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ABSTRACT. Diffusion in heterogeneous solid media has been investigated for over
forty years. However, the derived equations for bulk (or effective) diffusivity used
similarity argument between diffusion and other physical properties such as electrical
and thermal conductivity, and hence either implicitly or explicitly assumed that the
concentrations are continuous across phase boundaries. That is, these derived rela-
tions, which have permeated through the literature and textbooks, can only be applied
when the partition coefficients of the component between every pair of phases in the
medium is 1, which is rarely the case. In this work, we include the effect of partitioning
between different phases and present the method to derive the equations to relate bulk
diffusivity to individual-phase diffusivities in heterogeneous media.
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introduction
One of the frontiers in geochemical kinetics is to understand diffusion in

heterogeneous media (Watson and Baxter, 2007), including multi-phase solids (such
as rocks, multi-phase metals, and composite materials), multi-grain single-phase solid
in which grain boundary diffusion may contribute significantly to bulk diffusion, and
porous materials (such as plants, soil, rock with partial melt or fluid, sediment with
fluid). Diffusion and transport in heterogeneous media are encountered in geology,
chemistry, cosmochemistry, engineering, manufacturing, and daily life, in processes
such as volatile diffusion in mantle rocks, elemental diffusion in a slowly cooled
planetary core with two-phase Widmanstatten texture, diffusion in composite thin
films (Sankur and Gunning, 1989), diffusion in a mixture of two immiscible melts,
elemental diffusion during mantle partial melting and in melt mush, drying and
dyeing of textiles, transport of air and moisture in soils, drying of paint, wood, and
concrete, diffusion of gases in rubber, movement of sap in plants, and transport in
other high and low-temperature porous media. The focus in this work is the effective
or bulk diffusivity in a heterogeneous medium, not diffusion profiles in the individual
phases. In a heterogeneous medium, when the diffusion distance is less than the grain
size, the diffusion cannot be treated as bulk diffusion, and bulk diffusivity cannot be
defined. When the diffusion distance in the medium is much larger than grain sizes,
which means that the time scale under consideration is much longer than the
maximum of all xi

2/Di where xi is the radius of phase i and Di is diffusivity in phase i,
diffusion in a heterogeneous medium can be treated as bulk diffusion. Hence, bulk
diffusivity approach applies best to components that diffuse rapidly in all phases
involved. For example, for diffusion in mantle rocks, the approach works best for
neutral species (light noble gases, molecular water, et cetera) and univalent ions with
small radius (Shannon, 1976; Zhang and Xu, 1995; Baxter, 2010; Farver, 2010; Zhang
and others, 2010) and some divalent ions (Brady and Cherniak, 2010). When diffusion
in some phases can be ignored completely, bulk diffusion treatment can also be
applied.
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Barrer (1968) used the similarity between diffusion and other properties such as
electrical and thermal conduction to derive the relations between the bulk (or
effective) diffusivity of multi-phase materials (heterogeneous media) and individual-
phase diffusivities using analogous solutions for conductivity, elasticity, et cetera avail-
able in numerous classical works (for example, Maxwell, 1873, p. 365; Hashin, 1962;
Hashin and Shtrikman, 1962a, 1962b, 1962c, 1963a; Hill, 1963; and many references
cited in Barrer, 1968). Unfortunately, as will be shown in this report, the similarity
approach by Barrer (1968) only applies to the special case when the partition
coefficient between every pair of phases is 1. In some sections of Barrer (1968),
partition of elements is considered but the derived relations contained undetermined
coefficients so that they are not directly useful. The similarity approach of Barrer
(1968) has permeated through the literature and textbooks for treating diffusion in
solid multi-phase materials, with unity partition coefficients either implicitly or explic-
itly (for example, Bell and Crank, 1974; Crank, 1975; Brady, 1983; Cussler, 1997,
section 6.5.2). In his well-known book Mathematics of Diffusion, Crank (1975, Chapter
12) summarized relations between bulk diffusivity of composite materials (multi-phase
media) and individual-phase diffusivities, following the approach of Barrer (1968). In
the geologic literature, Brady (1983) introduced the various relations between bulk
diffusivity and individual-phase diffusivities using a similar approach. When Torquato
and others (1999) formulated sophisticated algorithm to calculate the effective
electrical/thermal conductivity and diffusivity of composite materials using digitized
representations, they adopted the same analogy for diffusivity. These diffusivity rela-
tions have often been applied by later workers in geology and in other branches of sciences
(for example, Care and Herve, 2004; Sun and others, 2011; Youssef and others, 2011).

A key difference between mass diffusion of an element and heat diffusion, which
renders the previous similarity approach non-general, is as follows. Even though heat
conduction and mass diffusion are characterized by a similar flux equation (Jheat �
�k�T for heat conduction and Jmass � �D�C for diffusion), in heat conduction, T
(temperature) is continuous across phase boundaries, whereas in diffusion, C (concen-
tration of a component) is usually not continuous across phase boundaries. The
concentration of a component in one phase could be much larger or smaller than that
in another phase, and the ratio of the concentration in one phase to that in the other
phase at equilibrium is the partition coefficient, which can be orders of magnitude
different from 1. The concentration in each phase plays a major role in controlling the
contribution by the phase to the bulk diffusive flux and hence the bulk diffusivity. For
example, even if the diffusivity of a component is high in a phase, if the concentration
of the component in the phase is negligibly small, diffusion in that phase is not
expected to contribute significantly to the bulk diffusion flux, meaning that it does not
contribute much to the bulk diffusivity. Hence, previous models for diffusivity in
composite materials or multi-mineral rocks, no matter how sophisticated, are not
general, and can only be applied to the rare case when the partition coefficient is 1
between every pair of phases. On the other hand, authors who discuss diffusion in
porous media or the contribution of grain boundary diffusion to the bulk diffusivity
often derive the relations directly without resorting to the similarity approach, and
hence often obtained more realistic equations. These relations will also be discussed in
this work. In addition, Kalnin and others (2002) incorporated the effect of partitioning
for diffusion in a matrix with inclusions.

