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a b s t r a c t

The propagation of elastic waves in a sandwich structure with two thin stiff face-plates and a thick com-
pliant core is considered in this paper. A complete description of the dispersion relation with no restric-
tions on frequency and wavelength is provided. This is accomplished by transforming the wave equation
to a Hamiltonian system and then using a transfer matrix approach for solving the Hamiltonian system.
To provide insight, particular regimes of the frequency–wavelength plane are then considered. First, an
explicit formula is derived for all natural frequencies at the long wavelength limit. It is shown that all
waves with finite limiting frequency have zero group velocity, while those with vanishing limiting fre-
quency correspond to longitudinal, shear and flexural waves. The displacement of the flexural waves
are reminiscent of Mindlin plates, and an asymptotic procedure to find the shear correction factor is pre-
sented. Second, the lowest branch of the dispersion relation is studied in detail and mode shapes are used
to motivate explicit but accurate description of this lowest branch. This approximate model is anticipated
to be useful in simulations of large structures with sandwich structures.

� 2009 Elsevier Ltd. All rights reserved.
1. Introduction

Sandwich structures are widely used in diverse applications
such as spacecraft, aircraft, automobiles, boats and ships due to
their substantial bending strength and impact resistance at a light
weight (see for example Thomsen et al. (2005) and the references
there). The dynamic applications have motivated various studies of
wave propagation and dynamic flexural deformation of multilayer
beams and plates. It has long been recognized that shear and inter-
nal modes play a critical role in determining the transmission of
waves. Consequently, an essential question has been to find an
adequate description of such structures that has enough detail to
capture the required mechanics but simple enough to be used in
engineering computations of large structures. The use of Timo-
shenko beam and Mindlin plate models that incorporate shear de-
grees of freedom is common, but also found inadequate for some
purposes. Therefore this remains an active area of research.

A common approach is to introduce higher order models by
making various kinematic ansatz. Mead and Markus (1969) intro-
duced a sixth-order model that neglects rotational inertia. Frostig
and Baruch (1994) developed a general approach for systematically
deriving higher order models starting from Hamilton’s principles.
Yang and Qiao (2005) recently followed this approach to develop
a numerical approach for beams. Backström and Nilsson (2006)
ll rights reserved.
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start with a sixth order theory and use it to fit a fourth-order model
with frequency-dependent coefficients, and showed that these
match well with experiments (Backström and Nilsson, 2007). An
interesting variation is the recent work of Bonfiglioa et al. (2007)
who used a spectral finite element method which enables them
to capture some internal modes. In any case, all these works are
based on significant a priori ansatz about the deformation.

The works of Nilsson (1990), Nosier et al. (1993) and Sorokin
(2004, 2006) study the problem more generally by considering
field equations and using it to understand all possible waves in a
sandwich structure. Nilsson (1990) and Sorokin (2004) treat the
face-plates as plates and use a fourth-order theory to describe
the lateral displacements while retaining the full elastic equations
of the core. Nosier et al. (1993) study the deformation of the vari-
ous layers and then couple them all together using a transfer ma-
trix. Sorokin (2006) concentrates on pure shear deformations of a
sandwich plate. Our work continues this line of thinking.

We consider an infinite sandwich structure and describe a gen-
eral method to compute the dispersion relations of all propagating
waves. This provides a benchmark for the accuracy of various
approximate models described above. Specifically, we consider the
field equations of elasticity for the entire structure with appropriate
interfacial jump conditions with no a priori assumptions. We show
that we can rewrite these governing equations as a Hamiltonian sys-
tem following Atkinson (1964), and solve the Hamiltonian system
using the method of transfer matrix (Haskell, 1953; Knopoff, 1964).
We use particular properties of the Hamiltonian system to charac-
terize the dispersion relation and compute it for a specific example.
tion in a sandwich structure. Int. J. Solids Struct. (2009), doi:10.1016/
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Fig. 1. A typical sandwich structure.
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While the method described above is rigorous and complete, it
is somewhat obscure. It does not provide any explicit formulas, and
the dispersion equation provides little information about the mode
shapes. We therefore elaborate on two regimes of interest. We do
so for a specific example, but note that the methods are broadly
applicable and the results representative.

We first focus on the long wavelength regime. We provide an
explicit formula for all natural frequencies in the long wavelength
limit, in-plane wave-vector k! 0. We are able to do so by exploit-
ing the fact that the relevant block of the transfer matrix becomes
diagonal in this limit. To our knowledge, such an explicit formula is
new for heterogeneous laminated structures.

It is in fact possible to obtain further information by perturbative-
ly studying the dispersion relation xaðkÞ around k ¼ 0. We note that
the global transfer matrix associated with the structure is an analytic
matrix-valued function of k, and hence it can be expressed as a
power series in k. If this series is truncated up to certain finite order,
we obtain an algebraic equation that determines the coefficients of
the Taylor expansion of xaðkÞ up to the same order. The explicit
implementation of this method is hindered by the complicated alge-
bra, but nevertheless provides interesting insights. It can be used to
show that the group velocity of every wave with a non-zero limiting
frequency is zero. Further there are exactly three branches for which
the frequency tends to zero with wave number, corresponding to the
longitudinal, shear and flexural waves. Finally, we seek to investi-
gate the lowest of these branches, the flexural branch. While the
algebra becomes too involved for a heterogeneous plate, we show
that it recovers the well-known formula D0 ¼ E0h3

=12ð1� m2
0Þ for

the flexural rigidity of an isotropic homogeneous plate of Young’s
modulus E0 and Poisson’s ratio m0. We also argue that such a proce-
dure applied to a heterogeneous plate is in fact the natural way to
determine the correction factor on the transverse shear modulus of
the Mindlin plate theory (Mindlin, 1951; Stephen, 1997).

This brings us to the second regime of interest, the lowest
branch of the dispersion relation. We describe the mode shapes
for various wavelengths. At long wavelengths, the waves are flex-
ural. We show that approximating the sandwich structure using
the Mindlin plate theory (also referred to as Timoshenko–Mindlin
plate theory or Reissner–Mindlin plate theory in the literature, see
Timoshenko, 1921, 1922, Reissner, 1945, 1947 and Mindlin, 1951)
describes the dispersion relation well for long and intermediate
wavelengths up to a thickness of wavelength ratio of 0.8. The sim-
pler Kirchhoff–Love theory provides agreement only in a very lim-
ited range of very long wavelengths with significant deviations at a
thickness of wavelength ratio of 0.02. The difference between these
theories is the inclusion of transverse shear, and this is significant
in a sandwich structure with stiff face-plates and compliant core.

At shorter wavelengths, the waves change to a coupled mode
involving flexure of the face-plates and dilatation of the core. We
develop a simplified theory for this regime where we use the Kir-
chhoff–Love plate theory for the face-plates, elasticity neglecting
the in-plane shear for the core. We show that the dispersion rela-
tion of this theory agrees well not only at intermediate wave-
lengths as expected, but also surprisingly over the entire range of
wavelengths under consideration. Further, the mode shapes of this
approximate theory approaches the mode shapes of the Mindlin
plate for long wavelengths.

Finally, at very short wavelengths, we find that the lowest branch
corresponds to the propagation of shear waves in the core. However,
other modes have similar dispersion: indeed, relative difference be-
tween the lowest four branches is less than 3%. Thus, in this range the
entire dynamics of the sandwich structure become important.

