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Abstract

For given finite, connected, bipartite graph G = (V,E) with dis-
tinguished v0 ∈ V , set

F = {f : V → Z|f(v0) = 0, {x, y} ∈ E ⇒ |f(x)− f(y)| = 1}.

Our main result says there is a fixed b so that when G is a Hamming
cube ({0, 1}n with the usual adjacency), and f is chosen uniformly
from F , the probability that f takes more than b values is at most
e−Ω(n). This settles in a very strong way a conjecture of I. Benjamini,
O. Häggström and E. Mossel [2].

The proof is based on entropy considerations and a new log-concavity
result.

1 Introduction

For a (finite) connected, bipartite graph G = (V,E) with distinguished v0 ∈
V , set

F = F(G, v0) = {f : V → Z|f(v0) = 0, {x, y} ∈ E ⇒ |f(x)− f(y)| = 1}.

(That is, F is the set of graph homomorphisms from G to Z, normalized to
vanish at v0. Some terminology is given at the end of this section. For graph
theory background see e.g. [4].)

In [2] such functions are studied from a probabilistic point of view, a
motivating idea being that, for suitable G, a typical member of F should ex-
hibit stronger concentration behavior than can be guaranteed for an arbitrary
member.
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Of particular interest is what happens when G is a Hamming cube ({0, 1}n
with the usual adjacency), since this is the starting point for most discussions
of concentration, at least in discrete settings. Cubes are also the main concern
of the present paper, and for the remainder of this section (actually for all of
the paper except Section 5) we specialize to this case, taking v0 = 0.

Here for a general f ∈ F we have the usual large deviation inequality:
for v uniform from V ,

Pr(|f(v)− Ef | > λ
√
n) < 2e−λ

2/2

for each λ > 0. These bounds are, of course, quite accurate; but a little
reflection suggests that a typical f should be nearly constant on either even
or odd vertices (and mainly just take two values on vertices of the other
parity). Nonetheless, even the following conjecture from [2] does not seem
easy to prove.

For f ∈ F , set
R(f) = |{f(x) : x ∈ V }|.

Write f for a function chosen uniformly at random from F . (Our title thinks
of f as a “cube-indexed random walk,” the name again taken from [2].)

Conjecture 1.1 ([2]) For each t > 0, Pr(R(f) > tn)→ 0 (n→∞).

See [2] for further discussion. As suggested there (and above), one expects
something much stronger than Conjecture 1.1 to be true. The purpose of the
present paper is to prove such a statement:

Theorem 1.2 There is a constant b for which Pr(R(f) > b) < e−Ω(n).

Conjecture 1.3 Pr(R(f) > 5) < e−Ω(n) and Pr(R(f) = 5) > Ω(1).

The proof of Theorem 1.2 is mainly based on entropy considerations.
The basic approach was introduced in [8] (see also [7]) to deal with the
following problem of C. Athanasiadis [1]. Define a rank function on 2[n] to
be an f : 2[n] → N for which f(∅) = 0 and f(A) ≤ f(A ∪ x) ≤ f(A) + 1.
Athanasiadis conjectured that the number of such functions is

exp2[2n−1(1 + o(1))]. (1)
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This was proved in [8], where it was further conjectured that the number is
in fact O(22n−1

).
As pointed out to the author by E. Mossel, mapping f → g with g(A) =

2f(A)−|A| gives a bijection between rank functions and cube-indexed walks.
So the number of cube-indexed walks is also at most (1), though this by
itself does not seem to help with Conjecture 1.1. It follows from the present
arguments that the o(1) term in (1), which in [8] was O(n−1/2), could be
improved to C−n for some constant C > 1.

The rest of the paper is organized as follows. It has seemed best to first
give (in Section 2) the proof of Theorem 1.2 modulo proofs of the main
entropy-based inequality (2) and one simple combinatorial fact (Proposi-
tion 2.1) which may be of independent interest. Entropy notions are then
reviewed in Section 3 and applied in Section 4 to prove (2). Finally, the proof
of Proposition 2.1 is given in Section 5.

