

xe

+
∑
e∈E2

xe log
1

xe

= h(x) ≥ n

2
log

n

2
. (38)

Let b = min{a, 1
2
− a}. We are done if we can show that b = O(ϑ log 1

ϑ
),

since

min
{
x(A,A),x(A, A)

} ≤ x(A,B) + bn.

We have |E1| ≤ (n/2 − bn)n/2 and |E2| ≤ n2/2; so, setting λn = x(E2) ≤

x(A ∪B, A ∩B) + x(A,B) ≤ 2ϑn and using (37), (38), we have

n

2
log

n

2
≤ h(x) ≤ (

n

2
− λn) log

(n/2− bn)

1− 2λ
+ λn log

n

2λ
.
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Dividing the left and right sides of this inequality by n/2 gives

log
n

2
≤ (1− 2λ) log(n/2− bn) + 2λ log(n) + H(2λ),

or

0 ≤ (1− 2λ) log(1− 2b) + 2λ + H(2λ) ≤ −(1− 4ϑ)2b + O(ϑ log
1

ϑ
)

and the lemma follows.

Proposition 4.3 If G is bipartite on A∪B with |A| = |B| = n and δ(G) >

(n + 1)/2, then G contains a Hamiltonian (a, b)-path for each a ∈ A and

b ∈ B.

Proof. This is a simple consequence of a theorem of Moon and Moser [15],

stating that a bipartite graph with parts of size m and minimum degree

greater than m/2 is Hamiltonian. In the present case this says that G−{a, b}

contains a Hamiltonian cycle C. But then, since |C| = 2n−2 and N(A)∩C,

N(A)∩C are disjoint sets of size greater than (n−1)/2, there are consecutive

vertices of C belonging to N(a) and N(b). This gives the required path.

Lemma 4.4 Suppose G is a Dirac graph containing a half-set A for which

max{e(A)+ e(A), e(A,A)} > (1/4− o(log−2 n))n2. Then if there is a Hamil-

tonian path joining x, y ∈ V (G), there are at least n!/(2 + o(1))n such paths.
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The proof of this is somewhat similar to some of the arguments in [19].

Proof. We let B = A and first suppose that e(A)+e(B) > (1/4−o(log−2 n))n2.

Set e(A) + e(B) = (1/4− λ)n2; so λ < o(log−2 n).

We slightly modify the partition so that all degrees within the parts are

fairly large. Let Ab = {v ∈ A | dA(v) < 1
4
n} and Bb = {w ∈ B | dB(w) < 1

4
n}.

Since e(A) + e(B) ≥ n2

4
− λn2, we have

(|A|
2

) − e(A) ≤ λn2, so |Ab| < 4λn.

Similarly, |Bb| < 4λn. Let A′ = (A \Ab)∪Bb and B′ = (B \Bb)∪Ab. Thus

A′ ∪B′ is again a partition of V and

dA′(v) >
n

4
− 4λn ∀ v ∈ A′, dB′(w) >

n

4
− 4λn ∀ w ∈ B′.

Also, e(A′) ≥ e(A) − n
4
· |Ab| ≥ (|A|

2

) − 2λn2 ≥ (|A′|
2

) − 5λn2, and similarly

e(B′) ≥ (|B′|
2

)− 5λn2.

We give the proof for x ∈ A′ and y ∈ B′; the argument for x, y on the

same side of the partition is similar. Since there is a Hamiltonian (x, y)-

path, there is an edge ab disjoint from {x, y} with a ∈ A′ and b ∈ B′.

For the conclusion of the lemma it’s enough to show that there are at least

(n/(2e + o(1))n/2 Hamiltonian (x, a)-paths in G[A′] and at least this many

Hamiltonian (b, y)-paths in G[B′]; these assertions are instances of

Claim Let H be a graph with |V (H)| = m, δ(H) = ω(
√

λm), |E(H)| >
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(
m
2

)−λm2 and λ < o(log−2 m). Then, for any u, v ∈ V (H), there are at least

(m/(e + o(1))m Hamiltonian (u, v)-paths.