In this study we do not address the transient problem, and so
we ignore non-propagating (evanescent) waves and dissipation.
These could be accounted in our framework of transfer matrix by
allowing the wavevector to be complex for evanescent waves,
Please cite this article in press as: Liu, L., Bhattacharya, K. Wave propaga
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and the frequency and elasticity tensor to be complex for dissipa-
tion. However, there are mathematical difficulties. Specifically, the
validity of Theorem 1 is not clear and thus it is not clear if a solu-
tion exists for the governing wave equations (2). Further, there
may be instabilities in the numerical solution of the equations,
see Castaings and Hosten (1994).

The new features of our work are as follows. We develop a new
approach for studying all waves in a multilayer structure. Specifi-
cally, we start with the equations of elastodynamics in every layer
including the face-plates. We rewrite the governing equations as a
Hamiltonian system and this allows us to the transfer matrix asso-
ciated with each layer as the exponential of the corresponding
Hamiltonian (matrix). Further, the convenient properties of the
transfer matrix become self-evident from the definition of a Ham-
iltonian matrix (cf., Nayfeh, 1995, Chapter 9). We provide detailed
description of waves in a sandwich structure and explore various
regimes. In the long wavelength limit, we derive an explicit for-
mula for computing all the natural frequencies of a sandwich
structure. Further, the transfer matrix formulation provides a sys-
tematic way to expand and truncate the dispersion equation in
power series of the wavenumber jkj, which enables us to justify
various models by comparing the dispersion equations of the
approximate models with the truncated dispersion equations of
the exact theory. Finally, we explain the mysterious ‘‘correction
factor” in the Mindlin plate theory: it arises from the inconsistence
between the kinematic hypothesis and the desired accuracy of the
Mindlin plate theory.

The paper is organized as follows. In Section 2, we present the
exact formal solution of the wave equation for the sandwich struc-
ture based on the transfer matrix method. We numerically calcu-
late the full spectrum for a particular sandwich structure. In
Section 3, we present the formulas for the natural frequencies
xað0Þ at zero wave number and the perturbation method for calcu-
lating the correction terms of the dispersion relations xaðkÞ
around k ¼ 0. In Section 4, we focus on the lowest branch of the
dispersion relations, for which three simplified models are found
useful. We summarize our results in Section 5.

2. The spectrum of a sandwich structure

Let fe1; e2; e3g � IR3 be the basis for our rectangular coordinate
system. Consider an infinite sandwich structure Xh ¼ fx 2
IR3 : 0 < x3 < hg as shown in Fig. 1. Denote by h1; h2; h3, and h the
thickness of the bottom, middle, top layer, and the total thickness
of the sandwich structure respectively. Clearly, h ¼ h1 þ h2 þ h3.
The elasticity tensor LðxÞ and density qðxÞ are given by

LðxÞ¼
L3 if h1þh2<x3<h

L2 if h1<x3<h1þh2

L1 if 0<x3<h1

8><>: and qðxÞ¼
q3 if h1þh2<x3<h;

q2 if h1<x3<h1þh2;

q1 if 0<x3<h1:

8><>:
ð1Þ
tion in a sandwich structure. Int. J. Solids Struct. (2009), doi:10.1016/
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To study the dynamic behavior of this sandwich structure, we con-
sider the following system of partial differential equations for
u : Xh � ½0;þ1Þ ! 3:

div½LðxÞruðx; tÞ� ¼ qðxÞ @2

@t2 uðx; tÞ 8x 2 Xh;

½LðxÞruðx; tÞ�e3 ¼ 0 8x 2 C0 [ Ch;

(
ð2Þ

where Cx0
3
¼ fx : x3 ¼ x0

3g denote the plane with normal e3.
We observe that Eq. (2) is invariant under all translations in the

plane C0. To describe the long-time response, we restrict ourselves
to solutions of form

uðx; tÞ ¼ ûðx3Þ expðik � xÞ expðixtÞ; ð3Þ

where x > 0 is the frequency and k 2 C0 is an in-plane wavevector.
Notice that this form ignores evanescent waves and dissipation un-
less k;x; L are treated as complex. Substituting Eq. (3) into Eq. (2)
we obtain

Tðx3Þû00ðx3Þþ ijkjðRðx3ÞþRðx3ÞTÞû0ðx3Þ�ðjkj2Q ðx3Þ�qx2Id3Þûðx3Þ¼0

ð4Þ

for all x3 2 ð0;h1Þ [ ðh1;h1 þ h2Þ [ ðh1 þ h2; hÞ, where ð0Þ denotes
d=dx3; Idm is the m�m identity matrix, and the matrices Q ;R;T
are given by ðk̂ ¼ k=jkjÞ

Q Þpq¼ðLÞpiqjðk̂Þiðk̂Þj; ðRÞpq¼ðLÞpiqjðk̂Þiðe3Þj;ðTÞpq¼ðLÞpiqjðe3Þiðe3Þj:
ð5Þ

Note that the matrices Q ;R;T in Eq. (5) depend on x3 and k, though
this is suppressed in the notation for simplicity. Further, the surface
traction on Cx0

3
¼ fx : x3 ¼ x0

3g is expressed as

½Lðx0
3Þruðx; tÞ�e3 ¼ ½Tû0ðx0

3Þ þ ijkjRT ûðx0
3Þ� expðik � xÞ expðixtÞ:

ð6Þ

Finally we require that

ûðx3Þ and Tû0ðx3Þ þ ijkjRT ûðx3Þ are continuous for all x3 2 ð0; hÞ:
ð7Þ

We now rewrite this as a Hamiltonian system. Let

/ ¼ û
Tû0 þ ijkjRT û

� �
: ð8Þ

In terms of /, Eq. (4) can be equivalently written as

/0ðx3Þ ¼ Hðx;kÞ/ðx3Þ 8x3 2 ð0;h1Þ [ ðh1;h1 þ h2Þ [ ðh1 þ h2; hÞ;
ð9Þ

where

Hðx;kÞ ¼ �ijkjT�1RT T�1

jkj2ðQ � RT�1RTÞ � qx2Id3 �ijkjRT�1

" #
: ð10Þ

The matrix H is a Hamiltonian in the sense that J�1HJ ¼ �H�, where
(�) denotes the conjugate transpose (hermitian) and

J ¼
0 �Id3

Id3 0

� �
: ð11Þ

Clearly �J ¼ J�1 and ðJHÞ� ¼ JH. In the literature, Eq. (9) is referred
to as a Hamiltonian system and often written as

J/0ðx3Þ¼ðx2AþBðkÞÞ/ðx3Þ 8x3 2ð0;h1Þ[ðh1;h1þh2Þ[ðh1þh2;hÞ;
ð12Þ

where

A ¼
qId3 0

0 0

� �
and BðkÞ ¼ �jkj2ðQ � RT�1RTÞ ijkjRT�1

�ijkjT�1RT T�1

" #
Please cite this article in press as: Liu, L., Bhattacharya, K. Wave propaga
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are two hermitian matrices. In terms of / : ð0;hÞ ! 6, the bound-
ary conditions in Eq. (2) and the requirement of Eq. (7) can be re-
stated as that for some n 2 6, we have

/ð0Þ ¼Mn; /ðhÞ ¼ Nn and /ðx3Þ is continuous on ð0; hÞ;
ð13Þ

where the 6� 6 matrices M and N are given by

M ¼
Id3 0
0 0

� �
and N ¼

0 Id3

0 0

� �
: ð14Þ

Eqs. (9) or (12) and (13) form an eigenvalue problem. A given
(squared) frequency x2

aðkÞ is called an eigenvalue if Eqs. (9) and
(13) admit a non-zero solution. The associated non-zero solution
/aðx3;kÞ, called an eigenfunction, represents a propagating wave
mode of the sandwich structure. The dynamic properties of the
sandwich structure depend critically on what are the eigenvalues
and the eigenfunctions, and how they depend on the in-plane
wavevector k and structural properties Li;qi;hi ði ¼ 1;2;3).

