
The Dual BKR Inequality and Rudich’s
Conjecture

Jeff Kahn∗

Mathematics Dept.
Rutgers University

Piscataway, NJ, USA
jkahn@math.rutgers.edu

Michael Saks†

Mathematics Dept.
Rutgers University

Piscataway, NJ, USA
saks@math.rutgers.edu

Clifford Smyth
Mathematics Dept.

University of North Carolina Greensboro
Greensboro, NC USA
cdsmyth@uncg.edu

October 30, 2010

Abstract

Let T be a set of terms over an arbitrary (but finite) number of
Boolean variables. Let U(T ) be the set of truth assignments that sat-
isfy exactly one term in T . Motivated by questions in computational
complexity, Rudich conjectured that there exist ε, δ > 0 such that if T
is any set of terms for which U(T ) contains at least a (1− ε)-fraction
of all truth assignments, then there exists a term t ∈ T such that
at least a δ-fraction of assignments satisfy some term of T sharing a
variable with t [7].

We prove a stronger version: for any independent assignment of
the variables (not necessarily the uniform one), if the measure of U(T )
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is at least 1 − ε, there exists a t ∈ T so that the measure of the set
of assignments satisfying either t or some term incompatible with t
(i.e. having no satisfying assignments in common with t) is at least
δ = 1−ε− 4ε

1−ε . (A key part of the proof is a correlation-like inequality
on events in a finite product probability space that is in some sense
dual to Reimer’s inequality [10] a.k.a. the BKR inequality [4] or the
van den Berg–Kesten conjecture [2]).

1 Introduction

Let Ω1, . . . ,Ωn be fixed finite sets, each of size at least 2, and let Ω = Ω1 ×
· · · × Ωn. A partial selection function for Ω1, . . . ,Ωn is a function f such
that (i) its domain, dom(f), is a subset of [n] := {1, . . . , n}, and (ii) for each
i ∈ dom(f), f(i) ∈ Ωi. The cylinder of f is the set

C(f) := {x ∈ Ω : xi = f(i),∀i ∈ dom(f)}.

We tend to think of f and C(f) as interchangeable, as different partial se-
lection functions give different cylinders.

Let f and g be partial selection functions. We say that an index i is fixed
in f if i ∈ dom(f) and free (in f) otherwise. We say f and g are dependent
if they share a fixed variable, i.e. if dom(f) ∩ dom(g) 6= ∅, and denote this
by f ∼ g (or C(f) ∼ C(g)). We say that f and g are incompatible, denoted
f ∼′ g (or C(f) ∼′ C(g)) if there exists i ∈ dom(f) ∩ dom(g) such that
f(i) 6= g(i). Note that f ∼′ g implies f ∼ g.

Throughout this paper, F denotes a set of cylinders of Ω. For F ∈ F , we
define

N(F ) = NF(F ) := {G ∈ F : G 6= F,G ∼ F},

and
N [F ] = NF [F ] := N(F ) ∪ {F}.

These are respectively, the open neighborhood and closed neighborhood of F
in the graph (F ,∼). Similarly, we define N ′(F ) = N ′F(F ) := {G ∈ F : G ∼′
F}, and N ′[F ] = N ′F [F ] := N ′(F ) ∪ {F}, the open neighborhood and closed
neighborhood of F in the graph (F ,∼′).

We define U(F) to be the set of elements of Ω uniquely covered by F ,
i.e., those that belong to precisely one member of F . Motivated by some
questions in computational complexity, Rudich [6] investigated families of
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cylinders F of {0, 1}n for which a large fraction of elements of Ω are uniquely
covered. He conjectured that in any such family, there must be a cylinder
whose closed neighborhood in (F ,∼) covers a non-trivial fraction of {0, 1}n.

Conjecture 1.1 (Rudich’s Conjecture)
There exist ε, δ > 0 such that for all n ≥ 1 and for any set of cylinders F of
{0, 1}n, if |U(F)| ≥ (1− ε)2n, there is a cylinder F ∈ F for which

|
⋃
G∈N [F ]G| ≥ δ2n.