(Note we could require a stronger lower bound on δ, but assume only what’s

needed for the claim. Note also that the λ used here is slightly different from

the one introduced above.)

Proof. Set Q = {v ∈ V (H) : m − d(v) ≥
√

λm}. The lower bound on e(H)

gives |Q| ≤ 2
√

λm. It is also easy to see, using δ(G) = ω(
√

λm) and, again,

the lower bound on e(G) that any two vertices of H can be connected by

ω(
√

λm) independent paths of length 3 (where, recall, independent means no

path contains an internal vertex of another).

It follows that for some u′ /∈ Q there is a (u, u′)-path P of length 3|Q|

containing Q \ {v} and not containing v. Let v′ be any neighbor of v not in

P (so v′ /∈ Q). Now H ′ := H − v − (V (P ) \ {u′}) is a graph on m − 3|Q|

vertices with

δ(H ′) ≥ m− 3|Q| −
√

λm ≥ m− 7
√

λm. (39)

The desired bound then follows from the observation that H ′ contains at

least (m/(e + o(1)))m Hamiltonian (u′, v′)-paths, since (a) there are at least

(δ(H ′) − 1)l paths of length l := (1 − 15
√

λ)m beginning at u′ and not

containing v′ (where (x)l = x(x − 1) · · · (x − l + 1))—note (δ(H ′) − 1)l >
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(m/(e + o(1))m by (39) and our assumption on λ—and (b) each of these

can be completed to a Hamiltonian (u′, v′)-path, this according to a theorem

of Ore [17], stating that a graph F with δ(F ) > |V (F )|/2 is Hamiltonian

connected. 2

Now suppose e(A, B) = (1/4−λ)n2 with λ < o(log−2)n2. We first modify

the partition so that all degrees across the parts are fairly large. Let Ab =

{v ∈ A | dB(v) < 1
4
n} and Bb = {w ∈ B | dA(w) < 1

4
n}. Since e(A,B) ≥

n2

4
− λn2, we have |A||B| − e(A,B) ≤ λn2, so |Ab|, |Bb| < 4λn. Let A′ =

(A \ Ab) ∪ Bb and B′ = (B \ Bb) ∪ Ab. Thus A′ ∪ B′ is again a partition of

V and

dB′(v) >
n

4
− 4λn ∀ v ∈ A′, dA′(w) >

n

4
− 4λn ∀ w ∈ B′, (40)

and e(A′, B′) ≥ e(A,B)− n
4
· (|Ab|+ |Bb|) ≥ |A′||B′| − 3λn2.

We next remove a short path from G to equalize the sizes of A′ and B′ .

We may assume that |A′| ≤ |B′|. Again we just do the case x ∈ A′, y ∈ B′,

the argument for x, y on the same side of the partition being similar.

By assumption, G has a Hamiltonian (x, y)-path, say P . Let S be some

(|B′| − |A′|)-subset of E(P )∩E(B′). The graph with vertex set B′ and edge

set S is a disjoint union of paths (some of them single vertices). Let Py be

the path containing y and y′ the other end of this path (so possibly y′ = y).
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Let G′ be the subgraph of G obtained by deleting (E(A)∪E(B)) \S. By

(40), any p, q ∈ B′ can be joined by ω(λn) independent paths of length 4 in

G′. Since |B′|−|A′| ≤ 8λn, it follows that for some x′ ∈ A′ there is an (x, x′)-

path P (x) in G′ of length O(λn) such that E(P (x)) ∩ E(P ) = S \ E(Py).

Thus G′′ := G′ − V (P (x) \ {x′}) − (V (Py) \ {y′}) is bipartite with parts

A′′ := V (G′′)∩A′ and B′′ := V (G′′)∩B′, and |A′′| = |B′′| ≥ n/2−O(λn). The

following claim then says that there are at least n!/(2 + o(1))n Hamiltonian

(x′, y′)- paths in G′′, which of course gives the same number of Hamiltonian

(x, y)-paths in G.