We have the following result from Atkinson (1964, Theorem
9.2.1) and Zettl (2005) that asserts the existence of eigenvalues
and eigenfunctions.

Theorem 1. Consider the Hamiltonian system (9) or (12) and (13).
For a given in-plane wavevector k 2 C0, there exist infinitely many
eigenvalues x2

aðkÞ ða ¼ 0;1;2; . . .Þ with no finite accumulation point

0 6 x2
0ðkÞ 6 x2

1ðkÞ 6 x2
2ðkÞ 6 � � � % þ1 ð15Þ

such that Eqs. (9) and (13) admit non-zero solutions, where
x2

aðkÞ ða ¼ 0;1;2; . . .Þ are repeated according to their multiplicity.
Further, each branch of the dispersion relations k#xaðkÞ is a contin-
uous function of k 2 C0.

To calculate the eigenvalues and eigenvectors explicitly, we
note that Hðx;kÞ in Eq. (10) depends on x3, and specifically,
Hðx;kÞ is equal to

H1ðx;kÞ if x3 2 ð0;h1Þ;
H2ðx;kÞ if x3 2 ðh1; h1 þ h2Þ;
H3ðx;kÞ if x3 2 ðh1 þ h2; hÞ;

8><>: ð16Þ

where Hiðx;kÞ ði ¼ 1;2;3Þ are independent of x3, see Eqs. (5) and
(10). Recall that for a square matrix X,

expðXÞ¼
X1
n¼0

Xn

n!
; cosðXÞ¼

X1
n¼0

ð�1ÞnX2n

ð2nÞ! ; sinðXÞ¼
X1
n¼0

ð�1ÞnX2nþ1

ð2nþ1Þ! :

ð17Þ

For given x and k, let /ðx3;x;kÞ be a solution of Eqs. (9) and (13)
and denote by /0 2 6 the boundary value of /ðx3;x;kÞ at x3 ¼ 0.
From the theory of first-order differential equations (Coddington
and Levinson, 1955), we can express /ðx3;x;kÞ as

/ðx3;x;kÞ

¼
exp½x3H1ðx;kÞ�/0 if x3 2 ½0;h1�;
exp½ðx3�h1ÞH2ðx;kÞ�exp½h1H1ðx;kÞ�/0 if x3 2 ½h1;h1þh2�;
exp½ðx3�h1�h2ÞH1ðx;kÞ�exp½h2H2ðx;kÞ�exp½h1H1ðx;kÞ�/0 if x3 2 ½h1þh2;h�:

8><>:
ð18Þ

In particular, we have

/ðh;x;kÞ ¼ Tðx;kÞ/0 ¼ Tðx;kÞ/ð0;x;kÞ; ð19Þ

where

Tðx;kÞ ¼ exp½h3H3ðx;kÞ� exp½h2H2ðx;kÞ� exp½h1H1ðx;kÞ� ð20Þ

is referred to as the global transfer matrix and exp½hiHiðx;kÞ� is re-
ferred to as the local transfer matrix associated with layer
i ði ¼ 1;2;3Þ. From Eqs. (13) and (19), we see that Eqs. (9) and
(13) admit a non-zero solution if, and only if
tion in a sandwich structure. Int. J. Solids Struct. (2009), doi:10.1016/



4 L. Liu, K. Bhattacharya / International Journal of Solids and Structures xxx (2009) xxx–xxx

ARTICLE IN PRESS
rankðTðx;kÞM� NÞ < 6: ð21Þ

Direct calculations reveal that

Tðx;kÞM� N ¼
T11 �Id3

T21 0

� �
; where

T11 T12

T21 T22

� �
¼ T: ð22Þ

Thus,

6� rankðTðx;kÞM� NÞ ¼ 3� rankðT21ðx;kÞÞ; ð23Þ

and the geometric multiplicity of each eigenvalue x2
aðkÞ is at most

three.
Eq. (21) completely determines all the eigenvalues x2

aðkÞ and
their dependence on the in-plane wavevector k and structural
properties Li;qi;hi ði ¼ 1;2;3Þ. Thus, for given Li;qi;hi ði ¼ 1;2;3Þ,
we are able to calculate all dispersion relations
k#xaðkÞ ða ¼ 0;1; . . .Þ. We do so numerically for the following
example.

Example 2.1. In this example, we specify that the material of the top
and bottom layers is aluminum (isotropic, Young’s modulus
E1 ¼ E3 ¼ 70 Gpa, Poisson’s ratio m1 ¼ m3 ¼ 0:35, density
2700 kg=m3), and that the material of the middle layer is a kind of
foam (isotropic, Young’s modulus E2 ¼ 0:12 Gpa, Poisson’s ratio
m2 ¼ 0:31, density 100 kg=m3). The thicknesses of bottom, middle
and top layer are h1 ¼ 2:5 mm; h2 ¼ 50 mm and h3 ¼ h1 ¼ 2:5 mm.

Let k ¼ k1e1; k ¼ 2p=k1 be the wavelength and h ¼ 55 mm be
the total thickness of the sandwich structure. For an isotropic
material, the Lamé constants li; ki can be expressed as 1

li ¼
Ei

2ð1þ miÞ
; ki ¼

Eimi

ð1þ miÞð1� 2miÞ
;

and hence the matrices Q i;Ri;Ti in Eq. (5) can be written as
ðk ¼ k1e1Þ

Ti¼
li 0 0
0 li 0
0 0 2liþki

264
375; Ri¼

0 0 ki

0 0 0
li 0 0

264
375; Q i¼

2liþki 0 0
0 li 0
0 0 li

264
375:
ð24Þ

From Eqs. (10) and (16), direct calculations reveal that

Hiðx;k1eÞ¼

0 0 �ik1
1
li

0 0

0 0 0 0 1
li

0

�ik1
ki

2liþki
0 0 0 0 1

2liþki

4liðliþkiÞ
2liþki

k2
1�qix2 0 0 0 0 �ik1

ki
2liþki

0 lik
2
1�qix2 0 0 0 0

0 0 �qix2 �ik1 0 0

2666666666664

3777777777775
:

ð25Þ

Plugging Eq. (25) into Eq. (20), we calculate the transfer matrix
Tðx;kÞ and solve Eq. (21) for natural frequencies xaðkÞ. The results
are shown in Fig. 2, where each ‘‘�” denotes a natural frequency
xaðk1e1Þ. Since no theoretical but numerical approximation has
been introduced in the transfer matrix method, these results are re-
ferred to as the exact results subsequently.

The above approach of transfer matrix, though exact and theoret-
ically complete, has a few disadvantages. First of all, numerically
searching eigenvaluesx2

aðkÞ is not at all trivial since the transfer ma-
trix Tðx;kÞ is a transcendental (more specifically, trigonometric)
function of x. The reader may appreciate the difficulty from a recent
review on ‘‘nineteen dubious ways to compute the exponential of a
matrix” (Moler and Loan, 2003). The numerical method we have cho-
1 The Lamé constants ki , always with a subscript in this paper, should not be
confused with the wavelength k.

Please cite this article in press as: Liu, L., Bhattacharya, K. Wave propaga
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sen to calculate the natural frequencies xaðkÞ is by ‘‘brute force”.
That is, for each given k, we divide x-interval ½0;4� 105� s�1 into
hundreds of small disjoint subintervals. In each of these small subin-
tervals, we then search the value of x such that the matrix T21ðx;kÞ
becomes singular. Since the smallness of the subintervals is limited,
from Theorem 1 we see that many eigenvalues must have been
missed in Fig. 2, especially in places where various branches of
k#xaðkÞ are close to each other. Further, without solving Eq. (21),
one can hardly infer any qualitative information about the disper-
sion relations, which is however desired in practical applications. Fi-
nally, without solving Eq. (21) and evaluating the corresponding
eigenfunction (18), this approach cannot provide us any physical
intuition about the mode shape, strain and stress profiles.

