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ABSTRACT

For a simple d-regular graph G, let M be chosen uniformly at random from the set of all matchings of
G, and for x ∈ V (G) let p(x) be the probability that M does not cover x.
We show that for large d, the p(x)’s and the mean µ and variance σ2 of |M | are determined to within
small tolerances just by d and (in the case of µ and σ2) |V (G)|:

Theorem For any d-regular graph G,

(a) p(x) ∼ d−1/2 ∀x ∈ V (G), so that |V (G)| − 2µ ∼ |V (G)|/
√
d,

(b) σ2 ∼ |V (G)|/(4
√
d),

where the rates of convergence depend only on d.

1 Introduction

Given a graph G = (V,E), writeM(G) for the set of matchings of G, and let M be chosen uniformly
at random from M(G). (For graph theory background see e.g. [23]. We use “graph” to mean simple
graph.) In this paper we are concerned with the behavior of M , and in particular of the random
variable ξ = ξG = |M |, when G is regular of large degree.

Set p
k

= p
k
(G) = Pr(ξ = k). The distribution {p

k
} (for a general G) has been considered in

many contexts, in physics and chemistry as well as mathematics. We will not try to give a thorough
bibliography, but see e.g. [19], [12], [22], [6], [7], [8], [23, Chapter 8].

These distributions are in some ways very nice. For instance, as shown in [11], [12], [22], for any
G the probability generating function

f(G;λ) =
∑
k

p
k
λk (1)

has real roots. This gives log-concavity of the sequence {p
k
} (c.f. “Newton’s inequalities,” e.g. [9,

p.51]), and implies that the distribution is approximately normal provided the variance σ2 = σ2
ξ =:

σ2(G) is large. (The latter is essentially due to L. Harper [10]. See the two paragraphs preceding
Theorem 1.2 for some discussion and references concerning the question of when σ2 is large.)
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Here we show that for regular G the behavior of {p
k
} is nice in another sense: the mean (µ = µ

ξ
=:

µ(G)) and variance of ξ are remarkably well determined just by the degree and number of vertices of
G.

Before stating this we need a finer parameter than µ. For x ∈ V , write x ≺ M if x is covered by
(i.e. is contained in some edge of) the matching M , and set

p(x) = pG(x) = Pr(x 6≺M).

Thus µ = (n−
∑
x∈V p(x))/2, where, here and throughout the paper, we set |V | = n.

Theorem 1.1 For any d-regular graph G,

(a) p(x) ∼ d−1/2 ∀x ∈ V (G), so that n− 2µ(G) ∼ n/
√
d,

(b) σ2(G) ∼ n/(4
√
d).

Here the limits are taken as d→∞; so for example p(x) ∼ d−1/2 means

(1− o(1))d−1/2 < p(x) < (1 + o(1))d−1/2,

where o(1) depends only on d, and not on G or x. Let us stress that what’s interesting here is the
existence of the limiting values (d−1/2, n/(4

√
d)), rather than the values themselves.

(The values themselves are easily seen to be a natural expression of the idea that the events
{x ≺M} are roughly independent. To see this, we observe the easy identity (see (5))

p(x) =
(

1 +
∑
y∼x

p(y|x)
)−1

(where the conditional probability p(y|x) has the obvious meaning). Using this, if we pretend the
events {x ≺M} are mutually independent with p(x) = p for all x, then

p = (2d)−1(−1 +
√

1 + 4d) = d−1/2 + (2d)−1 +O(d−3/2) (2)

gives (a) (see also Conjecture 1.3); while (b) derives from the fact that ξ is half the random variable
|{x ∈ V : x ≺M}|, which has the binomial distribution B(n, 1− p), so variance np(1− p) ∼ nd−1/2.)

Let us also mention that it is not even easy to show that a large regular G has large σ2(G);
precisely: if Gα is dα-regular (dα 6= 0) with nα := |V (Gα)| → ∞, then σ2(Gα)→∞ as α→∞. This
was shown in [6] provided dα/nα → 0, but in full generality only in [17] (with a proof quite different
from the arguments used here). So it is, again, rather surprising that one can say something as precise
as Theorem 1.1.

(As more or less observed following (1), the condition σ2(Gα) → ∞ is equivalent to asymptotic
normality of {p

k
(Gα)}k≥0. This was the reason for most of the earlier work on σ2(G)—see [27], [23,

Ch. 8] in addition to [6], [17]—though not our principal motivation here.)
The actual bounds we establish are given in

Theorem 1.2 For any d-regular graph G and ε > 0

(a) p(x) = d−1/2 +O(d−3/4+ε) ∀x ∈ V (G),

(b) σ2(G) =
(

1 +O(d−1/4+ε)
) n

4
√
d

.
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Again note the error terms depend only on d. (This is slightly abusive, in a standard way. For example
the error term in (a) does depend on G, x, but is bounded by some O(d−3/4+ε) which depends only
on d. So we should really write |p(x)− d−1/2| < O(d−3/4+ε).)

Theorem 1.2 is proved beginning in Section 2. Before closing the present section, we just mention
a few related questions.