Claim Let H be a bipartite graph on U ∪W with |U | = |W | = m, e(H) >

(1−λ)m2 and δ(H) = ω(
√

λm), where λ < o(log−2 m). Then, for any u ∈ U

and w ∈ W , there are at least (1− o(1))m · (m!)2 Hamiltonian (u,w)-paths.

Proof. Let Q = {v ∈ V (H) : m − d(v) ≥
√

λm}. The lower bound on e(H)

gives |Q| ≤ 2
√

λm. It is also easy to see, using δ(H) = ω(
√

λm) and, again,

the lower bound on e(H), that any two vertices of H can be connected by

ω(
√

λm) independent paths of length at most 4. It follows that for some

u′ ∈ U \ Q, there is a (u, u′)-path Pu of length exactly 4|Q| containing all

vertices of Q \ {w} and not containing w. Let Pw be a path of length 2

disjoint from Pu joining w and some w′ ∈ W \Q.
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Then H ′ := H − (V (Pu) \ {u′}) − (V (Pw) \ {w′}) is bipartite on 2m −

4|Q| − 2 vertices, with m− 2|Q| − 1 vertices on each side of the bipartition

and δ(H ′) ≥ m −
√

λm − 2|Q| − 1 ≥ m − 5
√

λm − 1. We then proceed as

in the previous case: H ′ contains at least ((δ(H ′)− 1)l)
2 > (m/(e + o(1))2m

Hamiltonian (u′, w′)-paths, since (a) there are at least this many paths of

length 2l := 2(1 − 10
√

λ)m beginning at u′ and not containing w′, and (b)

Proposition 4.3 says that each of these can be completed to a Hamiltonian

(u′, w′)-path; and of course this gives the desired (u,w)-paths in H.

Proof of Lemma 2.1.

By Lemma 4.2, there is a half-set A such that one of x(A, A), x(A,A) is

less than O(ϕn log(1/ϕ)). We consider only the first case; the second can be

handled similarly. Setting x(A,A) = xn, we have, again using (37),

h(x) ≤ xn log
n2/4

xn
+ (1/2− x)n log

n2/4

(1/2− x)n

= (n/2)(log(n/2) + H(2x)) < (n/2) log(n/2) + O(ϕn log2 1

ϕ
).

For the second assertion we show e(A) + e(A) is large and apply Lemma

4.4 (and Dirac’s Theorem). By Lemma 1.3 we have h(x) ≥ (n/2) log(n/2).

On the other hand, setting e(A) + e(A) = (1 − λ)n2/4 and using (37), we
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have

h(x) ≤ (n/2− xn) log
(1− λ)n2/4

n/2− xn
+ xn log

n2/4

xn
.

Combining and rewriting (along lines similar to those in the proof of Lemma

4.2) gives λ < H(2x)/(1 − 2x) < o(log−2 n), as desired. (So we just needed

ϕ < o(1/(log2 n log log n)).)

Proof of Lemma 2.3.

We first show that for any given x, y ∈ V (G) (x 6= y), G′ := G − {x, y}

is Hamiltonian. To begin, we assert that G′ is 2-connected. To see this,

suppose instead that A,B are disjoint components of G′ − v. Since G is

α-Dirac, each of A,B has size at least (1 − α)n/2 − 2; so in G we have

e(A,B) > βn2 − 2(αn/2 + 2)n/2 > 0, a contradiction.

Now let C = (v1, . . . , vm) be a longest cycle in G′. According to a(nother)

theorem of Dirac [8] we have m ≥ 2[(1−α)n/2− 2]. (Recall Dirac’s theorem

says that a 2-connected graph of minimum degree k has a cycle of length at

least min{2k, n}.)