3. Long wavelength limit

Two features of the dispersion relation shown in Fig. 2 are note-
worthy in the long wavelength regime. (i) Except the lowest three
branches, every branch xaðk1e1Þ starts horizontally from k1 ¼ 0.
This is emphasized in Fig. 3 by replotting Fig. 2 for ðh=kÞ-interval
[0,0.1]. This feature means the group velocities of these modes,
@xaðk1e1Þ=@k1, vanish at k1 ¼ 0, and so high dissipation rates are ex-
pected at these frequencies xað0Þ in a practical situation. Similar
tendency has been observed for an isotropic homogeneous slab
(Mindlin, 1960). (ii) If we zoom in the long wavelength and low fre-
quency regime and replot the lowest three branches of
k1 #xaðk1e1Þ ða ¼ 0;1;2Þ in Fig. 4, we see that k1 #xaðk1e1Þ
ða ¼ 1;2Þ are initially linear, while the lowest branch k1 #x0

ðk1e1Þ is initially quadratic but tends to be linear as the wavelength
decreases. In this section, we seek explanations to these two fea-
tures, and in particular we give formulas to calculate the frequencies
xað0Þ for a > 2 and the slopes of the (approximately) linear func-
tions k1 #xaðk1e1Þ at k1 ¼ 0 for a ¼ 0;1;2.

3.1. A formula for xað0Þ

It is convenient to express the transfer matrix in a block matrix
form as the Hamiltonian matrix H in Eq. (10). To this end, let
Wðx3Þ ¼ expðx3Hiðx;kÞÞ be a 6� 6 matrix solution of the ordinary
differential equation:

W0ðx3Þ ¼ Hiðx;kÞWðx3Þ; ð26Þ

where Hiðx;kÞ ði ¼ 1;2;3Þ are given by Eq. (16). We try a 6� 3 ma-
trix solution of the following form:

Uðx3Þ ¼
Id3

ðTi þ ijkjRT
i Þ

� �
expðKx3Þ; ð27Þ

where K 2 3�3 is to be determined. Inserting Eq. (27) into Eq. (26)
we obtain

Hiðx;kÞ
Id3

ðTiKþ ijkjRT
i Þ

� �
¼

Id3

ðTiKþ ijkjRT
i Þ

� �
K; ð28Þ

which is equivalent to the following algebraic Riccati equation for K
(see Lancaster and Rodman, 1995):

TiK
2 � ijkjðRi þ RT

i ÞKþ ðjkj
2Q i � qx2Id3Þ ¼ 0: ð29Þ

If Eq. (29) admits two solutions K1 and K2 with detðK1 � K2Þ–0, one
can verify that

U1ðx3Þ U2ðx3Þ½ � U1ð0Þ U2ð0Þ½ ��1 ð30Þ

satisfy Eq. (26) and is equal to Id6 at x3 ¼ 0, where

U1ðx3Þ U2ðx3Þ½ �¼
expðx3K1Þ expðx3K2Þ

ðTiK1þ ijkjRT
i Þexpðx3K1Þ ðTiK2þ ijkjRT

i Þexpðx3K2Þ

" #
:

ð31Þ
tion in a sandwich structure. Int. J. Solids Struct. (2009), doi:10.1016/



0 0.5 1 1.5 2 2.5 3 3.5 4
0

0.5

1

1.5

2

2.5

3

3.5

4
x 105

Fig. 2. The spectrum of the sandwich structure specified in Example 2.1. Each ‘‘�” denotes a natural frequency xaðkÞ determined by Eq. (21). The figure for ðh=kÞ-interval
[0,0.1] is replotted in Fig. 3.

Fig. 3. The spectrum of the sandwich structure in the long wavelength regime. Each
‘‘�” denotes a natural frequency determined by Eq. (21).
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Therefore, the expression in Eq. (30) must be equal to
Wðx3Þ ¼ expðx3Hiðx;kÞÞ.

We remark that an explicit block form of the transfer matrix as
in Eq. (30) is useful in calculating the eigenvalues and eigenfunc-
tions, including the cases for which the boundary conditions are
different from present ones. In the case of k ¼ 0, clearly

	K ¼ 	
ffiffiffiffiffiffiffiffiffiffiffi
qix2

p
T�1=2

i satisfy Eq. (29). By Eqs. (30) and (31), straight-
forward calculations reveal that (cf., Eq. (17))
Please cite this article in press as: Liu, L., Bhattacharya, K. Wave propaga
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exp½hiHiðx;0Þ� ¼
cosðeTiÞ

T�1=2
iffiffiffiffiffiffiffiffi
qix2
p sinðeTiÞ

�
ffiffiffiffiffiffiffiffiffiffiffi
qix2

p
T1=2

i sinðeTiÞ cosðeTiÞ

264
375; ð32Þ

where eTi ¼ ½qiðhixÞ2��1Ti. To find x that satisfies Eq. (21), by Eqs.
(22) and (23), we see that only T21 is relevant. From Eqs. (32) and
(20), we have

T21ðx;0Þ ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffi
q3x2

q
T1=2

3 sinðeT�1=2
3 Þ

�
cosðeT�1=2

2 Þ cosðeT�1=2
1 Þ

�T�1=2
2

ffiffiffiffiffiffi
q1

q2

r
sinðeT�1=2

2 ÞðT1=2
1 Þ sinðeT�1=2

1 Þ
�

þ cosðeT�1=2
3 Þ �

ffiffiffiffiffiffiffiffiffiffiffiffi
q2x2

q
T1=2

2 sinðeT�1=2
2 Þ cosðeT�1=2

1 Þ
�

�
ffiffiffiffiffiffiffiffiffiffiffiffi
q1x2

q
cosðeT�1=2

2 ÞT1=2
1 sinðeT�1=2

1 Þ
�
: ð33Þ

We remark that explicit expression for T21 as in Eq. (33) is pos-
sible for non-zero wavevectors, upon which we do not elaborate
here.

For an isotropic material with Lamé constants li; ki, we have Ti

given by Eq. (24) and

eT�1=2
i ¼ diag hix

ffiffiffiffiffiffi
qi

ci1

r
; hix

ffiffiffiffiffiffi
qi

ci2

r
; hix

ffiffiffiffiffiffi
qi

ci3

r� �
;

where ci1 ¼ ci2 ¼ li and ci3 ¼ 2li þ ki for i ¼ 1;2;3. Thus,
T12ðx;0Þ=x in Eq. (33) is a 3� 3 diagonal matrix with diagonal ele-
ments given by ðj ¼ 1;2;3Þ

KjðxÞ¼ sin h3x
ffiffiffiffiffiffi
q3

c3j

s !
�

ffiffiffiffiffiffiffiffiffiffiffi
q3c3j

p
cos h2x

ffiffiffiffiffiffi
q2

c2j

s !
cos h1x

ffiffiffiffiffiffi
q1

c1j

s !"

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q3q1c3jc1j

q2c2j

s
sin h2x

ffiffiffiffiffiffi
q2

c2j

s !
sin h1x

ffiffiffiffiffiffi
q1

c1j

s !#

þ cos h3x
ffiffiffiffiffiffi
q3

c3j

s !
�

ffiffiffiffiffiffiffiffiffiffiffi
q2c2j

p
sin h2x

ffiffiffiffiffiffi
q2

c2j

s !
cos h1x

ffiffiffiffiffiffi
q1

c1j

s !"