First, it seems possible that the bounds in Theorem 1.2 can be strengthened considerably:

Conjecture 1.3 For any d-regular graph G and x ∈ V (G),

(a) p(x) = d−1/2 − (2d)−1 +O(d−3/2),

(b) σ2(G) = 1
4nd

−1/2 +O(nd−1).

(The coefficient of nd−1 in (b) is not an invariant.) This may be wishful thinking. It does, admittedly,
seem too good to be true, but the same might have been (and was) said of Theorem 1.1 when it was
not yet a theorem.

Second, it would be of considerable interest if something like Theorem 1.1 were true for hypergraphs
of fixed edge size. We recall a few definitions. (For further background see e.g. [5] or [15].) A
hypergraph H on a vertex set V is simply a collection of subsets of V , and is k-uniform if each of its
members (called edges) is of size k. (So a 2-uniform hypergraph is a graph.) A hypergraph is d-regular
if each of its vertices is contained in exactly d edges, and simple if no two of its vertices are contained
in two distinct edges.

A matching in a hypergraph is again a collection of pairwise disjoint edges, and, as for graphs, we
write ν(H) for the size of a largest matching of H. We extend our earlier notation (M, ξ, p(x) . . .) in
the natural ways.

Conjecture 1.4 Fix k. If H is a simple, k-uniform, d-regular hypergraph on a vertex set V of size n,
then

(a) p(x) ∼ d−1/k ∀x ∈ V , so that n− kµ(H) ∼ nd−1/k, and in particular µ(H) ∼ n/k,

(b) σ2(H) ∼ n/(k2d1/k)

(where again limits are taken as d→∞).

This would be extremely interesting, not only for its own sake, but also because of its relation
to work done over the last fifteen or so years on the asymptotic behavior of hypergraphs of bounded
edge size. A central result in this area, proved by N. Pippenger following ideas of Ajtai, Komlós and
Szemerédi [1], Rödl [26] and Frankl and Rödl [4], says in part:

Theorem 1.5 (unpublished; see [28], [5]) Fix k. If H is as in Conjecture 1.4, then

ν(H) > (1− o(1))n/k, (3)

where o(1) depends only on d.

(See also e.g. [25], [5], [15], [14], [20], [18],[13], [29],[16], [21] for exposition and related work. For
Pippenger’s Theorem in full we should relax “simple” to a (uniform) bound o(d) on the pairwise
degrees d(x, y); but we are in deep enough waters with the present hypotheses and will not explore
this extra generality.)
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Pippenger’s Theorem is proved by a semirandom procedure (again, with roots in [1], [26]), and is
not at all easy. So it would be extremely interesting if, as implied by Conjecture 1.4 (a), even µ(H)
could be shown to observe the behavior predicted for ν(H) in (3). (This is of course much weaker
than Conjecture 1.4 (a). In fact the error term (1 + o(1))d−1/kn/k (in the approximation µ ≈ n/k)
implied by the conjecture is far better than what one can at present establish in (3).)

In contrast, for a graph G as in Theorem 1.1: (i) Vizing’s Theorem ([30] or e.g. [23, Theorem
7.4.1]) implies ν(G) ≥ (1 − 1/(d + 1))n/2; and (ii) µ > (1 − O(d−1/2))n/2—a less precise version of
Theorem 1.1 (a)—is not too hard to prove using the approach of Section 2 (see (8)).

2 Path-trees and indication of proof

We first recall Godsil’s [7] notion of the path-tree T (G, v) associated with a graph G and v ∈ V (G).
(This is called a tree of walks in [7]. The present name is from [23]. Were it not for its length, we would
prefer “tree of self-avoiding walks,” since we will eventually view the vertices of T (G, v) as outcomes
of a random self-avoiding walk in G.)

The vertices of T = T (G, v) are the paths of G which begin at v. (For our purposes a path is a
sequence (y0 , y1 , . . . , yl) of distinct vertices with yi ∼ yi−1 .) Two vertices of T are adjacent if one is a
maximal proper subpath of the other.

We will usually use X,Y, Z, . . . for vertices of T , and in particular write V for the singleton path (v),
which we regard as the root of T . Later we will be interested in a random path (v = y0 , y1 , . . . , yk)
in G, and will write Y

l
for the vertex (y0 , . . . , yl) (where l ≤ k). For W ∈ V (T ) we write |W| for the

length of the path W, in other words the depth of W in T , and set Tl = {W ∈ V (T ) : |W| = l}. We use
S(W) for the set of children of W, s(W) for |S(W)| and T (W) for the subtree rooted at W.

Path-trees T (G, v) turn out to capture considerable information about matchings in G, and to be
in some respects easier to work with than the graph itself. (Again see [7] or the exposition in [23].)
For present purposes the relevant connection is given by

Lemma 2.1 With notation as above, pG(v) = p
T (G,v)

(V).

That is, the probability that a random matching of G misses v is the same as the probability that a
random matching of T misses V.

Proof. This is an immediate consequence of the main result of [7], which we repeat here for the reader’s
convenience.

