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Abstract We find a sufficient condition for the existence of surface (Rayleigh) waves based
on the Rayleigh-Ritz variational method. When specialized to a homogeneous half-space,
the sufficient condition recovers the known criterion for the existence of subsonic surface
waves. A simple existence criterion in terms of material properties is obtained for periodic
half-spaces of general anisotropic materials. Further, we numerically compute the dispersion
relation of the surface waves for a half-space of periodic laminates of two materials and
demonstrate the existence of surface wave band gaps.
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1 Introduction

Free surface waves are traveling waves that propagate along the surface of a half-space.
They satisfy the traction-free boundary condition on the surface and decay exponentially
away from the surface. Lord Rayleigh [25] first obtained a mathematical solution of surface
waves in an isotropic half-space, which are subsequently named after him. Stoneley [28, 29]
realized that not all homogeneous anisotropic half-spaces admit a Rayleigh-type solution.
The existence and uniqueness of subsonic surface waves in a general anisotropic half-space
have now been resolved, see, e.g., Barnett et al. [3], Chadwick and Smith [6] Barnett and
Lothe [2], Fu and Mielke [14, 15]. The proof employed in these works relies on the known
form of waves implied by the translational invariance of a homogeneous medium, and hence
cannot be applied to a heterogeneous medium.
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In this paper we address the surface waves in a heterogeneous half-space. We first present
a sufficient condition for the existence of surface waves. Although it is widely accepted and
numerically verified that inhomogeneities in general promote localized waves and in particu-
lar surface waves which are localized near the surface [4, 20, 21], the literature lacks a proof
even for some simple situations. Our approach is based on the Rayleigh-Ritz variational
formulae. Roughly speaking, surface waves localized near the surface can be identified as
eigenfunctions of a differential operator. If one could derive a lower bound for the essential
spectrum of this differential operator, then the existence of an eigenfunction or a localized
wave would follow from the existence of a test function whose Rayleigh quotient is strictly
below the essential spectrum. This variational approach has been used by Kamotskii and
Kiselev [17] for the existence of surface waves in a homogeneous half-space. Such a vari-
ational approach has also been widely used in the existence proof of localized modes of
water waves, electromagnetic waves, and electronic waves [5, 19, 26]. In these problems,
the differential operator concerns the negative Laplacian in semi-infinite domains with vari-
ous boundary conditions. The localized waves originate either from a diffraction grating on
the surface or from the non-planar geometry of the surface. Elastic surface waves in a half-
space, however, can originate from the very vectorial nature of elasticity problems besides
the presence of inhomogeneities and non-planar geometry of the surface.

The technical difficulty of this approach arises from estimating the lower bound of the
essential spectrum of the associated differential operator. Physically the essential spectrum
corresponds to bulk waves that can penetrate the half-space and radiate energy into the half-
space. To obtain such an estimate, inevitably we have to make some structural assumption
about the elastic half-space. A common and application relevant assumption is that the het-
erogeneous half-space is obtained by cutting an infinite periodic medium along a plane. It
has been shown in Allaire and Conca [1] that the propagating bulk waves in a periodic half-
space are exactly the Bloch waves in the infinite periodic medium, see also Eastham [11, 12].
We therefore derive a good estimate about the essential spectrum based on our knowledge
on the Bloch waves in the infinite periodic medium. Note that the bulk waves are explicitly
known for a homogeneous medium. Therefore, the sufficient condition, when specialized to
homogeneous half-spaces, becomes necessary for the existence of subsonic surface waves.

The advantage of this variational method lies in its simplicity and flexibility. It is even
possible to conclude the existence of surface waves in some heterogeneous half-spaces re-
gardless of the microstructure of the periodic media, see Sect. 4. Also this method yields
an upper bound for the phase speed of surface waves. However, this method cannot han-
dle supersonic surface waves. This limitation is intrinsic and difficult to overcome in such
variational methods.

As an example, we numerically compute the dispersion relation of surface waves in a
half-space consisting of laminates of two materials. The results, unsurprisingly, show the
existence of band gaps of surface waves. The existence of surface wave band gaps implies
that surface waves in phononic crystals, in addition to bulk waves, can be used to control
and manipulate elastic waves. Phononic devices based on surface waves are attractive since
surface waves are easier to be excited and detected compared with bulk waves. Also, reduc-
ing dissipation and guided propagation are less challenging for the localized characteristics
of surface waves.