Remark 1.1: If ε = 0, |U(F)| = 2n and F is a partition. Thus (F ,∼) is the
complete graph. We may then take δ = 1: for every F ∈ F , N [F ] = F and
|
⋃
{G : G ∈ N [F ]}| = 2n.

Remark 1.2: Rudich’s conjecture fails for ε ≥ 1 − 1/e (that is, for such ε,
there is no δ > 0 for which the conclusion of the conjecture holds). To
see this, given δ > 0, let k > log2(1/δ) be a positive integer and n = k2k.
Partition [n] into 2k blocks of size k and let F consist of 2k cylinders of
{0, 1}n, where the ith cylinder has all indices in block i fixed to 1 and
all other indices free. Then |U(F)| = ((1 − 2−k)2

k−1)2n > e−12n (since
(1 − 1/t)t−1 > 1/e for all t). But (F ,∼) has no edges, so for any F ∈ F ,
|
⋃
{G : G ∈ N [F ]}| = |F | = 2n−k < δ2n.

Remark 1.3: The original statement of Rudich’s conjecture. Rudich formu-
lated Conjecture 1.1 as a statement about sets of boolean terms rather than
cylinders. Let V = {x1, . . . , xn} be a set of boolean variables, i.e. each xi
takes on values from the set {True, False}. There is an obvious correspon-
dence between {0, 1}n and the set of all truth assignments to the variables in
V . A literal is a boolean variable or the logical negation of a boolean variable
and a boolean term is a conjunction of literals, i.e. an expression of the form
l1∧ l2∧· · ·∧ lt where each li is a literal and no li is the negation of another lj.
The set of truth assignments that satisfy t is a cylinder in {0, 1}n. Conjecture
1.1 is thus a rephrasing of Rudich’s original conjecture: there exist ε, δ > 0
such that for any set of terms, T , in any number of variables, if the fraction
of truth assignments that satisfy exactly one term in T is at least 1− ε, then
there is a term t ∈ T such that at least a δ fraction of assignments satisfy a
term that shares a variable with t.

3



Our main result, Theorem 1.2 below, is a strengthening of Rudich’s Con-
jecture. For each i ∈ [n], let µi be a probability measure on the finite set Ωi

and let µ = µ1 × · · · × µn be the corresponding product measure on Ω. We
say (Ω, µ) is a finite product probability space.

Recalling that U(F) is the set of elements covered by exactly one member
of F , we have the natural partition U(F) =

⋃
F∈F F

′, where (for F ∈ F)

F ′ = F ′F := F \
⋃
{G ∈ F : G 6= F}. (1)

For G ⊆ F , we set

UF(G) :=
⋃
F∈G

F ′F ;

so in particular UF(F) = U(F).

Theorem 1.2 Let F be a family of cylinders in a finite product probability
space (Ω, µ). Let δ(ε) = 1 − ε − 4ε

1−ε . If µ(U(F)) ≥ 1 − ε then there is an
F ∈ F such that

µ ( UF (N ′F [F ]) ) ≥ δ(ε).

Note that δ(ε) > 0 for all 0 < ε < 3− 2
√

2.

Note that the case of Theorem 1.2 in which µ is uniform measure on
Ω = {0, 1}n contains Conjecture 1.1, since

⋃
{G : G ∈ N [F ]} ⊇ UF(N [F ]) ⊇

UF(N ′[F ]).
To prove Theorem 1.2, we first prove Theorem 1.4 below, an inequality

that is in some sense dual to a celebrated inequality of Reimer. Note that for
partial selection functions f and g, f 6∼ g means they have disjoint domains
while f 6∼′ g means they agree on any common point of their domains.

Let A,B ⊆ Ω and x, y ∈ Ω. We say

x ∈ A and y ∈ B hold disjointly if ∃f 6∼ g, x ∈ C(f) ⊆ A, y ∈ C(g) ⊆ B

and

x ∈ A and y ∈ B hold compatibly if ∃f 6∼′ g, x ∈ C(f) ⊆ A, y ∈ C(g) ⊆ B.