Usage
We use ∼ for adjacency and Nv for the set of neighbors of (vertices ad-

jacent to) v. A vertex is even or odd depending on its distance from v0. As
usual, [n] = {1, . . . , n} and 2S is the set of subsets of S. We use boldface for
expectation (E) and for random variables (X, f , . . .).

2 Proof of Theorem

Here again G is the n-dimensional Hamming cube and f is chosen uniformly
from F = F(G, v0 = 0).

For v ∈ V set Nv = {w ∈ V : w ∼ v} and define the event

Qv = {f is constant on Nv}.

We also write Qv for the complementary event and set (for v 6= z ∈ V )
Qvz = QvQz, Qvz = QvQz etc.

Most of our work is devoted to showing that for v ∼ z, Qvz and Qvz are
unlikely; precisely,

Pr(Qvz) + Pr(Qvz) < e−Ω(n). (2)

Proof of this is deferred to Section 4.
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Now (2) easily implies

∀v ∈ V Pr(|f(v)| > 2) < e−Ω(n). (3)

To see this, consider a shortest path v0 ∼ v1 ∼ · · · ∼ vk = v. By (2) we have
with probability 1− e−Ω(n)

Qvi−1vi ∪Qvi−1vi 1 ≤ i ≤ k,

implying that Qvi−1vi+1
holds for either all even i or all odd i in {1, . . . , k−1},

and consequently that f is constant on either {vi : 0 ≤ i ≤ k even} or {vi :
1 ≤ i ≤ k odd}. This gives (3).

One would think that Theorem 1.2 would now follow immediately; for (3)
implies

|{v : |f(v)| > 2}| < e−Ω(n)2n a.s.,

so that failure of the theorem would require an extremely unnatural distribu-
tion of values for a typical f . But, perhaps stupidly, we were not able to see
a very direct way to complete a proof, even of Conjecture 1.1. Nonetheless,
we do finish fairly easily using the following observation, valid for general
bipartite graphs.

Let H = (V,E) be an arbitrary finite bipartite graph with v0 ∈ V , and
let f be chosen uniformly at random from F(H, v0). Fix v ∈ V and for i ∈ Z,
set

ai(v) =

{
Pr(f(v) = 2i) if v is even
Pr(f(v) = 2i+ 1) if v is odd.

Proposition 2.1 For each v ∈ V the sequence {ai(v)} is log-concave.

This is proved in Section 5.

To complete the proof of Theorem 1.2, consider any even v and set
ai(v) = ai. Proposition 2.1 implies that ai is maximized at i = 0 (this
is also given by Proposition 5.1—taken from [2]—which we will use in the
proof of Proposition 2.1), so by (3) we have a0 > Ω(1). On the other hand,
(3) gives a2, a−2 < e−Ω(n). But then for |i| > 2 we have, using log-concavity,

a2
i ≤ a

|i|
2 /a

|i|−2
0 ,

implying ai < C−|i|n for some constant C > 1. This gives Theorem 1.2.
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3 Entropy

Here we briefly review relevant entropy background. For more thorough
discussions see [9], [6].

In what follows X, Y etc. are discrete random variables (r.v.’s), which
in our usage are allowed to take values in any countable (here always finite)
set. Throughout the paper we take log = log2.

As usual, H is the (binary) entropy function, H(α) = α log(1/α) + (1 −
α) log(1/(1− α)). The entropy of the r.v. X is

H(X) =
∑
x

p(x) log
1

p(x)
,

where we write p(x) for Pr(X = x) (and extend this convention in natural
ways below). The conditional entropy of X given Y is

H(X|Y) = EH(X|Y = y) =
∑
y

p(y)
∑
x

p(x|y) log
1

p(x|y)
.

Notice that we are also writing H(X|Q) with Q an event (in this case Q =
{Y = y}):

H(X|Q) =
∑

p(x|Q) log
1

p(x|Q)
.

In what follows we will often have these two types of conditioning simultane-
ously, and will use “;” to separate them, writing for instanceH(X|Q,R;Y,Z).