The paper is organized as follows. In Sect. 2 we state the mathematical problems and
some facts from the spectral theory concerning closed quadratic forms and the associated
self-adjoint operators. The important result of this section is Theorem 1, whose proof fol-
lows from Allaire and Conca [1] and Eastham [11, 12]. In Sect. 2.1 we present the main
existence theorems of this paper. In Sect. 3 we specify the obtained existence theorem to
homogeneous half-spaces and show the obtained existence condition is necessary and suf-
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ficient for subsonic surface waves. In Sect. 4 we illustrate the application of the existence
theorem by an example. We present a numerical example of surface waves in Sect. 5. In
Sect. 6 we summarize our results and make a few remarks about guided waves on periodi-
cally grated surface and interfacial waves between two periodic half-spaces.

2 An Existence Theorem for Surface Waves

Let {e1, . . . , en} ⊂ R
n be the canonical rectangular bases and R

n+ := {x ∈ R
n : xn > 0} be the

upper half-space, see Fig. 1. The periodic medium, described by the elasticity tensor L(x)

and density ρ(x), satisfies

L(x + y) = L(x) and ρ(x + y) = ρ(x) (1)

for all x ∈ R
n and all y ∈ L, where

L :=
{

n∑
i=1

νiai : (ν1, . . . , νn) ∈ Z
n, {a1, . . . , an} ⊂ R

n are linearly independent

}

is a Bravais lattice describing the periodicity of the medium. The elasticity tensor L(x)

satisfies the usual symmetries of the elastic moduli: Lpiqj (x) = Lqjpi(x) = Lpijq(x), and
there exists a constant c > 0 such that for any x ∈ R

n,

c−1|X|2 ≤ X · L(x)X ≤ c|X|2 ∀X ∈ R
n×n
sym and c−1 ≤ ρ(x) ≤ c. (2)

The elastodynamic equations for the half-space can be written as:{
−(Lpiqj (x)uq,j (x)),i = ω2ρ(x)up(x) in R

n+
Lpnqj (x)uq,j (x) = 0 on �0

(p = 1, . . . , n), (3)

where �0 := {x : xn = 0} is the free surface, u : R
n+ → C

n is the complex displacement
and ω > 0 is the frequency. However, a solution of (3) cannot be a “surface wave” if it does
not decay as xn → +∞. To define surface waves, we introduce the tube problem and the
quasi-periodic problem.

To proceed, we introduce a few notations. It is assumed that the lattice vectors
{a1, . . . , an−1} are all contained in the plane �0. Let Y := {∑n

i=1 xiai : (x1, . . . , xn) ∈
(− 1

2 , 1
2 )n} be a unit cell, Y ′ := Y ∩ �0 be an in-plane unit cell, and T = {∑n

i=1 xiai :
(x1, . . . , xn−1) ∈ (− 1

2 , 1
2 )n−1, xn > 0} be a semi-infinite tube. A function is Y -periodic (resp.

Y ′-periodic) if it is invariant under all translations in L (resp. L′ = L ∩ �0). The reciprocal
lattice of L is given by

K =
{

n∑
i=1

νibi : (ν1, . . . , νn) ∈ Z
n

}
, (4)

Fig. 1 A halfspace of periodic
heterogeneous medium. Y (resp.
Y ′) is a (resp. in-plane) unit cell,
T is a semi-infinite tube, and �0
is the free surface
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where the reciprocal vectors {b1, . . . , bn} of {a1, . . . , an} is determined by

bi · aj = 2πδij =
{

0 if i 
= j

2π if i = j
(i, j = 1, . . . , n).

The first (resp. in-plane) Brillouin zone is

Z :=
{
t ∈ R

n : |t | ≤ inf
k∈K\{0}

|t − k|
}

(resp. Z′ := Z ∩ �0). (5)

We now state the tube problem and the quasi-periodic problem, see the textbooks of
Davies [8] and Schechter [26] for details.

(i) The tube problem concerns solving equation (3) subjected to quasi-periodic boundary
conditions on the side faces of the tube T for an in-plane wave vector t ′ ∈ Z′. Associated
with this tube problem, we define a self-adjoint differential operator{

At ′ : Dom(At ′) → exp(it ′ · x)[L2
per (T )]n

u �→ f

by {
−(Lpiqj (x)uq,j (x)),i = ρ(x)fp(x) in R

n+
Lpnqj (x)uq,j (x) = 0 on �0

(p = 1, . . . , n), (6)

where Dom(At ′) ⊂ exp(it ′ · x)[W 1,2
per (T )]n, and the function space L2

per(T ) (resp.
W 1,2

per (T )) is the collection of all complex-valued functions ϕ that are Y ′-periodic and
have finite ‖ϕ‖L2

per(T ) = [∫
T

|ϕ|2dx]1/2 (resp. ‖ϕ‖
W

1,2
per (T )