Realizing that the “potential” (the property inside the grad, such as T in gradT)
must be continuous, the correct similarity relation can be obtained if the diffusive flux
is expressed as the gradient of the chemical potential �, or equivalently �/(RT)
(dimensionless) at a constant temperature (DeGroot and Mazur, 1962; Kirkaldy and
Young, 1987; Zhang, 2008; Lesher, 2010):
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Jbulk � �M�
�

RT
, (1)

where M (referred to as either mobility or phenomenological coefficient, which
depends on concentration, as will be clear later) with a unit of kg/(m � s) or mol/(m �
s) is a scalar for an isotropic medium and second order tensor for an anisotropic
medium, T is temperature, and R is the universal gas constant. M in equation (1) is not
ionic velocity per unit electrical field (for example, Zhang, 2008), but is similar to that
defined in Kirkaldy and Young (1987) except for the constant RT, which is introduced
for simplicity in subsequent treatment since we focus on isothermal diffusion. Because
chemical potential is continuous across phase boundaries assuming interface equilib-
rium, the relation between the bulk (or effective) mobility of a multi-phase medium
and individual-phase mobilities can be written down by analogy to other properties
such as electrical conductivity, thermal conductivity, et cetera. Because mobility and
diffusivity are related, the corresponding equations for bulk diffusivity of a multi-phase
medium can also be derived. To emphasize, bulk mobility of a heterogeneous medium can be
generally related to individual-phase mobilities using analogy to conductivity, but bulk diffusivity
cannot. In this report, we derive the equations for bulk diffusivity in various heteroge-
neous media using the similarity between mobility and conductivity. For some geom-
etry, the bulk diffusivity is also directly derived (Appendices 1 and 2), to verify our
approach using similarity between mobility and conductivity.

In this work, individual-phase diffusivity means tracer or effective binary diffusivity
(Zhang, 2010) of a given component in an isotropic phase, not diffusivity matrix for
multi-component diffusion, nor diffusivity tensor in an anisotropic diffusion medium.
Obtaining the isotropic diffusivity of randomly oriented grains of an anisotropic
material will be summarized in the last section. For a heterogeneous medium, bulk (or
effective) diffusivity is used to describe overall diffusion. When grain boundaries are
present, one way to include the contribution of diffusion through grain boundaries is
to treat all types of grain boundaries on average as a single separate “phase,” or
different types of interface boundaries as separate “phases.”

definition of bulk mobility and bulk diffusivity, and relations between them

In this work, interface equilibrium between adjacent grains is assumed so that � is
continuous. Hence, the concentration ratio of an element in two contacting phases at
the boundary is treated as a constant (partition coefficient).

The bulk mobility (Mbulk) and bulk diffusivity (Dbulk) are defined by the following
equations:

Jbulk � �Mbulk�
�ave

RT
, (2a)

Jbulk � �Dbulk�Cave, (2b)

where �ave and Cave are the average chemical potential and concentration at a “point”
(meaning a representative volume element containing hundreds or more individual
grains, so that meaningful Cave can be obtained), Cave � ¥�iCi with � being the volume
fraction and subscript i meaning phase i, and Jbulk is the bulk diffusive mass flux (mass
per unit area per unit time). Because � is continuous, �ave � �i for every phase i at the
given point in a heterogeneous medium. The values of �ave and Cave depend on the
position (x, y, z). For simplicity of the equations, the unit of C is kg/m3 or mol/m3. If
mass fraction w is used (as often in literature), then density of each phase will appear,
that is, Ci in each equation would be replaced by �iwi where �i is density of phase i and
wi is mass fraction of the given component in phase i.
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It is necessary to relate the mobility and diffusivity. From Ji � �Mi�[�i/(RT)] �
�Di�Ci, the general relation between M and D inside any phase i can be obtained as
follows (following, for example, Kirkaldy and Young, 1987, p.14):

Di � Mi

d�i/�RT �

dCi
. (3)

The chemical potential at any point (representative volume element) can be written as:

�i � �i
0�T, P� � RT ln�	iCi�, (4)

where T and P are temperature and pressure, �i
0 is the chemical potential of the

component at the standard state (that is, when 	iCi � 1), and 	i is the activity
coefficient. Note that subscript i means phases, not components. Combining equations
(3) and (4), the following can be obtained:

Di �
Mi

Ci
�1 �

d�ln 	i�

d ln�Ci�
�. (5)

Because the diffusion flux equation (that is, Fick’s law) J � �D�C only applies to
roughly ideal solutions (for highly non-ideal solutions, it is necessary to include the
effect of 	 in the flux equation, for example, Zhang, 1993, 2008, 2010; Lesher, 2010),
equation (5) is also simplified for roughly ideal solutions with 	 being roughly
constant, leading to the following equation for every phase i:

Mi � DiCi. (6)

In addition to the above equation relating M and D in each phase, the relation
between Mbulk and Dbulk is also required. From equations (2a) and (2b), because
�ave��A, we have:

Jbulk � �Mbulk�
�ave

RT
� �Mbulk�

�A

RT
, (7)

Jbulk � �Dbulk�Cave � �Dbulk�
CA��A � �BKB/A � �CKC/A � · · ·��, (8)

where subscripts A, B, and C mean phases, and KB/A � CB/CA is the partition
coefficient. Assuming constant �i and Ki/A, equation (8) becomes:

Jbulk � �Dbulk��A � �BKB/A � �CKC/A � · · ·��CA. (9)

Comparing equations (7) and (9) leads to:

Mbulk � Dbulk��A � �BKB/A � �CKC/A � · · ·�
1

d
�A

RT�dCA

. (10)

Carrying out the differentiation assuming roughly ideal solutions leads to:

Mbulk � Dbulk��A � �BKB/A � �CKC/A � · · ·�CA � Dbulk ��iCi. (11)

That is, for constant �i and Ki and assuming roughly ideal solutions for each phase, we
have:

Mbulk � DbulkCave. (12)

Using equations (6) and (12), if Mbulk can be related to Mi, then Dbulk can also be
related to Di.
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On the other hand, if the phase proportions vary along the diffusion path (such as
variable degree of partial melting) but the partition coefficient does not vary, then
equation (8) in a two-phase medium becomes

Jbulk � �Dbulk��A � �BKB/A��CA � DbulkCA�KB/A � 1���A. (13)

The relation between Mbulk and Dbulk for roughly ideal solutions becomes:

Mbulk � Dbulk�Cave � �CB � CA�
d�A

d�lnCA��, (14)

where d�A/d(lnCA) is taken along the direction of diffusion. It can be seen that the
relevant relations are complicated when phase proportions vary.

diffusion in a multiphase medium made of diffusionally isotropic phases
As shown by previous workers (for example, Brady, 1983), the bulk mobility of a

multiphase medium depends on the alignment of the individual grains. Two special
and simple cases are shown in figures 1A and 1B, referred to as parallel and series
alignments, respectively.