For a random vector X = (X1, . . . ,Xn) (note this is also a r.v.), we have

H(X) = H(X1) +H(X2|X1) + · · ·+H(Xn|X1, . . . ,Xn−1). (4)

We will make repeated, and usually unremarked, use of the inequalities

H(X) ≤ log |range(X)|,

H(X|Y) ≤ H(X), (5)

and more generally,

if Y determines Z then H(X|Y) ≤ H(X|Z). (6)
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(It may be worth noting that while (6) implies—is in fact equivalent to—
H(X|Y,Z) ≤ H(X|Y), the formally similar H(X|Q,R) ≤ H(X|Q) is non-
sense.)

We will also need the following fact which slightly generalizes a lemma
of J. Shearer (see [5, p. 33]). For random vector X = (X1, . . . ,Xm) and
A ⊆ [m], set XA = (Xi : i ∈ A).

Lemma 3.1 Let X = (X1, . . . ,Xm) be a random vector and A a collection
of subsets (possibly with repeats) of [m], with each element of [m] contained
in at least t members of A. Then for any partial order ≺ on [m],

H(X) ≤ 1

t

∑
A∈A

H(XA|(Xi : i ≺ A)).

(Of course i ≺ A means i ≺ a ∀a ∈ A.) When the partial order is vacuous,
Lemma 3.1 becomes Shearer’s Lemma, and the further specialization A =
{{1}, . . . , {m}} gives the basic inequality

H(X1, . . . ,Xn) ≤
∑

H(Xi).

Proof of Lemma 3.1. (This repeats a proof of Shearer’s Lemma due, as far
as I know ([10]), to Jaikumar Radhakrishnan.)

By (6) the statement is strongest when ≺ is a total order, w.l.o.g. just
the usual order <. In this case for A = {j1 < · · · < jk} ∈ A and Y = (Xi :
i < A), we have

H(XA|Y) = H(Xj1 |Y) +H(Xj2|Xj1 ,Y) + · · ·+H(Xjk |Xj1 , . . . ,Xjk−1
,Y)

≥ H(Xj1|(Xi : i < j1)) + · · ·+H(Xjk |(Xi : i < jk))

(using (4) in the first line and (6) in the second).
Thus ∑

A∈A
H(XA|(Xi : i < A)) ≥

∑
A∈A

∑
j∈A

H(Xj|(Xi : i < j))

≥ t
∑
j

H(Xj|(Xi : i < j))

= tH(X)

(by our assumption on A and again using (4)).
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4 Main inequality

In this section we prove (2). We again take G = (V,E) to be the n-
dimensional cube, with v0 = 0, and write |v| for the size of v, regarded
as a subset of [n] in the usual way.

Fix some i ∈ [n], and for x ∈ V define x′ ∈ V by x′j = xj iff j 6= i. Set

Mx = Nx \ {x′},

Rx = {f is constant on Mx} (⊇ Qx),

Rx = Rx, Rxy = RxRy etc.,

rx = Pr(Rx), rxy = Pr(Rxy) etc.,

and similarly qx = Pr(Qx) etc.
In [8] and [7] we worked directly with events analogous to the present

Qx’s. A key to the present work was the discovery that—for reasons we still
find a bit mysterious—one can do considerably better by working with pairs
of events Rx, Rx′ .

Throughout the following discussion we let v range over the set

{x : xi = 0, x even} (7)

and always take z = v′.
We will focus on the quantity

ε = rvz + rvz,

where v, z are an arbitrary pair as above (of course all such pairs give the
same ε). It is easy to see that, although Qx is a proper subset of Rx, we have

Qvz = Rvz,

and consequently, using symmetry, ε ≥ qxy + qxy for any x ∼ y in V. So a
slight strengthening of (2) is

ε < e−Ω(n). (8)

This is the statement we prove.
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To begin we note a trivial lower bound on H(f) = log |F|:

H(f) ≥ 2n−1. (9)

We will prove (8) by producing a nearly matching upper bound which actually
falls below the lower bound unless ε is very small.

From this point we specialize to i = n. For 0 ≤ k ≤ n− 1 set

Lk = {x ∈ {0, 1}n :
n−1∑
i=1

xi = k},

and define the partial order “≺” on {0, 1}n by taking L1 ≺ L0 ≺ L3 ≺ L2 ≺
L5 ≺ · · · (i.e. L2i+1 ≺ L2i ≺ L2i+3).