�
ffiffiffiffiffiffiffiffiffiffiffi
q1c1j

p
cos h2x

ffiffiffiffiffiffi
q2

c2j

s !
sin h1x

ffiffiffiffiffiffi
q1

c1j

s !#
: ð34Þ
tion in a sandwich structure. Int. J. Solids Struct. (2009), doi:10.1016/



Fig. 4. The lowest three branches of the dispersion relations in the long wavelength and low frequency regime. (�) The transfer matrix method; (––) perturbation method
described in Section 3.2, see Eq. (36); (�) the Kirchhoff–Love plate theory, see Eq. (45); (}) the Mindlin plate theory, see Eq. (52).
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Thus, a non-zero x such that Eq. (21) holds if and only if KjðxÞ
in Eq. (34) vanishes for some j 2 f1;2;3g. For the sandwich struc-
ture specified in Example 2.1, the graphs of Kj ðj ¼ 1;2;3Þ are
shown in Fig. 5 for x-interval ½0;4� 105� s�1. The inset in Fig. 5
is a zoom-in of the graphs for x-interval ½0;0:5� 105� s�1. The
intersections of these curves with the horizontal axis are the nat-
ural frequencies xað0Þða ¼ 0;1; . . .Þ of the sandwich structure for
k ¼ 0. Compared with Fig. 3, we see that these natural frequen-
cies agree well with the numerical results of the transfer matrix
method.

In particular, if the sandwich structure is homogeneous, i.e.,
li; ki;qi ¼ l0; k0;q0 for all i ¼ 1;2;3, Eq. (34) vanishing for some
j 2 f1;2;3g is equivalent to
Fig. 5. Graphs of KjðXÞ in Eq. (34) for the sandwich structure in Exa
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sin hx
ffiffiffiffiffiffi
q0

l0

r� �
¼ 0 or sin hx

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q0

2l0 þ k0

r� �
¼ 0:

We have thus recovered the well-known results for the Rayleigh–
Lamb waves with zero in-plane wavevector (Lamb, 1917).

It is further worthwhile noticing a scaling relation between
xað0Þ and h1;h2;h3. From Eq. (33), we see that T12ðx; 0Þ=x is
invariant under the following transformation

h1 ! ah1; h2 ! ah2; h3 ! ah3; x! x
a

8a > 0:

Therefore, if the sandwich structure is uniformly expanded a times,
the limit points xað0Þ of dispersion relations on x-axis shrink uni-
formly 1=a times. This fact is self-evident for isotropic materials, see
mple 2.1. The inset is a zoom-in for x-interval ½0; 0:5� 105� s�1.

tion in a sandwich structure. Int. J. Solids Struct. (2009), doi:10.1016/
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Eq. (34). We point out that it also holds for general anisotropic
materials, see Eqs. (32) and (20).
3.2. Dispersion relations of the lowest three branches

We now discuss the lowest three branches around k ¼ 0, see
Fig. 4. It is not surprising that from the bottom to top, they corre-
spond to the out-of-plane flexural modes, the in-plane transverse
(shear) modes, and the in-plane longitudinal modes. Since the
wavelength of these modes are much larger than the thickness of
the sandwich structure, the sandwich structure behave almost like
a ‘‘uniform” slab, i.e., the corresponding eigenfunction
/aðx3;x;kÞ ða ¼ 0;1;2Þ of Eqs. (9) and (13) are independent of x3

to the zeroth-order approximations.
From the viewpoint of perturbation theory (Kato, 1966), we

may expand the dispersion relations xaðkÞ in power series in k.
To find the coefficients in these expansions, we first expand the
matrix T21ðx;kÞ as

1

hjkj2
T21ðx;kÞ ¼

X3

i¼1

½hiðQ i � RiT
�1
i RT

i Þ � qihiv2Id3�

þ 1
2
jkjhCðvÞ þ 1

6
jkj2h2DðvÞ þ � � � ; ð35Þ

where hi ¼ hi=h ði ¼ 1;2;3Þ are the volume fractions of layer-i,
v ¼ x=jkj is the phase speed, and CðvÞ;DðvÞ are the higher order
coefficient matrices. If higher order terms of T12=hjkj2 are neglected
and the sandwich structure in Example 2.1 is considered, the values
of v or x such that T12 becomes singular can be immediately read
off from Eqs. (25) and (35). That is ðk ¼ k1e1Þ,

x0ðk1e1Þ
k1

¼ v0ðk1e1Þ ¼ 0;

x1ðk1e1Þ
k1

¼ v1ðk1e1Þ ¼
ffiffiffiffi
le
qe

q
;

x2ðk1e1Þ
k1

¼ v2ðk1e1Þ ¼
ffiffiffiffiffiffieEe
qe
;

r
8>>>>><>>>>>:

ð36Þ

where the effective density qe ¼
P3

i¼1hiqi, the effective shear mod-

ulus le ¼
P3

i¼1hili, the effective modified Young’s moduluseEe ¼
P3

i¼1hi
eEi, and the modified Young’s modulus eEi is given by

eEi ¼
Ei

1� m2
i

¼ 4liðli þ kiÞ
2li þ ki

:

The straight lines of x1ðk1eÞ ¼ k1
ffiffiffiffiffiffiffiffiffiffiffiffiffi
le=qe

p
and x2ðk1eÞ ¼ k1

ffiffiffiffiffiffiffiffiffiffiffiffiffieEe=qe

q
are plotted in Fig. 4 in dashed lines ‘‘––”, whereas the exact results
of the transfer matrix method are plotted in ‘‘�” markers. One can
see that Eq. (36) agrees well with the exact results when
h=kK 0:1.

A remark is in order here regarding N-layers of anisotropic
materials. In these situations, Eq. (35) remains valid for calculating
the slopes of the lowest three branches of the dispersion relations
k#xaðkÞ to the first order of jkj. Further, by direct calculations it
has been shown that (Ting, 1996, Chapter 6) for general anisotropic
materials, the matrices Q i � RiT

�1
i RT

i can all be written as
ði ¼ 1; . . . ;NÞ

Q i � RiT
�1
i RT

i ¼
� � 0
� � 0
0 0 0

264
375;

where � denotes potential non-zero entries and the upper 2� 2
diagonal block is positive definite. Thus, the lowest three branches
of the dispersion relations, even in these general situations, consist
of one out-of-plane flexural modes and two in-plane modes. The
slopes of these dispersion relations can be conveniently calculated
by solving the secular equation
Please cite this article in press as: Liu, L., Bhattacharya, K. Wave propaga
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det
XN

i¼1

hiðQ i � RiT
�1
i RT

i Þ � qev2Id3

" #
¼ 0: ð37Þ

We can consider higher order terms in Eq. (35) to find higher or-
der correction on the dispersion relation k1 #x0ðk1e1Þ in the long
wavelength regime. To demonstrate the idea, let us consider a
homogeneous layer of thickness h, elasticity tensor L0, density q0,
and so the corresponding matrices T0;R0;Q 0 are well defined as
by Eq. (5) for L ¼ L0. LeteQ ðvÞ ¼ ðQ 0 � R0T�1

0 RT
0Þ � q0v2Id3 and eA ¼ �iT�1

0 RT
0: ð38Þ

Then tedious but straightforward algebraic calculations reveal that
the matrices CðvÞ;DðvÞ in the expansion (35) can be written as
(Mathematica will help)

