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We address the attainability of the Hashin–Shtrikman (HS) bounds for
multiphase composite materials. We demonstrate that the HS bounds are
not always attainable and give new restrictions on the attainable HS
bounds in terms of the conductivities and volume fractions of the
constituent phases. New optimal microstructures are also constructed to
attain the HS bounds. Combined together, these results allow for precise
characterization of the set of effective properties for a wide range of
composite materials.
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1. Introduction

A central problem in the study of composite materials is to characterize the effective
properties of a composite based on the observed microstructure of the constituent
phases. The effective properties, however, depend on the detailed microstructure, and
finding the effective properties of a composite requires solutions to partial differential
equations which are generally impractical for realistic microstructures. Since the
seminal works of Hashin and Shtrikman (HS) [1], much of the attention in this area
has focused on the study of optimal bounds on the effective properties with or without
constraint on the volume fractions of the constituent phases [2]. A bound is optimal if
it is microstructure-independent and attainable for some special microstructure within
the prescribed, e.g. volume fraction, constraint. The problem of finding optimal
bounds is rather complicated, as is evident from previous efforts in solving optimal
bounds for various effective properties of two-phase composites [3–5].

We address the attainability of the HS bounds [1]. It has been well-known
since the 1980’s that the HS bounds are attainable for the case of two-phase
composites [3–6]. Also, it has been known that the HS bounds are not always
attainable for composites of three or more phases [7]. More recently, new bounds
and new optimal microstructures are found by a number of authors [8–12] for
multiphase composites in two dimensions. In particular, Gibiansky and Sigmund [9]
constructed microstructures achieving the bulk modulus HS bounds for three-phase
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two-dimension elastic composites; Albin et al. [11] addressed the attainability of HS
bounds for multiphase composites and obtained tight restrictions on the attainable
HS bounds for multiphase two-dimension conductive composites. However, little is
known about the attainability of the HS bounds for multiphase composites in three
or higher dimensions, which will be the focus of this article.

This article is to report our progress on the attainability of the HS bounds for
multiphase composites in any dimensions. We find a necessary condition and a
sufficient condition for the attainable HS bounds. Specialized to two-dimension
three-phase isotropic composites, our results recover the results on the attainable HS
bounds in [13]; specialized to three-phase composites, our results imply a necessary
and sufficient condition for the attainable HS bounds. For four and more phases
composites, there is however a gap between the necessary condition and the sufficient
condition. In two dimensions the improved bounds given by Nesi [8], Albin et al. [13]
and Cherkaev [12] may be useful for clarifying the origin of this gap.

2. New restrictions on the attainable HS bounds

We consider (Nþ 1)-phase (N� 2) composites of isotropic phases of conductivities
k0, k1, . . . , kN (05 k05 k15 . . .5 kN), volume fractions �0, �1, . . . , �N2 (0, 1), and
assume that the effective conductivity of the composite is isotropic and given by ke.
Denote by

Mci ¼
nk0

ki � k0
ði ¼ e, 1, . . . ,NÞ, ð1Þ

where n� 2 is the dimension of the space. Then the lower HS bound can be
expressed as [2,14]

ke � k0 þ
nk0
McHS

() Mce � McHS :¼
1

�
� 1, ð2Þ

where

� ¼
XN
i¼1

�i
1þ Mci

:

Further, in [14] it has been shown that the lower HS bound is attainable, i.e. the
inequalities in (2) hold as equalities if and only if a periodic solution to

D� ¼ p0��0
þ � � � þ pN��N

on Y, ð3Þ

satisfies the following overdetermined conditions (I2 IRn�n is the identity matrix):

rr� ¼
pi
n
I on �i, i ¼ 1, . . . ,N: ð4Þ

In (3) and (4), Y¼ (0, 1)n is the unit cell, �i�Y with volume(�i)¼ �i (i¼ 0, 1, . . . , N),
subdividing the unit cell Y, is the domain occupied by the ith phase, ��i

, equal to one
on �i and zero otherwise, is the characteristic function of �i, and constants p0, . . . ,
pN, satisfying