= [∫
T
(|∇ϕ|2 +|ϕ|2)dx]1/2). We

denote by σ(At ′) (resp. σe(At ′)) the (resp. essential) spectrum of At ′ .
(ii) The quasi-periodic problem concerns solving equation (3) subjected to quasi-periodic

boundary conditions on all faces of the unit cell Y for a wave vector t ∈ Z. Asso-
ciated with this quasi-periodic problem, we define a self-adjoint differential opera-
tor {

Bt : Dom(Bt ) → exp(it · x)[L2
per (Y )]n

u �→ f

by

−(Lpiqj (x)uq,j (x)),i = ρ(x)fp(x) in R
n (p = 1, . . . , n), (7)

where Dom(Bt ) ⊂ exp(it · x)[W 1,2
per (Y )]n, and the function space L2

per(Y ) (resp.
W 1,2

per (Y )) is the collection of all complex-valued functions ϕ that are Y -periodic and
have finite ‖ϕ‖L2

per(Y ) = [∫
Y

|ϕ|2dx]1/2 (resp. ‖ϕ‖
W

1,2
per (Y )

= [∫
Y
(|∇ϕ|2 + |ϕ|2)dx]1/2).

We denote by σ(Bt ) the spectrum of this differential operator. We remark that the
operator Bt has compact resolvent, and hence its spectrum is discrete. The corre-
sponding eigenfunctions form a complete basis of the Hilbert space exp(it · x) ×
[L2

per(Y )]n and are referred to as Bloch waves with a reduced wave vector
t ∈ Z.

We have the following theorem, see Allaire and Conca [1] and Eastham [11, 12] for
proofs. This theorem enables us to bound from below the essential spectrum of the tube
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problem by those of the quasi-periodic problems and separate subsonic surface waves from
bulk waves.

Theorem 1 Consider the self-adjoint differential operators At ′ and Bt defined by (6)
and (7). Let σ(At ′) and σ(Bt ) be their spectrums.

A. If u ∈ Dom(At ′) is an eigenfunction of the operator At ′ , i.e., At ′u = λu for some λ ∈ R,
then there exist constants C(j) such that∫

T

|xj
nu|2dx ≤ C(j) (8)

for all positive integers j .
B. For any given in-plane wave vector t ′ ∈ Z′, let St ′ = {t ∈ Z : t − (t · en)en = t ′} and

σe(At ′) be the essential spectrum of At ′ . Then

σe(At ′) = closure

{⋃
t∈St′

σ(Bt)

}
. (9)

2.1 Existence of Surface Waves

We identity a surface wave as an eigenfunction u ∈ Dom(At ′) of the operator At ′ for some
t ′ ∈ Z′. Since u exp(−it ′ · x) ∈ [W 1,2

per (T )]n, the energy propagating away from the surface
�0 per unit area satisfies∫

−
T ∩{x: xn=h}

Lpnqj (x)upuq,j dx → 0 as h → +∞.

Further, from equation (8) we see that u(x) decays away from �0 faster than x
−j
n for any

positive integer j . These properties of an eigenfunction justify our definition of “surface
waves”.

We will need the following Rayleigh-Ritz variational formulae, see Davies [8, p. 91] for
details.

Theorem 2 Let H be a Hilbert space, A : Dom(A) → H be a self-adjoint operator, Q :
Dom(Q)× Dom(Q) → R be the associated closed quadratic form, and σ(A) (resp. σe(A))
be the (resp. essential) spectrum of A. Further, for a subspace M of Dom(Q), let dim(M)

be the dimensions of M ,

λ(M) := sup{Q(u,u) : u ∈ M and ‖u‖H = 1},
and

λm := inf{λ(M) : M ⊂ Dom(Q) and dim(M) = m}.
Then there exist at least m linearly independent eigenfunctions in Dom(A) if

λm < inf{λ : λ ∈ σe(A)}. (10)

To apply the Rayleigh-Ritz variational formulae to the tube problem, we identity the
Hilbert space H as exp(it ′ · x)[L2

per(T )]n equipped with the norm ‖ · ‖H = [∫
T

ρ(x)| ·
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|2dx]1/2. Note that this norm ‖ · ‖H is an equivalent norm as the usual norm ‖ · ‖L2
per(T ).

The associated closed quadratic form is given by

Qt ′(u,u) =
∫

T

Lpiqj (x)up,iuq,j dx (11)

with Dom(Qt ′) = {u : u ∈ exp(it ′ ·x)[W 1,2
per (T )]n}. Similarly, for the quasi-periodic problem

the Hilbert space H is identified as exp(it · x)[L2
per(Y )]n equipped with the norm ‖ · ‖H =

[∫
Y

ρ(x)| · |2dx]1/2. The associated closed quadratic form is given by

Qt(u,u) =
∫

Y

Lpiqj (x)up,iuq,j dx (12)

with Dom(Qt) = {u : u ∈ exp(it ·x)[W 1,2
per (Y )]n}. Then from Theorem 1 and Theorem 2, we

have the following.