Recall that v ranges over the set (7) and z = v′, and set Xv = f |Mv∪Mz .
Our point of departure, an instance of Lemma 3.1, is

H(f) ≤
∑
v

H(f(v), f(z)|(f(x) : x ≺ v))

+
1

n− 1

∑
v

H(Xv|(f(x) : x ≺Mv ∪Mz)). (10)

(To put this in the framework of Lemma 3.1, let A consist of the sets Mv∪Mz

together with n− 1 copies of {v, z} for each v.)
For |v| ≥ 4 we associate with v two additional vertices: w = w(v) some

vertex satisfying w < v and |w| = |v| − 4 (“<” referring to the lattice of
subsets of [n]), and t = w′. We will use w, t to represent the information we
need from (f(x) : x ≺Mv ∪Mz) when we come to investigate the entropy of
Xv. (Note w, t ≺Mv ∪Mz.)

For terms in the first sum in (10) we have the easy bound

H(f(v), f(z)|(f(x) : x ≺ v)) ≤ H(f(v), f(z)|(f(x) : x ∈Mv ∪Mz))

≤ rvz log 3 + rvz + rvz. (11)

(Note that on Rvz, f |Mv∪Mz determines f(v) and f(z), whence the absence of
an rvz term in (11). For the terms that do appear, we have for instance

H(f(v), f(z)|Rvz; (f(x) : x ∈Mv ∪Mz)) ≤ 1,
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since on Rvz, f |Mv∪Mz determines f(z) and leaves just two possibilities for
f(v). Substitution of log 3 for the naive upper bound 2, here and later in the
corresponding bound (21), may be regarded as driving our analysis.)

The second sum in (10) requires more care. Set Tv = (1Rv ,1Rz) and
assume from now on that |v| ≥ 4. (We will eventually give away a negligible
O(n2) bits to allow for smaller v’s.) We will find it convenient to set ϕ(x) =
x log(x−1 + 1).

To begin, we have

H(Xv|(f(x) : x ≺Mv ∪Mz))

≤ H(Xv|1Qw , f(w), f(t))

≤ H(Tv|1Qw) +H(Xv|1Qw , f(w), f(t),Tv). (12)

The first term here will turn out to be small because 1Qw nearly determines
Tv; precisely we have

Pr(Rvz|Qw) > 1−O(ε), (13)

Pr(Rvz|Qw) > 1−O(ε). (14)

Proof. We just prove (13), (14) being similar. We have

RvzQw ⊆ QvzQw ∪QvzRvz.

But with w <·u <·x <·y <·v <·z we have

QvzQw ⊆ Qwu ∪Qux ∪Qxy ∪Qyv ∪Qvz. (15)

Moreover
QvzRvz ⊆ RvRvz = Rvz. (16)

This gives (13) since each of the events on the right hand sides of (15) and
(16) has probability less than ε (and since qw ≥ (1− ε)/2).

Notice for future reference that this argument also shows

Pr(Quxyvz|Qw),Pr(Quxyvz|Qw) > 1−O(ε). (17)

From (13) and (14) it follows that

H(Tv|1Qw) ≤ H(O(ε), O(ε), O(ε), 1−O(ε)) = O(ϕ(ε)). (18)
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For the second term on the right hand side of (12) we have

H(Xv|1Qw , f(w), f(t),Tv) ≤ Pr(Qw)H(Xv|Qw; f(w),Tv)

+ Pr(Qw)H(Xv|Qw; f(t),Tv). (19)

To bound the first of the entropy terms on the right hand side, we will make
use of the fact that conditioning on Qw and f(w) leaves little information in
f(v). We have

H(Xv|Qw; f(w),Tv) ≤ H(f(v)|Qw; f(w)) +H(Xv|Qw;Tv, f(v)). (20)

From (17) it follows that Pr(f(v) 6= f(w)|Qw) = O(ε) (since Quy ⇒ f(v) =
f(w)). So, since the number of possibilities for f(v) given f(w) is O(1) in any
case, we have

H(f(v)|Qw; f(w)) ≤ O(ϕ(ε)).