PN
i¼0 �ipi ¼ 0, are given by

p0 ¼ 1, pi ¼
Mci � McHS

1þ Mci
if i 6¼ 0: ð5Þ
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Note that the particular unit cell Y¼ (0, 1)n is immaterial since, by scaling, cutting,

and patching a given size composite of an effective conductivity ke, we can construct

a periodic composite of the same effective conductivity ke with any unit cell.
Equations (3) and (4) place strong restriction on the attaining microstructure,

i.e. the domains (�0, . . . ,�N). Moreover, it is not always possible to find such a

microstructure for given volume fractions �i and constants pi (i¼ 0, . . . ,N ). Below we

derive a necessary condition such that (3) and (4) admit a periodic solution. To this

end, we first notice that (3) and (4) imply

rr�ðxþÞ ¼
pi
n
Iþ ð p0 � piÞn� n 8x 2 @�i \ @�0, ð6Þ

where n is the unit normal on @�0, and xþ denotes the boundary value approached

from the exterior of �i or the interior �0. Let m2 IRn be a unit vector and

um¼m�(rr�)m. By (3) and (6) we verify

Dum ¼ 0 on �0,

um ¼ pi=nþ ð p0 � piÞðm � nÞ
2 on @�i \ @�0:

�

By the maximum principle applied to um on �0, we have

um � �min :¼ min
t2½0,1	, i2f1,...,Ng

pi
n
þ ð p0 � piÞt: ð7Þ

By (5) and the fact DcHS4DcN, we have p0� pi4 0, p14 � � �4 pN, and hence

�min¼ pN/n5 0. Further, noticing that det: IRn�n
! IR is a null Lagrangian [2,15], by

the divergence theorem we obtain that for any M2 IRn�n,

detðMÞ ¼

Z
�

Y

detðrr� þMÞ: ð8Þ

Here and subsequently,
R
�V ¼ 1=volumeðV Þ

R
V denotes the average value of the

integrand over V. Replacing M by ��min I in (8) and noticing that rr�� �min I is

positive semi-definite on �0, we have

detð��minIÞ �
XN
i¼1

�i

Z
�

�i

detðrr� � �minIÞ,

which, by (4), can be written as

XN
i¼1

�i 1�
pi
pN

� �n

� 1: ð9Þ

Inserting (5) and (2) into the above inequality, we obtain

h
�0 þ

XN�1
i¼1

�i
Mci � McN
1þ Mci

i�nXN�1
i¼1

�i

h
Mci � McN
1þ Mci

in
� 1, ð10Þ

which is a necessary condition for the lower HS bound (2) to be attainable.
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3. New optimal microstructures

For multiphase composites, the HS bounds are not always attainable for given

conductivities and volume fractions of the constituent phases. To find sufficient

conditions for the attainable HS bounds, we now construct a new class of

microstructures such that the inequalities (2) hold as equalities. For two-phase

composites, optimal microstructures include Hashin’s construction of coated spheres

[16], Milton’s construction of coated ellipsoids [17], multi-rank laminates [12,18],

Vigdergauz microstructure [19,20] and recently found periodic E-inclusions [21]. The

interested reader is referred to the monograph [22] and references therein for a

comprehensive description of various optimal microstructures and optimal

conditions.
We remark that the construction of optimal microstructures follows from the

optimal fields (3)–(4) and it is well-known optimal microstructures are non-unique

even in the sense of gradient Young measure. By manipulating exactly solvable

microstructures, such as multi-rank laminates, coated spheres, multi-coated spheres

[23], coated ellipsoids, Vigdergauz microstructures, and periodic E-inclusions, we can

find many optimal microstructures attaining the HS bounds. However, there appears

no systematic method to characterize all of the attainable regimes apart from trial

and error. For two-dimension and three-phase composites, Gibiansky and Sigmund

[9] have systematically studied the attainable regimes by combinations of coated

sphere and laminates; Albin et al. [11,12] has investigated in detail the attainable

regimes by multi-rank laminates. Here our construction is valid for any dimen-

sions and, to some extent, simple. Also, for three-phase composites, our construc-

tion is sufficient for all attainable HS bounds. Outside the attainable regime of

HS bounds, it is unclear whether our construction is sufficient or not for all attainable

regime. For two-dimension three-phase composites, Cherkaev [12] has systematically

suggested optimal microstructures in regimes where the HS bounds are unattainable.
We now present the new optimal microstructures for multiphase composites,

which consist of two basic building blocks: (1) two-phase periodic composites with

periodic E-inclusions [24], and (2) three-phase coated spheres with the coating being

two-phase composites of periodic E-inclusion microstructures. Below we describe

their properties briefly; more details can be found in [24] and the author’s

forthcoming publications.
A periodic E-inclusion is a geometric shape which may be regarded as a

generalization of ellipsoids. Its relevant optimality property for two-phase compos-

ites is described by a shape matrix Q 2 IRn�n
sym and a volume fraction �b2 (0, 1).