Bulk Diffusivity for Parallel Alignment
For parallel alignment (fig. 1A), the bulk mobility of a two-phase medium can be

found using the solution in Hill (1963) and the similarity:

Mbulk
parallel � MAB

parallel � �AMA � �BMB. (15)

Replacing equations (6) and (12) into equation (15), we get:

Dbulk
parallel �

�ACADA � �BCBDB

�ACA � �BCB
�

�ADA � �BKB/ADB

�A � �BKB/A
. (16)

This equation differs significantly from Dbulk
parallel � �ADA � �BDB in Barrer (1968),

Crank (1975), and Brady (1983), and the differences increase when the difference

A B

A B

A
B

Fig. 1. Two cases of phase alignment. The arrow in the middle indicates the diffusion direction. The
first case (left-hand side) is referred to as parallel alignment and the second (right-hand side) is referred to
as series alignment. From Brady (1983).
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between CA and CB increases. Only when CA � CB, would equation (16) be the same as
that in the earlier works.

To confirm our approach, we show in Appendix 1 that equation (16) can be
directly derived. The independent derivation verifies our mobility approach.

It is straightforward to extend equation (16) to an N-phase medium as:

Dbulk
parallel �

��iCiDi��iCi
�

�ADA � �BKB/ADB � �CKC/ADC � · · ·
�A � �BKB/A � �CKC/A � · · ·

, (17)

where summation is over all phases.
If mass fractions are used as concentrations, then Ci is replaced by �iwi (where �i is

density of phase i) in equation (17), leading to:

Dbulk
parallel �

��A�iwiDi��i�iwi
�

�A�ADA � �B�BK
B/ADB � �C�CK
C/ADC � · · ·
�A�A � �B�BK
B/A � �C�CK
C/A � · · ·

, (18)

where K
B/A � wB/wA (partition coefficient expressed as ratio of mass fractions). If
mole fractions rather than mass fractions are used as concentrations, the density �i
would be molar density (mol/m3, or the inverse of the molar volume) of each phase,
and the partition coefficient would be the mole fraction ratio in a pair of phases.

Bulk Diffusivity for Series Alignment
For series alignment (fig. 1B), the bulk mobility of the two-phase rock can be

expressed as follows (Hill, 1963):

1
Mbulk

series �
�A

MA
�

�B

MB
. (19)

Replacing equations (6) and (12) into the above equation leads to:

1
Dbulk

series � ��ACA � �BCB�� �A

CADA
�

�B

CBDB
�, (20)

which may also be derived directly for the case of steady-state diffusion (Appendix 2),
verifying our mobility approach again.

Bulk diffusivity values obtained from equation (20) can differ from those from
Barrer (1968), Crank (1975), and Brady (1983) by many orders of magnitude. For
example, for a hypothetical case of a two-phase medium with CB � 2.5 � 10�4 CA, DA �
DB, and �A � �B, equation (20) leads to Dbulk

series � 10�3DA, whereas the old expressions
would give D bulk

series � DA, three orders of magnitude different from the correct value.
Equation (20) can be readily extended to multi-phase media:

1
Dbulk

series � ���iCi��� �i

CiDi
�, (21)

which can also be written in terms of partition coefficients:

1
Dbulk

series � ��A � �BKB/A � �CKC/A � · · ·���A

DA
�

�B

KB/ADB
�

�C

KC/ADC
� · · ·�, (22)

or expressed using mass fractions as concentrations:
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1
Dbulk

series � ���i�iwi��� �i

�iwiDi
� � ��A�A � �B�BK
B/A � · · ·�� �A

�ADA
�

�B

K
B/A�BDB
� · · ·�.

(23)

Hashin-Shtrikman Bounds and Summary
In addition to parallel and series alignments discussed above, there are other

rigorous estimates on the bulk mobility, including Maxwell (1873) and the well-known
Hashin-Shtrikman upper and lower bounds (Hashin, 1962; Hashin and Shtrikman,
1962a, 1962b, 1962c, 1963a). Our approach above can be used to derive diffusivity
relations corresponding to these and all other conductivity and permeability relations
(for example, Tsao, 1961; Cheng and Vachon, 1969; Tinga and others, 1973; Lan-
dauer, 1978). For example, the relations derived by Kalnin and others (2002; their eqs
24 and 28) can be readily obtained. Below, we specifically provide the upper and lower
bounds of bulk diffusivity corresponding to the Hashin-Shtrikman bounds for perme-
ability or conductivity.