We define

A ∩d B = {x ∈ Ω : x ∈ A and x ∈ B hold disjointly},
A ∩c B = {x ∈ Ω : x ∈ A and x ∈ B hold compatibly},
A×d B = {(x, y) ∈ Ω× Ω : x ∈ A and y ∈ B hold disjointly},
A×c B = {(x, y) ∈ Ω× Ω : x ∈ A and y ∈ B hold compatibly}.
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The notation above is chosen to emphasize the common framework; how-
ever: the by now well-studied operation ∩d is often denoted 2 (e.g. in [2]) and
we will do so below; and of course ∩c is simply ∩. We also remark that Gold-
stein and Rinott [4] use A♦B for A×cB and that, trivially, A×dB ⊆ A×cB.

Theorem 1.3 (Reimer’s Inequality [10])
If (Ω, µ) is a finite product probability space then

∀A,B ⊆ Ω, µ(A2B) ≤ µ(A)µ(B). (2)

This was conjectured by van den Berg and Kesten [2], who proved it in
case the Ωi’s are totally ordered and A,B are increasing with respect to the
product order on Ω; this is the BK inequality. Theorem 1.3 is also called the
BKR inequality.

We will prove the following, similar results.

Theorem 1.4 (The Strong Dual Inequality)
If (Ω, µ) is a finite product probability space then

∀A,B ⊆ Ω, (µ× µ)(A×c B) ≤ µ(A ∩B). (3)

Corollary 1.5 (The Dual Inequality)
If (Ω, µ) is a finite product probability space then

∀A,B ⊆ Ω, (µ× µ)(A×d B) ≤ µ(A ∩B). (4)

Since (2) can also be written as

∀A,B ⊆ Ω, µ(A ∩d B) ≤ (µ× µ)(A×B)

we view (4) as dual to (2).
It is easy to see (and well-known; see e.g. [16], Remark 4.4a) that Theorem

1.3 implies the historically first correlation inequality, viz.

Theorem 1.6 (Harris-Kleitman Inequality [5, 9]) For any finite prod-
uct probability space (Ω, µ) with Ω = {0, 1}n, and A,B ⊆ Ω increasing,

µ(A ∩B) ≥ µ(A)µ(B).

When A and B are increasing sets, it is easily verified that A×c B = A×B
and thus Theorem 1.4 implies Theorem 1.6.

We prove Theorem 1.4 in Section 2 and Theorem 1.2 in Section 3. In the
last section, we suggest some extensions of these results.
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2 Proof of Theorem 1.4

The great step in Reimer’s proof of Theorem 1.3 was his “Butterfly Lemma,”
Lemma 2.2 below. We first demonstrate how Theorems 1.3 and 1.4 are
proved; they are reduced to a set of “local” inequalities which are then given
by the lemma. A subcube Q of Ω = Ω1 × · · · × Ωn is a set of the form
Q1× · · · ×Qn where Qi ⊆ Ωi and 1 ≤ |Qi| ≤ 2 for each i ∈ [n]. For x, y ∈ Ω,
the subcube generated by x and y is

[x, y] := {z ∈ Ω : zi ∈ {xi, yi}}.

For a subcube Q, let Pairs(Q) := {(x, y)|Q = [x, y]}. For each x ∈ Q, there
is a unique y ∈ Ω such that Q = [x, y]; this is the complement of x relative
to Q, denoted xQ. For (x, y) ∈ Pairs(Q), we have

(µ× µ)(x, y) = µ(x)µ(y) =
∏
i

µi(xi)µi(yi).

This product is the same for all (x, y) ∈ Pairs(Q) and is denoted µQ. Thus
if X ⊆ Ω× Ω, we have

(µ× µ)(X) =
∑
Q

|XQ|µQ,

where XQ = X ∩ Pairs(Q) and Q ranges over subcubes of Ω. It follows that
for X, Y ⊆ Ω× Ω,

if |XQ| ≤ |YQ| for all subcubes Q then (µ× µ)(X) ≤ (µ× µ)(Y ). (5)