Theorem 3 Consider the self-adjoint operators At ′ , Bt (cf., (6), (7)) and the associated
quadratic forms Qt ′ , Qt (cf., (11), (12)). Let

RT (u) =
∫

T
Lpiqj (x)up,iuq,j dx∫

T
ρ(x)upupdx

and RY (u) =
∫

Y
Lpiqj (x)up,iuq,j dx∫

Y
ρ(x)upupdx

(13)

be their Rayleigh quotients. Also,

ṽs (L,ρ, t ′) = inf

{√
RT (u)

|t ′| : u ∈ Dom(Qt ′) \ {0}
}

(14)

and

ṽ∗(L,ρ, t ′) = inf

{√
RY (u)

|t ′| : u ∈ Dom(Qt) \ {0}, t = t ′ + tnen, tn ∈ R

}
. (15)

Then there exists a surface wave with in-plane wave vector t ′ ∈ Z′ if

ṽs(L,ρ, t ′) < ṽ∗(L,ρ, t ′). (16)

Theorem 3 is not very enlightening in the sense that neither of the quantities in equa-
tion (16) is easy to evaluate. Our strategy to show the existence of surface waves is therefore
to derive upper bounds for the left-hand side of (16) and lower bounds for the right-hand side
of (16). Below we first derive a lower bound for ṽ∗(L,ρ, t ′), and then evaluate the Rayleigh
quotients RT (u) for a simple class of test functions, which gives rise to an upper bound for
ṽs (L,ρ, t ′).

2.2 A Lower Bound of the Essential Spectrum

By equation (9), we can use the quasi-periodic problem (7) to find a lower bound of σe(At ′).
The nonzero in-plane wave vector t ′ ∈ Z′ is fixed in this section. Let u ∈ Dom(Qt) and
t = t ′ + tnen, then u exp(−ix · t) is Y -periodic and we have the following Fourier expansion

up,i(x) =
∑
k∈K

i(ki + ti )ûp(k) exp(ix · k + ix · t), (17)
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where ûp(k) = ∫−
Y
up(x) exp(−ix · k − ix · t)dx and K is the reciprocal lattice defined in (4).

Here and subsequently,
∫−

Y
· dx = ∫

Y
· dx/volume(Y ) denotes the average value of the

integrand over the domain Y . Let L̂ be a fourth-order symmetric tensor. If L(x) − L̂ is
positive semi-definite (resp. negative semi-definite) for all x, we write L(x) ≥ (resp. ≤ )L̂.
Clearly, for any Ll ≤ L(x) we have∫

−
Y

Lpiqj (x)up,iuq,j dx ≥
∫
−

Y

Ll
piqjup,iup,i dx =

∑
k∈K

Ll
piqj ûp(k)ûq(k)(k + t)i(k + t)j .

Let

b(Ll, η, ξ) := Ll
piqjηpηqξiξj (18)

and (cf., (4))

μ(Ll, t ′) := min
k∈K

min
|η|=1, tn∈R

b(Ll, η, k + t ′ + tnen)

|t ′|2 . (19)

Then from the Parseval theorem we have∫
−

Y

Lpiqj (x)up,iuq,j dx ≥ |t ′|2μ(Ll, t ′)
∑
k∈K

|û(k)|2 = |t ′|2μ(Ll, t ′)
∫
−

Y

|u(x)|2 dx.

Thus,
√

RY (u)

|t ′| =
√∫−

Y
Lpiqj (x)up,iuq,j dx

|t ′|2∫−
Y
ρ(x)upupdx

≥
√

μ(Ll, t ′)
ρu

=: v∗(Ll, ρu, t ′), (20)

where ρu = supx∈Y ρ(x). Therefore, from (15) we have

ṽ∗(L,ρ, t ′) ≥ sup
Ll≤L(x)

v∗(Ll, ρu, t ′). (21)

Note that both μ(Ll, t ′) and v∗(Ll, ρu, t ′) in general depend on the reciprocal lattice K,
which is suppressed in notation for simplicity.