For a heterogeneous medium of N phases with mobilities M1 � M2 � . . . � MN,
the value of Mbulk satisfies:

M HS
upper � Mbulk � M HS

lower, (24)

where MHS
upper and MHS

lower are the Hashin-Shtrikman upper and lower bounds, and are
given by (Milton, 2002, p.458; Liu 2010):

M HS
upper � M1 �

d
1

�
i�2

N �i

d
Mi � M1

�
1

M1

�
1

M1

, (25)

M HS
lower � MN �

d
1

�
i�1

N�1 �i

d
Mi � MN

�
1

MN

�
1

MN

, (26)

where d � 3 is the dimension of the space. Combining the above two equations with
equations (6) and (12), the upper and lower bounds of Dbulk can be written as:

DHS
upper �

D1C1

�
i�1

N

�iCi

�
d

�
1

�
i�2

N �i

d
DiCi � D1C1

�
1

D1C1

�
1

D1C1	 �
i�1

N

�iCi

, (27)
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DHS
lower �

DNCN

�
i�1

N

�iCi

�
d

�
1

�
i�1

N�1 �i

d
DiCi � DNCN

�
1

DNCN

�
1

DNCN	 �
i�1

N

�iCi

. (28)

If mass fractions are used, the equations are:

DHS
upper �

D1�1w1

�
i�1

N

�i�iwi

�
d

�
1

�
i�2

N �i

d
Di�iwi � D1�1w1

�
1

D1�1w1

�
1

D1�1w1	 �
i�1

N

�i�iwi

, (29)

DHS
lower �

DN �NwN

�
i�1

N

�i�iwi

�
d

�
1

�
i�1

N�1 �i

d
Di�iwi � DN �NwN

�
1

DN �NwN

�
1

DN �NwN	 �
i�1

N

�i�iwi

. (30)

In equations (27) to (30), the sequence of D1, D2, . . . and DN is such that M1 � M2
� . . . � MN.

Table 1 summarizes some relations for two-phase media. The Hashin-Shtrikman
bounds can be achieved by various microstructures including coated spheres (Hashin,

Table 1

Comparison of bulk mobility and diffusivity relations in two-phase media

Geometry Mobility M  Diffusivity D  

Parallel  
(fig. 1A) Mbulk

parallel
 = AMA + BMB Dbulk

parallel ACADA BCBDB

ACA BCB

Series   
(fig.1B) 

1

Mbulk
series

A

MA

B

MB

 
1

Dbulk
series ( ACA BCB)( A

CA DA

B

CBDB

)  

Hashin-
Shtrikman 

lower bound 

MHS
lower MB

A
1

MA MB

B

3MB

 DHS
lower CADA 2( ACADA BCBDB)

( ACA BCB)(2 A B
CADA

CBDB

)
 

Hashin-
Shtrikman 

upper bound 

M bulk
upper MA

B
1

MB MA

A

3MA

DHS
upper CBDB 2( ACADA BCBDB)

( ACA BCB)(2 B A
CBDB

CADA

)
 

Maxwell 
(1873, 
p. 365) 

Mbulk
Maxwell MA

B
1

MB MA

2 A

3MA

Dbulk
Maxwell ACADA (2 B)CBDB

(1 2 B 2 A
CBDB

CADA

)( ACA BCB)

The Hashin-Shtrikman bounds are given under the condition of MA � MB, or DACA � DBCB. The
Maxwell (1873) relation is for dilute dispersion of spherical B in matrix A.
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1962), multi-rank laminates and periodic E-inclusions (Liu and others, 2007). All these
constructions show a noteworthy difference between microstructures attaining the
lower bound and those attaining the upper bound. Generally, for a two-phase medium, if
the matrix (the continuous phase) has low mobility, the bulk diffusivity is closer to the lower bound;
if the matrix has high mobility, the bulk diffusivity is closer to the upper bound (Hashin, 1962;
Liu, 2010).

Some calculated curves of the Hashin-Shtrikman upper and lower bounds of Dbulk
versus �B for DB/DA � 100 and some specific ratios of CB/CA are shown in figure 2. The
case for CB/CA � 1 is shown in figure 2D, in which the dependence of Dbulk on �B is the
same as in previous approaches (Barrer, 1968; Crank, 1975; Brady, 1983). Comparing

0.01

0.1
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upper bound
lower bound
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CB/CA = 0.001 A

1

D
bu

lk
/D

A
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D
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D
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CB/CA = 10
E

D
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A
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0 0.2 0.4 0.6 0.8 1
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upper bound
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CB/CA = 100
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D
bu

lk
/D

A

10

Fig. 2. Hashin-Shtrikman upper and lower bounds of diffusivity in a two-phase medium with DB/DA �
100 and various CB/CA.
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the results in figures 2A, 2B, 2C, 2E, and 2F (CB/CA � 1) with those in figure 2D shows
that the ratio CB/CA plays a major role in controlling both the upper and lower limits of
the bulk diffusivity. That is, our correction to the literature is a major correction. When
(DB/DA)�(CB/CA) � 1, that is, when CADA � CBDB, meaning that the mobilities in the
two phases are the same, the upper and lower bounds of Dbulk become the same. Under
other conditions, the upper and lower Hashin-Shtrikman bounds often allow a very
large range of the bulk diffusivity. That is, there is a great need to improve these
bounds. Another interesting feature in figure 2 is that even though the upper
Hashin-Shtrikman bound never exceeds max(DA,DB), the lower Hashin-Shtrikman
bound can sometimes be smaller than the min(DA,DB).

A numeric example is shown here to illustrate our approach. Consider H2O
diffusion at 1573 K in a hypothetical mantle rock made of 60 percent olivine and 40
percent clinopyroxene with an average grain diameter of 4 mm. Because the form of H
in olivine and clinopyroxene is OH, not molecular H2O, we use H2Ot (total H2O) to
denote the component. There is a range of H2Ot partition coefficient between olivine
and clinopyroxene (Kohn and Grant, 2006), and we use an intermediate value 0.04.
H2Ot diffusivity is taken to be 1.4 � 10�9 m2/s (upper bound) in olivine (Kohlstedt
and Mackwell, 1998) and 1.3 � 10�11 m2/s in clinopyroxene (Hercule and Ingrin,
1999). Mean homogenization time (r2/D) is 0.8 hours for olivine and 3.6 days for
clinopyroxene. For time scales of a year or more, diffusion in the whole rock can be
characterized by a bulk H2Ot diffusivity (DH2Ot,bulk). Using our equations (27) and (28)
(or the Hashin-Shtrikman equations for Dbulk of 2 phases in table 1), the lower and
upper bounds of DH2Ot,bulk in the rock are 7.29 � 10�11 m2/s and 8.41 � 10�11 m2/s.
Using previous equations not considering the partitioning of H2Ot, the lower and
upper bounds would be 6.77 � 10�11 m2/s and 7.08 � 10�10 m2/s. The difference in
the upper bound is large in this case, a factor of 8.4.

