581 PS2 Solutions

1. The answer (call it f(n)) is n^2 . For $f(n) \ge n^2$ take

$$V = \{x_1, \dots, x_n, y_1, \dots, y_n\}, \quad E = \{y_i y_j : 1 \le i < j \le n\} \cup \{x_i y_j : i \le j\}.$$

For $f(n) \leq n^2$, let $\{e_1, \ldots, e_n\}$ be the perfect matching and *observe*: there are at most two edges between the ends of e_i and the ends of e_j . Thus

$$|E| \le n + \binom{n}{2}2 = n^2.$$

2.(a) Let the values be a_1, \ldots, a_m and the columns C_1, \ldots, C_m , with a_i appearing t_{ij} times in C_j . Form a bipartite multigraph G with bipartition $\{a_1, \ldots, a_m\} \cup \{C_1, \ldots, C_m\}$ and t_{ij} edges joining a_i and C_j for each i, j. Then G is *n*-regular, so (by the corollary to Hall's Theorem given in class) has a perfect matching, which is equivalent to what we want.

(b) Fix a suit S and switch each of the cards from (a) with the card of the same value from S. (If the card is already in S then the "switch" does nothing.) This gives a card from S in each column; we can then remove these and say induction.

3. We use induction (on whatever). Suppose first that there is some edge e = ab not in any p.m.s, and let $H = G - \{a, b\}$. This has no p.m., so by Hall's Theorem there is an $X \subseteq A \setminus \{a\}$ with $|N_H(X)| < |X|$. OTOH (since $\Phi(G) > 0$) $Y := N_G(X)$ has $|Y| \ge |X|$. It follows that: $Y \setminus N_H(X) = \{b\}$; |Y| = |X|; and each p.m. of G matches X with Y and $A \setminus X$ with $B \setminus Y$, so both $G_1 := G[X \cup Y]$ and $G_2 := G[(A \setminus X) \cup (B \setminus Y)]$ have p.m.s. But then G_1 satisfies our hypotheses, so by induction, $\Phi(G) = \Phi(G_1)\Phi(G_2) \ge d! \cdot 1 = d!$

Now suppose every edge is in a p.m. and let $a \in A$. For each $b \sim a$, $G_b := G - \{a, b\}$ has a p.m. and $d_{G_b}(a') \ge d - 1 \ \forall a' \in A \setminus \{a\}$; so induction gives $\Phi(G_b) \ge (d-1)!$. But $\Phi(G_b)$ is the number of p.m.s of G containing ab, so $\Phi(G) = \sum_{b \sim a} \Phi(G_b) \ge d(d-1)! = d!$

[Alternate: Skip "first" above and consider a minimal $S \subseteq A$ with |N(S)| = |S| (noting that this holds when S = A).]

4. The conditions I had in mind are

$$|A| = |B| \quad \text{and} \quad |N(X)| > |X| \quad \forall \ \emptyset \neq X \subset A.$$
(1)

Necessity. For w as in the problem, |A| = w(E) = |B| and, for X as in (1),

$$|X| = w(\nabla(X)) < w(\nabla(N(X))) = |N(X)|,$$

where the inequality follows from $\nabla(X) \subset \nabla(N(X))$ (the containment is strict since otherwise N(N(X)) = X and G is not connected).

Sufficiency. First notice that each $e = uv \in E$ is in a perfect matching (p.m.): equivalently $G' := G - \{u, v\}$ has a p.m., which is true since ((1) gives Hall's condition for G'. Let $m_e (> 0)$ be the number of p.m.s containing e, m the number of p.m.s in G and $w(e) = m_e/m$ (and check this works).

5. (One of several ways to do this:) Let G be a balanced bigraph on (A, B) satisfying Hall's condition. Note that balance implies that we also have Hall's condition $T \subseteq B$, since $N(A \setminus N(T)) \subseteq B \setminus T$ and, by Hall's condition, $|B \setminus T| \ge |A \setminus N(T)|$, i.e. $|N(T)| \ge |T|$.

Now suppose Tutte's condition fails, and let $C \subseteq A \cup B$ be maximal with q(G-C) > |C|. Set $C \cap A = X, C \cap B = Y$. Since C is maximal, each component of G - C is either balanced or a singleton (why?); so the *odd* components are the isolated vertices. Let S and T be the sets of isolated vertices in A and B (in G - C). Hall's condition gives $|S| \leq |Y|$ and $|T| \leq |X|$, so we have the contradiction

$$q(G - C) = |S| + |T| \le |X| + |Y| = |C|.$$

6. Claim: Any orientation σ minimizing $\beta_{\sigma} := \sum (d_{\sigma}^+(v) - k(v))^+$ works (where, as usual, $x^+ = \max\{x, 0\}$).

Proof: Suppose instead that $d_{\sigma}^+(v) > k(v)$ and let W be the set of vertices reachable from v (in σ). Then $\nabla^+(W) = \emptyset$, implying $\sum_{w \in W} d_{\sigma}^+(w) = |E(W)| \leq \sum_{w \in W} k(w)$. So there must be some $w \in W$ with $d_{\sigma}^+(w) < k(w)$, and we can reverse edges on some (v, w)-path to improve β .

[Alternate: Define a bigraph H on $E \cup Y$ with Y consisting of k(v) copies of $v \forall v \in V$ and e adjacent to all copies of its ends (in G). Then (*check*) H satisfies Hall's condition, so contains an E-perfect matching M, yielding orientation: v is the tail of e if M matches e with some copy of v.]

7. (WMA n is even, say n = 2k: then for n odd add n+1 and $a_{n+1} = n+1$.) Let $M = \{\{2i - 1, 2i\} : i \in [k]\}, M' = \{\{a_{2i-1}, a_{2i}\} : i \in [k]\}$. Then $M \cup M'$ is (the edge set of) a bipartite graph, say with bipartition $X \cup Y$. Let f(i) be 1 if $i \in X$ and -1 if $i \in Y$. Then $f(2i - 1) + f(2i) = f(a_{2i-1}) + f(a_{2i}) = 0 \ \forall i \in [k]$ and the result follows. 8. Define network N = ((V, A), c, s, t) with $V = \{s, t, r_1, \dots, r_m, c_1, \dots, c_n\},\$

$$A = \{sr_i : i \in [m]\} \cup \{r_ic_j : i \in [m], j \in [n]\} \cup \{c_jt : j \in [n]\},\$$

 $c(sr_i) = a', c(c_jt) = b'$ and $c(r_ic_j) = m_{ij}$.

Then f given by $f(sr_i) = a'$, $f(c_jt) = b'$ and $f(r_ic_j) = \delta m_{ij}$ is a max flow in N (e.g. since val $(f) = cap(\nabla(s))$); so there is an integer flow g of the same value, and we may take $m'_{ij} = g(r_ic_j) \forall i, j$.

9. Let K be the vertex set of a largest clique in G; say |K| = r. Maximality of K implies that for each $v \in V(G) \setminus K$, $\nabla(v, K)$ can be covered by a clique of size at most r. So, using induction for the second inequality, we have

$$\pi(G) \leq \pi(G-K) + (n-r)r + |K|$$

$$\leq 2\lfloor \frac{n-r}{2} \rfloor \lceil \frac{n-r}{2} \rceil + (n-r)r + r.$$

And *check* this is at most $2\lfloor n/2 \rfloor \lceil n/2 \rceil$.