The matching generating polynomial of G is

g(G;λ) = |M(G)|f(G;λ) =
∑
k

mkλ
k

where mk = mk(G) is the number of matchings of size k in G. The main result of [7] is (equivalent
to)

g(G− v;λ)/g(G;λ) = g(T − V;λ)/g(T ;λ).

Evaluation at λ = 1 gives the lemma.
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An advantage of working with T (G, v) is that it allows us to compute probabilities pG(x) recur-
sively. Let us extend our earlier notation, writing p(y|x) for pG−x(y) and p(x, y) for Pr(x 6≺M,y 6≺M).
Since p(x, y) = p({x, y} ∈M) when x ∼ y, we have

p(x) +
∑
y∼x

p(x, y) = 1, (4)

which, when divided by p(x), gives the basic identity

p(x) =
(

1 +
∑
y∼x

p(y|x)
)−1

. (5)

For trees this takes the form

p
T (Y)

(Y) =
(

1 +
∑

Z∈S(Y)

p
T (z)

(Z)
)−1

(6)

where we write T (Y) for the subtree rooted at Y. Thus in principle we may compute the probabilities
p
T (Y)

(Y) recursively, beginning at the leaves and working up to the root, V, for which p
T (v)

(V) = pT (V).
For example, if T = T (G, v) with G d-regular, then it’s not hard to use this recursion together

with the obvious
d− l ≤ s(W) ≤ d ∀W ∈ Tl (7)

to show
c1d
−1/2 < pG(v) < c2d

−1/2 ∀v ∈ V (G) (8)

for some positive constants c1 , c2 . (This gives the bound µ(G) > (1−O(d−1/2))n/2 mentioned at the
end of Section 1.)

For Theorem 1.2 the inequalities (7) are not enough—e.g. the reader could try evaluating the
extreme case

s(W) =

{
d if |W| is even
d− |W| if |W| is odd

(9)

—and we must show that degree fluctuations in T (G, v) are, in some usable sense, much more moderate
than those in (9).

This is accomplished by comparing the degree s(W) of a vertex W with the average of the degrees
of its children,

s(W) =
1

s(W)

∑
U∈S(W)

s(U).

We show that, in contrast to (9), s(W) and s(W) are close for most W ∈ V (T ). For the precise technical
statement, set

Γ(l, ε) := {W ∈ Tl : |s(W)− s(W)| > d1/4+ε} and γ(l, ε) := |Γ(l, ε)| ,

and let t = 4b
√
d log dc. (To prove (8) it’s enough to consider something like the first

√
d log d levels

of T , and this will again be true for the proof of Theorem 1.2.)

Lemma 2.2 For any fixed ε > 0, if d is sufficiently large and l ≤ t, then

γ(l, ε) < t−1(d− t)le−dε . (10)

This is proved in Section 3, and the derivation of Theorem 1.2 is completed in Sections 4 and 5.
The bound (10) is given in a form convenient for later calculations, and is slightly weaker than what’s
produced in Section 3.
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3 Proof of Lemma 2.2

For w ∈ V (G), we write N(w) for the set of neighbors of w.
For W = (v = w0 , . . . , wl) ∈ V (T ) let

δ(W) = d− s(W) = |{w0 , . . . , wl−1
} ∩N(w

l
)|.

Set

δ(W) =
1

s(W)

∑
U∈S(W)

δ(U) = d− s(W).

Our proof of Lemma 2.2 is more naturally expressed in terms of these parameters, that is, with γ(l, ε)
rewritten as

γ(l, ε) = |{W ∈ Tl : |δ(W)− δ(W)| > d1/4+ε}|.
Let (v = y0 , y1 , . . . , yt) be the natural random self-avoiding walk given by y0 = v and

Pr(yi = w|y0 , . . . , yi−1) = s(yi−1)−11{w∈S(yi−1 )}, (11)

where, in agreement with our notation for T ,

S(yi−1) = N(yi−1) \ {y0 , . . . , yi−2}

and s(yi−1) = |S(yi−1)|; that is, the walk chooses yi uniformly from the as yet unvisited neighbors of
yi−1 .

As earlier, we write Y
l

for (y0 , . . . , yl), thought of as a random vertex of Tl. We will show that for
Y
l

chosen according to this (not quite uniform) distribution on Tl, |δ(Y
l
) − δ(Y

l
)| is very unlikely to

be large; precisely, for any α > 0,

Pr(|δ(Y
l
)− δ(Y

l
)| > α+ 32 log2 d) < 2d2t exp

(
− α2

2t

)
. (12)

To see that this implies Lemma 2.2, note that for any W ∈ Tl,

Pr(Y
l

= W) ≥ d−1(d− 1)−(l−1) > d−l

whence, setting
Wα = {W ∈ Tl : |δ(W)− δ(W)| > α+ 32 log2 d},

we have

|Wα| ≤ Pr(Y
l
∈Wα)

(
min
W∈Tl

Pr(Y
l

= W)
)−1

< 2d2t exp
(
− α2

2t

)
dl.

Taking α = d1/4+ε − 32 log2 d then gives Lemma 2.2 (and a bit more).