For completely random distribution of equidimensional particles of two phases
such as olivine and pyroxene, it is expected that there should be only one well-defined
bulk diffusivity rather than an upper bound and a lower bound. Such a relation is yet to
be discovered. Numerical simulations might be the key toward such progress.

diffusion in porous media and tortuosity
An often-encountered case of multi-phase diffusion is diffusion in porous media.

The fluid (either melt or aqueous solution) in a porous media is one phase, and the
rest are solid phases. The general relations derived in the preceding section can be
applied. Frequently, diffusivities in the solid phases are much smaller than that in the
fluid phase so that �fluidCfluidDfluid �� �solidCsolidDsolid for every solid phase, which
simplifies the expression of the bulk diffusivity discussed above. Numerous workers
have directly derived the relevant diffusion terms in porous media by ignoring
diffusion contribution of the solid phases (for example, Dullien, 1979; Berner, 1980;
McKenzie, 1984; Bickle and McKenzie, 1987; Bickle, 1992; et cetera) rather than using
the similarity approach. Hence, elemental partitioning is incorporated, avoiding some
of the errors produced due to the use of the similarity argument. Some of these
expressions are correct (for example, Berner, 1980), and some are only applicable to
parallel alignment (for example, McKenzie, 1984; Bickle and McKenzie, 1987), and
some may have minor errors or unclearly defined confusing terms (for example,
Dullien, 1979; Bickle, 1992). These expressions were followed by later workers (for
example, Baxter and DePaolo, 2000; Watson and Baxter, 2007). Below we derive the
relations for porous systems under various simplifications.

High-Temperature Porous Systems Containing Melt
For partial melting with melt as the fluid phase, the temperature is high, and the

small diffusivities in solid phases may still be enough for the solid phases to maintain
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equilibrium with the adjacent melt. The discussion in this section assumes local
equilibrium between the solid phases and melt, whereas the case for the solid phases
not participating in the diffusion at all is discussed next (room-temperature sediment).
If diffusion in the solid phases is significant in transporting a given component (for
example, Li diffusion in plagioclase, Giletti and Shanahan, 1997 and H2O diffusion in
garnet, Wang and others, 1996), then the general equations (for example, eqs 17, 22,
27-30) must be used.

If diffusion in the solid phases does not contribute significantly to the bulk
diffusion flux (even though local equilibrium is still maintained), some simplifications
can be made as follows. For parallel alignment, the bulk diffusivity can be expressed as
(using eq 16 by letting phase A be the melt phase, treating all the solid phases as a
combined “phase,” and ignoring the terms containing Dsolid):

Dbulk
parallel �

�Dmelt

� � �1 � ��K solids/melt
�

��meltDmelt

��melt � �1 � ���solidsK 
solids/melt
, (31)

where � � Vmelt/(Vmelt�Vsolids) is the volume fraction of the melt (porosity), �melt and
�solids are melt density and average solid phase density, K is partition coefficient
between volume-average solid phases and melt in which the unit of concentration is
mol/m3 or kg/m3, and K
 is partition coefficient between mass-averaged solid phases
and melt in which the unit of concentration is mass fraction.

For series alignment with only one mineral phase in addition to the melt,
contribution of diffusion in the solid phases to the diffusive flux cannot be ignored,
otherwise the bulk diffusivity would be zero. Including the effect of small diffusivity in
the solid phases and assuming �Dsolid/Dmelt ��(1 � �)/K solid/melt, using equation
(20), the diffusivity can be simplified as:

Dbulk
series �

Dsolid

�1 � ����1 � �� �
�

K solid/melt
� �

Dsolid

�1 � ����1 � �� �
��melt

�solidK 
solid/melt
���Dmelt.

(32)

For estimating the Hashin-Shtrikman upper bound, diffusion in the melt often
dominates. On the other hand, for estimating the lower bound, contribution of
diffusion in the solid phases (assuming only one solid phase) must be considered. The
Hashin-Shtrikman upper and lower bounds are:

DHS
upper �

2�Dmelt


� � �1 � ��K solid/melt��3 � ��
�

2�Dmelt

�� � �1 � ��
�solid

�melt
K 
solid/melt��3 � ��

,

(33)

DHS
lower �

�1 � 2��Dsolid

�1 � ��2 �
�

K solid/melt

�
�1 � 2��Dsolid

�1 � ��2 �
��melt

�solidK solid/melt

��Dmelt. (34)

Equation (31) (for parallel alignment) above is similar to the diffusion part of
equation (A42) in McKenzie (1984), as well as equations (6) and (7) in Bickle and
McKenzie (1987), except the disappearance of (1 � �) in Bickle and McKenzie (1987)
(which has only trivial effect for small �). That is, their diffusion models implicitly
assumed the maximum diffusivity possible for porous medium diffusion (� the
Hashin-Shtrikman upper bound) that is only achievable in parallel alignment. If more
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accurate handling of diffusion is necessary, one way to improve their treatments is to
use the concept of tortuosity (see below).

Room-Temperature Porous Sediment
For processes in sediment, diffusivity in aqueous solutions (often 10�9 m2/s;

Cussler, 1997, p.112) is often more than 30 orders of magnitude greater than that in
solid phases (for example, Zhang, 2008, p. 583-585). Very rough estimate of diffusion
distance in most solid phases at room temperature is typically less than 1 atomic
distance in billions of years (for example, Zhang, 2008, p.92). Hence, (i) diffusion in
the solid phases is negligible in terms of bulk diffusion, and (ii) diffusion in the solid
phases does not change the solid composition, meaning that the solid phases are not in
local equilibrium with the pore fluid as fluid composition changes (opposite to the
case of high-temperature porous medium with melt) except for newly precipitated
solids, which are not considered in our simple treatments because all �is must be
constant. In other words, the solid phases are inert and do not participate in diffusion
at all, and the problem of diffusion in porous sediment is essentially diffusion in the
fluid phase but with solid particles blocking some of the pathways. Hence, the average
concentration in the porous media (in which the solid phases stay the same but are
included in the average) is often less interesting than simply the concentration in the
fluid phase. Therefore, diffusion treatment often only considers the concentration
variation in the pore fluid. As shown in Appendix 3, diffusion in any single phase in a
multi-phase medium is also described by the same Dbulk that depends on phase
alignments. Hence, diffusion in the aqueous solution in porous sediment can be
described by the following Dbulk:

Dbulk
parallel � Dfluid, (35)

Dbulk
series � 0, (36)

DHS
upper �

2
�3 � ��

Dfluid, (37)

DHS
lower � 0. (38)

It can be seen that the Hashin-Shtrikman lower bound does not provide much
constraint. As mentioned earlier, because the matrix phase (the pore fluid) has high
diffusivity, the upper bound (eq 37) is closer to the true bulk diffusivity. More accurate
treatment can use the empirical tortuosity approach (next section).