2.3 An Existence Theorem

We choose test functions

u(x) = exp(|t ′|xnE)ũ exp(it ′ · x), (22)

where ũ ∈ C
n and E ∈ C

n×n with σ(E) ⊂ C−. Here σ(E) denotes the set of eigenvalues
(spectrum) of E, C− = {z ∈ C : Re(z) < 0}, and the matrix exponential function is defined
by exp(A) = ∑+∞

j=0
Aj

j ! for any square matrix A, see Coddington and Levinson [7, p. 62].
Note that, unless the matrix E is diagonalizable, u(x) of form (22) in general cannot be
written as

u(x) =
n∑

α=1

ũα exp(καxn) exp(it ′ · x ′) (23)

with ũα ∈ C
n and κα ∈ C−. Indeed, there exist “non-Rayleigh-type” surface waves that can-

not be put into the form of (23), as reviewed by Ting and Barnett [33]. For a test function
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of the form of (22), uniform density ρl = infx∈Y ρ(x), and a tensor Lu ≥ L(x), we have the
following upper bound for the Rayleigh quotient:

RT (u)

|t ′|2 =
∫

T
Lpiqj (x)up,iuq,j dx

|t ′|2 ∫
T

ρ(x)upupdx

≤
∫

T
Lu

piqjup,iuq,j dx

|t ′|2 ∫
T

ρlupupdx
= − ∫

∂T ∩�0
Lu

pnqjuq,jupdS − ∫
T

Lu
piqjuq,ij updx

|t ′|2 ∫
T

ρlupupdx

= −ũ·{(T uE+iRuT )/|t ′|+∫ ∞
0 exp(yE∗)[T uE2+i(Ru+RuT )E−Qu] exp(yE)dy}ũ∫ ∞
0 ρlũ·exp(yE∗) exp(yE)ũ dy

=: ϒ(Lu,ρl, t ′; ũ,E), (24)

where ( ∗ ) denotes the conjugate transpose, and matrices T u, Ru and Qu are given by

T u
pq = Lu

pnqn, Ru
pq = Lu

pjqnt
′
j /|t ′|, and Qu

pq = Lu
piqj t

′
i t

′
j /|t ′|2, (25)

respectively. Upon minimizing ϒ(Lu,ρl;E, ũ) among all admissible E and ũ, we denote
by

vs(L
u,ρl, t ′) = inf{

√
ϒ(Lu,ρl, t ′; ũ,E) : σ(E) ⊂ C−, ũ ∈ C

n, |ũ| = 1}, (26)

which is clearly greater or equal to ṽs(L,ρ, t ′) in (16).
From (21), (26) and Theorem 3, we obtain the following sufficient condition for the

existence of surface waves in a heterogeneous half-space.

Theorem 4 Consider a periodic heterogeneous half-space of elasticity tensor L(x) and
density ρ(x). For given tensors Ll , Lu, nonzero in-plane vector t ′ ∈ Z′, and densities ρl =
infx∈Y ρ(x), ρu = supx∈Y ρ(x), let v∗(Ll, ρu, t ′) and vs(L

u,ρl, t ′) be given by (20) and (26),
respectively. Then there exists a surface wave with in-plane wave vector t ′ ∈ Z′ if

inf
Lu≥L(x)

vs(L
u,ρl, t ′) < sup

Ll≤L(x)

v∗(Ll, ρu, t ′). (27)

3 Specification to Homogeneous Half-spaces

A homogeneous half-space can be regarded as a half-space of periodic medium with any
lattice vectors {a1, . . . , an} ⊂ R

n. We denote by L0 the elasticity tensor and by ρ0 the density.
Choosing Ll = Lu = L0 in Theorem 4, we have the following result.

Corollary 5 For a homogeneous half-space of elasticity tensor L0 and density ρ0, there
exists a surface wave with nonzero in-plane wave vector t ′ ∈ �0 if (cf., (20) and (26))

vs(L
0, ρ0, t ′) < v∗(L0, ρ0, t ′). (28)

For a homogeneous medium, recall that a transonic wave corresponding to an in-plane
wave vector t ′ ∈ �0 are the bulk wave with smallest v|t |/|t ′| among all bulk waves with wave
vectors in the plane spanned by t ′ and en, where v and t denote the phase speed and wave
vector of the bulk wave, respectively. The minimum of v|t |/|t ′| is referred to as the limiting
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wave speed, see Chadwick and Smith [6, p. 339] for a geometrical interpretation of the
limiting wave speed on the slowness section. A surface wave is subsonic (resp. supersonic)
if its phase speed is less than (resp. greater or equal to) the limiting wave speed.

Below we show that the criterion (28) is a necessary and sufficient condition for the ex-
istence of a subsonic surface wave. Since it is difficult to compute the exact values of vs and
v∗ in (28), in practice we focus on the upper bounds for vs and lower bounds for v∗ which
are much easier to compute and, in many situations, yield nontrivial and simple sufficient
conditions for the existence of surface waves, see Corollary 7. Further, we remark that by the
Stroh formalism [30–32], Barnett and Lothe [2, 3] (also see Chadwick and Smith [6]; Fu and
Mielke [14]) have obtained a necessary and sufficient condition in terms of impedance ma-
trix for the existence of subsonic surface waves. We also remark that Kamotskii and Kiselev
[17] have used the variational approach to recover the necessary and sufficient conditions of
Barnett and Lothe [2].