For the main term in (20) we have

H(Xv|Qw;Tv, f(v)) = Pr(Rvz|Qw)H(Xv|Qw, Rvz; f(v))

+ Pr(Rvz|Qw)H(Xv|Qw, Rvz; f(v))

+ Pr(Rvz|Qw)H(Xv|Qw, Rvz; f(v))

+ Pr(Rvz|Qw)H(Xv|Qw, Rvz; f(v)).

Here we may bound the entropies by

H(Xv|Qw, Rvz; f(v)) ≤ 2

(on Rvz specification of f(v) leaves just 4 possibilities for the restriction of f
to Mv ∪Mz, though “O(1)” in place of “2” would also suffice here);

H(Xv|Qw, Rvz; f(v)) ≤ n

(one bit for f(z), then n− 1 bits for f |Mz , which also determines the value of
f on Mv);

H(Xv|Qw, Rvz; f(v)) ≤ n− 1;

and
H(Xv|Qw, Rvz; f(v)) ≤ 1 + (n− 1) log 3
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(allowing one bit for f(z) and then log 3 bits for (f(x), f(x′)) for each x ∈Mv).
Thus

H(Xv|Qw;Tv, f(v)) ≤ Pr(Rvz|Qw) · 2 + Pr(Rvz|Qw)n+ Pr(Rvz|Qw)(n− 1)

+ Pr(Rvz|Qw)(1 + (n− 1) log 3).

A similar analysis bounds the second entropy term on the right hand side
of (19):

H(Xv|Qw; f(t),Tv) ≤ H(f(z)|Qw; f(t)) +H(Xv|Qw;Tv, f(z))

= O(ϕ(ε)) +H(Xv|Qw;Tv, f(z)),

and

H(Xv|Qw;Tv, f(z)) = Pr(Rvz|Qw)H(Xv|Qw, Rvz; f(z))

+ Pr(Rvz|Qw)H(Xv|Qw, Rvz; f(z))

+ Pr(Rvz|Qw)H(Xv|Qw, Rvz; f(z))

+ Pr(Rvz|Qw)H(Xv|Qw, Rvz; f(z))

≤ Pr(Rvz|Qw) · 2 + Pr(Rvz|Qw)(n− 1)

+ Pr(Rvz|Qw)n+ Pr(Rvz|Qw)(1 + (n− 1) log 3).

Combining the preceding bounds we find that the right hand side of (19) is
at most

O(ϕ(ε)) + 2rvz + rvz(1 + (n− 1) log 3)

+ Pr(QwRvz) + Pr(QwRvz) + (rvz + rvz)(n− 1)

= (n− 1)(rvz + rvz) + 2rvz + rvz(1 + (n− 1) log 3) +O(ϕ(ε)) (21)

(again using (13) and (14)).
Finally, reviewing (10), (11), (12), (18), and the preceding bound for

(19), and allowing O(n2) bits for the terms in (10) corresponding to v’s with
|v| ≤ 2, we have

H(f) ≤ O(n2) +
∑
v

{rvz log 3 + rvz + rvz +
1

n− 1
[(n− 1)(rvz + rvz)

+ 2rvz + rvz(1 + (n− 1) log 3) +O(ϕ(ε))]}
= O(n2) +

∑
v

{2(rvz + rvz) + (rvz + rvz)(log 3 +O(1/n)) +O(ϕ(ε)/n)}.
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Combining this with (9) and recalling that rvz, . . . , rvz don’t depend on the
choice of v, we have for any particular v,

2−O(n22−n) ≤ 2(rvz + rvz) + (rvz + rvz)(log 3 +O(1/n)) +O(ϕ(ε)/n)

= 2(1− ε) + ε(log 3 +O(1/n)) +O(ϕ(ε)/n),

or
(2− log 3−O(1/n))ε ≤ O(ϕ(ε)/n) +O(n22−n).

This gives (8).

5 Log-concavity

Here we only assume that G = (V,E) is connected and bipartite with v0 ∈ V ,
and again take f to be uniform from F = F(G, v0). We need the following
unimodality statement, which is Proposition 2.1 of [2].