The key observation for the proof of (12) is that while δ(Y
l
) is the number of visits to N(y

l
) by

(y0 , . . . , yl−1
), δ(Y

l
) is roughly the “expected” number of such visits, where “expected” is used in the

dynamic sense given by the function f below. A little martingale analysis then shows that these actual
and expected numbers are likely to be close.

For fixed l ∈ [t] and w ∈ V (G), define

f(w) =
l∑

i=1

Pr(yi ∈ N(w)|y0 , . . . , yi−1), (13)

g(w) = |N(w) ∩ {y1 , . . . , yl}|. (14)
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Lemma 3.1 For any α > 0

Pr(∃w with |f(w)− g(w)| > α) < 2d2t exp
(
− α2

2t

)
. (15)

Remark. The reader may observe below that we only use the fact that |f(w)− g(w)| is usually small
when w = y

l
; but the proof gives the stated inequality, and in fact we don’t see how to establish what

we need for y
l

without proving something like (15).

Before proving Lemma 3.1, let us see why it implies (12). Notice that

g(y
l
) = δ(Y

l
). (16)

On the other hand, we show that f(y
l
) is a good approximation of δ(Y

l
). We have

δ(Y
l
) =

1

s(y
l
)

∑
{|N(u) ∩ {y0 , . . . , yl}| : u ∈ N(y

l
) \ {y0 , . . . , yl−1

}}, (17)

while a similar expression for f(w) is

l∑
i=1

1

s(yi−1)
|(N(yi−1) ∩N(w)) \ {y0 , . . . , yi−2}|. (18)

Now when w = y
l
, the sum of the set cardinalities appearing in (18) is not much different than the

sum in (17): the former—that is,

l∑
i=1

|(N(yi−1) ∩N(y
l
)) \ {y0 , . . . , yi−2}| (19)

—counts ordered pairs (u, yi−1) with 1 ≤ i ≤ l, y
l
∼ u ∼ yi−1 , and u 6∈ {y0 , . . . , yi−2}; whereas

the latter counts all such pairs for which u 6∈ {y0 , . . . , yl−1
}, together with the pairs (u, y

l
) with

u ∈ N(y
l
) \ {y0 , . . . , yl−1

}.
The difference between these sums is thus bounded by

max
{
|{(j, i) : i ≤ j ≤ l − 1, yl ∼ yj ∼ yi−1}|, d

}
≤
(
t

2

)
,

and we have (using (7))

|f(y
l
)− δ(Y

l
)| ≤ 1

s(y
l
)

(
t

2

)
+

l∑
i=1

| 1

s(yi−1)
− 1

s(y
l
)
||N(yi−1) ∩N(y

l
)|

≤ 1

d− t

(
t

2

)
+

(
1

d− l
− 1

d

)
ld

< 2t2d−1 ≤ 32 log2 d.

Of course this together with (16) shows that Lemma 3.1 implies (12).
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Proof of Lemma 3.1. Let us for the moment fix w ∈ V and write

f(w)− g(w) =
l∑

i=1

Xi

where
Xi = Xi(w) = Pr(yi ∈ N(w)|y0 , . . . , yi−1)− 1{yi∈N(w)}.

Now {Xi}li=1 is a martingale difference sequence (that is, E[Xi|X1, . . . , Xi−1] = 0), with

|Xi| ≤ 1. (20)

So according to “Azuma’s inequality” (see, e.g., [3], [24], [2]), for any α > 0,

Pr(|f(w)− g(w)| > α) < 2 exp
(
− α2

2t

)
. (21)

Thus we have a bound like (15) for any fixed w.
For (15) we must somehow control the number of w’s under consideration. A priori this number

could be something like the number of vertices within distance t of v (which swamps the bound in
(21)); but we can reduce it by only beginning to keep track of f(w)− g(w) when (and if) our random
walk gets to within distance 2 of w.

To do this, let us fix, solely for bookkeeping purposes, some linear ordering “≺” of V . For each
w ∈ V define the random variable j(w) by

j(w) =


0 if d(v, w) ≤ 2
∞ if d(yi, w) > 2 0 ≤ i ≤ t− 1
min{i : d(yi, w) = 2} otherwise,

and then let vs be the sth vertex in the (lexicographic) ordering in which w precedes w′ if either
j(w) < j(w′) or j(w) = j(w′) and w ≺ w′. (Note this is a random ordering determined by (y0 , . . . , yt).)

Now for 1 ≤ s ≤ d2t and 1 ≤ i ≤ t, set

Xs
i = Xi(vs).

(Note Xs
i = 0 if i ≤ j(vs). We could omit the restriction s ≤ d2t, but this adds nothing since for

larger s we have j(vs) =∞ and so Xs
i = 0 for all i.)

Now for each fixed s, f(vs) − g(vs) =
∑l
i=1X

s
i , and {Xs

i }li=1 is again a martingale difference
sequence satisfying (20). Thus

Pr(|f(vs)− g(vs)| > α) < 2 exp
(
− α2

2t

)
for each s, and

Pr(∃s ∈ [d2t], |f(vs)− g(vs)| > α) < 2d2t exp
(
− α2

2t

)
.