CðvÞ ¼ eQ ðvÞeA þ eAT eQ ðvÞ ð39Þ

and

DðvÞ ¼ eQ ðvÞA2
0 þ eAT eQ eA þ eQ ðvÞT�1

0
eQ ðvÞ þ ðeATÞ2 eQ ðvÞ: ð40Þ

As is well known, the phase speed v of the flexural modes is propor-
tional to jkj for a homogeneous layer, see e.g. Landau and Lifshitz
(1986). So, if we keep terms up to jkj2 in the expansion (35), we have

1

hjkj2
T21ðx;kÞ 
 eQ ðvÞ þ hjkj

2
Cð0Þ þ h2jkj2

6
Dð0Þ: ð41Þ

If in particular L0 is an isotropic elasticity tensor with Lamé con-
stants l0; k0 or Young’s modulus E0 and Poisson’s ratio m0, by Eqs.
(25) and (41) can be written as (k ¼ k1e1 and eE0 ¼ E0=ð1� m2

0Þ)

1

hk2
1

T21ðx;k1e1Þ


eE0 1þh2k2
1

3

� �
�q0v2 0 �ihk1

2
eE0

0 l0�q0v2 0

�ihk1
2
eE0 0 �h2k2

1
6
eE0�q0v2

26664
37775:

Therefore, 1
hk2

1
T21ðx; k1e1Þ is singular if

l0 � q0v2 ¼ 0 or � eE0 1þ h2k2
1

3

 !
� q0v2

 !
h2k2

1

6
eE0 þ q0v2

 !

þ
eE2

0h2k2
1

4
¼ 0: ð42Þ

Neglecting higher-order terms in the latter of Eq. (42), we have

v 
 hk1

ffiffiffiffiffiffiffiffiffiffiffieE0

12q0

s
¼ k1

ffiffiffiffiffiffiffiffi
D0

q0h

s
; ð43Þ

where D0 ¼ h3eE0=12 is the flexural rigidity of this homogeneous
slab. Eq. (43) confirms the prediction of the Kirchhoff–Love plate
theory. In this regard, the predictions of higher order plate theories
(see e.g. Lo et al., 1977a,b) can also be achieved by including higher
order terms in the expansion (35).

Unfortunately, for a heterogeneous laminated structure, say, the
sandwich structure in Example 2.1, the pertinent algebra gets
untractable if one attempts to calculate the higher order terms
(i.e., CðvÞ and DðvÞ) in Eq. (35). Nevertheless, we argue that this
method in principle works for a heterogeneous laminated structure
as well as for a homogeneous slab. In fact, from the perturbation
theory (Kato, 1966), this method has no limit in finding all coeffi-
cients in the power series expansion of xaðkÞ. From this viewpoint,
by fitting the dispersion equation of the Mindlin plate theory (cf.,
Eq. (61)) with the higher order coefficients of the expansion
x0ðkÞ, we can determine the ‘‘best” Mindlin shear correction factor
for a heterogeneous laminated structure, see Timoshenko (1922)
and Stephen (1997). Again, for the complicated algebra, an explicit
example is not attempted here.
tion in a sandwich structure. Int. J. Solids Struct. (2009), doi:10.1016/
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4. The lowest branch of the dispersion relations

In reality, the dynamic behavior of the sandwich structure is
dictated to a large extend by the lowest branch of the dispersion
relations k#x0ðkÞ (and the nearby branches if the gaps between
them are small). We restrict ourselves to the sandwich structure
specified in Example 2.1 in this section. By the transfer matrix
method in Section 2, we numerically calculate the lowest branch
of the dispersion relation which is shown in the top figure of
Fig. 6, see also Fig. 2. Typical mode shapes corresponding to the
lowest branch, also calculated by the transfer matrix method, are
shown in the bottom of Fig. 6. The numbers along with the mode
shapes are the values of h=k. According to the mode shapes, the
ðh=kÞ-interval ½0;4� can be roughly divided into four regimes la-
beled by ‘‘flexural”, ‘‘flexural-dilatational”, ‘‘vertical shear” and
‘‘horizontal shear” on the top of Fig. 6. Below we present some sim-
ple physical models capable of predicting the lowest dispersion
relation in various regimes.

4.1. Flexural modes

As suggested by the first mode shape in Fig. 6, the sandwich
structure flexes as a uniform plate when the wavelength is large
compared with the thickness of the plate. We therefore model
the sandwich structure by a homogeneous ‘‘equivalent” plate with
an effective flexural rigidity (Christensen, 1979)

De ¼
Z h

0
x3 �

h
2

� �2eEðx3Þdx3; ð44Þ

where eEðx3Þ is the modified Young modulus, taking values ofeEi ¼ Ei=ð1� m2
i Þ if x3 is in the ith layer of the sandwich structure.

If the Kirchhoff–Love (thin) plate theory is used, the dispersion rela-
tion is given by (cf., Eq. (43))

Dejkj4 ¼ qehx2
0ðkÞ ) x0ðjkjÞ ¼ jkj2

ffiffiffiffiffiffiffiffi
De

qeh

s
; ð45Þ

see e.g. Landau and Lifshitz (1986) and Timoshenko and Woinow-
sky-Krieger (1959). The graph of Eq. (45) is shown by ‘‘�” signs in
Fig. 4. One can see that it agrees well with the exact results when
the wavelength is very large but deviates from the exact results
considerably when the h=k is larger than 0.02. Compared with a
homogeneous plate, the valid regime of the Kirchhoff–Love plate
theory is narrow, because the shear modulus of the top/bottom lay-
ers is hundreds of times larger than the middle core.
Fig. 6. The top figure shows the lowest branch of the dispersion relation of the sandwic
labeled by ‘‘flexural”, ‘‘flexural-dilatational”, ‘‘vertical shear” and ‘‘horizontal shear”. The c
mode shapes are their values of h=k. The ‘‘�” markers show the lowest dispersion relati
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To improve the result, instead of various higher order plate the-
ories (Lo et al., 1977a,b; Frostig and Baruch, 1994; Backström and
Nilsson, 2006), we favor the engineering theory of Mindlin
(1951) for its remarkable accuracy and simplicity. The Mindlin
plate theory begins with the kinematic hypothesis that the in-
plane displacements depend linearly on x3, whereas the out-of-
plane displacement is independent of x3:

u1¼ x3�
h
2

� �
b1ðx1;x2;tÞ; u2¼ x3�

h
2

� �
b2ðx1;x2;tÞ; u3¼u3ðx1;x2;tÞ:

ð46Þ

We remark that this kinematic hypothesis is the same as that of the
Kirchhoff–Love plate theory, and from the viewpoint of the pertur-
bation theory, the resulting theory should not yield better result
than that of the Kirchhoff-Love plate theory. Let �ijðrijÞ be the strain
(stress) field, and ða ¼ 1;2Þ

Paðx1;x2Þ¼h�1
Z h

0
�a3ðx;tÞdx3 Qaðx1;x2Þ¼h�1

Z h

0
ra3ðx;tÞdx3

 !
ð47Þ

be the transverse shear strain (shear stress) averaged over the
thickness direction. A second hypothesis of the Mindlin plate theory
is that r33 ¼ 0 everywhere, which implies the in-plane strain–stress
relations

r11 ¼ eEð�11 þ m�22Þ; r22 ¼ eEðm�11 þ �22Þ; r12 ¼ 2eEð1� mÞ�12:

ð48Þ

Following the same procedure of Mindlin (1951), we manipulate
the equations of the balance of linear momentum and obtain

Der2U� h @Q1
@x1
þ @Q2

@x2

� �
¼ I @

2U
@t2 ;

@Q1
@x1
þ @Q2

@x2
¼ qe

@2u3
@t2 ;

