581 PS2 Solutions
1. The answer (call it f(n)) is n?. For f(n) > n? take

For f(n) < n?, let {e1,...,e,} be the perfect matching and observe:
there are at most two edges between the ends of e; and the ends of e;. Thus

E|<n+ (12 =n%
|E| (3

2.(a) Let the values be ay,...,a, and the columns C,...,C,,, with a;
appearing t;; times in Cj. Form a bipartite multigraph G with bipartition
{ar,...,am} U{C1,...,Cp} and t;; edges joining a; and C; for each 1, j.
Then G is n-regular, so (by the corollary to Hall’s Theorem given in class)
has a perfect matching, which is equivalent to what we want.

(b) Fix a suit S and switch each of the cards from (a) with the card of
the same value from S. (If the card is already in S then the “switch” does
nothing.) This gives a card from S in each column; we can then remove
these and say induction.

3. We use induction (on whatever). Suppose first that there is some edge
e = ab not in any p.m.s, and let H = G — {a,b}. This has no p.m., so by
Hall’s Theorem there is an X C A\ {a} with [Ny (X)| < |X|. OTOH (since
®(G) > 0) Y := Ng(X) has |Y] > |X|. It follows that: ¥ \ Ng(X) = {b};
Y| = |X|; and each p.m. of G matches X with Y and A\ X with B\Y, so
both G := G[XUY] and Gy := G[(A\X)U(B\Y)] have p.m.s. But then G;
satisfies our hypotheses, so by induction, ®(G) = ®(G1)P(G2) > d!-1=d!

Now suppose every edge is in a p.m. and let a € A. For each b ~ a,
Gy := G —{a,b} has a p.m. and dg,(a’) > d—1Va' € A\ {a}; so induction
gives ®(Gy) > (d — 1)!. But ®(Gp) is the number of p.m.s of G containing
ab, s0 ®(G) =>", ., P(Gy) > d(d—1)! =d!

[Alternate: Skip “first” above and consider a minimal S C A with |N(S)| =
|S| (noting that this holds when S = A).]

4. The conditions I had in mind are

|A|=|B| and |[N(X)|>|X| V0#£XCA (1)



Necessity. For w as in the problem, |A| = w(E) = |B| and, for X as in (1),
X = w(V(X)) <w(V(N(X)) = [N(X)],

where the inequality follows from V(X) C V(N(X)) (the containment is
strict since otherwise N(N (X)) = X and G is not connected).

Sufficiency. First notice that each e = wv € F is in a perfect matching
(p.m.): equivalently G’ := G — {u,v} has a p.m., which is true since ((1)
gives Hall’s condition for G’. Let m. (> 0) be the number of p.m.s containing
e, m the number of p.m.s in G and w(e) = m./m (and check this works).

5. (One of several ways to do this:) Let G be a balanced bigraph on (A4, B)
satisfying Hall’s condition. Note that balance implies that we also have
Hall’s condition 7' C B, since N(A\ N(T')) C B\ T and, by Hall’s condition,
B\T| > |A\ N(T)|, ie. N(T)| > [T].

Now suppose Tutte’s condition fails, and let C C AU B be maximal with
q(G—-C) > |C|. Set CNA=X,CNB =Y. Since C is maximal, each
component of G — C' is either balanced or a singleton (why?); so the odd
components are the isolated vertices. Let S and T be the sets of isolated
vertices in A and B (in G — C). Hall’s condition gives |S| < |Y| and
|T'| <|X|, so we have the contradiction

9(G = C) =S|+ |T| < | X[+ [Y] = [C].

6. Claim: Any orientation o minimizing 3, := > (d} (v) — k(v))" works
(where, as usual, 27 = max{z, 0}).

Proof: Suppose instead that df (v) > k(v) and let W be the set of vertices
reachable from v (in o). Then V*(W) = 0, implying >, o dif (w) =
[E(W)| <> ew k(w). So there must be some w € W with d} (w) < k(w),
and we can reverse edges on some (v, w)-path to improve f.

[Alternate: Define a bigraph H on EUY with Y consisting of k(v) copies
of v Vv € V and e adjacent to all copies of its ends (in G). Then (check)
H satisfies Hall’s condition, so contains an E-perfect matching M, yielding
orientation: v is the tail of e if M matches e with some copy of v.]

7. (WMA n is even, say n = 2k: then for n odd add n+1 and a,+1 =n+1.)

Let M = {{2i — 1,2i} : i € [k]}, M' = {{a2i—1,a2} : i € [k]}. Then
M U M’ is (the edge set of) a bipartite graph, say with bipartition X UY.
Let f(i) be 1ifi € X and —1ifi € Y. Then f(2i — 1)+ f(2i) = f(asi_1) +
f(az;) =0 Vi € [k] and the result follows.



8. Define network N = ((V, A),¢,s,t) with V = {s,t,r1,...,"m,C1,...,Cn},
A={sr;:ie[m]}U{ricj:i€[m],jen}u{ct:jen]},

c(sr;) = d, c(cit) = b and c(ric;) = mi;.

Then f given by f(sr;) = d/, f(c;jt) = and f(ric;) = dmy; is a max
flow in N (e.g. since val(f) = cap(V(s))); so there is an integer flow g of the
same value, and we may take m;j = g(ricj) Vi, J.

9. Let K be the vertex set of a largest clique in G; say |K| = r. Maximality
of K implies that for each v € V(G)\ K, V(v, K) can be covered by a clique
of size at most r. So, using induction for the second inequality, we have

m(G) < w(G—-K)+ (n—r)r+|K|
< 2%+ (n—r)r+

And check this is at most 2|n/2][n/2].