Proposition 5.1 For every v ∈ V and 0 ≤ |s| < |t| with s, t ∈ Z and s ≡ t
(mod 2),

Pr(f(v) = t) ≤ Pr(f(v) = s).

Write Γ(G, v0) for the set of Lipschitz functions on G that vanish at v0;
that is,

Γ(G, v0) = {γ ∈ ZV : γ(v0) = 0; x ∼ y ⇒ |γ(x)− γ(y)| ≤ 1}.

For v ∈ V set

Fi(G, v0, v) = {f ∈ F : f(v) = i}, Γi(G, v0, v) = {γ ∈ Γ(G, v0) : γ(v) = i}.

For the rest of this discussion we fix v ∈ V and abbreviate Γ(G, v0) = Γ,
Fi(G, v0, v) = Fi and Γi(G, v0, v) = Γi.

For f, g ∈ F let γ
fg

= (f + g)/2. Then γ
fg

clearly belongs to Γ, and more
precisely,

f ∈ Fi, g ∈ Fj ⇒ γ
fg
∈ Γ(i+j)/2.

12



(In fact one easily sees that each γ ∈ Γ is of this form; for instance we may
define f, g by setting f(v) = g(v) = γ(v) if γ(v) has the same parity as v,
and f(v)− 1 = γ(v) = g(v) + 1 otherwise.)

For γ ∈ Γi and j ∈ Z set

Aj(γ) = {(f, g) ∈ Fi+j ×Fi−j : γ
fg

= γ}.

We prove a somewhat stronger version of Proposition 2.1:

Claim 5.2 For all i and γ ∈ Γi, |A2(γ)| ≤ |A0(γ)|.

We will prove this by reducing it to an instance of Proposition 5.1. The
reduction is given by several assertions whose straightforward verifications are
mainly left to the reader. We assume throughout that γ ∈ Γ and f, g ∈ F .
Define f ∼ γ (and γ ∼ f) to mean

x ∼ y, γ(x) 6= γ(y) ⇒ f(x)− f(y) = γ(x)− γ(y).

For γ ∈ Γi set
Bj(γ) = {f ∈ Fi+j : f ∼ γ}.

One easily checks that
γ

fg
= γ ⇒ f, g ∼ γ

and
if γ ∈ Γi, f ∈ Fj and f ∼ γ, then γ ∼ 2γ − f ∈ F2i−j.

Thus f 7→ (f, 2γ − f) gives a bijection between Bj(γ) and Aj(γ) (for each
j), and Claim 5.2 is equivalent to

|B2(γ)| ≤ |B0(γ)|. (22)

Now let E(γ) = {{x, y} ∈ E : γ(x) 6= γ(y)} and G/γ = G/E(γ) (the
graph obtained from G by contracting the edges of E(γ), see for instance
[4]). Then, crucially, we have

G/γ is bipartite. (23)

(To see this note that any cycle of G/γ is the contraction of some cycle
C = (x0, x1, . . . , x2k = x0) of G, and that the number of parity changes in
the sequence (γ(x0), . . . , γ(x2k)) is |E(C) ∩ E(γ)|.)
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The vertices of G/γ are naturally identified with the components of
(V,E(γ)) and we write x/γ for the vertex of G/γ containing x ∈ V .

For γ ∈ Γi and f ∈ Bj(γ), f ′ := f − γ is easily seen to lie in Γj and to
satisfy

x ∼
G
y ⇒ [f ′(x) = f ′(y)⇔ γ(x) 6= γ(y)].

In particular, f ′ is constant on each component of E(γ), so maps naturally
to a function f ′′ ∈ Fj(G/γ, v0/γ, v/γ).

This construction is reversible: given such an f ′′, define f ′ ∈ Γj by f ′(x) =
f ′′(x/γ) and take f = f ′ + γ ∈ Bj(γ).

So we have |Bj(γ)| = |Fj(G/γ, v0/γ, v/γ)|, and for (22) can substitute

|F2(G/γ, v0/γ, v/γ)| ≤ |F0(G/γ, v0/γ, v/γ)|.

But in view of (23), this is contained in Proposition 5.1.

Acknowledgment I would like to thank Itai Benjamini and Elchanan Mos-
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ments on the manuscript.
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