8<: ð49Þ

where U ¼ ð@b1=@x1Þ þ ð@b2=@x2Þ and I ¼
R h

0 ðx3 � h
2 Þ

2qðx3Þdx3 is the
moment of inertia per unit area. In the Kirchhoff–Love plate theory,
it is assumed that the rotatory inertial (i.e., the right-hand side of
the first in Eq. (49)) is negligible and that the transverse shear
strains �a3 (a ¼ 1;2) vanishes everywhere (which implies
U ¼ �r2u3). In the Mindlin plate theory, however, in account of
the transverse shear, a third hypothesis is enforced, i.e., the average
transverse shear strain and shear stress are related by

Qa ¼ l0ePa ða ¼ 1;2Þ; ð50Þ
h structure in Example 2.1. The horizontal axis is roughly divided into four regimes
orresponding typical mode shapes are shown in the bottom. The numbers above the
on determined by Eq. (61).

tion in a sandwich structure. Int. J. Solids Struct. (2009), doi:10.1016/



L. Liu, K. Bhattacharya / International Journal of Solids and Structures xxx (2009) xxx–xxx 9

ARTICLE IN PRESS
where l0e ¼ g~le; ~le ¼ ð
P3

i¼1l�1
i Þ

�1 is the effective transverse shear
modulus of the sandwich structure, and g is referred to as the cor-
rection factor, see remarks below. From Eqs. (50), (46) and (47), we
have

@Q 1

@x1
þ @Q 2

@x2
¼ l0eðr2u3 þUÞ:

Substituting it into Eq. (49), we obtain

ðDer2 � I @2

@t2ÞU ¼ qeh @2u3
@t2 ;

U ¼ ðqe
l0e

@2

@t2 �r2Þu3;

8<:
and hence

Der2 � I
@2

@t2

 !
qe

l0e
@2

@t2 �r
2

 !
u3 ¼ qeh

@2u3

@t2 : ð51Þ

Plugging u3ðx; tÞ ¼ u0
3 expðiðk � xþxtÞÞ into Eq. (51) yields

ð�Dejkj2 þ Ix2Þ �qe

l0e
x2 þ jkj2

� �
¼ �qehx2: ð52Þ

In the above derivation, the correction factor g associated with
the averaged transverse shear strain and shear stress seems
unnecessary, while it is generally agreed in computational
mechanics circles that a factor, depending on the Poisson’s ratio
m, between 0.7 and 1 would give ‘‘best” result. We are not aware
of a systematic way of determining the value of g from three-
dimensional elasticity even for a homogeneous plate. Our
explanation for the necessity of such a correction factor is the fol-
lowing. From the viewpoint of the perturbation theory, the kine-
matic hypothesis (46) prescribes that the resulting theory is a
second-order one regarding the prediction of the dispersion rela-
tion x0ðkÞ, whereas the Mindlin plate theory could be right up to
the fourth-order – if this factor g were chosen correctly. There-
fore, we shall regard the Mindlin plate theory as an empirical
model rather than a rigorously justifiable theory such as the Kir-
chhoff-Love plate theory.

For an isotropic homogeneous plate of Poisson’s ration m0, the
most convincing way of determining the factor g, in the authors’
opinion, is by fitting the dispersion relation determined by Eq.
(52) and that of the flexural modes of the Rayleigh–Lamb waves
in the long wavelength limit, see Stephen (1997), who found
g ¼ 5=ð6� m0Þ. As is well known in bending theory, the transverse
shear strain and stress are approximately quadratic on a cross-sec-
tion, attain their maximums at the middle plane and vanish on the
upper and lower free surfaces (Timoshenko, 1940, p. 112). We
therefore choose the Mindlin correction factor g ¼ 5=ð6� m2Þ 

0:88 for our calculations.

With the relevant parameters chosen as above, the dispersion
relation determined Eq. (52) for our sandwich structure in Example
2.1 is shown in Fig. 4 in ‘‘ �” markers. One can see that the differ-
ence between the Mindlin plate theory and the exact result is small
up to h=k 
 0:8. But when the wavelength is further decreased, the
coupled modes of the flexural top/bottom layer and the dilata-
tional middle core (see the second mode shape in Fig. 6) take over,
for which a plate theory is clearly not a good model.

4.2. Coupled flexure-dilatation modes

When h=kJ 0:8, the second mode shape in Fig. 6 suggests that
these modes arise from the coupling of the flexural motions of the
top/bottom layers and the dilatational motions of the middle layer.
Notice that in this regime the wavelength is still large compared
with the thickness of the top/bottom layer. Therefore, we use the
Kirchhoff–Love plate theory for the top and bottom layers but
three-dimensional elasticity for the middle layer.
Please cite this article in press as: Liu, L., Bhattacharya, K. Wave propaga
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Following above lines, we denote by q1 and q2 the normal com-
ponent of the traction on the interface Ch1 and Ch1þh2 , see Fig. 1.
From the Kirchhoff–Love plate theory, for the bottom and top lay-
ers we have

�D1r2r2u3ðx1; x2;h1; tÞ þ q1ðx1; x2; tÞ ¼ q1h1
@2u3ðx1 ;x2 ;h1 ;tÞ

@t2 ;

�D3r2r2u3ðx1; x2;h2 þ h1; tÞ � q2ðx1; x2; tÞ ¼ q1h1
@2u3ðx1 ;x2 ;h1þh2 ;tÞ

@t2 ;

8<:
ð53Þ

where D1 ¼ D3 ¼ E1h3
1=12ð1� m2

1Þ are the flexural rigidity of the bot-
tom/top layer.For the middle layer, by three-dimensional elasticity
we have (Landau and Lifshitz, 1986)

l2r2uðx; tÞ þ ðl2 þ k2Þrðr � uðx; tÞÞ ¼ q2
@2uðx; tÞ
@t2 8x3

2 ðh1;h1 þ h2Þ: ð54Þ

On the boundaries of the middle layer Ch1 and Ch1þh2 , we have

q1ðx1; x2; tÞ ¼ ð2l2 þ k2Þu3;3ðx1; x2;h1; tÞ þ k2½u1;1ðx1; x2; h1; tÞ
þu2;2ðx1; x2;h1; tÞ�;

q2ðx1; x2; tÞ ¼ ð2l2 þ k2Þu3;3ðx1; x2;h1 þ h2; tÞ þ k2½u1;1ðx1; x2; h1

þh2; tÞ þ u2;2ðx1; x2; h1 þ h2; tÞ�:

8>>><>>>:
ð55Þ

Plugging

upðx; tÞ ¼ ûpðx3Þ expðik1x1Þ expðixtÞ
ðp ¼ 1;3Þ and u2ðx; tÞ ¼ 0 ð56Þ

into Eqs. (53)–(55) and eliminating q1; q2, we obtain

ð2l2þ k2Þk2
1û1ðx3Þ� ik1ðk2þl2Þû03ðx3Þ�l2û001ðx3Þ ¼q2x2û1ðx3Þ;

l2k2
1û3ðx3Þ� ik1ðk2þl2Þû01ðx3Þ� ð2l2þ k2Þû003ðx3Þ ¼q2x2û3ðx3Þ;

ik1k2û1ðh1Þþ ð2l2þ k2Þû03ðh1Þ�D1k4
1û3ðh1Þþq1h1x2û3ðh1Þ ¼ 0;

�ik1k2û1ðh1þh2Þ� ð2l2þ k2Þû03ðh1þh2Þ�D1k4
1û3ðh1þh2Þ

þq1h1x2û3ðh1þh2Þ ¼ 0:

8>>>>>>><>>>>>>>:
ð57Þ

We ignore the effects of the transfer shear on the in-plane motion of
the middle layer. More specifically, setting u100ðx3Þ ¼ 0 for all
x3 2 ½h1;h1 þ h2� and by the first equation in Eq. (57) we have