In a homogeneous medium, a bulk wave with its wave vector in the plane spanned by
t ′ ∈ �0 and en can be without loss of generality written as

u(x) = ũ� exp(iξ(t ′ · x + tnxn)),

where ξ 
= 0 is a real number, ũ� is a unit eigenvector of the n × n matrix (L0)piqj ti tj , and
t = t ′ + tnen. The phase speed of this wave is given by v = √

b(L0, ũ�, t)/ρ0|t |2 . Therefore,
the limiting wave speed corresponding to the in-plane direction t ′ is

min
tn∈R,|ũ|=1

√
b(L0, ũ, t ′ + tnen)

ρ0|t ′|2 . (29)

We notice that the limiting wave speed (29) can be identified as v∗(L0, ρ0, t ′) in (20) if the
outer minimization problem in equations (19) is minimized at k = 0. This is indeed the case
if L0 is isotropic or if the lengths of the lattice vectors ai (i = 1, . . . , n) are small enough (i.e.,
the nonzero reciprocal lattice points in K are far away from the origin). For a homogeneous
half-space, we can always choose the lattice vectors ai (i = 1, . . . , n) such that the outer
minimization problem in (19) is minimized at k = 0, and therefore identify v∗(L0, ρ0, t ′)
in (20) as the limiting wave speed (29). From the viewpoint of the tube problem (6), the
quantity |t ′|2v2∗(L0, ρ0, t ′) is the infimum of the essential spectrum of the operator At ′ . In
another word, the lower bound (21) is sharp for a homogeneous half-space.

To explore the physical meaning of vs(L
0, ρ0, t ′), we evaluate the infimum of (26) as

follows. Let Idn be the n × n identity matrix, T 0, R0 and Q0 be the matrices defined in (25)
with Lu replaced by L0. If for some 0 < v < v∗(L0, ρ0, t ′), there exists a matrix E ∈ C

n×n

satisfying {
T 0E2 + i(R0 + R0T )E − (Q0 − ρ0v2Idn) = 0,

σ (E) ⊂ C− and rank(T 0E + iR0T ) < n,
(30)

then (24) yields √
ϒ(L0, ρ0, t ′; ũ�,E) = v,

where ũ� ∈ C
n is a unit vector in the null space of T 0E + iR0T . From (26) we have

vs(L
0, ρ0, t ′) ≤ v < v∗(L0, ρ0, t ′), and hence the existence of the surface wave. Mean-

while, Fu and Mielke [14, 15] have shown that if (30) has a solution E for some 0 <

v < v∗(L0, ρ0, t ′), then a subsonic surface wave exists and is unique with phase speed v,
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which then implies v ≤ vs(L
0, ρ0, t ′). (Otherwise, by the Rayleigh-Ritz variational for-

mulas, there would be a second subsonic surface wave with phase speed less or equal to
vs(L

0, ρ0, t ′) < v.) Therefore, vs(L
0, ρ0, t ′) = v if a subsonic surface wave exists. There-

fore, we conclude that the sufficient condition (28) is necessary for the existence of a sub-
sonic surface wave. Further, it explains why substantial difficulty is encountered if one tries
to generalize previous and current approaches to supersonic surface waves, since proving
the existence of an eigenvalue embedded in the essential spectrum is mathematically a much
more difficult problem than proving the existence of an eigenvalue below the essential spec-
trum.

Two remarks are in order here. First, a subsonic surface wave does not always exist.
Clearly vs(L

0, ρ0, t ′) = v∗(L0, ρ0, t ′) if this is the case. Second, supersonic surface waves
do exist for some anisotropic half-spaces, see Farnell [13] for examples.

4 Applications to Heterogeneous Half-spaces of Multiple Anisotropic Materials

We now consider a periodic half-space of N anisotropic materials with elasticity tensors Lα

and densities ρα (α = 1, . . . ,N ). The dimension of space is fixed at n = 3 in this section.
We will compare the generic elasticity tensors Lα (α = 1, . . . ,N) with isotropic elasticity
tensors. For brevity we denote an isotropic elasticity tensor with shear modulus μ and bulk
modulus κ by Liso(μ, κ). Further, we define the smallest and greatest densities ρl and ρu,
the smallest and greatest shear moduli μl and μu, and the smallest and greatest bulk moduli
κl and κu as

ρl = min
α∈{1,...,N}

ρα, ρu = max
α∈{1,...,N}

ρα,

μl = min
0
=X∈R

3×3
sym

Tr(X)=0
α∈{1,...,N}

X · LαX

|X|2 , μu = max
0
=X∈R

3×3
sym

Tr(X)=0
α∈{1,...,N}

X · LαX

|X|2 , (31)