For w ∈ V (G) \ V (C), let S(w) = {vi |vi−1 ∈ N(w)} (with subscripts

interpreted modulo m). If v ∈ V (G′)\V (C), then |S := S(v)| ≥ (1−α)n/2−

(n −m − 1) ≥ n/2 − (3αn/2 + 3), implying, by our normality assumption,

e(S, S) > (β − 3α/2)n2 − 3n ≥ 1. This gives a contradiction: if vivj ∈ E(S)
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then

(v, vj−1, vj−2, . . . , vk+1, vk, vj, vj+1, . . . , vk−1)

is a longer cycle than C. So C is indeed a Hamiltonian cycle of G′.

Finally the desired Hamiltonian (x, y)-path is obtained from C by a sim-

ilar argument (rerouting through some vjvk ∈ E(S(x), S(y))).

5 Mixing and concentration

Here we establish a few basic points regarding our self-avoiding walk (recall

these were outlined near the end of Section 1).

Recall that the variation distance between probability measures µ and ν

on a set S is

‖µ− ν‖ = sup{|µ(T )− ν(T )| : T ⊆ S}

and satisfies

‖µ− ν‖ = inf{Pr(X 6= Y )}, (41)

the infimum over coupled random variables (r.v.’s) X and Y having laws µ

and ν respectively (see e.g. [9, p.119]). We will abuse this: for X, Y r.v.’s

and π a probability measure, we use (i) ‖X − Y ‖ and (ii) ‖X − π‖ for the
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variation distances between (i) the laws of X and Y , and (ii) the law of X

and π.

Lemma 5.1 Let G be a graph, v ∈ V (G), x : E(G) → R+, and p0 =

max{xwy/
∑

z xwz} (the largest of the transition probabilities for the ordinary

x-walk). Let X0, . . . and Y0, . . . be, respectively, the self-avoiding x-walk and

the ordinary x-walk starting from v. Then (for any q)

Pr(Xq 6= Yq) ≤ q2p0.

Proof. If the two walks agree to time i − 1, say Xj = Yj = wj for j =

0, . . . , i− 1, then we may couple at the next step so that

Pr(Xi 6= Yi) = Pr(Yi ∈ {w0, . . . , wi−1}) ≤ ip0.

Thus

Pr(Xq 6= Yq) ≤
q∑

i=1

Pr(Xi 6= Yi|Xj = Yj, j = 0, . . . , i− 1) < q2p0.

Lemma 5.2 Let H be an α-Dirac, β-normal graph on m vertices, and x an

edge weighting of H with xwy/
∑

z xwz ≥ τ/m for each wy ∈ E(H). Then

for any v ∈ V (H), (Y0 = v, . . .) the ordinary x-walk from v on H, and π the
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stationary distribution of this walk, we have, for any η > 0, ‖Yq − π‖ < η

provided β > α/4 and

q > τ−2(β − α/4)−12 ln(1/η). (42)

Proof. Let w be any vertex, (Z0, . . .) the ordinary x-walk from w, and A ⊆ V

any half-set. Our assumptions on H imply

Pr(Z2 ∈ A) ≥ (τ/m)2e(N(w), A)

> (τ/m)2[βm2 − (m/2− |N(w)|)|A|] > τ 2(β − α/4).

Thus for (Z0, . . .), (Z0,
′ . . .) the walks started from any w, w′ ∈ V , we have

‖Z2 − Z ′
2‖ = max

|B|≥n/2
|Pr(Z2 ∈ B)− Pr(Z ′

2 ∈ B)| < 1− τ 2(β − α/4).

(The restriction |B| ≥ n/2 is allowed because the expression being maximized

is the same for B as for B.) So by (41) we can arrange Pr(Z2 = Z ′
2) >

τ 2(β − α/4).

We then couple the walk (Y0, . . .) from v with the stationary walk, say

(W0, . . .), in the usual way (Yi and Wi are equal if Yi−1 = Wi−1 and otherwise

independent), to obtain

‖Yq − π‖ ≤ Pr(Yq 6= Wq) < (1− τ 2(β − α/4))q/2 < exp[−τ 2(β − α/4)q/2],

and the lemma follows.
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Lemma 5.3 Let X0, . . . be random variables taking values in a set V , f :

V → R, and a = ‖f‖∞. Then for any t > 0 and positive integers b and q,

Pr(|
b∑

k=0

{f(Xk+q)− E[f(Xk+q)|X0, . . . , Xk]}| > ta
√

qb) < 2qe−t2/2.

