1 Prelimilaries

1.1 A review of linear algebra

Vector Space Let IR be the scalar field of real numbers. We consider only real vector spaces. Let
V,, be a set. V,, is a vector space (also called a linear space) if it is equipped with two operations:

scalar product IR x V,, = V,,
vector addition V, x V, — V,,

and it is closed under these two operations. That is, V,, is a vector spaceif Va, 5 € IR & Va,b € V,,,
aa+ b e V,.
The vector space V;, is n-dimensional if we can find a basis {e;,- - ,e,} C V,, such that for any

a € V,,, we have a unique decomposition

n

a= E a;€;,

i=1

where a; € IR (i = 1,-- - n) are the components (coordinates) of vector a under the basis {e;,--- ,e,}.
Tensor Space Let V,, (V;,,) be n-dimensional (m-dimensional) vector space. A mapping A :
Vi, = Vi, is a tensor if A is linear. That is, Va, 5 € IR & Va,b € V,,,

A(aa+ fb) = aA(a) + BA(b). (1)

Let Lin(V;,, Vi;,) be the collection of all linear mappings (i.e., tensors) with domain V;, and range
Vin. For any « € IR and any Aj, As € Lin(V,, Vi,), define two operations

scalar product (aAj)(a) = aAi(a) VaeV,,
vector addition (A; + Asz)(a) = Ai(a) + Az(a) VaeV,.

¢ Coam: For any o, 8 € IR and any A, As € Lin(V,,, Vi), A1 + Az is a linear mapping
(from V,, to Vp,).

The above claim implies that the set Lin(V,,, V;,) is also a vector space.
Inner Product We equip a n-dimensional vector space V,, with a mapping V,, x V,;, — IR, called
inner product such that for any «, 5 € IR and any a, b, c € V,,, the inner product is

1. Positive-definite: a-a>0; a-a=0 < a=0,
2. Linear: a- (ab+ fc) = aa-b+ fa-c,

3. Symmetric: a-b=Db-a.

Geometric interpretations:

e Length of a vector: |a] = +/a- a,

e Angle between two vectors: cos(f) = Bk



Euclidean Space IR" For a n-dimensional vector space V,, equipped with an inner product, we

can find an orthonormal basis {e; : i = 1,--- ,n} such that for all ¢, =1,--- |n,
1 ifi=j,
e e =0y = e
0 ifi#jy,

where 9;; is called kronecker delta. With respect to this basis, for any vector a € V,,, we find its
components (ai,- -+ ,ay) (or coordinates if a is a point in space)

n
a:E a;€;, a;,=a-e€IR Vi=1---,n.
i=1

We can further identify the space V,, with the familiar Euclidean space IR™. However, one shall
keep in mind, IR", as a vector space equipped with an inner product, is more than a collection of
arrays of real numbers. One should not think of a vector in IR" as an array of real numbers unless
we specify a basis or a frame.

Tensor Product For vectors a € IR" and b € IR™, the tensor product b®a is a linear mapping:

ba:V, —V,
(b®a)(c)=(a-c)b VcelR"

¢ CLAaM: For any a € IR" and b € IR™, the mapping b ® a (from V,, to V},,) defined above is
linear.

¢ CLAaM: Let {e; : i = 1,---n} be an orthonormal basis of IR" and {€, : p=1,---m} be an
orthonormal basis of IR™. Show that

{¢p®e;:i=1,--- ,n, p=1,---m} C Lin(IR", IR™)

forms a basis of the linear space Lin(IR", IR™).

Subspace of IR", Orthogonal Subspace A subset M C IR" is asubspaceifVa,5 € IR & Va,b €
M,

aa+ fb e M.

Let M- ={b:b-a=0V ac M}.
¢ CLAIM: Show that M is a subspace of IR" if M is a subspace.

Projection Theorem Let M be a subspace of IR". For any x € IR", we have

x=y+zwherey e M, ze M*.

The vector y, z are uniquely determined by x.
¢ PRrROOF:



Transpose of a Tensor Let A € Lin(IR",IR™), {e; :i = 1,---n} be an orthonormal basis of IR"
and {é, : p=1,---m} be an orthonormal basis of IR™. Then A admits the following decomposition

A= A,é,®e;  where Ay =8&,-Ae;) Vi=1,--,np=1--,m.

Py
Define
AT R, — IR",
AT =) " Aje; ®é, € Lin(IR™, IR").
J2X)

¢ CraM: For any a € IR" and b € IR™,

b-A(a) =a-AT(b).

Symmetric and Skew-symmetric Tensor Let A € Lin(IR", IR"). A is symmetric if A = AT

A is skew-symmetric if AT = —A.
Let {e;:i=1,---n}, {&, :p=1,---n} be two orthonormal bases of IR". We have shown

A=) Aé,®e;  where Ay =8&,-Ale;) Vpi=1--n.

Dyi
4 CLAIMS :

1. For any A € Lin(IR", IR"), we have a unique decomposition A = E + W, where E = ET and
W= -WT.

2. A = AT if and only if for any a,b € IR",
b-A(a)=a-A(b).
3. If A=AT and a- A(a) = 0 for any a € IR", then A = 0.

4. There exists a nonzero tensor A such that

a-Aa=0 VaeIR", n>2.

5. Assume that (&,---,&,) = (e1, -+ ,e,). If A = AT then A, = Ay forall p,i =1, ,n;
if A= _AT, then Apz‘ = —Aip.

Product of tensors Let A € Lin(IR", IR™), B € Lin(IR™, IR*). Then

BA : [R" — IR,
BA(a) =B(A(a)).
Orthogonal Tensor Let Q € Lin(/R", IR"). The tensor Q is orthogonal if Qa- Qb = a- b for

all a,b € IR™. From the definition we see that orthogonal tensor operating on vectors preserves
the length of a vector and the angle between two vectors since




1. |a] =|Qal, and
2. a-b=Qa-Qb.

#CLAIM: A tensor Q : IR™ — IR" is orthogonal if and only if Q7Q = QQ” = I, where I is
the identity mapping from IR" to IR".

Trace and determinant of a tensor Let A € Lin(IR",IR") and {e; : ¢ = 1,--- ,n} be an
orthonormal basis. Then we have A =3 Aje, ®e; and refer to Tr(A) =377, Ay, as the trace
of A, det A = det[A,;] as the determinant of A.

¢ Cramv Tr, det : Lin(IR", IR") — IR is independent of the choice of basis.

Rigid Rotation Tensor An orthogonal tensor R € Lin(IR", IR") is a rigid rotation if det R = +1.
Representation theorem: For any A € Lin(IR", IR), there is an a € IR" such that Explicitly, if
we have

A=) Apei e, =1,
%
then
n
a = Z Ah‘ei.
i=1

Cross product in IR? For a, b € IR?,

e ey e3
aAb=|a a2 a3z |=W(b),
b1 by b3
where W = Zp;i Wyiep @ €,
0 —asg a9
[Wp7i] as 0 —ai
—a9 aq 0

¢ CraiM: The following properties of cross products holds:
1. bANa=—-aAb, a-(aAb)=0,b-(aAb)=0.
2. (aAb)-c=(bAc)-a=(cAa)-b.

3. Geometric interpretation: show that |a A b| =area of the parallelogram formed by a and b;
|c - (a A b)|= volume of the parallelepiped formed by a, b, c.