κl = max
κ

{κ : Liso(μl, κ) ≤ Lα ∀α = 1, . . . ,N},

κu = min
κ

{κ : Liso(μu, κ) ≥ Lα ∀α = 1, . . . ,N},

respectively. Since Lα ≥ Ll := Liso(μl, κl) for all α = 1, . . . ,N , from (19) and (20) we have

v∗(Ll, ρu, t ′) =
√

μl

ρu
. (32)

Since Lα ≤ Lu := Liso(μu, κu) for all α = 1, . . . ,N , from Landau and Lifshitz [18, p. 96]
and discussions in Sect. 3 we have

vs(L
u,ρl, t ′) = ξ(νu)

√
μu

ρl
, (33)

where

νu = (3κu − 2μu)/[2(3κu + μu)] (34)
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is the Poisson’s ratio associated with Lu, and the constant ξ(νu) > 0 satisfies [18, p. 96]),

ξ 6 − 8ξ 4 + 8(2 − νu)

1 − νu
ξ 2 − 8

1 − νu
= 0. (35)

A quick numerical calculation shows that ξ(νu)2 monotonically increases from 0.4746 to
0.9126 as the Poisson’s ratio νu varies from −1 to 0.5. Further, for the elasticity tensors
Ll and Lu chosen above, by (32) and (33) the sufficient condition (27) for the existence of
surface waves can be written as

μlρl

μuρu
> ξ(νu)2. (36)

Note that (36) is independent of the in-plane wave vector t ′ and intermediate shear moduli
and densities. From Theorem 4 we conclude the following.

Theorem 6 Consider a periodic half-space of materials with elasticity tensors Lα and den-
sities ρα (α = 1, . . . ,N ). Let ρl , ρu, μl, κl , μu, κu, νu be defined as in (31) and (34), and
ξ(νu) > 0 be a solution to (35). Then (36) implies the existence of surface waves for any
nonzero in-plane wave vectors t ′ ∈ Z′.

Specified to N = 1, i.e., a homogeneous half-space, the above theorem implies the fol-
lowing simple sufficient condition for the existence of free surface waves.

Corollary 7 Let L1 be an elasticity tensor, μl,μu, κl, κu, νu be defined as in (31) and (34)
with N = 1, and ξ(νu) > 0 be a solution to (35). If

μl

μu
> ξ(νu)2, (37)

then there exist surface waves on a homogeneous half-space of L1 for any nonzero in-plane
wave vectors t ′ ∈ Z′.

We remark that the sufficient condition (37) for the existence of free surface waves on a
homogeneous half-space is independent of the orientation of the free surface and the propa-
gating directions and is easy to check, which is an advantage in applications.

5 Existence of Surface Wave Band Gaps

As an example, we numerically calculate the dispersion relation of the surface waves in
an elastic half-space and demonstrate the existence of band gaps, which has been pointed
out by Djafari-Rouhani et al. [10] based on the Fourier analysis. The half-space consists
of alternating slabs of two materials as shown in Fig. 2. The slabs are perpendicular to
the surface �0 and the period in e1-direction is one. We further assume that the materials
are either copper (isotropic, Young’s modulus ECu = 115 Gpa, Poisson’s ratio νCu = 0.355,
density ρCu = 8.92 g/cm3) or aluminum (isotropic, Young’s modulus EAl = 69 Gpa, Pois-
son’s ratio νAl = 0.334, density ρAl = 2.7 g/cm3). We are interested in the dispersion rela-
tions of the surface waves propagating in e1-direction. To this end, we numerically solve the
eigenvalue problem (3). Since (3) is invariant under arbitrary translations in e2-direction,
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Fig. 2 A two-material periodic
half-space in the numerical
example

we restrict our attention to solutions of the form u = (u1(x1, x3),0, u3(x1, x3)). Inserting
u = (u1(x1, x3),0, u3(x1, x3)) into (3), we obtain a two dimensional plane strain problem.

In simulations we consider a truncated finite two dimensional tube Ttruc = (0,1) ×
(0,10). For a given wave number t1 ∈ (0,2π), by the standard finite element method we
find the eigenfrequencies ω such that

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

−(Lpiqj (x1, x3)uq,j (x1, x3)),i = ω2ρ(x1, x3)up(x1, x3) on Ttruc,

Lp3qj (x1, x3)uq,j (x1, x3) = 0 if x3 = 0,

up = 0 if x3 = 10,

up(1, x3) = up(0, x3)exp(−it1) ∀ x3 ∈ (0,10),

(38)

admits a nontrivial solution. Here, L(x1, x3) (ρ(x1, x3)) takes the value of the elasticity
tensor (density) of copper if x1 ∈ (0,1/2) and that of aluminum if x1 ∈ (1/2,1). From the
spectrum theory, we see that the above eigenvalue problem in general has infinitely many
eigenfrequencies, including those that do not correspond to surface waves. To eliminate
these eigenfrequencies, we require that