Proof. We prove the slightly stronger assertion that for each r ∈ {0, . . . , q−1}

and s,

Pr(|
s∑

i=1

{f(Xiq+r)−E[f(Xiq+r)|X0, . . . , X(i−1)q+r]}| > ta
√

s) < 2e−t2/2. (43)

(It is stronger because
√

s0 + · · · + √
sq−1 ≤

√
q(s0 + · · ·+ sq−1).) To see

this, let W0 = (X0, . . . , Xr), Wi = (X(i−1)q+r+1, . . . , Xiq+r) if i ≥ 1, and

Zi = f(Xiq+r) − E[f(Xiq+r)|W0, . . . , Wi−1] (the summand in (43)). Then

(Z1, . . . , Zs) is a martingale difference sequence with respect to (W0, . . . , Ws)

(that is, E[Zi|W0, . . . , Wi−1] = 0), and |Zi| ≤ a, so (43) follows from Azuma’s

inequality (see e.g. [1]).

6 Proof of Lemma 2.2

We will use with very high probability (w.v.h.p.) to mean with probability

at least 1 − n−ω(1). (This is convenient since we will have to multiply fail-

ure probabilities by terms of the form nO(1), but, as mentioned following

Lemma 2.2, there is nothing delicate about these estimates.)
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In this section we complete the proof of Theorem 1.2 by proving the

following strengthening of Lemma 2.2.

Lemma 6.1 If (x is ξ-normal and) the walk X is good through milestone

(p− 1)κ, then w.v.h.p. it is good through milestone pκ

(where we assume pκ ≤ l).

Proof of Lemma 6.1.

Supposing the “current segment,” R = [(p−1)κ, pκ], is contained in phase

m, let µn be the end of phase m − 1, (µ + ν)n = (p − 1)κ, I = [µn] and

Q = [µn, (µ + ν)n] (so R = [(µ + ν)n, (µ + ν)n + κ]).

We assume the walk is good through the end of Q and want to show that

for any f ∈ F ,

w.v.h.p. XR is good wrt f (44)

(meaning, of course, that (14) holds with I replaced by R). Of course if we

have this we are done, since |F| < O(n2).

There are two parts to proving (44). We first need to show, for each j ∈ R,

that the residual graph Gj is nearly (A) normal and (B) Dirac, and that (C)

the stationary distribution of the x-walk on Gj is nearly uniform. Once we

have these properties we may apply the results of Section 5 to obtain (44).
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Note that (A)-(C) are deterministic statements: they apply to any fixed good

X((p− 1)κ) and an arbitrary X(j − 1) extending it.

Fix j ∈ R. That X is good through the end of Q implies, for any g ∈ F ,

(1− µ(1 + δm−1)− ν(1 + δm))g(V )− κ‖g‖∞ <

g(Vj) < (1− µ(1− δm−1)− ν(1− δm))g(V ),

or, recalling ρ = max{‖h‖∞/h(V ) : h ∈ F} and setting ϑ = µδm−1+νδm+κρ

(and relaxing slightly),

g(Vj) = (1− µ− ν ± ϑ)g(V ), (45)

or (relaxing a little further)

g(Vj) = (1± cδm)
n− j

n
g(V ) (46)

where c is given by (11). (That (45) implies (46) follows from—and was the

reason for—the definition of δm given in (12). Since the coefficient of g(V )

on the r.h.s. of (46) is

(1± cδm)(1− µ− ν − λ/n) = 1− µ− ν − λ/n± cδm(1− µ− ν − λ/n),

where λ = j − (µ + ν)n, we want

µδm−1 + νδm + κρ < cδm(1− µ− ν − λ/n)− λ/n,
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which, since ν < γ(1 − µ) (see the specification of the sequence {ai}), is

implied by

µδm−1 + κρ < (c(1− γ)− γ)(1− µ)δm − (1 + cδm)λ/n,

which follows from (12).)