Since µ(S) = (µ × µ)(S × Ω) (for any S ⊆ {0, 1}n), we may rewrite the
inequalities (2) and (3) of Theorems 1.3 and 1.4 in the form (µ × µ)(X) ≤
(µ×µ)(Y ) for appropriate X, Y ⊆ Ω×Ω, and hope to derive them from (5).
Thus Reimer proves (2) by showing

|((A2B)× Ω)Q| ≤ |(A×B)Q|, (6)

while Theorem 1.4 will follow from

Proposition 2.1 For any A,B ⊆ Ω and subcube Q of Ω,

|(A×c B)Q| ≤ |((A ∩B)× Ω)Q|. (7)
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The statement of the Butterfly Lemma requires some definitions. A but-
terfly in Ω is an ordered pair of subcubes, β = (R, Y ), with |R ∩ Y | = 1.
We write b or b(β) for the unique element of R ∩ Y , called the body of β.
The subcubes R(β) := R and Y (β) := Y are the red and yellow wings of β.

The points r = r(β) := b
R

and y = y(β) := b
Y

are, respectively, the red tip
and yellow tip of β. The span of β is then [r, y], the unique minimal subcube
containing R ∪ Y . A butterfly with span Q is called a Q-butterfly.

y(β) = 000

r(β) = 111

001

010 b(β) = 110

100

Figure 1: A butterfly β in {0, 1}3. Points in R(β) are red, those in Y (β),
yellow. Note, b(β) ∈ R(β) ∩ Y (β).

If B is a family of Q-butterflies, we define:

R(B) :=
⋃
β∈B R(β), Y(B) :=

⋃
β∈B Y(β).

If no two butterflies of B have the same red tip, we say B has distinct red
tips.

Lemma 2.2 (Butterfly Lemma [10])
If B is a family of Q-butterflies with distinct red tips, then

|B| ≤ |R(B) ∩ Y(B)|.

Proof of Proposition 2.1. Let Z = {x ∈ Q : (x, xQ) ∈ A ×c B}. Note
|Z| = |(A ×c B)Q|. We will define a family B = {β(x) : x ∈ Z} of Q-
butterflies that satisfies: (i) R(B) ⊆ A, (ii) Y(B) ⊆ B, and (iii) the red tip
of β(x) is x.
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Condition (iii) implies that B satisfies the hypothesis of Lemma 2.2, while
(i), (ii) and the fact that B is a Q-butterfly imply that R(B) ∩ Y(B) ⊆
A ∩B ∩Q. Thus, by the lemma,

|(A×c B)Q| = |B| ≤ |R(B) ∩ Y(B)|
≤ |A ∩B ∩Q|
= |((A ∩B)× Ω)Q|,

where the final equality uses the easy identity |T ∩Q| = |(T × Ω)Q| for any
T ⊆ Ω.

It now suffices to define B. Fix x ∈ Z. By definition, there are partial
selection functions f 6∼′ g such that x ∈ C(f) ⊆ A and xQ ∈ C(g) ⊆ B.
Since f and g are compatible, we may define the partial selection function h
with dom(h) = dom(f) ∪ dom(g) and

h(i) :=

{
f(i) i ∈ dom(f)
g(i) i ∈ dom(g).

Let b(x) be some element of C(h) = C(f)∩C(g) ⊆ A∩B. Since x ∈ C(f) and
xQ ∈ C(g), we have R(x) := [x, b(x)] ⊆ C(f) ⊆ A and Y (x) := [xQ, b(x)] ⊆
C(g) ⊆ B. If we set β(x) := (R(x), Y (x)), then B := {β(x) : x ∈ Z} is a
family of Q-butterflies satisfying (i), (ii) and (iii), and the proof is complete.

3 Proof of Theorem 1.2

We are given a set F of cylinders of (Ω, µ) satisfying µ(U(F)) ≥ 1 − ε. We
want a lower bound for

max
F∈F

µ
(⋃
{G′ : G ∈ N ′[F ]}

)
= µ(U(F))−min

F∈F

∑
G 6∈N ′[F ]

µ(G′). (8)

Since the sets F ′ (F ∈ F) defined in (1) form a partition of U(F), we
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have

min
F∈F

∑
G6∈N ′[F ]

µ(G′) ≤ 1

µ(U(F))

∑
F∈F

µ(F ′)
∑

G6∈N ′[F ]

µ(G′)

=
1

µ(U(F))
(µ× µ)(

⋃
{F ′ ×G′ : F 6= G,F ∩G 6= ∅})

≤ 1

µ(U(F))
(µ× µ)(

⋃
{F ×G : F 6= G,F ∩G 6= ∅})

=
1

µ(U(F))
(µ× µ)(S(F ,F)), (9)

where for sets F ,G of cylinders, we define

S(F ,G) =
⋃
{F ×G : F ∈ F , G ∈ G, F 6= G,F ∩G 6= ∅}.