But this gives (15), since (trivially) f(vs) = g(vs) = 0 if s > d2t.
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4 Proof of Theorem 1.2(a)

Fix v ∈ V (G) and set T := T (G, v) as in the preceding section. Let 0 < ε < 0.1 (fixed), and

η := d1/4+ε , Γi := Γ(i, ε) i = 0, 1, ..., t .

Then Lemma 2.2 says that
|Γi| < t−1(d− t)ie−dε . (22)

Define, for 0 ≤ i ≤ j ≤ t,

Bi,j := {W ∈ Ti : |T (W) ∩ Γj | ≥ t−1(d− t)j−ie−dε/2} and Bi :=
t⋃
j=i

Bi,j . (23)

Then (22) yields B0 = ∅ and for i ≥ 1,

|Bi| ≤
t∑
j=i

|Bi,j | ≤
t∑
j=i

|Γj |
t−1(d− t)j−ie−dε/2

≤ t(d− t)ie−dε/2 . (24)

Let qT (W) = p
T (W)

(W). Set qt = qt−1 = 1 and for i = 0, 1, . . . , t− 2,

qi =
(

1 +
d− i

1 + (d− i+ η)qi+2

)−1
.

We claim

qi =
1√
d

+O(d−3/4+ε) for 0 ≤ i ≤ t/2 + 1 . (25)

Proof. We prove this for i even; odd i is handled similarly. For i = 0, 2, · · · , t, define

fi(x) :=
(

1 +
d− i

1 + (d− i+ η)x

)−1
, x > 0

(so fi(qi+2) = qi) and denote by ai the unique positive solution of fi(ai) = ai ; that is,

ai :=
η − 1 +

√
(η − 1)2 + 4(d− i+ η)

2(d− i+ η)
.

It is easy to check that

ai =
1√
d

+O(d−3/4+ε) and 0 < ai+2 − ai ≤ d−3/2 .

Thus it is enough to show by reverse induction that

0 ≤ qi − ai ≤ exp
(
− 3(t− i)

4
√
d

)
+

(t− i)d−3/2

2
, (26)

for i = t, t− 2, · · · , 0. (Recall that t = 4b
√
d log dc. )

The base case i = t is trivial. Suppose (26) is true for i + 2 ≤ t. Since fi is increasing, the lower
bound of the induction hypothesis gives

ai = fi(ai) ≤ fi(ai+2) ≤ fi(qi+2) = qi .
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On the other hand, the Mean Value Theorem implies that there exists x with ai ≤ x ≤ qi+2 and
such that

qi − ai = fi(qi+2)− fi(ai) = f ′i(x)(qi+2 − ai) .

Since f ′i(z) ≤ e−3/(2
√
d ) for z ≥ ai = 1/

√
d +O(d−3/4+ε), we have

qi − ai ≤ e−3/(2
√
d )

(
exp

(
− 3(t− i− 2)

4
√
d

)
+

(t− i− 2)d−3/2

2
+ d−3/2

)

≤ exp
(
− 3(t− i)

4
√
d

)
+

(t− i)d−3/2

2
.

2

The following lemma and its corollary (which includes Theorem 1.2(a)) will again be needed in
the proof of Theorem 1.2(b).

Lemma 4.1 Let 0 ≤ i ≤ t− 1 and X ∈ Ti \Bi. Then

qT (X) ≤ qi + e−d
ε/2 , (27)

and
qT (W) ≤ qi+1 + (d− t)e−dε/2 for all W ∈ S(X). (28)

Note that (6) and (28) yield

qT (X) ≥
(

1 + d(qi+1 + (d− t)e−dε/2)
)−1

for X ∈ Ti \Bi .

Thus the following corollary follows from Lemma 4.1 and (25).

Corollary 4.2 Let 0 ≤ i ≤ t/2 and X ∈ Ti \Bi. Then∣∣∣qT (X)− 1√
d

∣∣∣= O(d−3/4+ε) .

In particular, since B0 = ∅ and qT (V) = pT (V) we have Theorem 1.2(a).

We prove (27) for |X| even (that is, congruent mod 2 to t) and (28) for |X| odd (that is, for |W|
even). The proof when these parities are reversed is identical, except that one truncates at odd rather
than even levels in the following definition of T ′.

We first define an auxiliary subtree T ′ of T . Let

Γ :=
⋃

i even

Γi ∪ Tt.

The auxiliary tree T ′ is the tree obtained from T by removing all descendants of vertices in Γ. Note
that all leaves of T ′ are in Γ (T itself has no leaves above level d) and that X ∈ T ′ (since X 6∈ B|X|
implies X 6∈ Γ). For W ∈ V (T ′), let

q(W) = qT (W) and q′(W) = q
T ′ (W).
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Since for each leaf W of T ′, |W| is even and q(W) ≤ q′(W) = 1, it follows easily from (6) that

q(W) ≤ q′(W) for all W ∈ V (T ′) with |W| even.

In particular,
q(X) ≤ q′(X) . (29)

We prove the following lemma from which (27) follows easily.