We now turn to the properties (A)-(C); of these, only (A) requires any

effort, and we save it for last. For the remainder of our discussion we set

δm = δ and recycle m := n− j.

(B) Applying (46) to the hv’s gives

dj(v) := hv(Vj) > (1− cδ)(n− j)/2 ∀v ∈ Vj ; (47)

that is, Gj is (cδ)-Dirac.

(C) Applying (46) to the fv’s gives

πj(v) (= fv(Vj)/
∑

v′∈Vj

fv′(Vj)) = (1± c′δ)/(n− j) ∀v ∈ Vj, (48)

with c′ = 2c(1− cδ)−1 ≈ 2c.

(A) As already mentioned in Section 2, (15) and the ξ-normality of x imply,

via Lemma 3.2, that G is ζ-normal with ζ as in (8) (ζ = 1
64

ξ4). We will show

Gj is (ζ/6)-normal. (49)
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Proof. Suppose for a contradiction that A,B are half-sets of Gj with e(A,B) <

ζm2/6. Then there are v ∈ A, w ∈ B with |N(v) ∩ B|, |N(w) ∩ A| < ζm/3,

implying dj(v), dj(w) < (1/2 + ζ/3)m and, by (46),

d(v), d(w) < (1− cδ)−1(1/2 + ζ/3)n. (50)

Also, since G is Dirac (and again using (46)), we have

dj(v), dj(w) > (1− cδ)m/2. (51)

Let A′ = V \N(w), B′ = V \N(v), A′′ = A′∩Vj (= Vj \N(w)) and B′′ =

B′ ∩ Vj. We have |A′′| < (1 + cδ)m/2 (by (51)) and |A \A′′| = |N(w)∩A| <

ζm/3, so |A′′ \A| < (ζ/3 + cδ/2)m; and similarly |B′′ \B| < (ζ/3 + cδ/2)m.

Thus

e(A′′, B′′) < e(A,B) + 2(ζ/3 + cδ/2)m(1 + cδ)m/2

< [ζ/6 + (ζ/3 + cδ/2)(1 + cδ)]m2 < (ζ/2 + δ)m2. (52)

On the other hand, we can bound e(A′′, B′′) from below as follows. By (50)

we have |A′|, |B′| > (1/2− ζ/3)n, so that

e(A′, B′) > ζn2 − 2(ζ/3)n · n/2 = (2ζ/3)n2. (53)

Thus we have (with explanations to follow)

e(A′′, B′′) = e(Vj \N(v), Vj \N(w))
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=
∑

{|(N(x) ∩ Vj) \N(w)| : x ∈ Vj \N(v)}

> (1− cδ)
m

n

∑
{|N(x) \N(w)| : x ∈ (Vj \N(v)) ∩ A(w)}(54)

= (1− cδ)
m

n
gvw(Vj)

> (1− cδ)2(m/n)2gvw(V ) (55)

> (1− cδ)2(m/n)2[e(A′, B′)− ζn2/8]

> (13ζ/24− δ)m2,

contradicting (52). (For (54) we applied (46) to the functions hwx for x ∈

A(w) (see (9) for A(w)); for (55) we used relevance of the function gvw (which

follows from (53)) and, again, (46).) 2

Given these preliminaries we turn to (44). We will soon want to apply

Lemma 5.2 with H = Gj, so need to see what values are allowed for the pa-

rameters in this lemma. Recalling that x is ξ-normal, we find that Lemma 3.2

together with (46) applied to the fv’s allows us to take τ = (1 + cδ)−1ξ7/2.