û1ðx3Þ ¼
ik1ðk2 þ l2Þ

ð2l2 þ k2Þk2
1 � q2x2

û03ðx3Þ: ð58Þ

Eliminating û1 in the last three equations in Eq. (57), we arrive at

û003ðx3Þ ¼ b2
1û3ðx3Þ;

û03ðh1Þ � b2û3ðh1Þ ¼ 0;
û03ðh1 þ h2Þ þ b2û3ðh1 þ h2Þ ¼ 0;

8><>: ð59Þ

where

b2
1 ¼
ðl2k2

1 � q2x2Þ½ð2l2 þ k2Þk2
1 � q2x2�

ð3l2
2 þ 2l2k2Þk2

1 � ð2l2 þ k2Þq2x2
and b2

¼ ½ð2l2 þ k2Þk2
1 � q2x2�ðD1k4

1 � q1h1x2Þ
ð4l2

2 þ 3l2k2Þk2
1 � ð2l2 þ k2Þq2x2

:

By the first equation in Eq. (59), we have

û3ðx3Þ ¼ ûþ expðb1x3Þ þ û� expð�b1x3Þ

for some ûþ; û� 2 3. Then the last two equations in Eq. (59) implies

ðb1�b2Þexpðb1h1Þ ð�b1�b2Þexpð�b1h1Þ
ðb1þb2Þexpðb1ðh1þh2ÞÞ ð�b1þb2Þexpð�b1ðh1þh2ÞÞ

� �
ûþ
û�

� �
¼0:

ð60Þ
tion in a sandwich structure. Int. J. Solids Struct. (2009), doi:10.1016/



Fig. 7. The spectrum of the sandwich structure specified in Example 2.1 in the short wave length regime. Each ‘‘�” in the left figure denotes a point on the dispersion relations
—— phase speed v vs h=k. The phase speed of the transverse (shear) wave in the middle core is shown by the dashed line‘‘––” for comparison. The mode shapes of the lowest
four branches are shown in the right figure. The numbers aside are their phase speeds.
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Therefore, Eq. (59) admits a non-zero solution if and only if

ðb1 þ b2Þ
2 expð2b1h2Þ � ðb1 � b2Þ

2 ¼ 0: ð61Þ

We remark that the hypothesis û100 ¼ 0 on ½h1;h1 þ h2�, though
seemingly ad hoc, is not groundless, as one can see from the first
two mode shapes in Fig. 6 that the endpoints of lines in the middle
layer remain nearly in a straight line. This additional hypothesis
distinguishes the present model from that of Sorokin (2004). It is
worthwhile noticing that the effects of the transverse shear of
the middle layer and the in-plane motions of the top/middle layers
could be included in this treatment. The resulting dispersion equa-
tion, however, losses its simplicity, see e.g. Nilsson (1990) for de-
tails in this direction. Further, based on the symmetry of the
present sandwich structure we could proceed further to decouple
the so-called ‘‘in-phase” waves and ‘‘anti-phase” waves, see Soro-
kin (2004) for the relevant calculations. Here we solve for the low-
est dispersion relation determined by Eq. (61) numerically without
decoupling them. In general only one of these two types of waves
has lowest frequency for the same wavenumber k1.

The lowest dispersion relation determined by Eq. (61) is shown
in Fig. 6 in ‘‘�” markers. One can see that it agrees well with the
exact result throughout the ðh=kÞ-interval under consideration.
The reader is however cautioned that the good agreement between
the present model and the exact result in the short wavelength re-
gime, say, beyond the inflection point h=k 
 1:8, could be just a
coincidence since the last two mode shapes in Fig. 6 are inconsis-
tent with the hypothesis u100–0 or u2 ¼ 0.

We remark that Eq. (61) in fact have infinitely many branches of
solutions xðk1Þ. For branches other than the lowest one, we have
observed that they occasionally agree well with certain branches
of the exact results. However, it is not clear why they agree. So
these branches are not shown here.

4.3. Internal modes

In the regime where the wave length k is a few times smaller than
h, from the last two mode shapes in Fig. 6, we see that the displace-
ments of the top/bottom layer are very small compared with those of
the middle layer. Second, different branches of the dispersion rela-
Please cite this article in press as: Liu, L., Bhattacharya, K. Wave propaga
j.ijsolstr.2009.04.023
tions are close to each other, see Fig. 2. In this case, the nearby
branches are also important in determining the dynamic behavior
of the sandwich structures. Therefore, a high-resolution numerical
study based on the transfer matrix method (cf., Section 2) are per-
formed for ðh=kÞ-interval [3.5,4.2] with its results shown in Fig. 7.
Note that in the left of Fig. 7, the dispersion relations are displayed
in terms of phase speeds v versus h=k. For comparison, we show
the phase speed of the bulk shear wave of the middle layer by the
red dashed line ‘‘––” in the bottom. The ‘‘�” markers show the results
of the transfer matrix method. Corresponding to the lowest four
branches (see circled area in the left figure of Fig. 7), the mode shapes
at h=k ¼ 4:20 are shown in the right of Fig. 7. The numbers along the
mode shapes are the phase speeds of these modes.

From the mode shapes in Fig. 7, we see that the lowest four
modes arise mainly from shear motions of the middle compliant
layer. Compared with the phase speed of the bulk shear waves
ðvT ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l2=q2

p
¼ 0:6768 km=sÞ, the relative difference of these

modes in phase speed is less than 3%. Therefore, finding the disper-
sion relations for these branches seems not to be a physically
meaningful practice. The phase speeds decrease as the wavelength
decreases. From the tendency shown by Fig. 7, we see that the gaps
between various branches of dispersion relations would be smaller
if the wavelength further decreases. We do not pursue simplified
models here to explain these features of the dispersion relations.
5. Summary and discussion

We have considered a sandwich structure of two thin stiff layer
and one thick compliant core. The method of transfer matrix is
used to compute the full spectrum of the sandwich structure.
The Hamiltonian formalism of the governing wave equations en-
ables us to single out the relevant block in the transfer matrix
and find all the initial points of the dispersion relations
xaðkÞjk¼0. Based on the transfer matrix method, a systematic per-
turbation approach is demonstrated capable of finding higher or-
der correction terms of the dispersion relations in the long
wavelength limit. Finally, we find three simplified models that
can predict the lowest branch of the dispersion relations in various
regimes.
tion in a sandwich structure. Int. J. Solids Struct. (2009), doi:10.1016/
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Much of the analysis in this paper can be applied to multi-lam-
inated structures as well as to the sandwich structure. For addi-
tional layers, we simply include the local transfer matrix
associated with the additional layers in the global transfer matrix
(20). Therefore, the analysis in Section 3 is valid for multi-lami-
nated structures as well. For the models in Section 4, the reader
is however cautioned that the criteria for the applicable regimes
of various models could be significantly different from the criteria
for the particular sandwich structure in Example 2.1.

Further, the formalisms we have taken can be easily generalized
to address laminated structures of anisotropic materials. The trans-
fer matrix method presented in Section 2 is clearly valid for aniso-
tropic materials. The only difference from isotropic materials is
that the matrices Ti;Q i;Ri defined in Eq. (5), and so the Hamilto-
nian matrix Hi in Eq. (10) may be more complicated and depend
on the in-plane wavevector k. The results in Section 3.1 are valid
for general materials up to Eq. (33). In particular, if the materials
are orthotropic, the matrices Ti remain diagonal, and so a formula
like Eq. (34) can be obtained similarly. The perturbation method in
Section 3.2 is also applicable to anisotropic materials, though the
algebra is likely to be more formidable. For results in Section 4,
generalizations to anisotropic materials may be difficult.
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