Ub ≥ 5Ut, (39)

where Ub (Ut ) is the strain energy in bottom (top) half of the truncated tube Ttruc. Upon
eliminating the eigenfrequencies violating (39), we are left with eigenfrequencies ω1(t1) <

ω2(t1) < ω3(t1) < · · · , which are presumably eigenfrequencies of surface waves in different
bands. We also compare the dispersion relation of the surface waves with that of the bulk
waves propagating in the e1-direction. The results are shown in Fig. 3, where the dashed
curve “– –” shows the dispersion curve of the bulk waves, the solid line “—” shows that of
the surface wave, and the cross signs “×” are data points from the simulations.

From Fig. 3, we observe a few interesting features of the dispersion curves. First, band
gaps are present for both curves. Also, the bulk waves has a higher frequency than the
surface waves for the same wave number. These features of the dispersion curves provide a
potential method to manipulate elastic waves. For example, for excitations at frequencies at
the band gaps of the bulk waves, surface waves are preferably excited and propagate along
the free surface, instead of radiating into the half-space, whereas excitations at frequencies
at the band gaps of surface waves tend to propagate into the half-space instead of along
the surface. Also, at the long wavelength limit, i.e., t1 → 0, it is anticipated the dispersion
relation should be predicted by the homogenization theory. Indeed we numerically verify
that the phase speed of the surface waves coincides with the surface waves of a homogeneous
half-space with the effective elasticity tensor and the effective density. However, we are not
aware of a rigorous proof of this fact for surface waves, though the homogenization theory
has been well established for bulk waves in the long wave length limit (see, e.g., [16, 22]).



Existence of Surface Waves and Band Gaps in Periodic Heterogeneous

Fig. 3 Dispersion relations of
the bulk waves and surface waves
propagating in e1-direction. The
dashed curve “– –” shows the
dispersion curve of the bulk
waves; the solid line “—” shows
that of the surface wave. The
cross signs “×” denote the data
points from the simulation

6 Summary and Discussion

We have addressed the existence of surface waves in periodic heterogeneous half-spaces
using the variational method. When specialized to homogeneous media, we have shown that
our existence condition (28) is necessary and sufficient for the existence of subsonic surface
waves. For general periodic heterogeneous media of anisotropic materials, a simple criterion
for the existence of surface waves is given in Theorem 6.

In general, the more is known about the medium, the tighter bounds we would be able
to obtain for ṽs(L,ρ, t ′) and ṽ∗(L,ρ, t ′) in (16), and so an improved sufficient condition
for the existence of surface waves would follow from Theorem 3. For instance, if L(x) and
ρ(x) are known, the Rayleigh quotient of the test function (22)

RT (u)

|t ′|2 =
∫

T
Lpiqj (x)up,iuq,j dx

|t ′|2 ∫
T

ρ(x)upupdx
=: ϒ(L,ρ, t ′; ũ,E)

is fairly easy to evaluate, at least numerically. Then from Theorem 3 we obtain an improved
sufficient condition for the existence of surface waves as

inf{√ϒ(L,ρ, t ′; ũ,E) : σ(E) ⊂ C−, |ũ|2 = 1} < sup
Ll≤L(x)

v∗(Ll, ρu, t ′).

The quality of the sufficient condition (for the existence of surface waves) is mainly dictated
by the quality of the test functions. The best test function is clearly the eigenfunction asso-
ciated with the smallest eigenvalue of At ′ if such an eigenvalue indeed exists. The sufficient
condition could be trivial if the quality of the test functions deteriorates on one hand, and
on the other hand the condition could be too complicated to be informative if the test func-
tions are too general to have a simple and explicit parametrization. Therefore, the detailed
implementation of this approach for a particular problem can be delicate.

The variational method can also be adapted to address the existence of surface waves
and interfacial waves [27] in other heterogeneous systems when the domain is unbounded
and the coefficients or potentials are specified at the infinity. For instance, we may con-
sider the Maxwell equation with a periodic permittivity and/or permeability [23, 24]; or the
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Shrödinger equation with a periodic potential [9, 12, 26]. Following the same arguments
as in this paper, we will be able to obtain sufficient conditions for the existence of sur-
face/interfacial waves for these problems.

Acknowledgements The authors gratefully acknowledge the financial support of the US Office of Naval
Research through the MURI grant N00014-06-1-0730 and TcSUH. The author would also like to thank the
anonymous reviewer for pointing out an interesting application of Theorem 6, i.e., Corollary 7.
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