(In more detail: Lemma 3.2 and (46) give, respectively, xwy ≥ ξ7/(2n) and

∑{xwz : z ∈ Vj} < (1 + cδ)(n− j)/n.) Legal values of α and β are given by

(B) and (A): we may take α = cδ and β = ζ/6.

We then take η = n−2 (say) and set q equal to the right hand side of (42),
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so in particular q = logO(1) n. We can now, finally, specify κ:

κ = Cn2/3(q log2 n)1/3 (56)

with C a largish constant (actually C > 42/3 will be enough). So as promised

earlier, κ = n2/3 logO(1) n. Note also that β À α (see (13), (19) and (11)).

Fix f ∈ F and set ‖f‖∞ = a. We want to show that w.v.h.p.

∑
i∈R

f(Xi) = (1± δ)
κ

n
f(V ). (57)

Let r = (µ + ν)n (the last index of Q). We may rewrite the l.h.s. of (57) as

r+q−1∑
j=r

f(Xj) +

r+κ−q∑
j=r

f(Xj+q).

We don’t have much control over the terms in the first sum, but there are

not very many of them and we will more or less ignore them (see (63)). We

show that each term in the second sum has expectation close to f(V )/n and

apply Lemma 5.3.

Fix j ∈ (r, r + κ − q) and X(j) extending X(r). Let Y0, . . . be the

(ordinary) x-walk from Xj on Vj. We have

|E[f(Xj+q)|X(j)]− f(V )/n| ≤ |E[f(Xj+q)|X(j)]− Ef(Yq)|

+ |Ef(Yq)− f(Vj)

n− j
|+ |f(Vj)

n− j
− f(V )

n
|. (58)
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We may bound the terms on the r.h.s. of (58) as follows.

For the first term we use Lemma 5.1. The transition probabilities of the

x-walk on Gj are at most

‖x‖∞
minv fv(Vj)

≤ 64

ξ3n

n

(1− cδ)(n− j)
=

64

ξ3(1− cδ)(n− j)

(with the bound on ‖x‖∞ coming from Lemma 3.2). If we temporarily write

λ for the last expression, this gives, using Lemma 5.1,

|E[f(Xj+q)|X(j)]− Ef(Yq)]| = |
∑

w

[Pr(Xj+q = w|X(j))− Pr(Yq = w)]f(w)|

≤ λq2a. (59)

For the second term on the r.h.s. of (58) we have

|Ef(Yq)− f(Vj)

n− j
| ≤ a‖Yq − πj‖+ |πj(f)− f(Vj)

n− j
|

< an−2 + c′δf(Vj)/(n− j) (60)

< c′′δf(V )/n (61)

with c′ as in (48) and (say) c′′ = c′(1 + 2cδ) (< 2c + o(1)). For (60) we used

Lemma 5.2 and (48), and for (61) we used (46).

Finally, for the last term in (58) we have, again using (46),

|f(Vj)

n− j
− f(V )

n
| < cδ

n
f(V ).
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Thus, summarizing, the l.h.s. of (58) is at most

(3c + o(1))δf(V )/n. (62)

On the other hand Lemma 5.3 gives

Pr(|
r+κ−q∑

j=r

{f(Xj+q)− E[f(Xj+q)|X(j)]}| > ta
√

q(κ− q)) < 2qe−t2/2.

So taking t = log n (we need ω(
√

log n)) and combining with (the discussion

culminating in) (62), we find that w.v.h.p.

|
∑
j∈R

f(Xj)− κ

n
f(V )| ≤ qa + (κ− q)(3c + o(1))δf(V )/n + log n

√
q(κ− q) a

< δκf(V )/n, (63)

where the second inequality follows easily from our choice of parameters.

(Noting that δ > 2κρ (see (12)) we find that the r.h.s. of (63) is at least

2κ2ρf(V )/n ≥ 2κ2a/n > n1/3a

(whereas qa < a logO(1) n). The main point (and reason for our choice of κ)

is that—again since a ≤ ρf(V ) and δ > 2κρ—the last term in the first line

of (63) is at most C−3/2δκf(V )/n.)
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