Tortuosity
An empirical, and probably more practical, way to treat diffusion in porous

materials is to use the concept of tortuosity (�), defined as the ratio of the actual path
length (Lactual) through the pore fluid, to the shortest straight distance (Lstraight) along
the diffusion direction z, or � � Lactual/Lstraight. For parallel alignment, � � 1. For all
other alignments, � � 1. Tortuosity is often estimated empirically, not based on the
specific phase alignments. Because (i) tortuosity makes the bulk diffusivity through the
media smaller than straight fluid diffusivity, and (ii) tortuosity is defined as the ratio of
distance, whereas the distance-diffusivity relation is L2 � Dt, the general relation
between the bulk diffusivity and fluid-phase diffusivity in porous media can be written
as:

Dbulk � Dbulk
parallel/�2. (39)

If the solid phases can maintain local equilibrium with the fluid but diffusion in the
solid phases does not contribute significantly to the overall diffusion flux (high-
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temperature porous material containing melt), then combining equations (31) and
(39) leads to:

Dbulk �
�Dmelt/�2

� � �1 � ��K solids/melt
�

��meltDmelt/�2

��melt � �1 � ���solidsK 
solids/melt
, (40)

If the composition of solid phases does not change at all (porous sediment), then
combining equations (35) and (39) leads to:

Dbulk � Dfluid/�2. (41)

There is often confusion in the literature on how � plays a role in Dbulk: some authors
used the first power rather than the second power of � (for example, Smith, 1970,
p.465; Dullian, 1979, p. 346, eq 7.3.6; Cussler, 1997, p.173), and some authors placed
the first power of tortuosity on the numerator rather than the denominator (for
example, Bickle, 1992; Baxter and DePaolo, 2000; Watson and Baxter, 2007). These
might be simple typographical errors or different definitions, but they are confusing
(some authors did use the tortuosity correctly, for example, eq 3-49 in Berner, 1980).
Dullian (1979) further added to the confusion by presenting another (even more
erroneous) equation of Dbulk � �Dfluid/�, which he called the relation in steady-state
experiments and was sometimes quoted by others (for example, Bickle and McKenzie,
1987). Epstein (1989) published a paper that specifically cleared the confusion in
detail.

Li and Gregory (1974) measured that �2 � 1.8 for deep-sea sediments. Cussler
(1997, p.173) stated (likely from experimental measurements) that the value of
“tortuosity” (actually meaning �2) is typically between 2 and 6. The simulation results of
Scott (2001) showed that the optimal value of “tortuosity” (actually meaning �2) is 2.6.
Summarizing these results, �2 can range from 1 to 6, with typical values of 1.8 to 2.6. On
the other hand, the �2 value ranges from 1 (� � 1) to 1.5 (� � 0) based on the
Hashin-Shtrikman upper bound (eq 37) of �2 � (3 � �)/2, and is infinity based on the
lower bound, confirming that for the case of porous medium in which the diffusivity in
the matrix is high, the upper bound is much closer to the true bulk diffusivity.

If some of the pores are isolated, then only the connected pores contribute to the
bulk diffusion, and equation (39) becomes:

Dbulk � �1 � ε�Dbulk
parallel/�2, (42)

where (1 � ε) is the volume fraction of connected pores over total pores.
We extend the concept of tortuosity to provide an alternative way to express the

bulk diffusivity in a heterogeneous medium by incorporating tortuosity into the
parallel alignment equation (eqs 16-18) so that the expression is in closed form. By
extending equation (17) including the tortuosity, it becomes

Dbulk �
��iCiDi/�i

2

��iCi
, (43)

where �i is tortuosity in terms of phase i. In the above general equation, the concept of
�i for an interconnected phase is straightforward, especially when there is no exchange
between the phases. However, when there is exchange between the phases, and
especially for an unconnected phase, the �i value is not straightforward as Lactual/
Lstraight, but can be viewed an extension of the tortuosity concept, with values
obtainable from models. For example, on the basis of the Maxwell (1873) relation
(table 1) for the case of dilute spherical B in matrix A, meaning phase A is intercon-
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nected but phase B is not, by comparing the expression of Dbulk
Maxwell and equation (43),

we obtain:

�A
2 � 1 � 2�B � 2�A

CBDB

CADA
� 1,

�B
2 �

�B�1 � 2�B � 2�A

CBDB

CADA
�

2 � �B
.

Hence, in our extended definition, “tortuosity” of a phase may even be smaller than 1.

contribution of grain boundary diffusion to bulk diffusion

A rock (even a single phase rock) is polycrystalline with grain boundaries.
Sometimes there could be a minor amount of fluid along the grain boundaries,
meaning that they may not be simple grain boundaries. Hence, the term “grain
boundaries” has often been replaced by terms like the intergranular region (IGR)
(Brady, 1983), or intergranular transporting medium (ITM) (Baxter and DePaolo,
2000; Watson and Baxter, 2007). We follow the latter and use ITM hereafter. Even
though diffusivity likely depends on the exact interfaces between two grains (for
example, between two similar crystalline faces or different faces), such consideration is
too complicated. For simplicity, all kinds of interfaces are averaged to be one ITM and
treated as one “phase” in terms of their contribution to the diffusive flux. Assuming
ITM and grain interiors are in equilibrium, the equations in table 1 and equation (43)
will be applicable. For example, the general expression of Dbulk (eq 43) is:

Dbulk �
�ITMKITM/interiorDITM/�ITM

2 � �1 � �ITM�Dinterior/�interior
2

�ITMKITM/interior � �1 � �ITM�
, (44)

where DITM means diffusivity in the ITM and Dinterior means that in the grain interior, �
is the tortuosity factor, and KITM/interior is the segregation factor equaling the ratio of
the elemental concentration in the ITM to that in the grain interior with concentration
in kg/m3, or in mass fraction if ITM has the same density as the crystalline phase.