Claim 3.1 (µ× µ)(S(F ,F)) ≤ 4(1− µ(U(F))).

Proof: Let F1,F2 be a partition of F that maximizes (µ× µ)(S(F1,F2)).
Then (µ×µ)(S(F1,F2)) is at least the expected value of (µ×µ)(S(G,F−G))
where G is a subset of F chosen uniformly at random. For each (x, y) ∈
S(F ,F), there is a pair of distinct cylinders F,G in F with x ∈ F , y ∈ G,
and F ∩G 6= ∅, whence

PrG[(x, y) ∈ S(G,F − G)] ≥ PrG[(F ∈ G) ∧ (G 6∈ G)] = 1/4

and, summing over (x, y) ∈ F × F ,

EG[(µ× µ)(S(G,F − G))] ≥ (1/4)(µ× µ)(S(F ,F)).

Thus (µ× µ)(S(F1,F2)) ≥ (1/4)(µ× µ)(S(F ,F)).
Now let A =

⋃
F∈F1

F and B =
⋃
F∈F2

F . Since S(F1,F2) ⊆ A ×c B,
Theorem 1.4 gives

(µ× µ)(S(F ,F)) ≤ 4(µ× µ)(A×c B)

≤ 4µ(A ∩B)

= 4µ(
⋃
{F ∩G : F ∈ F1, G ∈ F2})

≤ 4(1− µ(U(F))). (10)
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Finally, combining (8), (9) and Claim 3.1 with the assumption that
µ(U(F)) ≥ 1− ε gives

max
F∈F

µ
(⋃
{G′ : G ∈ N ′[F ]}

)
≥ µ(U(F))−4

(
1− µ(U(F))

µ(U(F))

)
≥ 1−ε− 4ε

1− ε
.

4 Further Questions and Remarks

In Theorem 1.2 we showed that Rudich’s conjecture is true for all ε < 3 −
2
√

2 ≈ .171, while the example given in Remark 1.2 shows that the conjecture
fails for ε ≥ 1− 1/e ≈ .632. It is natural to ask if it holds for all ε < 1− 1/e.

Question 4.1 Is is true that for all ε < 1− 1/e there exists δ > 0 such that
for all n ≥ 1 and for any set of cylinders F of {0, 1}n, if |U(F)| ≥ (1− ε)2n,
then there is a cylinder F ∈ F for which

|
⋃
G∈N [F ]G| ≥ δ2n?

It is natural to ask whether Rudich’s conjecture extends to more general
probability spaces with cylinders replaced by events satisfying some kind of
independence assumption. For a finite family of events E in an (arbitrary)
probability space (Ω, µ), say a graph G on E is a strong dependency graph
for E if for all disjoint E ′, E ′′ ⊆ E with E ′ 6∼ E ′′ (that is, no edges of G join E ′
and E ′′), the events in E ′ are independent of those in E ′′; equivalently,

µ(
⋂
E∈E ′∪E ′′ E) = µ(

⋂
E∈E ′ E)µ(

⋂
E∈E ′′ E) (11)

for all such E ′, E ′′. Note this is true when E is a set of cylinders in a product
space and G = (E ,∼).

Rudich [11] and Tardos [15] asked if Conjecture 1.1 might generalize to
this setting. We again use U(E) for the event that a unique member of E
occurs and, given a strong dependency graph G for E , N [F ] for the closed
neighborhood of F in G.