Lemma 4.3 For all W ∈ T ′ with |W| even, we have

q′(W) ≤ q|W| +
∑

U∈L′(W)

(d− t)−|U|+|W|(1− q|U|) , (30)

where L′(W) is the set of leaves of T ′(W).

(We regard the vertex of a singleton tree as a leaf.)

Proof. If W is a leaf of T ′, (30) is trivial (the sum in (30) is 1− q|W|). Suppose |W| is even and (30) is
true for all descendants of W with even length. Then (6) gives, using Jensen’s inequality,

q′(W) =
(

1 +
∑

U∈S(W)

q′(U)
)−1

=

1 +
∑

U∈S(W)

1

1 +
∑

X∈S(U)

q′(X)


−1

≤

1 +
s(W)

1 + s(W)−1
∑

U∈S(W)

∑
X∈S(U)

q′(X)


−1

.

The induction hypothesis yields

s(W)−1
∑

U∈S(W)

∑
X∈S(U)

q′(X)

≤ s(W)−1
∑

U∈S(W)

∑
X∈S(U)

q|X| + s(W)−1
∑

U∈S(W)

∑
X∈S(U)

∑
Z∈L′(X)

(d− t)−|Z|+|X|(1− q|Z|)

= s(W)q|W|+2
+ s(W)−1

∑
Z∈L′(W)

(d− t)−|Z|+|W|+2(1− q|Z|)

≤ (s(W) + η)q|W|+2
+

∑
Z∈L′(W)

(d− t)−|Z|+|W|+1(1− q|Z|) ,

where the last inequality uses W 6∈ Γ (since W is not a leaf) and s(W) ≥ d− |W| ≥ d− t.

Since (
1 +

α

β + x

)−1
≤
(

1 +
α

β

)−1
+ α−1x for all α, β, x > 0,
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we have

q′(W) ≤
(

1 +
s(W)

1 + (s(W) + η)q|W|+2
+
∑

Z∈L′(W)(d− t)−|Z|+|W|+1(1− q|Z|)

)−1

≤
(

1 +
s(W)

1 + (s(W) + η)q|W|+2

)−1

+ s(W)−1
∑

Z∈L′(W)

(d− t)−|Z|+|W|+1(1− q|Z|)

≤
(

1 +
d− |W|

1 + (d− |W|+ η)q|W|+2

)−1

+
∑

Z∈L′(W)

(d− t)−|Z|+|W|(1− q|Z|)

= q|W| +
∑

Z∈L′(W)

(d− t)−|Z|+|W|(1− q|Z|) .

Proof of (27). Because Lemma 4.3 and (29) give

q(X) ≤ q|X| +
∑

U∈L′(X)

(d− t)−|U|+|X|(1− q|U|) ,

it is enough to show that ∑
U∈L′(X)

(d− t)−|U|+|X|(1− q|U|) ≤ e
−dε/2 .

But X 6∈ B|X| and qt = 1 imply that∑
U∈L′(X)

(d− t)−|U|+|X|(1− q|U|) ≤
∑

j : even
|X| ≤ j ≤ t− 2

∑
U∈T (X)∩Γj

(d− t)−j+|X|

≤
∑

j : even
|X| ≤ j ≤ t− 2

t−1(d− t)j−|X|e−dε/2(d− t)−j+|X| ≤ e−dε/2 .

The proof of (28) is the same as that of (27), except we use

|T (W) ∩ Γj | ≤ t−1(d− t)j−|W|+1e−d
ε/2

(which follows from W ∈ S(X) and X 6∈ B|X|).

5 Proof of Theorem 1.2(b)

For a graph G and v ∈ V (G), set

I(G, v) =
∑

w∈V (G)\{v}

(
pG(w|v)− pG(w)

)
.
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Notice that

σ2(G) = Var

1

2

(
n−

∑
v∈V (G)

1{v 6≺M}
) =

1

4
Var

[ ∑
v∈V (G)

1{v 6≺M}
]
.

On the other hand, using Theorem 1.2(a), we have

Var
[ ∑
v∈V (G)

1{v 6≺M}
]

=
∑

v,w∈V (G)

(
pG(v, w)− pG(v)pG(w)

)
≤

∑
v∈V (G)

pG(v) +
∑

v∈V (G)

pG(v)
∑

w∈V (G)\{v}

(
pG(w|v)− pG(w)

)
=

(
1 +O(d−1/4+ε)

) n√
d

+
∑

v∈V (G)

p(v)I(G, v) . (31)

Thus Theorem 1.2(b) will follow from

|p(v)I(G, v)| ≤ 2d−3/4+4ε for all v ∈ V (G). (32)

Of course (31) and (32) are a concrete expression of the idea that the indicators 1{v 6≺M} are close to
independent (compare the discussion in the vicinity of (2) of the limiting values in Theorem 1.2).

We will use the following lemmas in the proof of (32).

Lemma 5.1 For any graph G,

I(G, v) = −
∑

y∈N
G

(v)

pG(y, v)I(Gv, y) +
∑

y∈N
G

(v)

pG(y, v)pG(y|v) ,

where Gv is the subgraph of G induced by V (G) \ {v}.