In the literature on grain boundary diffusion, some authors did not include the
effect of possible segregation (enrichment or depletion) of a given element in ITM
(for example, Hart, 1957; Chen and Schuh, 2007), that is, KITM/interior was assumed to
be 1. Other authors (for example, Mortlock, 1960; Mishin and Herzig, 1995; Baxter
and DePaolo, 2000; Watson and Baxter, 2007; Dohmen and Wilke, 2010) included
such effect but with various simplifications.

For example, if diffusion in the interior of grains does not significantly contribute
to the overall diffusion flux, the problem becomes similar to diffusion in a solid-melt
porous medium at high temperature and can be treated using the concept of tortuosity
as follows (eq 40, or simplified from eq 44):

Dbulk �
�ITMDITM/�2

�ITM � �1 � �ITM�/KITM/interior
. (45)

At one extreme, assuming �ITMKITM/interior �� 1, meaning the element under
consideration is mostly in the ITM rather than in grain interiors, then equation (45)
simplifies to

Dbulk � DITM/�2. (46)
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The above equation is similar to equation (41), and points out a small error in
equation (5) of Watson and Baxter (2007) since � enters their expression (in addition
to identifying their “tortuosity” as 1/�2) as in one of Dullian’s equations discussed
earlier in this work. The difference is because we incorporated partitioning in deriving
the bulk diffusivity for a two-phase medium (different from implicitly assuming
KITM/interior � 1 by Barrer, 1968, Crank, 1975, and Brady, 1983) so that � is canceled.

At the other extreme, assuming �ITMKITM/interior �� 1, meaning the element
under consideration is mostly in grain interiors rather than in the ITM, then equation
(45) simplifies to

Dbulk �
�ITMKITM/solidDITM

�1 � �ITM��2 . (47)

The above equation is similar to equation (2) of Baxter and DePaolo (2000) and
equation (6) of Watson and Baxter (2007) if their “tortuosity” is identified to be 1/�2.

If diffusion in grain interior cannot be ignored, and �ITMKITM/interior �� 1 (the
element under consideration is mostly in grain interiors rather than in the ITM), and
further ignoring tortuosity (that is, assuming parallel alignment, meaning � � 1), the
general equation (44) becomes

Dbulk
parallel � �ITMKITM/interiorDITM � �1 � �ITMKITM/interior�Dinterior,

which is the same as the equation given in Mortlock (1960) and Dohmen and Wilke
(2010, eq 13). Because perfect parallel grain boundary alignment is unlikely, we
suggest that the tortuosity factor be included in estimating the bulk diffusivity.

effective diffusivity of one-phase polycrystalline material

In a single-phase polycrystalline material, if diffusion through grain boundaries is
significant, then an approximate treatment is to treat grain boundaries as a separate
“phase” (ITM) and the problem becomes a two-phase problem as discussed earlier.
This section treats the case when contribution by ITM diffusion is negligible to bulk
diffusion.

Because the bulk mineral is made of one single phase, there is no concentration
partitioning, meaning concentration is continuous. Hence, results derived for conduc-
tivities (Hashin and Shtrikman, 1963b) can be applied directly to diffusion. To
distinguish with bulk diffusivity for multiphase systems, effective diffusivity is used to
denote diffusivity in a single-phase system with various grain orientations. For an
isotropic mineral, the effective diffusivity in the bulk material is simply the diffusivity in
the mineral. For three-dimensional anisotropic minerals, the effective diffusivity (Deff)
is bounded between the following (Hashin and Shtrikman, 1963b):

D3

4D3
2 � 7D1D2 � 8D1D3 � 8D2D3

16D3
2 � D1D2 � 5D1D3 � 5D2D3

� Deff � D1

4D1
2 � 8D1D2 � 8D1D3 � 7D2D3

16D1
2 � 5D1D2 � 5D1D3 � D2D3

,

(48)

where D1 � D2 � D3 are the principal diffusivities of the mineral considered. When
differences in D1, D2 and D3 are large, the upper and lower bounds can be far apart.

For diffusion in a multiphase medium in which some phases are diffusionally
anisotropic, the best estimate of diffusivity at present is to use the Hashin-Shtrikman
upper and lower bounds, in which each diffusivity can have a range as in equation (48),
making the estimated upper and lower bounds even farther apart. Hence, there is a
critical need to improve the estimation of bulk diffusivity in heterogeneous media and
randomly oriented grains of anisotropic material.
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Appendix 1

direct derivation of bulk diffusivity for parallel alignment

Consider the case when phases A and B are aligned along the direction of diffusion as in figure 1A and
the diffusion cross section area ratio is the same as the volume ratio of the two phases. Then, for any
component i, we have

Ji,bulk � �A Ji,A � �B Ji,B � ��ADi,A�Ci,A � �BKi,B/ADi,B�Ci,A. (A1-1)

Ji,bulk � ���ADi,A � �BKi,B/ADi,B��Ci,A. (A1-2)

Because Ci,ave � �ACi,A��BCi,B � (�A��BKi,B/A)Ci,A, we obtain:

Ji,bulk � �
��ADi,A � Ki,B/A�BDi,B�

��A � Ki,B/A�B�
�Ci,ave. (A1-3)

Comparing with the definition of Di,bulk (eq 2b) we obtain:

Di,bulk �
��ADi,A � Ki,B/A�BDi,B�

��A � Ki,B/A�B�
. (A1-4)

The above can also be written into the following form:

Di,bulk �
��ACi,ADi,A � �BCi,BDi,B�

��ACi,A � �BCi,B�
, (A1-5)

which is identical to equation (16), and hence verifies the mobility approach.