The shape matrix Q is further required to be symmetric, positive semi-definite and

Tr(Q)¼ 1. We assume that the periodic E-inclusion is occupied by the phase with

conductivity kb whereas the matrix phase has conductivity ka and volume fraction

�a¼ 1� �b. An extraordinary property of a periodic E-inclusion is that the effective

conductivity tensor, denoted by Ae, of such a periodic two-phase composite is given

by the following closed-form formula [25]:

Ae

ka
¼ Iþ

n�b

Mcb
I� �a�bQ

�aMcb
n

Qþ
Mc2b
n2

I

� ��1
, ð11Þ
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where, as in (1), Dcb¼ nka/(kb� ka). In particular, if Q¼ I/n, Ae¼ keI and

ke ¼ ka 1þ
n

Mce

� �
, Mce ¼

1� �b þ Mcb
�b

:

In terms of the effective property Dce, the volume fraction of the b-phase can be

expressed as

�b ¼
1þ Mcb
1þ Mce

: ð12Þ

The second building block, illustrated in Figure 1, is a three-phase coated sphere:

the core sphere has radius R1 and conductivity k�; the spherical shell between

r2 [R1,R2] is occupied by two-phase composites of conductivities k� and k� and the

microstructure of the two-phase composite is periodic E-inclusions with the �-phase
occupying the inclusions and the �-phase the matrix. The local shape matrix and

local volume fraction of the periodic E-inclusions are given by

QðxÞ ¼
1

n� 1
½I� er � er	, 	ðrÞ ¼ 1�




r
, ð13Þ

where 
 ¼
ðn�1ÞðMc��Mc� ÞR1

nð1þMc�Þ
, r¼ jxj, er ¼

x
r, and, as in (1), Dc�¼ nk�/(k�� k�),

Dc�¼ nk�/(k�� k�). The volume fractions of the �, �, �-phases within the coated

sphere are denoted by ��, ��, ��, respectively. Clearly,

�� ¼
R1

R2

� �n

, �� þ �� þ �� ¼ 1: ð14Þ

Figure 1. A three-phase coated sphere: the core sphere is occupied by phase-�; the shell is
occupied by two-phase composites of phases �, �. The microstructure of the composite is a
periodic E-inclusion with local shape matrix Q(x) and local volume fraction 	(r).
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Embedding the coated sphere inside an ambient medium of conductivity ke, from

(11) we see that the conductivity tensor on the entire space is given by

AðxÞ ¼

k�I if r5R1,
k�er � er þ k� ½I� er � er	 if R1 5 r5R2,
keI if r4R2,

8<
: ð15Þ

where k� ¼ k�ð1þ
n	
Mc�
Þ and k� ¼ k�f1þ

n	
nð1�	Þ
n�1 þMc�

g. From symmetry, one may see that

the coated sphere would be a neutral inclusion [26] if the ambient medium is chosen

appropriately. Indeed, if

ke ¼ k�
Mc� þ n� ðn� 1Þ

ffiffiffiffiffi
��n
p

Mc��Mc�
1þMc�

Mc� þ
ffiffiffiffiffi
��n
p

Mc��Mc�
1þMc�

, ð16Þ

the solution to the following boundary value problem for a far applied electric

field e2 IRn,

div½AðxÞr’	 ¼ 0 on IRn,

�r’ ¼ e as jxj ! þ1,

�

is given by ’¼�e�ru,

uðrÞ ¼

1
2 a�r

2 þ d1 if r5R1,

a�
1
2 r

2 þ rR1
Mc��Mc�
1þMc�

h i
if r 2 ½R1,R2	,

1
2 r

2 þ d2 if r4R2,

8>><
>>:

and satisfies that r’¼�e if r4R2, i.e. the electric field outside the coated sphere is

undisturbed by the presence of the inhomogeneous coated sphere. In the above

equation, a� ¼
�
1þ

R1ðMc��Mc� Þ
R2Mc� ð1þMc�Þ

	�1
, a� ¼

1þ1=Mc�
1þ1=Mc�

a� , and constants d1, d2 are such that

u(r) is continuous at r¼R1 and R2. Replacing the ambient medium by scaled copies

of the coated sphere, we obtain a composite of the �, �, �-phases and, from the

neutrality of the coated spheres, find that the composite has an effective conductivity

ke. This construction is the well-known Hashin’s construction of coated spheres [16].
For future convenience, we express the volume fractions of �, �-phases in terms

of the effective property Dce. By (16) we find

�� ¼
h
ðMce � Mc�Þð1þ Mc�Þ

ð1þ MceÞðMc� � Mc�Þ

in
, ð17Þ

and, by the second of (13), the volume fractions ��, �� satisfy

��

�� þ ��
¼

n

Rn
2 � Rn

1

Z R2

R1

rn�1ð1� 	ðrÞÞdr,

which, together with (14), implies

�� ¼ 1�
Mc� � Mc�
1þ Mc�

ffiffiffiffiffi
��

n
p
�
1þ Mc�
1þ Mc�

��: ð18Þ
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We now construct optimal microstructures attaining the lower HS bounds (2) for

(Nþ 1)-phase composites. Since DcHS4DcN, we have DcHS2 [Dcmþ1, Dcm) for some

m2 {N� 1, . . . , 1, 0}. (Dcm¼þ1 if m¼ 0) That is, by (2),

1

1þ Mcm
5� �

1

1þ Mcmþ1
: ð19Þ

As illustrated in Figure 2, we consider an (Nþ 1)-phase composite divided into N

parts, each of which has the same effective conductivity specified by Dce¼DcHS.

The microstructures of various parts are as follows: the ith part (i¼ 1, . . . , m) consists

of Hashin’s construction of the three-phase coated spheres of the 0, i, N-phases as

described above; the jth part (j¼mþ 1, . . . , N) consists of a two-phase composite of

0, j-phases whose microstructure is a periodic E-inclusion with the shape matrix

Q¼ I/n. The volume fractions of the ith part, denoted by �0i (i¼ 1, . . . ,N), are given

by

�0i ¼
�i

��i
if i ¼ 1, . . . ,m,

�0j ¼
�j

�bj
if j ¼ mþ 1, . . . ,N� 1,

�0N ¼
1

�bN
�N �

Xm
i¼1

��i �
0
i

" #
,

ð20Þ

Figure 2. The microstructure of the overall composite: the ith-part (i¼ 1, . . . ,m) consists of
the Hashin’s construction of the three-phase coated spheres of the 0, i, N-phases as described
above; the jth-part (j¼mþ 1, . . . , N) consists of a two-phase composite of 0, j-phases whose
microstructure is a periodic E-inclusion with the shape matrix Q¼ I/n. Their volume fractions
are denoted by �0i (i¼ 1, . . . , N), �0i � 0, and

PN
i¼1 �

0
i ¼ 1.
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where constants ��i , �
�
i and �bj are given by the right-hand sides of (17), (18) and (12)

with � replaced by N, � replaced by i, Dce replaced by DcHS, and b replaced by j:

��i ¼
h 1� ð1þ McNÞ�

Mci�McN
1þMci

in
,

��i ¼ ð1þ McNÞ��
1þ McN
1þ Mci

��i ,

�bj ¼ ð1þ Mcj Þ�:

ð21Þ

Within the ith part (i¼ 1, . . . ,m), the volume fractions of the 0, i, N-phases are such

that this part has an effective conductivity specified by DcHS; so do the volume

fractions of the 0, j-phases within the jth-part (j¼mþ 1, . . . ,N ). From (12), (17) and

(18), we see that the volume fraction of the ith phase within the overall composite,

denoted by �̂i, is given by

�̂i ¼ �
0
i�
�
i ¼ �i ði ¼ 1, . . . ,mÞ,

�̂j ¼ �
0
j�

b
j ¼ �j ð j ¼ mþ 1, . . . ,N� 1Þ,

�̂N ¼
Xm
i¼1

�0i�
�
i þ �

0
N�

b
N ¼ �N:

Therefore, the volume fraction of each phase in the constructed composite is consistent

with the prescribed volume fraction. Further, the conductivity of the constructed

composite achieves the lower HS bound since each part of it has the conductivity

specified byDcHS.Of course, the above construction does notmake any sense unless the

volume fractions �0i satisfy theobvious constraints: �
0
i � 0 (i¼ 1, . . . ,N) and

PN
i¼1 �

0
i ¼ 1.

