1.2 The divergence theorem

<u>Tensor Fields</u> Let $\Omega \subset \mathbb{R}^n$ be an open domain.

- $\varphi: \Omega \to IR$ is a scalar field;
- $\mathbf{v}: \Omega \to I\!\!R^m$ is a vector field:
- $\mathbf{T}: \Omega \to \operatorname{Lin}(\mathbb{R}^m, \mathbb{R}^k)$ is a tensor field.

Notation convention: it is often convenient to denote vectors and tensors in index notation, e.g., v_i $(v_i = \mathbf{v} \cdot \mathbf{e}_i)$ and T_{pi} $(T_{pi} = \hat{\mathbf{e}}_p \mathbf{T} \mathbf{e}_i)$, where the bases $\{\hat{\mathbf{e}}_p, p = 1, \dots, m\}$ and $\{\mathbf{e}_i, i = 1, \dots, n\}$ are usually not specified but tacitly understood.

<u>Differentiation</u> Let φ be a scalar field on $\Omega \subset \mathbb{R}^n$. For any $\mathbf{a} \in \mathbb{R}^n$,

$$D\varphi(\mathbf{x}) : \mathbb{R}^n \to \mathbb{R},$$

$$(D\varphi(\mathbf{x}))(\mathbf{a}) = \lim_{\varepsilon \to 0} \frac{\varphi(\mathbf{x} + \varepsilon \mathbf{a}) - \varphi(\mathbf{x})}{\varepsilon}.$$

<u>Definition</u>: φ is differentiable on Ω if $D\varphi(\mathbf{x}) \in \text{Lin}(\mathbb{R}^n, \mathbb{R})$ for all $\mathbf{x} \in \Omega$

$$\varphi(\mathbf{x} + \varepsilon \mathbf{a}) = \varphi(\mathbf{x}) + \varepsilon (D\varphi(\mathbf{x}))(\mathbf{a}) + o(\varepsilon)$$

= $\varphi(\mathbf{x}) + \varepsilon \nabla \varphi(\mathbf{x}) \cdot \mathbf{a} + o(\varepsilon) \quad \forall \mathbf{x} \in \Omega, \mathbf{a} \in \mathbb{R}^n.$

and

$$\nabla \varphi(\mathbf{x}) = \sum_{i=1}^{n} \varphi_{,i} \mathbf{e}_{i}, \qquad \varphi_{,i} = \mathbf{e}_{i} \cdot \nabla \varphi = \lim_{\varepsilon \to 0} \frac{\varphi(\mathbf{x} + \varepsilon \mathbf{e}_{i}) - \varphi(\mathbf{x})}{\varepsilon} = \frac{\partial \varphi(x_{1} \mathbf{e}_{1} + \dots + x_{n} \mathbf{e}_{n})}{\partial x_{i}}.$$

Definition: $\mathbf{v}: \Omega \to \mathbb{R}^m$ is differentiable on Ω if every component is differentiable

$$\mathbf{v}(\mathbf{x}) = \sum_{p} v_p(\mathbf{x}) \hat{\mathbf{e}}_p \ .$$

Definition:

$$\nabla \mathbf{v}(\mathbf{x}) = D\mathbf{v}(\mathbf{x}) : \mathbb{R}^n \to \mathbb{R}^m$$
$$(\nabla \mathbf{v}(\mathbf{x}))(\mathbf{a}) = \sum_{p=1}^m \hat{\mathbf{e}}_p \nabla v_p(x) \cdot \mathbf{a}$$

Thus,

$$\nabla \mathbf{v}(\mathbf{x}) = \sum_{p,i} v_{p,i} \hat{\mathbf{e}}_p \otimes \mathbf{e}_i \ .$$

Divergence: If m = n, $\operatorname{div}(\mathbf{v}) = \operatorname{Tr}(\nabla \mathbf{v})$, i.e.,

$$\operatorname{div}(\mathbf{v}) = v_{i,i}\mathbf{e}_i \cdot \mathbf{e}_i = v_{i,i}.$$

Further, if $\mathbf{T}: \Omega \to \operatorname{Lin}(\mathbb{R}^n, \mathbb{R}^m)$ and

$$\mathbf{T}(x) = T_{pi}\hat{\mathbf{e}}_p \otimes \mathbf{e}_i.$$

Then

$$\operatorname{div}(\mathbf{T}) : \mathbb{R}^m \to \mathbb{R}$$

 $\operatorname{div}(\mathbf{T})(\mathbf{a}) = T_{pi,i}\mathbf{a} \cdot \hat{\mathbf{e}}_p.$

One may identify $\operatorname{div}(\mathbf{T})$ with a vector field $\Omega \to \mathbb{R}^m$ (instead of $\operatorname{Lin}(\mathbb{R}^m, \mathbb{R})$). With an abuse of notation, we write

$$\operatorname{div}(\mathbf{T}) = T_{pi,i}\hat{\mathbf{e}}_p.$$

Field of class $C^0, C^1, C^2, \cdots, C^{\infty}$

♦ CLAIM: Assume φ , \mathbf{v} , \mathbf{u} , \mathbf{T} : $\Omega \to \mathbb{R}$, \mathbb{R}^n , \mathbb{R}^n , $\text{Lin}(\mathbb{R}^n, \mathbb{R}^m)$, \mathbf{w} : $\Omega \to \mathbb{R}^m$ are smooth fields on Ω . The following identities hold:

- 1. $\nabla(\varphi \mathbf{v}) = \mathbf{v} \otimes (\nabla \varphi) + \varphi \nabla \mathbf{v};$
- 2. $\operatorname{div}(\varphi \mathbf{v}) = (\nabla \varphi) \cdot \mathbf{v} + \varphi \operatorname{div} \mathbf{v}; \quad \nabla \cdot \mathbf{v} = \operatorname{div} \mathbf{v}$
- 3. $\nabla (\mathbf{v} \cdot \mathbf{u}) = (\nabla \mathbf{v})^T \mathbf{u} + (\nabla \mathbf{u})^T \mathbf{v}$
- 4. $\operatorname{div}(\mathbf{v} \otimes \mathbf{u}) = \mathbf{v} \operatorname{div}(\mathbf{u}) + (\nabla \mathbf{v}) \mathbf{u}$
- 5. $\operatorname{div}(\mathbf{T}^T \mathbf{w}) = \mathbf{T} \cdot \nabla \mathbf{w} + \mathbf{w} \cdot \operatorname{div} \mathbf{T}$
- 6. $\operatorname{div}(\varphi \mathbf{T}) = \varphi \operatorname{div} \mathbf{T} + \mathbf{T} \nabla \varphi$

Proof: Tacitly, an orthonormal basis $\{\mathbf{e}_1, \cdots, \mathbf{e}_n\} \subset \mathbb{R}^n$ and an orthonormal basis $\{\hat{\mathbf{e}}_1, \cdots, \hat{\mathbf{e}}_m\} \subset \mathbb{R}^m$ are chosen and fixed. Notation: Einstein summation, i.e., summation over double index is understood. For example, to show 5, we have

$$\operatorname{div}(\mathbf{T}^T\mathbf{w}) = (T_{pi}w_p)_{,i} = T_{pi,i}w_p + T_{pi}w_{p,i} = \mathbf{w} \cdot \operatorname{div}\mathbf{T} + \mathbf{T} \cdot \nabla \mathbf{w}$$

Curl operator: Let $\mathbf{v}: \Omega \to \mathbb{R}^3$.

$$\operatorname{curl} \mathbf{v} = \nabla \wedge \mathbf{v} = \begin{vmatrix} e_1 & e_2 & e_3 \\ \partial_1 & \partial_2 & \partial_3 \\ v_1 & v_2 & v_3 \end{vmatrix} = \sum_{i=1}^3 \mathcal{E}_{ijk} v_{k,j} \mathbf{e}_i,$$

where Levi-Civita symbol is defined as

$$\mathcal{E}_{ijk} = \begin{cases} 1 & \text{if } (ijk) = (123), (231), (312), \\ -1 & \text{if } (ijk) = (132), (213), (321), \\ 0 & \text{otherwise.} \end{cases}$$

We notice that \mathcal{E}_{ijk} is antisymmetric, i.e.,

$$\mathcal{E}_{ijk} = -\mathcal{E}_{ikj}, \quad \mathcal{E}_{ijk} = -\mathcal{E}_{jik}, \quad etc.$$

A useful identity between Kronecker symbol and Levi-Civita symbol is

$$\mathcal{E}_{pij}\mathcal{E}_{pkl} = \delta_{ik}\delta_{jl} - \delta_{il}\delta_{jk}.$$

Let $\Omega \subset \mathbb{R}^3$ be a domain in \mathbb{R}^3 . Assume that $\mathbf{v}: \Omega \to \mathbb{R}^3$, $\varphi: \Omega \to \mathbb{R}$ are smooth fields.

- ♦ CLAIM: the following identities hold:
- 1. $\nabla \wedge \nabla \varphi = 0$.
- 2. $\operatorname{div}(\nabla \wedge \mathbf{v}) = 0$.
- 3. If $a, b, c \in \mathbb{R}^3$, $a \wedge (b \wedge c) = (a \cdot c)b (a \cdot b)c$
- 4. $\nabla \wedge (\nabla \wedge \mathbf{v}) = \nabla(\nabla \cdot \mathbf{v}) \Delta \mathbf{v}$.

Proof:

Divergence Theorem

Let Ω be a smooth simply connected domain in \mathbb{R}^n , $\mathbf{v}:\Omega\to\mathbb{R}^m$ is a smooth vector field on Ω . Then we have

$$\int_{\partial\Omega} \mathbf{v} \otimes \mathbf{n} \, da = \int_{\Omega} \nabla \mathbf{v} dv, \tag{2}$$

where $\mathbf{n}: \partial\Omega \to \mathbb{R}^n$ is the outward unit normal on the boundary $\partial\Omega$. If m=n, take the trace of Eq. (2), we have

$$\int_{\partial\Omega} \mathbf{v} \cdot \mathbf{n} \, da = \int_{\Omega} \operatorname{div} \mathbf{v} \, dv. \tag{3}$$

For a smooth tensor field $\mathbf{T}: \Omega \to \operatorname{Lin}(\mathbb{R}^n; \mathbb{R}^m)$, we have

$$\int_{\partial\Omega} \mathbf{T}\mathbf{n} \, da = \int_{\Omega} \operatorname{div} \mathbf{T} dv. \tag{4}$$

 \blacklozenge Provide a heuristic proof for (2) with Ω being a rectangle in two dimensions.

Implications of divergence theorem in physics and mechanics

- 1. Gauss theorem
- 2. Stokes theorem
- 3.

1.3 Curvilinear coordinate systems

♦ Introduce the cylindrical coordinate system and spherical coordinate system in 3D.