Conjecture 4.2 There exists ε, δ > 0 such that for every probability space
(Ω, µ), every family E of events in Ω, and every strong dependency graph G
for E, if µ(U(E)) ≥ 1− ε then µ(

⋃
E∈N [F ]E) ≥ δ for some F ∈ E.
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In fact it is natural to ask whether this holds at the level of dependency
graphs in the sense of the Lovász local lemma ( [3] or e.g. [1]), that is, where
we only assume (11) when E ′ consists of a single event. Szegedy [13] pro-
vided a counterexample to this. The following is a simplified version due to
Tardos [15].

Example 4.1 Let k, l > 1. Let ω = (ω0, ω1, . . . , ωk) be selected according to
the uniform measure µ on Ω = [k]× [l]k. Let E = {Aij : i ∈ [k], j ∈ [l]} where
Aij = {ω ∈ Ω : (ω0 = i and ωi = j) or (ω0 6= i and ωi = 1)}.

We first check that the graph on E obtained by taking Aij adjacent to
Ai′j′ iff i = i′ (and j 6= j′) is a dependency graph, that is, that for any
Ai0j0 , . . . , Aikjk ∈ E with i1, . . . , ik 6= i0, the events E = Ai0j0 and E ′ =⋂k
l=1Ailjl are independent. We have

µ(E ∩ E ′) = µ(E ′ ∩ {ω0 = i0, ωi0 = j0}) + µ(E ′ ∩ {ω0 6= i0, ωi0 = 1})
= µ(E ′ ∩ {ω0 = i0})µ(ωi0 = j0) + µ(E ′ ∩ {ω0 6= i0})µ(ωi0 = 1)

= µ(E ′)µ(E),

where the second equality holds because the events E ′ ∩ {ω0 = i0} and
E ′ ∩ {ω0 6= i0} do not depend on ωi0 , and the third because µ(ωi0 = j) = l−1

for any j (so also µ(E) = l−1).
Let A = Ai0j0 and notice that

A′ (= A \
⋃
{Aij : (i, j) 6= (i0, j0)}) = {ω0 = i0, ωi0 = j0, ωi 6= 1∀i 6= i0},

which, using symmetry, gives

µ(U(E)) = klµ(A′) = (1− l−1)k−1.

On the other hand, noting that N := N [Ai0,j0 ] = {Ai0,j : j ∈ [l]}, we have

µ(
⋃
B∈NB) = µ(ω0 = i0) + µ(ω0 6= i0, ωi0 = 1) = 1

k
+ k−1

kl
. (12)

The conclusion of Rudich’s Conjecture then fails, since k, l can be chosen to
make µ(U(E)) arbitrarily close to 1 and the right side of (12) arbitrarily close
to 0.

As noted above, there is an obvious symmetry between Reimer’s inequal-
ity (2) and the dual inequality (4). The formal dual of the strong dual
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inequality, (3), is µ(A∩cB) (= µ(A∩B)) ≤ µ(A)µ(B) which is of course not
true in general. Can one find stronger versions of Reimer’s inequality and
the dual inequality that are dual to each other in some natural sense?

Note that the definitions and properties of cylinders, partial selection
functions, relations ∼ and ∼′, and operations 2, ×d, and ×c apply to any
product space. In [4], Goldstein and Rinott proved that each of Theorems
1.3 and Corollary 1.5 can be extended to general product probability spaces.1

Their methods also work for Theorem 1.4.

Theorem 4.3 For (Γ, ν) =
∏n

i=1(Γi, νi), a product of probability spaces, and
for all measurable A,B ⊆ Γ

ν(A2B) ≤ ν(A)ν(B),

(ν × ν)(A×c B) ≤ ν(A ∩B).

In follows that Rudich’s conjecture and Theorem 1.2 easily extend to general
product probability spaces.

Corollary 1.5 was used by one of the authors to prove a theorem about
boolean decision tree complexity [12]. That result is a strengthening of sev-
eral conjectures on approximate decision tree complexity due to Impagliazzo
and Rudich [6,7] and Tardos [14]. The conjectures of Impagliazzo and Rudich
stemmed from investigations in the foundations of cryptography and were
the motivation for Rudich’s conjecture. Tardos’ motivation was, in part,
to explore the relation between deterministic and non-deterministic query
complexity classes.
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