
581 PS2 Solutions

1. The answer (call it f(n)) is n2. For f(n) ≥ n2 take

V = {x1, . . . , xn, y1 . . . , yn}, E = {yiyj : 1 ≤ i < j ≤ n} ∪ {xiyj : i ≤ j}.

For f(n) ≤ n2, let {e1, . . . , en} be the perfect matching and observe:
there are at most two edges between the ends of ei and the ends of ej . Thus

|E| ≤ n+
(
n
2

)
2 = n2.

2.(a) Let the values be a1, . . . , am and the columns C1, . . . , Cm, with ai
appearing tij times in Cj . Form a bipartite multigraph G with bipartition
{a1, . . . , am} ∪ {C1, . . . , Cm} and tij edges joining ai and Cj for each i, j.
Then G is n-regular, so (by the corollary to Hall’s Theorem given in class)
has a perfect matching, which is equivalent to what we want.

(b) Fix a suit S and switch each of the cards from (a) with the card of
the same value from S. (If the card is already in S then the “switch” does
nothing.) This gives a card from S in each column; we can then remove
these and say induction.

3. We use induction (on whatever). Suppose first that there is some edge
e = ab not in any p.m.s, and let H = G − {a, b}. This has no p.m., so by
Hall’s Theorem there is an X ⊆ A \ {a} with |NH(X)| < |X|. OTOH (since
Φ(G) > 0) Y := NG(X) has |Y | ≥ |X|. It follows that: Y \NH(X) = {b};
|Y | = |X|; and each p.m. of G matches X with Y and A \X with B \ Y , so
both G1 := G[X∪Y ] and G2 := G[(A\X)∪(B\Y )] have p.m.s. But then G1

satisfies our hypotheses, so by induction, Φ(G) = Φ(G1)Φ(G2) ≥ d! · 1 = d!

Now suppose every edge is in a p.m. and let a ∈ A. For each b ∼ a,
Gb := G− {a, b} has a p.m. and dGb

(a′) ≥ d− 1 ∀a′ ∈ A \ {a}; so induction
gives Φ(Gb) ≥ (d − 1)!. But Φ(Gb) is the number of p.m.s of G containing
ab, so Φ(G) =

∑
b∼a Φ(Gb) ≥ d(d− 1)! = d!

[Alternate: Skip “first” above and consider a minimal S ⊆ A with |N(S)| =
|S| (noting that this holds when S = A).]

4. The conditions I had in mind are

|A| = |B| and |N(X)| > |X| ∀ ∅ 6= X ⊂ A. (1)
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Necessity. For w as in the problem, |A| = w(E) = |B| and, for X as in (1),

|X| = w(∇(X)) < w(∇(N(X)) = |N(X)|,

where the inequality follows from ∇(X) ⊂ ∇(N(X)) (the containment is
strict since otherwise N(N(X)) = X and G is not connected).

Sufficiency. First notice that each e = uv ∈ E is in a perfect matching
(p.m.): equivalently G′ := G − {u, v} has a p.m., which is true since ((1)
gives Hall’s condition for G′. Let me (> 0) be the number of p.m.s containing
e, m the number of p.m.s in G and w(e) = me/m (and check this works).

5. (One of several ways to do this:) Let G be a balanced bigraph on (A,B)
satisfying Hall’s condition. Note that balance implies that we also have
Hall’s condition T ⊆ B, since N(A\N(T )) ⊆ B \T and, by Hall’s condition,
|B \ T | ≥ |A \N(T )|, i.e. |N(T )| ≥ |T |.

Now suppose Tutte’s condition fails, and let C ⊆ A∪B be maximal with
q(G − C) > |C|. Set C ∩ A = X,C ∩ B = Y . Since C is maximal, each
component of G − C is either balanced or a singleton (why?); so the odd
components are the isolated vertices. Let S and T be the sets of isolated
vertices in A and B (in G − C). Hall’s condition gives |S| ≤ |Y | and
|T | ≤ |X|, so we have the contradiction

q(G− C) = |S|+ |T | ≤ |X|+ |Y | = |C|.

6. Claim: Any orientation σ minimizing βσ :=
∑

(d+σ (v) − k(v))+ works
(where, as usual, x+ = max{x, 0}).

Proof: Suppose instead that d+σ (v) > k(v) and let W be the set of vertices
reachable from v (in σ). Then ∇+(W ) = ∅, implying

∑
w∈W d+σ (w) =

|E(W )| ≤
∑

w∈W k(w). So there must be some w ∈W with d+σ (w) < k(w),
and we can reverse edges on some (v, w)-path to improve β.

[Alternate: Define a bigraph H on E ∪ Y with Y consisting of k(v) copies
of v ∀v ∈ V and e adjacent to all copies of its ends (in G). Then (check)
H satisfies Hall’s condition, so contains an E-perfect matching M , yielding
orientation: v is the tail of e if M matches e with some copy of v.]

7. (WMA n is even, say n = 2k: then for n odd add n+1 and an+1 = n+1.)
Let M = {{2i − 1, 2i} : i ∈ [k]}, M ′ = {{a2i−1, a2i} : i ∈ [k]}. Then

M ∪M ′ is (the edge set of) a bipartite graph, say with bipartition X ∪ Y .
Let f(i) be 1 if i ∈ X and −1 if i ∈ Y . Then f(2i− 1) + f(2i) = f(a2i−1) +
f(a2i) = 0 ∀i ∈ [k] and the result follows.
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8. Define network N = ((V,A), c, s, t) with V = {s, t, r1, . . . , rm, c1, . . . , cn},

A = {sri : i ∈ [m]} ∪ {ricj : i ∈ [m], j ∈ [n]} ∪ {cjt : j ∈ [n]},

c(sri) = a′, c(cjt) = b′ and c(ricj) = mij .
Then f given by f(sri) = a′, f(cjt) = b′ and f(ricj) = δmij is a max

flow in N (e.g. since val(f) = cap(∇(s))); so there is an integer flow g of the
same value, and we may take m′ij = g(ricj) ∀i, j.

9. Let K be the vertex set of a largest clique in G; say |K| = r. Maximality
of K implies that for each v ∈ V (G)\K, ∇(v,K) can be covered by a clique
of size at most r. So, using induction for the second inequality, we have

π(G) ≤ π(G−K) + (n− r)r + |K|
≤ 2bn−r2 cd

n−r
2 e+ (n− r)r + r.

And check this is at most 2bn/2cdn/2e.
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