Indeed, by (21) and direct calculations we verify that

XN
i¼1

�0i ¼
XN�1

q¼mþ1

�j

�bj
þ

1

�bN
�N þ

Xm
p¼1

�i

��i
ð�bN � �

�
i Þ

" #
¼ 1,

and �0i � 0 8i¼ 1, . . . , N� 1. Requiring �0N ¼ 1� �01 � � � � � �
0
N�1 � 0 gives rise to

h
�0 þ

XN�1
i¼1

�i
Mci � McN
1þ Mci

i�nXm
i¼1

�i

h
Mci � McN
1þ Mci

in
þ

hXN
i¼1

�i
1þ Mci

i�1 XN�1
j¼mþ1

�j
1þ Mcj

� 1,

ð22Þ

which, together with (19), forms a sufficient condition such that the lower HS bound

(2) is attainable (by the constructed composite). We remark that (22) is trivially

satisfied if m¼ 0, and hence the lower HS bound (2) is attainable if DcHS�Dc1. This
has been shown in [23,27].

The necessary condition (10) and the sufficient condition (19), (22) are explicit in

terms of conductivities and volume fractions of the constituent phases. In particular,

for three-phase composites (N¼ 2), we find the necessary condition (10) guarantees

(19), (22) for some m2 {N� 1, . . . , 0}, and hence is sufficient as well. For N4 2, the

attainability of the lower HS bounds can be easily studied for specified conductivities

and volume fractions and examples are shown in Figure 3. In these examples,
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we assume the volume fractions of all intermediate phase are equal, i.e.
�1¼ . . .¼ �N�1 and material properties Dc1, . . . , DcN are given on the top-right of
each panel. Vary (�0, �1). The region where (10) violated implies that the lower HS
bound is unattainable and is labeled as ‘‘Unattainable’’, while the region where (19)
and (22) satisfied for some m2 {0, . . . , N� 1} means that the lower HS bound
is attainable and is labeled as ‘‘Attainable’’. The attainability of the lower HS bound
is unknown for the remaining region, labeled as ‘‘Unknown’’.

4. Summary and conclusion

The problem of the exact description of the set of effective conductivities of
multiphase composite materials is addressed by deriving necessary conditions and
sufficient conditions for the best known bounds – the HS’s bounds – to be attainable.
The necessary condition is obtained by using a null Lagrangian; the sufficient
condition is achieved by constructing new optimal microstructures. Specialized to
three-phase composites, these conditions yield a necessary and sufficient condition.
For more general situations, parametric studies may be easily performed and
examples are provided.

We remark that similar necessary conditions and sufficient conditions can be
derived in parallel for the attainability of the upper HS bounds. Combined together,
these attainability conditions allow for the exact description of the set of effective
conductivities of multiphase composite materials when the conductivities and
volume fractions of the constituent phases are such that the lower and the upper HS
bounds are both attainable. If the lower or the upper HS bound is unattainable, the

Figure 3. The attainability of the lower HS bounds. Various parameters are specified on the
top-right of each panel; all intermediate phases have the same volume fraction. The (�0, �1)-
plane are divided into three regions where the attainability of the lower HS bound (2) is true,
false, and unknown, respectively.
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exact description of the set of effective conductivities demands better bounds than
the 50-year-old HS bounds. Finally, the conditions presented here apparently apply
to physical properties, such as permittivity of dielectric materials, permeability of
para/dia-magnetic materials, and bulk modulus of elastic materials. The constructed
microstructure also allows for closed-form solutions to the governing equations of
composite materials where the inclusion phases are nonlinear, which will be useful
for a wide range of materials modeling and optimization.
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