Proof. Notice that, for ey,v = {y, v} and pG(ey,v) := PrG(ey,v ∈M),

pG(v) +
∑

y∈N(G)

pG(ey,v) = 1 ,

and
pG(x) = pG(v)pG(x|v) +

∑
y∈N(G)

pG(ey,v)pG(x|ey,v ∈M) .

Thus

pG(x|v)− pG(x) = pG(x|v)
(
pG(v) +

∑
y∈N

G
(v)

pG(ey,v)
)
− pG(x)

= −
∑

y∈N
G

(v)

pG(ey,v)
(
pG(x|ey,v ∈M)− pG(x|v)

)
.

Since pG(ey,v) = pG(y, v) and

pG(x|ey,v ∈M) =

{
pG(x|y, v) if x 6∈ {y, v}
0 if x ∈ {y, v},

13



we have

I(G, v) = −
∑

x∈V (G)\{v}

∑
y∈N

G
(v)

pG(ey,v)
(
pG(x|ey,v ∈M)− pG(x|v)

)
= −

∑
y∈N

G
(v)

pG(y, v)
∑

x∈V (G)\{v}

(
pG(x|ey,v ∈M)− pG(x|v)

)
= −

∑
y∈N

G
(v)

pG(y, v)
∑

x∈V (G)\{y,v}

(
pG(x|y, v)− pG(x|v)

)
+

∑
y∈N

G
(v)

pG(y, v)pG(y|v) .

Because
pG(x|v) = pGv (x) and pG(x|y, v) = pGv (x|y) ,

this yields
I(G, v) = −

∑
y∈N

G
(v)

pG(y, v)I(Gv, y) +
∑

y∈N
G

(v)

pG(y, v)pG(y|v) .

For W = (v = y0 , y1 , ..., yk) ∈ T := T (G, v), let

pG(W) = PrG(yi 6≺M ∀ i = 0, ..., k),

and for 0 ≤ i ≤ |W|, set Wi := (v = y0 , ..., yi) (the ancestor of W having length i). Central to our
argument are the quantities

r(W) :=

|W|∏
i=0

q(Wi) = pG(W),

where, as in Section 4, we write q(W) for pT (W)(W).
In what follows we often use unsubscripted p’s (e.g. p(v), p(y|v)) for the corresponding pG’s.

Lemma 5.2 With notation as above,

pG(v) =
∑

W∈V (T )

r2(W) .

Proof. We induct on |V (G)|, the case |V (G)| = 1 being trivial. Note that for each W = (v, w) ∈ S(V),
we have T (W) = T (G− v, w), and that our induction hypothesis expressed in terms of T (W) is

p
T (W)

(W) =
∑

X∈V (T (W))

r2(X)

p2
G(v)

.

Thus Lemma 2.1 and (6) give

p(v) = pT (V) = [1 +
∑

W∈S(V)

p
T (W)

(W)]−1 = [1 +
∑

X∈V (T )\{V}

r2(X)

p2(v)
]−1

which is the same as
p(v) = p2(v) +

∑
X∈V (T )\{V}

r2(X)

(which is what we want).
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Lemma 5.3 With notation as above,

pG(v)I(G, v) =
∑

W∈V (T )\{V}
(−1)|W|−1r2(W) .

Proof. We again induct on |V (G)| (with the base case |V (G)| = 1 again trivial).
Using Lemma 5.1 (and p(v, y) = p(v)p(y|v)) we have

p(v)I(G, v) = −p2(v)
∑

y∈N
G

(v)

p(y|v)I(Gv, y) +
∑

y∈N
G

(v)

p2(y, v). (33)

The second sum is just ∑
Y ∈ V (T )
|Y| = 1

r2(Y).

For the first sum, note that for y ∈ NG(v) and Y = (v, y) ∈ V (T ), our inductive hypothesis says that

p(y|v)I(Gv, y) =
∑

X∈V (T (Y))\{Y}
(−1)|X|

r2(X)

p2(v)
.

(Here |X| and r(X) refer to T , so the correction −p−2(v) gives the appropriate expression for T (Y).)
Thus the first term on the right hand side of (33) is

−
∑

Y∈S(V)

∑
X∈V (T (Y))\{Y}

(−1)|X|r2(X) =
∑

X ∈ V (T )
|X| ≥ 2

(−1)|X|−1r2(X),

so we have Lemma 5.3.

Proof of Theorem 1.2(b). We will show that, with p(V) := pT (V) (= pG(v)),

∑
W ∈ V (T ) \ {V}
|W| even

r2(W) ≥ p(V)(1− d−1/4+4ε)

2
(34)

and ∑
W ∈ V (T )
|W| odd

r2(W) ≥ p(V)(1− d−1/4+4ε)

2
. (35)

(We wind up with the (4ε)’s because we often use extra factors dε to subsume smaller but clumsier
error terms.) The inequalities (34), (35), together with Theorem 1.2(a) and Lemma 5.2 imply that∑

W∈V (T )\{V}
(−1)|W|−1r2(W) =

∑
W∈V (T )\{V}

r2(W) − 2
∑

W ∈ V (T ) \ {V}
|W| even

r2(W)

≤ p(V)− 2 · p(V)(1− d−1/4+4ε))

2
≤ 2d−3/4+4ε
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and similarly ∑
W∈V (T )\{V}

(−1)|W|−1r2(W) ≥ −2d−3/4+4ε ,

which together with Lemma 5.3 yield (32).
The proofs of (34) and (35) are essentially identical, so we only prove (34). Set a(V) = 1 and

a(W) =
( ∏
0 ≤ i ≤ l − 2

i even

s(Wi)
)−1

for W ∈ V (T ) with l := |W| ≥ 2 even.