Appendix 2

direct derivation of bulk diffusivity for series alignment

Consider the case when phases A and B are aligned along the direction of diffusion as in figure 1B.
Assume that the width of A is uniform (dA) and that of B is also uniform (dB) throughout. The ratio of the
width would be the same as dA/dB � �A/�B. For the series alignment, for simplicity, we only treat the steady
state case to compare with the general solution (eq 20). Although we only consider the steady state here,
equation (20) applies more generally as long as the diffusion distance is much larger than individual grain
sizes.

If steady state is reached, then concentration profile in each layer is linear with constant flux:

Jbulk � �Dbulk�Cave/�z � �DA�CA1/�z � �DB�CB1/�z � �DA�CA2/�z � · · · (A2-1)

where A1 is the first layer of A, B1 is the first layer of B following A1, A2 is the second layer of A following B1,
et cetera. At the contact of A and B, it is assumed that there is interface equilibrium with the partition
coefficient of K � CB/CA. Let coordinates of the layers be z0, z1 (interface from A1 to B1), z2 (interface from
B1 to A2), z3 (interface from A2 to B2), z4 (interface from B2 to A3), et cetera. For example, if �A/�B �
0.75/0.25 � 3, K � KB/A � CB/CA � 2, and DA/DB � 6, then we would have a profile as shown in figure A2-1
(black solid points with dashed lines), and the average concentration profile is given by the solid line.

Define the concentration slopes in phases A and B to be sA and sB. Then, from equation (A2-1), the
following can be obtained:

DAsA � DBsB. (A2-2)

The concentrations at points z1, z2, z3, and z4 can be given as:

CA�z1� � CA�z0� � sAdA,

CB�z1� � KCA�z1� � K 
CA�z0� � sAdA�.

1043On diffusion in heterogeneous media



CB�z2� � CB�z1� � sBdB � K 
CA�z0� � sAdA� � sBdB � K 
CA�z0� � sAdA� � DAsAdB/DB,

CA�z2� � CB�z2�/K � CA�z0� � sAdA � DAsAdB/�KDB�,

CA�z3� � CA�z2� � sAdA � CA�z0� � 2sAdA � DAsAdB/�KDB�,

CB�z3� � KCA�z3� � K 
CA�z0� � 2sAdA� � DAsAdB/�DB�,

CB�z4� � CB�z3� � sBdB � K 
CA�z0� � 2sAdA� � 2DAsAdB/�DB�.

Hence, the average concentration of layers A1 � B1 (from z0 to z2) as a representative volume element is

Cave1 � 0.5�A
CA�z0� � CA�z1�� � 0.5�B
CB�z1� � CB�z2��

� �ACA�z0� � �BCB�z1� � 0.5��AsAdA � �BsBdB�.

Similarly, the average concentration of layers A2 � B2 (from z2 to z4) is

Cave2 � average of A2 � B2 � 0.5�A
CA�z2� � CA�z3�� � 0.5�B
CB�z3� � CB�z4��

� �ACA�z2� � �BCB�z3� � 0.5��AsAdA � �BsBdB�.

Therefore, the slope of the average concentration can be written as:
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Fig. A2-1. Steady state concentration profile due to diffusion and partitioning in a two-phase heteroge-
neous medium with laminates aligned normal to the diffusion direction and the following parameters:
�A/�B � 3, KB/A � 2, and DA/DB � 6. The difference in phase proportion � is reflected in the thickness of
phase A and B; the partition is reflected in the jump in concentration at the contact of A and B, and the
difference in diffusivity D is reflected in the slope of C versus z in each phase. The points above the red line
are for concentrations in phase B, and those below the red line are for concentrations in phase A.
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�Cave/�z � �Cave2 � Cave1�/�dA � dB� � ��A
CA�z2� � CA�z0�� � �B
CB�z3� � CB�z1���/�dA � dB�

� ��A
sA�A � DAsA�B/�KDB�� � �B
KsA�A � DAsA�B/DB��

From A2-1, we have

Jbulk � �Dbulk�Cave/�z � �DAsA.

Hence,

Dbulk��A
�A � DA�B/�KDB�� � �B
K�A � DA�B/DB�� � DA, (A2-3)

which is equivalent to equation (20) in the text.

Appendix 3

diffusion equation for concentration in any phase in a multi-phase system

Any phase here does not mean any single grain, but all grains of the same phase. The length scale of
consideration here is much larger than individual grains so that Dbulk can be defined. Based on the flux
equation that defines Dbulk (eq 2b), we can write:

�Cave

�t
� ��Jbulk � ��Dbulk�Cave�. (A3-1)

Using the local equilibrium condition, Cave can be expressed as:

Cave � ��iCi � CA ��iKi/A, (A3-2)

where the summation is over all the phases, and Ki/A is the partition coefficient of the given component
between phase i and phase A. Replacing equation (A3-2) into equation (A3-1) leads to

��CA ��iKi/A�

�t
� �
Dbulk��CA ��iKi/A��. (A3-3)

If all �i and Ki/A values are independent of space and time (for example, there is no variation in the degree
of partial melting), then

�CA

�t
� �
Dbulk�CA�. (A3-4)

That is, the effective diffusion of a component in any phase can also be described by the bulk diffusivity if all
�i and Ki/A are constant. Note that (i) the diffusivity in equation (A3-4) is the bulk (or effective) diffusivity of
the multi-phase medium, not the individual diffusivity in phase A, and (ii) equation (A3-4) does not relate
Dbulk to diffusivities in individual phases. Equation (A3-4) is similar to that in Berner (1980). A special case is
when phase A is fluid and the rest are solid phases whose compositions do not change with time, meaning
that the solid phases do not participate in the diffusion at all. Then equation (A3-4) still holds, and Dbulk

simply becomes Dfluid/�2 (eq 41).
On the other hand, if �i values vary (for example, increasing degree of partial melting, or porous media

with mineral dissolution) and/or Ki/A values vary (for example, changing temperature and/or pressure),
then the full equation (A3-3), in which Dbulk is a complicated function of �i and Ki/A, must be used.
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