(Recall s(W) = |S(W)|, the number of children of W.) The Cauchy-Schwarz inequality says( ∑
W∈Tl

a(W)r(W)
)2
≤
∑

W∈Tl

a2(W)
∑

W∈Tl

r2(W) . (36)

We will prove (34) by establishing, in Claims 1 and 2 below, lower and upper bounds on (respectively)
the left hand side of (36) and the first term on the right hand side.

Claim 1. ∑
W∈Tl

a(W)r(W) ≥ p(V)
(

1− d−1/2 − 2d−3/4+2ε
)l/2

for even l ≤ t/2− 2.

Proof. We show by induction (the case l = 0 being trivial) that

∑
W∈Tl

a(W)r(W) ≥ p(V)
(

1− d−1/2 − d−3/4+2ε
)l/2
− l · e−dε/5

2
.

Note that (6) gives

∑
W∈Tl+2

a(W)r(W) =
∑
X∈Tl

∑
U∈S(X)

∑
W∈S(U)

a(W)r(W)

=
∑
X∈Tl

a(X)r(X)s−1(X)
∑

U∈S(X)

q(U)
∑

W∈S(U)

q(W)

=
∑
X∈Tl

a(X)r(X)s−1(X)
∑

U∈S(X)

(1− q(U)) .

For X ∈ Tl \Bl and U ∈ S(X), (25) and (28) yield q(U) ≤ d−1/2 + d−3/4+2ε. Hence∑
W∈Tl+2

a(W)r(W) ≥
∑

X∈Tl\Bl

a(X)r(X)s−1(X)
∑

U∈S(X)

(1− q(U))

≥
(

1− d−1/2 − d−3/4+2ε
) ∑

X∈Tl\Bl

a(X)r(X)

≥
(

1− d−1/2 − d−3/4+2ε
)∑

X∈Tl

a(X)r(X)−
∑
X∈Bl

a(X)r(X)

≥ p(V)
(

1− d−1/2 − d−3/4+2ε
)(l+2)/2

− l · e−dε/5

2
−
∑
X∈Bl

a(X)r(X) .
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So it is enough to show that ∑
X∈Bl

a(X)r(X) ≤ e−dε/5 .

However, the Cauchy-Schwarz inequality, (24) and Lemma 5.2 imply that

∑
X∈Bl

a(X)r(X) ≤
( ∑

X∈Bl

a2(X)
)1/2 ( ∑

X∈Bl

r2(X)
)1/2

≤
(
t(d− t)le−dε/2(d− t)−l

)1/2 (
pG(v)

)1/2
≤ e−dε/5 .

2

Claim 2. ∑
W∈Tl

a2(W) ≤ 1 + d−1/4+2ε for all even l ≤ t .

Proof. We show by induction that

∑
W∈Tl

a2(W) ≤
(

1 + 2d−3/4+ε
)l/2 (

1 +
l

2t
e−d

ε
)
. (37)

(As usual, the base case is trivial.) Notice that∑
W∈Tl+2

a2(W) =
∑
X∈Tl

∑
U∈S(X)

∑
W∈S(U)

a2(W)

=
∑
X∈Tl

a2(X)s−2(X)
∑

U∈S(X)

∑
W∈S(U)

1

=
∑
X∈Tl

a2(X)s−1(X)s(X)

≤
(

1 + 2d−3/4+ε
)∑

X∈Tl

a2(X) +
( d

d− t
− 1

)∑
X∈Γl

a2(X) .

On the other hand, (22) gives∑
X∈Γl

a2(X) ≤ t−1(d− t)le−dε(d− t)−l = t−1e−d
ε
,

so we have (37).

2

Proof of (34). Claims 1 and 2 with (36) imply that, for all even l ≤ t/2− 2,

∑
W∈Tl

r2(W) ≥ p2(V)
(

1− d−1/2 − 2d−3/4+2ε
)l (

1 + d−1/4+2ε
)−1

≥ p2(V)
(

1− d−1/4+3ε
)(

1− d−1/2
)l
.
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Thus

∑
W ∈ V (T ) \ {V}
|W| even

r2(W) ≥
t/2−2∑
l = 2
l even

∑
W∈Tl

r2(W)

≥ p2(V)
(

1− d−1/4+3ε
) t/2−2∑

l = 2
l: even

(
1− d−1/2

)l

≥ p2(V)(1− 2d−1/4+3ε)d1/2

2

≥ p(V)(1− d−1/4+4ε)

2

(where we again use Theorem 1.2(a) in the final inequality).
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